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We investigate the emergent population dynamics of an iterated game in which members of
two antagonistic populations are randomly paired in each round. The basic setting is symmetric
between these two populations, but this symmetry can be broken by giving the members of the
two populations access to different strategy spaces or by assigning different values to parameters
determining the composition or the evolution of the populations. In particular, we can investigate
the effects of population diversity or stochasticity of the individual agents’ actions, both for the
competition between agents inside a population and for their benefits or disadvantages for the
population as a whole.
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I. INTRODUCTION

Classical game theory, based on the von Neumann and Morgenstern model [1], attempts to describe the situation
of two interacting, perfectly rational players who both aim at maximizing their gains by accessing and utilizing all
relevant information available to them. The framework has been well applied to a large category of social, behavioral
and economic systems [2] in which neither player could improve his action if both wish to act on their own favorable
interests, which is the key point of, and more elaborated by, the Nash equilibrium theory [3].

On the basis of a crucial paradigm shift in biology called population thinking [4], game theory was also combined
with the principles of the Darwinian theory of evolution. Evolutionary game theory, as developed by evolutionary
biologists such as Price and Maynard Smith [5–8], deals with the dynamics of the entire population of players who
explore a certain strategy space [9]. The composition of the population is updated so that those with higher payoffs
will expand their relative frequency within the population at the expense of those with lower payoffs. Although the
biologists think in terms of fitness and selection whereas the economists prefer learning and prediction [10], the theory
benefits both fields [11, 12]. Evolutionary game theory has also been utilized to understand how cooperation between
members of a population can emerge when they play the game repeatedly, instead of only once as in classical game
theory. In repeated games, cooperation, that is, apparently altruistic behavior, can be in the interest of selfish players,
when they can induce their opponents to also behave cooperatively [13].

Deterministic replicator dynamics has been developed as the mathematical approach to evolutionary dynamics
[8, 9]. This replicator dynamics formally assumes infinite populations. However, in real-world systems, the population
size is always finite, though possibly large. Therefore, we should also take the resulting effects into account. Stochastic
fluctuations caused by finite population size have been investigated, for instance, in [14–16]. Also, the presence of small
stochastic noise is normal and sometimes even essential for evolutionary systems. For example, random mutations of
genes, that is, occasional wrong coding at a certain position of DNA sequences, or the errant behavior of agents in
the market, play crucial roles in the long term. In repeated games, such stochasticity is unavoidable, even when we
know exactly the history of players’ decision making [17, 18]. Furthermore, the stability of the dynamic equilibrium
with respect to stochastic perturbations has been investigated [17, 19–22].

Another issue is heterogeneity of the population. This could refer to different aspects, like age, sex or spatial
structure. In particular, heterogeneity of the players’ spatial profiles has been considered, for two reasons. Firstly, at
the population level, the internal heterogeneity of the interactions may lead to some emergent, collective behavior other
than the one displayed in the cases when the interactions are more homogeneous or uniform [12, 23, 24]. Secondly,
research on networks [25, 26] has brought up the issue of the topology of the underlying interaction network. Each
player does not interact with all other ones, but only with those few with which it is connected in the network. For
an overview, see [21] and the references therein.

In this paper, we intend to investigate the effects resulting from stochastic perturbations and heterogeneity in the
evolutionary complementarity game introduced in [27]. The noise affects the players’ actions; they do not make a
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definite move k, but one drawn from some distribution with mean value k and standard deviation s. One could then
check how the magnitude of s will affect both individual performance and population behavior. The heterogeneity is
related to the strategy profile of a certain population. This issue has been addressed in [29] in the framework of the
prisoner’s dilemma. Here, we shall work with some kind of metastrategies among which the players can choose. For
example, they could learn from their most recent encounters, imitate their friends or adapt to the distributions of all
their previous opponents’ offers by using the information more systematically. We then wish to see how such a mixture
of strategy profiles will evolve inside the population. In fact, we shall discover the very interesting phenomenon that
strategies that perform better when adopted by a uniform population get eliminated inside a heterogeneous population,
which will then cause the evolved population to be less successful as a whole.

In our model we have two populations, buyers and sellers, whose members are randomly matched in each round. A
buyer bids an offer x, and its co-player at the present round, a seller, asks for y, with both ranging between 0 and K
(an integer usually taken as 50 in our simulations). If x ≥ y then there is a deal between them, and the seller gains y
and the buyer K − x, to keep the game symmetric; otherwise no deal is concluded and both gain nothing. Thus, for
instance a buyer should ideally offer as little as possible so that the deal is just concluded, that is, he should not offer
more than the seller will ask or is expected to ask, and it would good for the buyer to induce the seller to ask little. Of
course, the situation for the seller is the reverse. Thus, both players wish to drive as hard a bargain as possible, but
if they push too hard the transaction will fail. If neither of them is allowed to learn or coordinate, the game is totally
symmetric and might then stay at the symmetric Nash equilibrium K/2 forever. We should note, however, that any
value between 0 and K is a Nash equilibrium as it will pay off for neither player to deviate when the opponent sticks
to that value. In that sense, the game is degenerate. Our key point is to break this degeneracy and the symmetry
between the two populations by evolutionary elements. That is, the outcomes of some fixed rounds of interactions
will be compared and accordingly the next generation will be constructed by some evolutionary scheme (operated by
some evolutionary algorithm or more elaborated genetic algorithm). There is plenty of room to break the symmetry
between the two populations. For instance, they can have different random mutation rates or they can be assigned
different strategy options, naive or sophisticated. By examining the resulting equilibrium value, one can check which
side is more favored: if that value is larger than K/2 then the sellers are doing better, otherwise the buyers. In general
we find that the simpler and more flexible strategies lead to superior results at the population level because they can
process the information in a more efficient way, which will speed up the convergence rate. Also, a population with
some bolder players may gain an advantage over one with timid players only.

Before proceeding, we need to introduce some notations for the system parameters and the strategies that will be
used in this paper:
First the parameters for the evolutionary scheme of replacing a population of players by a new one composed of
possibly mutated members of the present one with a fitness based selection: (1) generation length (time): the number
of rounds played (time steps) between two consecutive selections (if applicable);
(2) selection percentage: the percentage of the players who will be chosen as parents to generate the offspring during
the evolutionary process;
(3) mutation rate: the rate of random mutation during the evolutionary process.
Next we list the five strategies in the pool, classified on the basis of the types of information they use:

1. average-previous-opponent: the average of one’s opponents’ bids in the previous, say m (limited and usually
much smaller than the generation length), rounds

2. for m = 1, that strategy is called 1-round opponent: each player utilizes the offer of his opponent in the most
recent round

3. average-friend-opponent: the average of one’s friends’ opponents’ bids in the most recent round (here, each
player has a certain (usually small in comparison with the population size) number of friends (usually small in
comparison with the population size) within his own population)

4. average-all-friend: the average of one’s friends’ bids in the most recent round (thus, here, in contrast to the
previous strategies, no information about the other population is used during each generation)

5. average-successful-friend: the average of one’s friends’ successful bids in the most recent round (here, information
from the other population is used indirectly, but selectively, because their offers decide which of the friends are
successful)

Each strategy can have two variants, either directly employing the value computed according to the chosen strategy
as the next own offer, or using that value as the input in a look-up table whose output then is that next offer. The
look-up table then is itself an object of evolution. In fact, since the look-up table has K input entries and has to
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provide an output for each of them, evolution will take quite some time to test it out thoroughly. To distinguish these
two variants, we can simply put ”simple” in front of the strategy that is not using look-up tables. For the strategies
that involve friends, we will introduce friendship networks of different topologies, with the average degree of each
being fixed to, say 4.
To have a stable setting, in our major simulations with evolving the look-up tables, the generation length, the selection
percentage and the mutation rate are 1000, 0.5 and 0.01, resp. In this paper, for the ”simple” strategies without
look-up tables, the generation length has been taken to be 1, 4 or even larger in various simulations. Our population
size is always 400 and the maximal offer available, i.e. K, is 50.

II. OPTIMAL RESPONSES TO RANDOM DISTRIBUTIONS

In order to gain some theoretical insights into the simulation results reported below, we analyze the optimal response
of players to a fixed probability distribution of the opponent population. While this ignores a crucial aspect of our
population game, namely that both populations will adapt, this nevertheless will let us understand the effect of
stochastic fluctuations in the behavior of one population onto the adaptation process of the other one.
Since K is relatively large, we shall utilize a continuum approximation. Thus, the offers now vary continuously
between 0 and 1 (by rescaling from [0,K] to the unit interval [0, 1]). The symmetric equilibrium between sellers and
buyers then is at 1/2. When a seller chooses an offer s with probability density p(s), and the probability that that
offer is below the offer of his buyer opponent is p(s ≤ sb), then his expected gain is∫ 1

0

sp(s)p(s ≤ sb)ds. (1)

When the buyer chooses his offer t with probability density q(t), then

p(s ≤ sb) =

∫ 1

s

q(t)dt. (2)

The seller then maximizes his expected gain when he chooses the offer

s0 = argmaxss

∫ 1

s

q(t)dt. (3)

This leads to the condition

s0q(s0) =

∫ 1

s0

q(t)dt. (4)

When q is the uniform density, i.i., q(t) = 1 for all t, then the optimal choice is s0 = 1/2. When q is a delta
distribution, i.e., q(t) = δ(t− t0) for some t0, then of course the optimal choice is s0 = t0. When, more generally, q is
an average of delta distributions,

q(t) =
1

m

m∑
µ=1

δ(t− tµ), with t1 ≤ t2 · · · ≤ tm, (5)

then the optimal response is

s0 = max
µ

m− µ+ 1

m
tµ. (6)

This occurs, for instance, when the player observes m previous values (from his own experience or from observing
other players) and considers them all equally likely to recur in the next round.

When we have a nontrivial distribution q with a unique peak at 1/2, in which case
∫ 1

t1
q(t)dt < (1− t1)q(t1) ≤ t1q(t1)

for t1 ≥ 1/2, then we get an optimal response

s0 < 1/2. (7)

For instance, when q(t) = 2t for 0 ≤ t ≤ 1/2 and q(t) = 2 − 2t for 1/2 ≤ t ≤ 1, the optimal response is s0 =
√

1/8.
Thus, stochastic fluctuations about the equilibrium value 1/2 in the buyer population lead to an optimal response of
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the sellers that is below 1/2.

By (1), (2), the expected gain of a seller playing s is s
∫ 1

s
q(t)dt. His variance then is

V = s2
∫ 1

s

q(t)dt− (s

∫ 1

s

q(t)dt)2. (8)

For the uniform density q(t) = 1, this becomes

V = s3(1− s) (9)

the maximum of which is at s = 3/4. Thus, the variance increases beyond s = 1/2, that is, for achieving a lower
variance, it is better to be more cautious and play smaller values.

III. POPULATION INTERACTIONS AND EVOLUTION

As already described, we implement our game with two populations, the members of which are randomly paired in
each round. After a fixed number of rounds, the cumulative gains are evaluated, and a new generation of players is
created by some fitness based evolutionary scheme. Thus, adaptation operates on two different time scales, for the
individual players from round to round, and for the creation of offspring from generation to generation. The first one
can be considered as learning, the second one as evolution. Both of them have the potential to exploit information
about the behavior of the members of the opposite population. The evolution step always uses some information, in
an indirect manner, as those players that have been most successful in their generation could be considered as those
that are best adapted to the strategies employed by the members of the opposite population. We can also analyze how
efficiently information is used in the learning steps. Ideally, in a learning step, each player would form some estimate
q̃(t) of the distribution of offers from the other population. Here, as in Section II, we shall work with a continuous
range of offers t ∈ [0, 1], to facilitate the analysis.
We should remark at this point that a special (and somewhat different) case of our game has been analyzed by Young
[31]. In his setting, players are randomly paired and individually replaced, without any assessment of their fitness.
They can observe and remember a certain number m of rounds, observe values t1 ≤ t2 · · · ≤ tm and they then optimize
and play according to (5), (6). A convention in his terminology occurs when all the observed values coincide, say
they are all equal to some t0, for both of two players when they happen to be randomly matched. They will then
continue to play t0, according to the optimization scheme (5), (6). Since when the range of values is discrete, as in
his setting and the remainder of this paper, this happens with positive probability and therefore, eventually the two
populations will converge towards such a convention when m is less than half the number of rounds played, and the
observed rounds are randomly chosen.
Here, however, we want to systematically explore a wider range of possible strategies and parameter ranges, and also
employ the evolutionary setting described above. We shall therefore examine various types of possible strategies.
When we have the 1-round opponent strategy, and both populations start with a random distribution of offers, then
the players in one population simply copy the random distribution of the players from the other one in the previous
round. When both populations do that, nothing changes within a generation, and the distributions of offers stay
random, as discussed in [28]. Thus, information is only fed into the population during the evolution step.
For the average-previous opponent strategy, when averaging over m ≥ 2 rounds, the offers of both populations will
converge to the same average value when the generation contains sufficiently many rounds. When both populations
play this strategy, the dynamics of the probability distributions pn, qn of the sellers and buyers, resp., at time n is
easily described:

pn =
1

m

m∑
j=1

qn−j =
1

m2

m∑
j=1

m∑
k=1

pn−j−k. (10)

(The reader will easily derive the generalization for the case where sellers and buyers average over different numbers
of rounds.) Thus, in the end, each population averages its own distribution.
In the framework of Section II, an estimate leading to this strategy is

q̃(t) = δ(t− 1

m

∑
tj) (11)

where the tj are the values played by the m previous opponents and where δ is the usual delta functional. Thus, the
estimate uses only the average of the previous offers, but does not take the variance into account. If another estimate
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q̃(t) were formed, for instance a Gaussian distribution with the same average and variance[32] as the collection of the
m values t1, . . . , tm observed in the previous m rounds, the optimal response of a buyer would be smaller than the
average 1

m

∑
tj , as proved in Section II. Correspondingly, the optimal response of a buyer would be higher than the

average of the previous m buyer offers. Thus, we see that the average-previous-opponent strategy does not use the
information provided in an optimal manner. Of course, the estimate q̃(t) would always be taken from some fixed class
of distributions which should be constrained to avoid overfitting, see [30].
The average-friend-opponent strategy can be discussed in the same manner. The difference between this strategy
and the average-previous-opponent is that here only information about the most recent behavior of the opposite
population is utilized. Again, this strategy uses its information not in the optimal way.
Coming to the average-all-friend strategy, this strategy does not utilize any information about the opposite population.
Therefore, given sufficiently many rounds, and assuming that at least some agents have more than one friend, the
behavior of each population will converge to the average of its own initial distribution. Thus, information is only used
in the evolution step, and it may therefore be better for the population if that convergence is slower so that some
differences exist within each population on which evolution can operate.
Finally, the average-successful friend strategy: By (2), the probability that the offer sk of a friend k of a seller is

smaller than his opponent’s offer is
∫ 1

sk
q(t)dt. Therefore, the expected average of the successful friends is∑

k sk
∫ 1

sk
q(t)dt∑

k

∫ 1

sk
q(t)dt

(12)

where the sum is over all friends. When we also take the average w.r.t. the offer distribution p(s) of the seller
population (and thereby suppress all contributions from the particular structure of the friendship network), we obtain
the estimate ∫ 1

0
sp(s)

∫ 1

s
q(t)dtds∫ 1

0
p(s)

∫ 1

s
q(t)dtds

(13)

for the offer of a seller according to that strategy. Again, of course, this assumes fixed distributions p, q for the
offers of the two types of players and does not take the adaptation dynamics into account. For that, we should
replace p and q by the distributions pn−1 and qn−1 from the previous round n − 1 and then utilize (13) for an
estimate for pn, and analogously for qn. Again, we could simply take the delta distribution at the value encountered
whose expectation value is given by (13), or we could also take the variance or even some higher moments into account.

As discussed the simple strategies do not use the available information in an optimal manner as they esti-
mate a distribution by a delta distribution at the observed average. One might then allow the members of the two
populations access to some class of distributions inside which they then choose the one that matches the observed
opponent or friend behavior best. This is the approach of parametric statistics, and this is mathematically analyzed
in [30]. In order to avoid having to work with parametrized classes of distributions, we here give the players the
opportunity to evolve their look-up tables.

IV. THE EFFECTS OF RANDOM FLUCTUATIONS

It is of principal interest to understand the effects of stochastic fluctuations at the various levels and scales involved.
First, at the individual level, the players can use (partly) random instead of deterministic strategies. For instance,
instead of playing a fixed number k, a player can take his offer from a Gaussian distribution centered at k with
standard deviation s. Thus, the parameter s here measures the degree of randomness of the individual behavior.
In the simplest case, the same s will be assigned to all the members of a population, so s becomes a parameter for the
whole population. We can then compare different populations with different parameters, which allows us to optimize
the value of s. In our simulations, we observe that for larger values of s, it takes much longer for the players to
optimize their performance. Also, a population with all players subject to stochastic fluctuations performs worse than
the one whose members make more definite offers. This observation confirms the insight into the key mechanism
at work at the population level that a homogeneous and constant population may evolve more quickly to a stable
state by achieving its favorable equilibrium value. The inhomogeneous population is forced to accept that value and
trapped into a disadvantageous position.

Second, also at the individual level, s could be a parameter that varies between individuals. This means that each
player can choose his own degree of randomness s when making his offer. Our simulations (see one example shown in
Fig. 1) indicate that the players with a smaller value of s do better than those with a higher degree of randomness.
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Both these observations, namely that a high degree of randomness is a disadvantage both at the population and
at the individual level, are not surprising. In fact, according to the analysis of Section II, the important point for
every player is to identify the unique optimal response value, and higher variances only distract from that. But here
is a more interesting point: We consider a population whose typical members play deterministic strategies but a
small fraction of its members is erratic and plays more random strategies. In the simplest case, most members of
a population always choose k, whereas the rest makes random bids. Or for the 1-round opponent strategy, when
most players of a population make definite offers, the others choose their bids according to a Gaussian or some other
distribution. Extensive simulations have shown that the population with some erratic members will gain an advantage
over the one with less or no freaks. Fig. 2 shows one of our simulations where all the buyers and 95 percent of the
sellers make deterministic offers but 5 percent of the sellers behave randomly. We see that the sellers need more time
than the buyers to reach the equilibrium that is, however, more favorable to them.

According to the above points, it is better for each individual to be less random. Collectively, this is also better for a
population as a whole when all its members are uniform. However, it is better for a population to have some members
with higher randomness. These erratic members may perform less well at the individual level, but it is good for the
population to have some around because their actions may seem to confuse their opponents. This issue may be of
some interest in theoretical biology, with regard to the issue of group selection. In our example, a group is better when
it is more diverse and contains some members that are kept at an individually non-optimal level. Within the group, of
course, there then is the evolutionary tendency to eliminate those inferior members, but competition between groups,
when sufficiently strong, could work in favor of those groups that can suppress that internal evolutionary pressure.
Our framework thus seems to offer some possibility for analyzing this issue in more detail.

Finally, the stochastic effects play a role in the evolutionary scheme, that is, on the longer time scale. In particular,
the mutation rate is a randomness parameter that a population can optimize. The results of [27] indicate that the
optimum is reached at some particular, non-zero value for the mutation rate, which, again, is not a surprising finding.

V. DYNAMICS OF HETEROGENEOUS POPULATIONS

So far, we have only discussed cases where all the members within the same population adopt the same kind of
strategy taken from the (strategy) pool [28]. We now wish to investigate the effects arising from breaking the strategic
uniformity. This may add some realism to our game as players have the freedom to choose the best strategies which
could, they assume, optimize their profits.

We thus consider a heterogeneous population whose members choose their strategies individually according to a
certain distribution. This distribution then changes as the result of evolution, according to the performances (scores
or fitness) of strategies accumulated during some fixed rounds of interactions. The more successful strategies will
increase in frequency in the next generation and can thus diffuse inside a population. It will then be of interest to
see both which strategies will spread inside a population and what strategy mix will be good for the population as a
whole. Since both populations evolve their strategy mix, the conclusions derived in Section II for more homogeneous
situations no longer strictly apply, and some disadvantages identified there might turn into advantages in this mutually
changing setting.

Our strategy pool has been defined in Section I and includes 1-round opponent, average-previous-opponent, average-
friend-opponent, average-all-friend and average-successful-friend. Initially the 5 strategies are evenly distributed, that
is, each is adopted by 1/5 of the players.

First we consider the cases where the look-up tables are included. Namely the players need to predict their
current-round bids on the basis of the previous experiences, of their own or of their friends’. When the members of a
heterogeneous population play against those of a homogeneous one, the outcomes are diversified mainly by the strategy
type the homogeneous population is taking. If the homogeneous population takes 1-round opponent or average-all-
friend, the two opposing sides perform about the same. If the homogeneous side takes average-friend-opponent or
average-successful-friend, then it can gain a slight advantage over its heterogeneous opponent. A little surprising
finding is that the homogeneous population will, in some cases, lose the competition if the average-previous-opponent
has been taken by its members. This seems hard to explain based on our ranking list of different types of strategies
made in one of our previous papers [28], in which the average-previous-opponent is consistently superior to any of
the other strategies. But the setting here is different and also according to our observations, the average-previous-
opponent needs longer time to converge than any other strategy does. Hence the heterogeneous population has been
quicker in locating the optimal point, which could push the homogeneous side into a disadvantageous situation (Fig.
3). This is also reflected from another observation that the average-previous-opponent seldom becomes the final
dominant one inside the heterogeneous population, mostly due to its relatively slow convergence rate. In any case,
the average-previous-opponent strategy employs less recent information than the other ones, and this also might put
it at a disadvantage when the two populations rapidly adapt.
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Thus in general, the heterogeneous population and the homogeneous one are performing nearly equally well by
using the current parameters. Also, the best strategy at the population level is not necessarily the eventually leading
one inside a heterogeneous population when the look-up tables are evolved.

In fact, a heterogeneous population does best with a combination of 2 or 3 strategies. But evolution inside the
population will eventually eliminate all but one strategy. We find that the eventually dominant strategy could be any
of the 5 strategies, with nearly equal chances. Our simulations also indicate that the convergence to the equilibrium
is much faster now by only taking 10 generations. Since a fully heterogeneous population explores 5 different types of
strategies its members taken together will make full use of all available information. By such an efficient information
exchange, the heterogeneous population can quickly identify the optimal strategy distribution. Consequently, the
heterogeneous population will be quicker in stabilizing their optimal offers, which can be seen from the jump in Fig.
4. There the buyers have already achieved a value close to the final equilibrium, almost 9,000 steps before that same
value is reached by the sellers. The early stabilization of the heterogeneous population is double-edged. On one hand,
this is good for the population to spread information and test as many strategies as quickly as possible. On the other
hand, this is also sometimes bad since the equilibrium value may not be advantageous, for instance smaller than K/2
for the sellers. Once a population is stabilized, the opposite one can then take its time to adapt to the corresponding
value.

We now consider the case without look-up tables. That is, the players simply treat the values, calculated according
to their strategy, as their offers at the present round. Since the 1-round opponent cannot improve without being
combined with evolving the look-up tables, we here only include the remaining four which perform some average
and therefore can utilize more information as time evolves, namely simple average-previous-opponent, simple average-
friend-opponent, simple average-all-friend and simple average-successful-friend, respectively. As before, the strategy
distribution, initially uniform, will change across generations.

Our simulations show that the generation length is crucial for the outcome. For shorter generation length, players
have little time to process, and respond to, the information obtained. Hence the players’ experience values are
almost randomly drawn from a uniform distribution. Whereas when the generation length is longer, the information
processing will be more efficient and extensive.

If the generation length is 1, the outcomes of the play will be compared immediately after every round. When
the heterogeneous population is playing with the homogeneous one adopting the simple average-previous-opponent,
simple average-friend-opponent or simple average-all-friend, the equilibrium value converges to K/2. This is expected
because the mean value of a uniform distribution with maximal offer K is exactly K/2. The final existing strategy is, in
most cases, simple average-friend-opponent. We also observed, but only very rarely, that the simple average-all-friend
dominates or the simple average-friend-opponent and simple average-all-friend split. As explained in Section II, by
itself, average-all-friend does not utilize any information from the opposite population. In a mixed setting, however,
some of the friends might play a different strategy, in which case copying them indirectly utilizes information. Simple
average-previous-opponent and simple average-successful-friend can never take the leading position. The reason is
probably, as discussed in [28], that average-friend-opponent uses both spatial and temporal information, which can
expedite the convergence to the final equilibrium. When the heterogeneous population is faced with the homogeneous
one having the simple average-successful-friend, the equilibrium value is then K/4 or 3K/4. These results are not
difficult to be understood since there is little information exchange due to the short generation length. This is also
why it’s hard for the simple average-previous-opponent to take the lead because this strategy must utilize all the past
information, instead of the zero information conveyed by the random distribution.

If we increase the generation length up to 4, some new phenomena appear. If the heterogeneous population is against
the one that plays simple average-previous-opponent or simple average-friend-opponent, the equilibrium can be pushed
to K or 0 (Fig. 5). This is of course the extreme case. Consequently, the eventually dominant strategy will be simple
average-successful-friend or simple average-all-friend (when the overall success rate is 1, average-successful-friend is
equivalent to average-all-friend). If the heterogeneous population opposes the one with simple average-successful-
friend, the equilibrium is 3K/4 or K/4 and the final existing strategy shall be the simple average-friend-opponent.
When the heterogeneous population is played with the one having the simple average-all-friend, the equilibrium stays
at K/2 and the simple average-friend-opponent finally dominates. As we see here that when the information exchange
is turned on due to longer generation length, totally different schemes emerge. The most interesting finding is that
the simple average-successful-friend, the lowest ranked strategy in [28] can take the eventual leading position and
forces the equilibrium to its most favorite one (Fig. 6). This phenomenon can be, as well, observed when one plays a
heterogeneous population against another heterogeneous one.

To understand the puzzle mentioned in the preceding paragraph we may consult Fig. 6. Its main part displays the
generation evolution of the frequencies of different strategies, i.e., the strategy profile. The inset displays the time
evolution of the overall success rate of the whole population (defined as the ratio of the number of successful deals
per round to population size) and the success rate of the simple average-successful-friend players. The two parts have
different time scales because the generation length is 4. We could roughly divide the main curve in Fig. 6 into three
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different regimes. The first regime is generation 1 where solely the random effects exist. The second one is from
generation 2 to generation 5 where the different strategies are competing. The last one is from generation 6 until
the end where the simple average-successful-friend already dominates and the other strategies have been completely
eliminated. We notice the crucial place is regime 2 where the overall success rate is still as low as 0.6. But for the
simple average-successful-friend holders the success rate of their own actions is around 0.9, much higher than 0.6
because they use more selective information. Though their average gain might be lower than the counterparts for
the other ones, the total gain (proportional to the product of the success rate and average gain per round) could
be higher, in accordance with the analysis of Section II. As shown in the inset of Fig. 5, the difference between the
average gains for different strategies is not significant as the one between the success rates. By combining these two
factors, the simple average-successful-friend can dominate inside the population, as is exactly shown in Fig. 7 where
we plot the strategy percentages versus the generation step. If we remove the simple average-successful-friend from
the strategy pool, we find that each of the three remaining strategies has an equal chance to become dominant.

We also extensively explored the situation when the generation length is taken to be even longer, such as 20, 50
or 100. The observed phenomena are similar as for generation length 4. The reason could be that the players are
not learning, hence the information exchange has been accomplished within a few (for example 4) steps. The optimal
offers for the current round have been nearly identified for the players due to the quick convergence.

VI. CONCLUSION

To summarize, we have investigated the effects of stochasticity and heterogeneity within the framework of our
model. The stochastic fluctuations are produced by the random, instead of definite, actions of players. For both
individual players and the whole uniform population, it is more beneficial to be less random. But it is good for a
more constant population to have a small fraction of errant players when most others play more definite strategies.
The more random players are at a disadvantageous position inside the population and thus get eliminated first, which
will have some systematic effects on the opposing population. This situation could, in turn, favor the group under
consideration in the long term.

The heterogeneity of the population structure considered is strategy related in this paper. Namely, each player
inside a population can choose from 4 or 5 different strategies. When all the strategies need to evolve look-up tables, a
heterogeneous population generally ties a homogeneous one. But the heterogeneous population converges much more
quickly than the homogeneous one, which can be good or bad depending on the equilibrium value reached.
For the ”simple” strategies without the look-up tables, the outcomes depend on the generation length used. If the
generation length is 1, nobody uses any useful information. Hence, the strategy which needs to adapt to the past
information, e.g. average-previous-opponent, can never be the eventual dominant strategy. As generation length is
increased up to 4 or even longer, the lowest-ranked strategy for a homogeneous population, the average-successful-
friend, can lead inside a heterogeneous one. This leads to the total ”coordination” of the game by one side. The reason,
as it turns out, is that the average-successful-friend uses more selective information, which could be an advantage
when all other strategies are still adapting and testing and thus unable to quickly improve the success rate of deals.
Once the advantage is accumulated, the average-successful-friend spreads rapidly inside the population.
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FIG. 1: The performance of individual erratic agents versus the degree of randomness (represented by the standard deviation
s of a Gaussian distribution). The performance is evaluated by the average gain (payoff) of the players with the same s.
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FIG. 2: The performance comparison between the buyer population whose members use 1-round opponent strategy and the
seller population most of whose members also use 1-round opponent strategy but 5 percent of them behave randomly. The
sellers are performing better.
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FIG. 3: The generation-scaled evolution of frequencies of different strategies inside a heterogeneous population with each player
initially picking one strategy from the uniform strategy pool. The strategy pool consists of 1-round opponent, average-previous-
opponent, average-friend-opponent, average-all-friend and average-successful-friend. The strategy profile inside the population
is updated every 1000 time steps (one generation), based on the performance (gains) of each strategy, according to a standard
evolutionary scheme. Eventually only one strategy, which diffuses inside the whole population, survives.
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FIG. 4: The heterogeneous population ties the homogeneous one with member players taking average-friend-opponent as their
strategy, when the evolutionary scheme is included. The heterogeneous side, however, is converging far more quickly than the
homogeneous one. This is mainly due to the extensive and efficient information exchange when fellow players may play different
strategies.
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FIG. 5: When the look-up tables are not included and the generation length is 4, the heterogeneous population can achieve
the equilibrium most favorable to it. Here, the simple average-successful-friend outperforms the other strategies. This could be
fully exploited by the homogeneous population to drive the game to its own favorable direction. The inset displays the overall
and respective average payoff for the heterogeneous population. The former is averaged over all members, and the latter, over
the fellow members who use the same type of strategy.
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FIG. 6: With the same setting as in Fig. 5, the simple average-successful-friend dominates inside the heterogeneous population.
One can roughly divide the plot into three regimes: generation 1, generations 2 to 5, and generations 6 and after. The most
crucial place for a strategy to take lead is the second regime. The inset shows the overall success rate for all members and the
success rate for simple average-successful-friend players.
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FIG. 7: The generation-scaled evolution of fitness distributed by strategies. While the simple average-successful-friend does
not lead initially, its gain grows steadily and is ahead after a few generations.
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