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h i g h l i g h t s

• A model of opinion evolution with parameter q is introduced.
• There occurs a phase transition as the value of q is smoothly varied.
• The critical parameter value qc is a monotone increasing function ofm.
• The mean-field approximation can explain the transition nature.
• In the thermodynamic limit and form very large, qc can reach its upper limit, 0.5.
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a b s t r a c t

In this paper, the dynamics of opinion formation is investigated based on a BA
(Barabási–Albert) scale-free network, using a majority–minority rule governed by param-
eter q. As the value of q is smoothly varied, a phase transition occurs between an ordered
phase and a disordered one. By performing extensive Monte Carlo simulations, we show
that the phase transition is dependent on the system size, as well as on m, the number of
edges added at each time step during the growth of the BA scaling network. Additionally,
some theoretical analysis is given based on mean-field theory, by neglecting fluctuations
and correlations. It is observed that the theoretical results coincide with results from sim-
ulations, especially for very largem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Opinion evolution dynamics has received much attention in recent decades [1–9]. Defining elementary processes that
enable a group to reach a consensus is the main purpose of these models. Typically, these models consist of a number,
say N , of agents, and the opinion of each of them is influenced by those of its neighbors. Highlighted and well-investigated
examples of binary-choice opinion evolutionmodels include the votermodel [5], themajority-rulemodel [10], social impact
theory [11], and the Sznajd model [12]. Extensive studies along this direction can be found in the literature [7,13–19].

Clifford and Sudbury [20] firstly considered the voter dynamics as a tool to study the competition among species, which
was then named the ‘‘voter model’’ by Holley and Liggett [21]. The voter model is used very widely because it manifests a
nonequilibrium stochastic process which can be exactly solved in systems with various dimensions [5]. The majority-rule
model was proposed by Krapivisky and Redner [22] and was then applied to describing public debates [23]. The key point of
thismodel is that all agentswill absorb themajority opinion among the group of interest. Models based on social impact the-
ory are used to describe how individuals feel the presence of people around them and how they in turn influence others. The
Sznajd model was proposed based on the principle that it is easier to convince two or more persons than a single individual.
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Fig. 1. The collective behavior (characterized by the average magnetization) of the system. Ω as a function of the number of time steps t for a BA scaling
network (N = 1000 andm = 4), in which only one realization is given for each q.

Bing-Hong Wang et al. [24] investigated how social diversity affects the formation of a global consensus in opinion
dynamics. By assigning each agent a weight, proportional to the power of its degree, they found that there exists an optimal
power exponent that yields the shortest time interval for the consensus to be reached. This result enables one to identify the
role of heterogeneous degree distributions of agents in the dynamics of opinion formation. Sampaio-Filho and Moreira [25]
studied the dependence of the collective behavior of an entire system on the persuasive cluster spin (PCS) size, using the
block voter model with noise based on two-dimensional square lattices. The majority rule and the minority rule were
combinedwith the use of a single parameter q. The authors concluded that, at the critical threshold, there is a phase transition
from an ordered state to a disordered one.

The goal of this work is to study the dynamics of opinion formation on a BA scaling network, which is then compared
to a theoretical analysis. The rest of the paper is organized as follows. In Section 2, we introduce the model used for Monte
Carlo simulations. In Section 3, we present our results and discussion, while in Section 4 we provide a theoretical analysis
as a comparison to the simulations. Section 5 presents our conclusions.

2. Model

We modify a simple model proposed in Ref. [25] for the dynamics of opinion formation on a BA scaling network, whose
generating process can be see in [26], with only nearest-neighbor interactions. Consider a set of N agents involved in
a discussion about a certain topic. Let us indicate by si the opinion of agent i, who may take one of two opposite spin
orientations, say ‘‘+1’’ or ‘‘−1’’, which stand for agree (si = 1), and disagree (si = −1), respectively. The change of si
will depend on the opinions of its neighbors, namely who is linked to i. Define the number of neighbors of agent i as ni. The
sum of opinions of all agents among ni at time step t is simply Wi(t) =


jϵni

sj(t). Then the opinion of agent i, si, at t + 1
will be updated according to the following equation.

si(t + 1) =


sgn(Wi(t)) with probability (1 − q);
−sgn(Wi(t)) with probability q, (1)

where Wi(t) ≠ 0. When Wi(t) = 0, agent i will randomly select one value among ±1 as its next-time opinion, each with
probability 1/2.

3. Results and discussion

Here, we introduce the average magnetization of system Ω to measure the collective behavior that opinion evolves over
time.

Ω(t) =
1
N


i

si(t). (2)

Additionally, Ωs, the absolute saturated value of Ω at the stationary state, is adopted as an order parameter.

Ωs =

 1N 
i

si

 . (3)

Extensive Monte Carlo simulations have been performed on a BA scaling network for a given value ofm. Initially, the two
opposing points of view are evenly distributed among all agents. Then agents update their opinions synchronously according
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Fig. 2. The order parameter Ωs is plotted as a function of q at different values of m for N = 1000. Each value of Ωs is averaged over 10000 time steps
starting from 20000th step. Each curve is an average over 50 independent simulations.
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Fig. 3. Fm , the standard deviation of Ωs , as a function of parameter q for N = 1000 andm = 2, 4, 6, 8.

to the rule of the model. This procedure is repeated indefinitely until the stationary state is reached. Ω is then calculated
based on 104 time steps in the regime of stationary states.

We present simulation results of Ω(t) at various values of q in Fig. 1. It is observed that Ω rapidly reaches a steady state
when q is not too large, except that, when q = 0, there are fluctuations in the evolution of Ω at the steady state. This reveals
that the system is still alive after reaching the steady state: the opinions of agents keep changing but the overall sum of
them is nearly constant. Fig. 1 displays an interesting phenomenon. That is, the difficulty for the system to reach an ordered
state will increase as q does, for fixed N andm. If q takes its critical value, the system will never reach an ordered state.

Fig. 2 indicates the effect of parameter q on the order parameter Ωs. In this figure, each curve for Ωs reveals that there is
a critical point qc corresponding to a transition from an ordered state to a disordered one. Below qc , the system possesses
a nonzero magnetization showing two opposing opinions surviving together with different fractions. However, the average
magnetization is equal to zero for q ≥ qc , which illustrates that the two different points of view are equally shared by agents.
The reason behind this kind of behavior is that both the majority rule and the minority rule will eventually render all agents
of the system to hold an identical opinion. Nonetheless, agents observe the opinion held by most agents and do not change
their opinions in the case of majority rule. As for the minority rule, agents have the same point of view after a sufficiently
long time; however, this point of view does not remain unchanged, but switches between +1 and −1. Consequently, two
antithetic opinions coexist in the system when we introduce these two rules by a parameter q. The weights of these two
disparate rules are not the same for q < qc , which may give rise to nonzero average magnetization.

For the sake of obtaining a precise value of the critical parameter qc , we analyze the standard deviation Fm of Ωs for any
givenm.

Fm =


1
G

G
g=1

(Ωs(g) − ⟨Ω⟩c)
2

1/2

, (4)

where G = 50 is the number of independent simulations, and ⟨Ω⟩c means the ensemble average.



Y.-y. Zhu et al. / Physica A 392 (2013) 6596–6602 6599

Fig. 4. The critical parameter qc as a function ofm for a BA scaling network (N = 1000). Each value of qc corresponds to the peak of Fm at the samem (see
Fig. 3). The plots suggest that qc is a monotone increasing function ofm.

Fig. 5. The standard deviation of the order parameter as a function of q for a BA scaling network (N varies between 1000 and 23000) (left panel), and the
critical parameter qc as a function of N (right panel), wherem = 6. The plots suggest that Fm decreases as N increases, and that qc is a monotone increasing
function of N .

Fig. 3 reveals how the standard deviation Fm changes with parameter q, for N = 1000 and various values ofm, where we
only show the cases of m = 2, 4, 6, 8 for illustration. For a certain system, there exists a peak in Fm, corresponding to the
critical point, namely qc . Based on that, we plot qc as a function of m in Fig. 4. As is seen, qc is a monotone increasing func-
tion of m. m characterizes the strength of interactions between agents on a BA scaling network. The larger m, the stronger
the interactions between agents. We have mentioned that an agent updates its opinion according to the minority rule with
probability q and according to the majority rule with probability (1 − q), respectively. Therefore, parameter q specifies the
proportions of these two rules during the opinion evolution. From Fig. 4, we can see that, for a more dense network, the
value of qc is larger, which means that the difference between the weights of two rules is smaller. If m is sufficiently large
or the network is sufficiently dense, qc will reach its upper bound, 0.5. And in such a case there will be no phase transition.

We also perform some analysis about how the size of a system influences the value of the critical parameter qc by check-
ing Fm for different q when m = 6 and N varies between 1000 and 23000. We plot the dependence of qc on the size of
system; see the right panel of Fig. 5. It can be inferred that qc increases as N does. But Fm decreases as qc increases; see the
left panel of Fig. 5.

From Figs. 4 and 5, we can predict that the value of qc will reach its upper limit 0.5 in the thermodynamic limit and for
very largem. And the standard deviation Fm of the order parameter will be close to zero in that case.

4. Theoretical analysis

Here, we provide a mean-field theory study of the modified model. The probability that an agent observes opinion +1
and −1 at time step t is denoted by p+(t) and p−(t), respectively. On a BA scaling network, the probability that an agent i
will stick to opinion +1 or −1, in the next time step, can be given by

p+(t + 1) =


k,a

P(k, a) [Θ(k − 2a)q + Θ(2a − k)(1 − q)] ,

p−(t + 1) =


k,a

P(k, a) [Θ(k − 2a)(1 − q) + Θ(2a − k)q] , (5)
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Fig. 6. Order parameterΩs as a function of parameter q. The results are attained by numerical solution of equations based onmean-field theory. The initial
value of f is 0.45 for eachm.

Fig. 7. Comparison between simulations and theoretical analysis. Ωs as a function of parameter q for simulations (solid symbols) and theoretical analysis
(hollow symbols), where N = 1000.

where

P(k, a) = P(k)

k
a


p+(t)ap−(t)(k−a), (6)

and

Θ(x) =

1 x > 0
1/2 x = 0
0 x < 0,

(7)

in which k ∈ [1, kmax], a ∈ [0, k], and P(k) is the degree distribution of the BA scaling network.
Hence, at steady states, the order parameter of system Ωs can be defined by

Ωs = |p+(s) − p−(s)| , (8)

where p+(s) and p−(s) are the average probabilities of an agent with opinion +1 and −1, at stationary states.
By iterations, we obtain the relation between the order parameter Ωs and parameter q; see Fig. 6. The figure shows

that there exists a critical point, close to the one found in Monte Carlo simulations. The comparison between simulations
and theoretical outcomes is given in Fig. 7, which shows certain agreement of the two. We plot qc(m) versus N for both
simulations and theoretical analysis in Fig. 8. It is observed that the critical parameter qc is independent of the size of the
system in mean-field theory. However, it increases with N in Monte Carlo simulations. So, Fig. 8 tells us that mean-field
theory can be used to explain opinion formation on a BA scaling network when the network is not too large. For large
networks, we should take into account the heterogeneity of the BA scaling network.

Furthermore, we analyze the effects of the initial conditions on Ωs by means of Monte Carlo simulations and theoretical
analysis; see Fig. 9. It turns out there is little dependence on that.
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Fig. 8. The critical parameter qc as a function ofm, for Monte Carlo simulations and theoretical analysis with N = 1000 and N = 10 000, respectively.

Fig. 9. Order parameter Ωs as a function of parameter q, averaged over ten different simulations. In all cases, N = 1000 and m = 6. Left panel: Effect of
different initial number of nodes, n0 . Right panel: Different initial distributions of opinion f (the fraction of opinion −1) are shown. Both of the insets are
corresponding results of theoretical analysis.

5. Conclusions

In summary, we have studied the opinion diffusion dynamics on a BA scaling network by performing Monte Carlo
calculations and mean-field approximations. Our main results suggest that there occurs a phase transition from an ordered
state to a disordered one as one smoothly changes the value of parameter q. Furthermore, the mean-field approximation
can explain the transition nature when the network is very dense. Simulation results of the model also show that in the
thermodynamic limit and form very large, the critical parameter qc can reach its upper limit 0.5.
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