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The nonlocal properties of arbitrary dimensional bipartite quantum systems are investigated. A
complete set of invariants under local unitary transformations is presented. These invariants give
rise to both sufficient and necessary conditions for the equivalence of quantum states under local
unitary transformations: two density matrices are locally equivalent if and only if all these invariants
have equal values.
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Introduction. — As a fundamental phenomenon in
quantum mechanics, the quantum nonlocality has been
recently extensively investigated. Nonlocally quantum
correlated states, like quantum entangled states [1] or
states with nonzero quantum discord [2], play very im-
portant roles in many quantum information processing
such as quantum computation [3], teleportation [4], dense
coding [5], cryptography [6] and assisted optimal state
discrimination [7].

Due to the fact that the nonlocal properties, e.g. the
quantum entanglement of two parts of a quantum sys-
tem, remain invariant under local unitary transforma-
tions, they can be characterized in principle by the com-
plete set of invariants under local unitary transforma-
tions. For instance, the trace norms of realigned or par-
tial transposed density matrices in entanglement measure
[8] and the separability criteria [9] are some of these in-
variants. A complete set of invariants gives rise to full
classification of the quantum states under local unitary
transformations.

Many approaches to construct invariants of local uni-
tary transformations have been presented in recent years.
The method developed in [10, 11], in principle, allows
one to compute all the invariants of local unitary trans-
formations, though it is not easy to perform it opera-
tionally. In [12], a complete set of 18 polynomial invari-
ants is presented for the locally unitary equivalence of
two qubit mixed states. Partial results have been ob-
tained for three qubits states [13], some generic mixed
states [14–16], tripartite pure and mixed states [17]. The
local unitary equivalence problem for multipartite pure
qubit states has been solved in [18]. Then the problem
for arbitrary dimensional multipartite pure states are also
solved recently [19]. However, for mixed sates, generally
we still have no operational criteria to judge the equiva-
lence of two arbitrary dimensional bipartite states under
local unitary transformations.

In this letter, we study the nonlocal properties of arbi-
trary dimensional bipartite quantum systems and solve
the local equivalence problem by presenting a complete

set of invariants such that two density matrices are lo-
cally equivalent if and only if all these invariants have
the equal values in these density matrices. These in-
variants can be explicitly calculated and give rise to an
operational way to judge the local unitary equivalence
for nondegenerate density matrices. For degenerate case,
due to the eigenvector decompositions of a given state
are not unique in the degenerate eigenvectors’ subspace,
the approach is no longer operational since the expres-
sions of the set of invariants are not unique. Nevertheless
the set of invariants is still complete in the sense that if,
in a suitable eigenvector decompositions, two states have
the same values of the invariants, they must be equiva-
lent under local unitary transformations. In particular,
we also present a set of invariants that are independent
on the detailed eigenvector decompositions of a quantum
state. These invariants present a necessary criterion on
local unitary equivalence.

The linear space formed by the invariants. — We first
establish a linear space spanned by matrices whose traces
are the invariants under local unitary transformations.

Let H be an N -dimensional complex Hilbert space,
with |i⟩, i = 1, ..., N , an orthonormal basis. Let ρ be a
density matrix defined onH⊗H with rank(ρ) = n ≤ N2.
ρ can be generally written as

ρ =
n∑

i=1

λi|vi⟩⟨vi|, (1)

where |vi⟩ is the eigenvector with respect to the nonzero
eigenvalue λi. |vi⟩ is a normalized bipartite pure state of
the form:

|vi⟩ =
N∑

k,l=1

aikl|kl⟩, aikl ∈ C,
N∑

k,l=1

aikla
i∗
kl = 1,

where ∗ stands for complex conjugation.
Two density matrices ρ and ρ′ are said to be equivalent

under local unitary transformations if there exist unitary
operators U1 (resp. U2) on the first (resp. second) space
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of H ⊗H such that

ρ′ = (U1 ⊗ U2)ρ(U1 ⊗ U2)
†, (2)

where † denotes transpose and complex conjugation.

To solve the local equivalence problem of the density
matrices ρ and ρ′, it is sufficient to find the complete set
of invariants under local unitary transformation U1⊗U2.

Lemma 1. The following quantities are invariants under
local unitary transformations:

Js(ρ) = Tr1(Tr2ρ
s),

T r[(AiA
†
j)(AkA

†
l ) · · · (AhA

†
p)],

(3)

where s = 1, ..., N2, i, j, k, l, ..., h, p = 1, ..., n, Tr1 and
Tr2 stand for the traces over the first and second Hilbert
spaces respectively, Ai denotes the matrix with entries
given by (Ai)kl = aikl, i = 1, 2, · · · , n.
[Proof]. Let U1 and U2 be unitary transformations sat-

isfying U1U
†
1 = U†

1U1 = U2U
†
2 = U†

2U2 = 1. Un-
der the local unitary transformation U1 ⊗ U2, we have
ρ → ρ′ = U1 ⊗ U2 ρ U†

1 ⊗ U†
2 . Correspondingly, we have

|νi⟩ → |ν′i⟩ = U1⊗U2|νi⟩, or equivalently Ai is mapped to
A′

i = U1AiU
t
2, where U

t
2 is the transpose of U2. Therefore

A′
iA

′†
j = U1AiA

†
jU

†
1 , A′†

i A
′
j = U∗

2A
†
iAjU

t
2 (4)

for any i, j = 1, ..., n. By using relations (4)

and taking into account that Tr2|vi⟩⟨vi| = AiA
†
i ,

it is straightforward to verify that Js(ρ′) =

Tr1[
∑n

i=1 λ
s
iTr2(|ν′i⟩⟨ν′i|)] = Tr1[

∑n
i=1 λ

s
iA

′
iA

′†
i ] =

Js(ρ), Tr[(A′
iA

′†
j )(A

′
kA

′†
l ) · · · (A′

hA
′†
p )] =

Tr[U1(AiA
†
j)(AkA

†
l ) · · · (AhA

†
p)U

†
1 ] =

Tr[(AiA
†
j)(AkA

†
l ) · · · (AhA

†
p)]. Hence the quantities in

(3) are invariants of local unitary transformations.

If two density matrices are equivalent under local uni-
tary transformations, then their corresponding invari-
ants in (3) must have the same values. Before prov-
ing that if two density matrices have the same val-
ues of all the invariants in (3), they must be equiva-
lent under local unitary transformations, we first claim
that the set of independent invariants in (3) is finite.

In fact, each factor AiA
†
j belongs to the finite dimen-

sional algebra Mat(N), which has a linear basis Eij ,
i, j = 1, · · · , N . Therefore, denoting τ the number of
factors like (AiA

†
j) in Tr[(AiA

†
j)(AkA

†
l ) · · · (AhA

†
p)], we

have that τ is at most N2. Subjecting to the variations
of the subindices i, j, k, l, ..., h, p, there could be many in-
variants of this form. However, τ may be much less than
N2 for given i, j, k, l, ..., h, p. For instance for the case of
i = j = k = l... = h = p, τ takes values from 2 to N
(the case τ = 1 is trivial since Tr(AiA

†
i ) = 1 due to the

normalization of the state |vi⟩). The same is true also for

the invariants Tr[(A†
iAj)(A

†
kAl) · · · (A†

hAp)].

Denote the subalgebra of Mat(N) spanned by prod-

ucts of AiA
†
j by

IR(ρ) = span{(AiA
†
j)(AkA

†
l ) · · · (AhA

†
p)},

i, j, k, l, ..., h, p = 1, ..., n. Obviously IR(ρ) is a finite di-
mensional associative algebra. Set m = dim IR(ρ). Let
{ρ1, ρ2, · · · , ρm} be a basis of the linear space IR(ρ).
Lemma 2. The metric tensor matrix Ω, with entries
given by Ω(ρ)ij = Tr(ρiρj), i, j = 1, 2, · · · ,m, is non-
singular.
Proof. We prove by contradiction. If det[Ω(ρ)] = 0,
then the m row vectors of the matrix Ω(ρ) are linear
dependent. There exist c1, c2, · · · , cm ∈ C which are not
all zero, such that

m∑
i=1

ciTr(ρiρj) = 0, j = 1, ...,m.

It follows that

Tr((c1ρ1+c2ρ2+ · · ·+cmρm)ρj) = 0, j = 1, ...,m. (5)

Since (Ai1A
†
j1
· · ·AirA

†
jr
)† ∈ IR(ρ) and ρi are linear com-

binations of the terms like Ai1A
†
j1
· · ·AirA

†
jr
, we have

(c1ρ1 + c2ρ2 + · · ·+ cmρm)† ∈ IR(ρ) and

(c1ρ1 + c2ρ2 + · · ·+ cmρm)† = h1ρ1 + h2ρ2 + · · ·+ hmρm

for some hi ∈ C, i = 1, 2, · · · ,m. It follows form (5) that

Tr[(c1ρ1+c2ρ2+· · ·+cmρm)(c1ρ1+c2ρ2+· · ·+cmρm)†] = 0,

which implies c1ρ1 + c2ρ2 + · · · + cmρm = 0. Hence one
concludes that {ρi, i = 1, 2, · · · ,m} are linear dependent,
which contradicts that {ρ1, ρ2, · · · , ρm} is a basis of the
linear space IR(ρ).

Actually, one can also prove that if {ρi, i =
1, 2, · · · ,m} is a sequence of matrices such that
det[Ω(ρ)] ̸= 0, then {ρi, i = 1, 2, · · · ,m} is linear inde-
pendent.

The invariants Tr[(AiA
†
j)(AkA

†
l ) · · · (AhA

†
p)] can be

equivalently written as Tr[(A†
iAj)(A

†
kAl) · · · (A†

hAp)].
Correspondingly one has the linear space defined by

IN(ρ) = span{(A†
iAj)(A

†
kAl) · · · (A†

hAp)},

i, j, k, l, ..., h, p = 1, ..., n, with finite dimension d =
dim IN(ρ). If {θ1, θ2, · · · , θd} is a basis of IN(ρ) like
IR(ρ), we similarly have that the matrix Θ with entries
given by Θ(ρ)ij = Tr(θiθj), i, j = 1, 2, · · · , d, satisfies
det[Θ(ρ)] ̸= 0.
Lemma 3. If two density matrices ρ =

∑n
i=1 λi|νi⟩⟨νi|

and ρ′ =
∑n

i=1 λi|ν′i⟩⟨ν′i| have the same values for the
following invariants:

Tr[(AiA
†
j)(AkA

†
l ) · · · (AhA

†
p)], (6)
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i, j, k, l, ..., h, p = 1, ..., n, then the corresponding linear
spaces IR(ρ) and IR(ρ′) have the same dimension. More-
over, the bases of IR(ρ) and IR(ρ′) have a one to one

correspondence: if (AiA
†
j)(AkA

†
l ) · · · (AhA

†
p) is a basis el-

ement of IR(ρ), then (A′
iA

′†
j )(A

′
kA

′†
l ) · · · (A′

hA
′†
p ) is a basis

element of IR(ρ′). Similar results hold between the linear
spaces IN(ρ) and IN(ρ′).
[Proof]. Assume that {ρα, α = 1, 2, · · · ,m} is a basis of

IR(ρ). Each ρα has a form of (AiA
†
j)(AkA

†
l ) · · · (AhA

†
p).

Denote ρ′α = (A′
iA

′†
j )(A

′
kA

′†
l ) · · · (A′

hA
′†
p ), α =

1, 2, · · · ,m. Since det[Ω(ρ)] = det[Ω(ρ′)] ̸= 0 from
Lemma 1 and the condition (6), we have {ρ′α, α =
1, 2, · · · ,m} is linearly independent. Hence dim IR(ρ′) ≥
dim IR(ρ). In a similar way one can prove that
dim IR(ρ) ≥ dim IR(ρ′). Therefore dim IR(ρ′) =
dim IR(ρ) and {ρ′α, α = 1, 2, · · · ,m} is a basis of IR(ρ′).
Similar results between the linear spaces IN(ρ) and

IN(ρ′) can be obtained from the expression of invariants

Tr[(A†
iAj)(A

†
kAl) · · · (A†

hAp)].

Local equivalence of bipartite states. — We now give
the necessary and sufficient condition for the equivalence
of bipartite states under local unitary transformations.
Theorem Two arbitrary dimensional bipartite density
matrices are equivalent under local unitary transforma-
tions if and only if there exit eigenstate decompositions
(1) such that the following invariants have the same val-
ues for both density matrices:

Js(ρ) = Tr2(Tr1ρ
s), s = 1, ..., N2;

Tr[(AiA
†
j)(AkA

†
l ) · · · (AhA

†
p)],

(7)

where i, j, k, l, ..., h, p = 1, ..., n.
[Proof]. We have proved that the quantities in (7) are
invariants under local unitary transformations. We now
prove that these invariants are complete. Suppose that
the states ρ =

∑n
i=1 λi|νi⟩⟨νi| and ρ′ =

∑n
i=1 λ

′
i|ν′i⟩⟨ν′i|

have the same values to the invariants in (7). From
Js(ρ) = Js(ρ′), s = 1, ..., N2, we have that the two
density matrices ρ and ρ′ have the same set of eigenval-
ues, i.e. λi = λ′

i for i = 1, 2, · · · , n.
Next we introduce the dual basis ρ∗i in IR(ρ) such that

Tr(ρiρ
∗
j ) = δij . In fact, let Ω(ρ)−1 = [Ωij(ρ)], then

ρ∗i =

m∑
j=1

Ωij(ρ)ρj . (8)

By Cramer’s rule Ω(ρ)−1 = |Ω(ρ)|−1Adj(Ω)(ρ), so Ωij(ρ)
are given by polynomials in Ωij(ρ), consequently ρ∗i are
expressed as polynomials in the basis element ρi.
Now we study the algebra structure of IR(ρ). First we

define the bilinear form ⟨ , ⟩ on IR(ρ) by

⟨σ, τ⟩ = Tr(στ †), σ, τ ∈ IR(ρ). (9)

Then IR(ρ) becomes a Hilbert space and each operator
ρi is bounded under the norm ||ρ|| = ⟨ρ, ρ⟩1/2. Next we

have

ρiρj =
m∑

k=1

Tr(ρiρjρ
∗
k)ρk. (10)

The invariance of the traces (7) implies that in the alge-
bra IR(ρ′) the element ρ′∗i is given by the same formula
as ρ∗i :

ρ′∗i =

m∑
j=1

Ωij(ρ′)ρ′j =

m∑
j=1

Ωij(ρ)ρ′j . (11)

Moreover ρ′iρ
′
j are also given by the same structure con-

stants:

ρ′iρ
′
j =

m∑
k=1

Tr(ρ′iρ
′
jρ

′∗
k )ρ

′
k =

m∑
k=1

Tr(ρiρjρ
∗
k)ρ

′
k. (12)

Eqs (10) and (12) imply that the map ρi → ρ′i gives
an isomorphism from the algebra IR(ρ) onto the alge-
bra IR(ρ′). Therefore IR(ρ) and IR(ρ′) are two equivalent
representations of the same underlying associative alge-
bra. Thus there exists a non-singular matrix T such that
ρi = Tρ′iT

−1 for all i = 1, . . . ,m. In particular, we have

AiA
†
i = TA′

iA
′
i
†
T−1, i = 1, . . . ,m. As AiA

†
i are hermi-

tian, due to the algebraic property (9) and using Theorem
12.36 in [20] we have

AiA
†
i = uA′

iA
′
i
†
u†, (13)

where u is the unitary part of T in the polar decomposi-
tion.

Similarly from isomorphism of the algebras IN(ρ) ≃
IN(ρ′), one has

A†
iAi = wA′†

i A
′
iw

†, (14)

for some unitary matrix w and all i.
By using relations (13) and (14) we can show

Ai = uA′
i(w

∗)t, i = 1, ..., n.

In fact, let ui and u′
i be the unitary matrices that

diagonize the hermitian matrices AiA
†
i and A†

iAi re-

spectively, uiAiA
†
iu

†
i = diag{η2i1 , ..., η

2
iN
}, u′

iA
†
iAiu

′
i
†
=

diag{η2i1 , ..., η
2
iN
}. From the procedure of the singular

value decomposition of matrices [21], we have uiAiu
′
i
†
=

diag{ηi1 , ..., ηiN } with ηk ≥ 0. From (13) and (14),

we have uiAiA
†
iu

†
i = uiuA

′
iA

′
i
†
u†u†

i = diag{η2i1 , ..., η
2
iN
}

and u′
iA

†
iAiu

′
i
†
= u′

iwA
′
i
†
A′

iw
†u′

i
†
= diag{η2i1 , ..., η

2
iN
}.

Therefore from singular value decomposition we have
uiuA

′
iw

†u′
i
†

= diag{ηi1 , ..., ηiN }. Hence we obtain

uiAiu
′
i
†
= uiuA

′
iw

†u′
i
†
, i.e. Ai = uA′

iw
† = uA′

i(w
∗)t.

Since Ai = uA′
i(w

∗)t, we have |ν′i⟩ = u† ⊗ (w∗)†|νi⟩,
i = 1, ..., n, and ρ′ = u†⊗(w∗)† ρ u⊗w∗. Therefore ρ′ and
ρ are equivalent under local unitary transformations.
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From the proof one sees that the invariants (7) are
complete, finite and can be easily calculated. For non-
degenerate states ρ and ρ′, the eigenvector |νi⟩ of ρ cor-
responds uniquely to the eigenvector |ν′i⟩ of ρ′. Hence
the correspondence between Ai and A′

i is also unique. It
is straightforward to judge the local unitary equivalence
of ρ and ρ′ by simply comparing the values of invariants
from Ai and A′

i one by one.
For degenerate states, it becomes less operational since

the eigenvector decompositions (1) is no longer unique. If
|vi⟩, i = 1, ..., r, are the orthogonal eigenvectors with re-

spect to a same eigenvalue. then |̃vi⟩ =
∑

j Uij |vj⟩ is also
a set of linearly independent orthogonal eigenvectors to
the same eigenvalue for any unitary matrix (U)ij = Uij .
Therefore the expressions of the invariants (7) are not
unique in general. However, by linear combinations of
the invariants in (7) we can get a set of invariants which
does not depend on the detailed eigenvector decomposi-
tions,∑r

i,i′,j,j′,...,k,k′=1 Tr(AiA
†
i′AjA

†
j′ · · ·AkA

†
k′),∑r

i,i′,j,j′,...,k,k′=1 Tr(A†
iAi′A

†
jAj′ · · ·A†

kAk′),
(15)

where the indices {i′, j′, ..., k′} is any given permutation
of the indices {i, j, ..., k}. Different given permutation
gives different invariants. Since the invariants (15) are
independent on the detailed eigenvector decompositions,
they gives an operational necessary condition for the lo-
cal equivalence, with respect to the subspaces spanned by
the degenerate eigenvectors. If two density matrices with
the same degenerate eigenvalue are equivalent under local
unitary transformations, they must have the same values
of all the invariants in (15). As an simple example, con-
sider ρ = diag{1/2, 1/2, 0, 0}, ρ′ = diag{1/2, 0, 1/2, 0}.

We have A1 = A′
1 =

(
1 0
0 0

)
, A2 = (A′

2)
t =

(
0 1
0 0

)
,

From (15) we have that ρ and ρ′ are not local uni-

tary equivalent, since Tr(A1A
†
1A1A

†
1 + A1A

†
2A2A

†
1 +

A2A
†
1A1A

†
2 + A2A

†
2A2A

†
2) = 2, while Tr(A′

1A
′†
1 A

′
1A

′†
1 +

A′
1A

′†
2 A

′
2A

′†
1 +A′

2A
′†
1 A

′
1A

′†
2 +A′

2A
′†
2 A

′
2A

′†
2 ) = 4.

Conclusion and remarks. — We have investigated
the nonlocal properties of arbitrary dimensional bipartite
quantum systems and solved the local equivalence prob-
lem by presenting a complete set of invariants such that
two density matrices are locally equivalent if and only
if all these invariants have the equal values. Although
the independent invariants may vary with the detailed
bipartite states, the number of the invariants one needs
to check is finite. Here we have dealt with the case that
the dimensions of both Hilbert spaces are the same for
simplicity. Nevertheless the case that the Hilbert spaces
have different dimensions can be similarly discussed. Our
approach of constructing local invariants and algebraic
proof of the sufficiency may also shed light on multipar-
tite case, for which only the multipartite pure state case
has been extensively studied [18, 19].
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