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ABSTRACT. Starting from 3D elasticity equations we derive the model of the homoge-
nized von Karman plate by means of I'-convergence. This generalizes the recent results,
where the material oscillations were assumed to be periodic. We also prove the locality
of I'-closure i.e. that every energy density obtained in this way by mixing n different ma-
terials is at almost every point of domain limit of some sequence of the energy densities
obtained by periodic homogenization.

Keywords: elasticity, dimension reduction, homogenization, von Karméan plate model.

CONTENTS

3.1.
3.2.
3.3.
3.4.
3.95.

Proof of Lemma 23

Proof of Proposition 2.9 and Lemma,
Proof of Theorem 2111

Proof of Theorem 212

Proof of Theorem 214

e AT ]
[Referenced

Date: July 16, 2013.

Ne R e N

11
11
13
25
29
34
41
50



2 IGOR VELCIC
1. INTRODUCTION

This paper is about derivation of homogenized von Kdrman plate equations, starting from
3D elasticity by means of I'-convergence. We do not presuppose any kind of periodicity,
but work in a general framework. There is a vast literature on deriving plate equations
from 3D elasticity. For the approach using formal asymptotic expansion see [Cia97] and the
references therein. The first work of deriving the plate models by means of I'-convergence
was [LDR95] where the authors derived the membrane plate model. It was well known that
the obtained models depend on the assumption what is the relation of the external loads
(i.e. the energy) with respect to the thickness of the body h. Higher ordered models (such
as bending and von Kérmén plate models) are also derived by means of I'-convergence
(see [FIMO2, [FIMO6]). The key mathematical ingredient in these cases was the theorem
on geometric rigidity.

In [BEF00Q] (see also [BB06]) the influence of the different inhomogeneities in the combi-
nation with dimensional reduction on the limit model was analyzed. These models are
obtained in the membrane regime. Recently, the techniques from [FJMO02, FJMO06] were
combined together with two-scale convergence to obtain the models of von Karman plate
(see [Vell, INV]]), von Kdrman shell (see [HV]) and bending plate (see [HNV], [Vela]). These
models were derived under the assumption of periodic oscillations where it was assumed
that the material oscillates on the scale £(h), while the thickness of the body is h. The
obtained models depend on the parameter v = limy_.q % In the case of von Karman
plate the situation v = 0 corresponds to the case when dimensional reduction dominates
and the obtained model is the model of homogenized von Karméan plate and can be ob-
tained as the limit case when v — 0. Analogously, the situation when v = co corresponds
to the case when homogenization dominates and can again be obtained as the limit when
v — oo; this is the model of von Karman plate obtained starting from homogenized energy.
In the case of von Karman shell and bending plate the situation v = 0 was more subtle
and leaded that the models depend on the further assumption of the relation between e(h)
and h. We obtained different models for the case e(rn)? < h < e(r) and h ~ g(h)?.

Here we analyze the case of the simultaneous homogenization and dimensional reduction
in the von Kéarman regime in the general framework, without any assumption on the
periodicity. Simultaneous homogenization and dimensional reduction, without any as-
sumption on periodicity, were also considered in a non-variational framework (see |[CMO04]
for monotone nonlinear elliptic systems and [GMO6] for linear elasticity system). In these
papers compensated compactness arguments were used and the notion of H-convergence
(introduced by Murat and Tartar, see [MT97]) was adapted to the dimensional reduction.

This paper is the first treatment of simultaneous homogenization and dimensional reduc-
tion without periodicity assumption by variational techniques in the context of higher
ordered models in elasticity, at least to the author’s knowledge (membrane case is already
analyzed in [BFF0(]). However, we restrict ourselves to von Kérmén regime where the
linearization is already dominated, although the system itself is nonlinear.
We prove the validity of the following asymptotic formula for the energy density

Q(z', My, Ms) = hm K (M 4+ x3Ms, B(a',r)) , VM, M € R2X2 and a.e. 2’ € w,

sym

o |B(=@ ’ [B("r)]

where

K (My + 23My, B(z/,r)) = mf{ lim / Q" (m (M + 23 Ma) + vh¢h) d
h—0 B(a!,r)xI

(Y8 haph) — 0 strongly in L2 (B(2',r) x I,R?’) },
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B(a',r) is a ball of radius 7 and center z’ in R?, w C R? is a Lipschitz domain, representing
the plate, ¢ is the natural injection from R?*2? to R3*3 (see below) and (Q"),~o are
quadratic functionals of h problem (see Section [2). We suppose that the limit exists (this
is a reasonable assumption, since otherwise the formula is valid on a subsequence). This
formula unifies all three regimes obtained in [NV]].

We also prove the locality of T-closure i.e. that every Q(z/,-,-) obtained by the formula
above (by mixing n different materials) is, for almost every 2’ € w, pointwise limit of the
energy densities obtained by the periodic homogenization i.e. those ones obtained in [NV]].

The question of locality of I'-closure was introduced and proved for the linear equations
independently by Tartar in |[Tar85] and Lurie and Cherkaev in [LC84]. The corresponding
locality property of the G-closure for monotone operators is due to Raitums in |Rai0l]
(generalizing an unpublished work by Dal Maso and Kohn). Related results of locality of
I'-closure in the class of convex integrands can be found in [BB09]. Yet, the local character
of the I'-closure is an open question in the class of quasiconvex nonconvex integrands
satisfying standard growth conditions.

In [GN11] the authors proved the weaker version of the local character of I'-closure at
identity. To show commutability of homogenization and linearization at the identity in
the general framework the authors used the higher integrability property of the minimizers
of the system of linearized elasticity equations (see [SW94]). This required C1! regularity
of domain. Since it is not clear how to obtain higher integrability result for this case
which includes also the dimensional reduction i.e. changing of the domains, we do not
use it here. Instead we only use equi-integrability property of the minimizing sequence
and show that this is enough to construct the recovery sequence. This does not require
CY! regularity of domain i.e. we work with Lipschitz domain. The other two key points
are the characterization of the displacements that have bounded symmetric gradients on
thin domains (the result proved in |Gri0f, Theorem 2.3]) and the characterization of the
displacements that have the energy of order h* (see [NV, Proposition 3.1]). The proof
of this proposition relied on the theorem on geometric rigidity and similar observations
in [FJMO06]. The new essential part was to correct the vertical displacements in order
to obtain a sequence which is bounded in H?. This was not done in [FJMO06], since the
authors did not need more information on the corrector to obtain the lower bound.

Although we start from nonlinear 3D equations (the property of objectivity is essential),
we are able to prove the locality of I'-closure in the von Karman regime. This is because
in this regime partial linearization is also done and we are in fact dealing with energies
that are convex in strain.

This paper is organized as follows: in Section 2] we give general framework and main
result, in Section [3] we give the proofs of the main statements given in Section [2 and in
the Appendix we prove some auxiliary claims.

1.1. Notation. If x € R3 by 2’ we denote 2’ = (x1,22). By V' we denote the operator
V'u = (01u,dou). The expression A < B means A < CB, where the constant C > 0
can depend additionally depend on domain w and on the constants «, 8 below. By R we
denote R U {—o00,4+00}. By B(x,r) in the quadratic norm we denote the ball of radius
r with the center z. If A C R", by |A| we denote the Lebesgue measure of A. If A and
B are subsets of R”, by A < B we mean that the closure A is contained in the interior
int(B) of B.
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¢ denotes the natural injection of R?*? into R®*3. Denoting the standard basis of R? by
(e1,e9,€3) it is given by
2

L(A) = Z Anpleq ® ep).

a,B=1
For a,b € R3 by a A b we denote the wedge product of the vectors a and b. We put
Y = [—%, %]2 and ) =Y with the topology of torrus.

2. GENERAL FRAMEWORK AND MAIN RESULTS

The three-dimensional model. Throughout the paper Q" := w x (hS) denotes the

reference configuration of a thin plate with mid-surface w C R? and (rescaled) cross-

section [ := (—%, %) We suppose that w is Lipschitz domain i.e. open, bounded and

connected set with Lipschitz boundary. We denote by I' = 0w x I. For simplicity we
assume that w is centered, that is

) [ (5 )aman—o

Definition 2.1 (nonlinear material law). Let 0 < a < 8 and p > 0. The class W(«, 3, p)
consists of all measurable functions W : R3*3 — [0, +00] that satisfy the following prop-
erties:

(W1) W is frame indifferent, i.e.
W(RF)=W(F) forall FeM?3 ReSO(3);
(W2) W is non degenerate, i.e.
W(F) > adist?(F,S0(3)) for all F € M?;
W(F) < Bdist>(F,SO(3)) for all F € M? with dist>(F,SO(3)) < p;
(W3) W is minimal at I, i.e.
W(I) = 0;
(W4) W admits a quadratic expansion at I, i.e.
W(I+G)=Q(G)+o(|GI*) for all G € M

where Q : M® — R is a quadratic form.

In the following definition we state our assumptions on the family (W),
Definition 2.2 (admissible composite material). Let 0 < o < 8 and p > 0. We say that
a family (W");50
Wh: QxR o RY U {400}
describes an admissible composite material of class W(a, 3, p) if
(i) For each h > 0, W" is almost surely equal to a Borel function on € x R3*3,

(ii) Wh(x,-) € W(a, B, p) for every h > 0 and almost every = € €.
(iii) the following uniform estimate is valid

h T Nk
(2) lim sup ess sup (Wh(z, I + G)2 Q" (z,G)|
G—=0p>0 zeQ |G|

=0
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Notice that Q" can be written as the pointwise limit

(3) (z,G) = Q"(z,G) = lim LWz, 1d +£G),

and therefore inherits the measurability properties of W,

Lemma 2.3. Let (W"),~¢ be as in Definition 22 and let (Q")p>o be the quadratic form
associated to W through the expansion (W4). Then

(Q1) for all h > 0 and almost all x € Q the map Q"(x,-) is quadratic and satisfies

alsym G|? < Q"z,G) = Q"(z,sym G) < B sym G|? for all G € M.

Furthermore, there exists a monotone function r : RT — R U {+o00}, such that r(§) — 0
as 6 = 0 and

(4) VG e R ¢ [Wh(z, I+ G) — Q"(x,G)| < |GPr(IG))

for all h > 0 and almost all x € Q.

Proof. (@) is the direct consequence of (iii) in Definition 2.2] while (Q1) follows from (4))
and (W2). O
Remark 1. From (Q1) it follows

(5)
]Qh(x,Gl) — Qh(x,Gg)\ < Blsym Gy — sym Go| - |sym Gy + sym Gal,
Vh > 0,G1,Gs € R3*3,

In the von Karman regime we look for the energy functionals

') = 51 [ W Vagla) de,

imposing their finiteness. Denote by e, (y)

©) enly) = g | dist* (Vs SO().
With von Karman model we associate the triple
(R,u,v) € SO(3) x A(w), A(w) == { (u,v) : u€ H' (w,R?), v € H*(w) } .
The following definition, lemma and proposition can be found in [NV]]. The definition is

changed in the way that we require less i.e. the strong convergence in L? instead of weak
convergence in H'. We will give the proof of the uniqueness for the sake of completeness.

Definition 2.4. We say a sequence y" & I_/Q(Q,R:S) converges to a triple _(R,u,v) €
SO(3) x L?(w,R?) x L?(w), and write y"* — (R,u,v), if there exist rotations {R"};~¢ and
functions {u* b C L2(w, B2), {0"}n0 C L2(w) such that

@ @7 ([ dns = f yrac) = (7R

(8) u® = win Lz(w,RQ), o = v in LQ(w) and R" > R.
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A limit in the sense of Definition [2.4] is not unique as it stands. However, uniqueness is
obtained modulo the following equivalence relation on L?(w,R?) x L?(w):

(u17U1) ~ (u2702) =

{ us (') = ui(2') + (A — La®a)a’ — vi(2')a oo

skw *

2
va(@') = 01(2) + a- o' for some a € R*,; A € R

The proof of the following lemma is given in the Section 3]

Lemma 2.5 (uniqueness). Let (R, u,v), (R, @, %) € SO(3)x L2(w, R?)x L2(w) and consider
a sequence y" that converges to (R,u,v). Then

y" = (R,4,0) <  R=R and (u,v) ~ (i)

2.1. Identification of I'-limit. We define for the sequence (h;,)neny which monotonly
decreases to zero and arbitrary A C w open and M € L?(2,R%%2)

sym

9)
K(_hn)neN(Mv A) = inf { liminf/AXI Qh" (fI,', L(M) + vhnwhn) dx -

n—oo

( ?”,1/)3", hptps™) — 0 strongly in L2(A X I)}

= sup liminf inf / QM (x,u(M) + Vi, ¥) da,
UCN(0) M0 weHNAXLRS) fAy]
(¥1,%2,hny3) €U

(10)
KM A) = inf{ligjgprlQh” (. 0(M) + Va0 da
(W i haaphn) — 0 strongly in L2(A x 1)}
= sup limsup inf Q" (x,e(M) 4+ V, ¢) dx.

u 0) n—oo YEHL(AXIR3) [AvT
CN(O) (¥1,%2,hnz)eU

By A(0) we have denoted the family of all neighborhoods of 0 in the strong L? topology.

Remark 2. Since the above expressions are monotonly decreasing in A/(0) it is enough to
take the supremum on the monotone sequence of neighborhoods that shrinks to {0} e.g.
the sequence of (open or closed) balls of radius r, when r — 0.

Remark 3. Notice that instead of h,13™ we could introduce the variable @Z;g" and then we
could look for I'-limit in 0 of the changed functional in strong L? topology. However the
obtained functional is not coercive in gradient and thus we can not use standard abstract
theory developed for these kind of functionals (see [DM93]).
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Remark 4. By using standard diagonalization argument it can be shown that for any
(hn)nen monotonly decreasing to 0 and any A C w open and M € L?(€2,R2X2) it holds

Sym

K(_hn)neN(M’ 4) = min { linrr_ligf el Q" (m, L(M) + thwh") dr :
( ?",%Dg",hnwg”) — 0 strongly in LQ(A X I,R3)},
Kyuen M 4) = min{lirinjot;pAXIQh” (:c,b(M) +thwh”) dz -

(" haaplin) = 0 strongly in L2(A x I,R3)}.

Let D denote the countable family of open subsets of w which is dense (see Definition
[A9) and such that every D € D is of class C''. The following lemma uses the standard
diagonalization argument and Lemma

Lemma 2.6. For every sequence (hy)nen monotonly decreasing to zero there exists a
subsequence, still denoted by (hp)nen, such that

+ g 2 2%2
Kb (M,D)=K, _(MD), VYMeL*QRYD), VD eD.

Proof. Take a countable family {M,},en C LQ(Q,ngXHQI) which is dense in LQ(Q,RE},XHQI).
By a diagonal argument it is not difficult to construct a sequence (h;,)neny monotonly
decreasing to 0 such that

+ - ‘ .
K(hn)neN (Mj’D) o K(hn)nEN(MJ’D)7 VjeN, VD e D.
From Lemma and density we have the claim. .

We will now make an assumption on the family (Q")s,>0.

Assumption 2.7. We suppose that for every D € D and every M € L?(2,R2%X2) there

sym
exists K (M, D) such that for every sequence (hy,),en monotonly decreasing to 0 we have

+ p— - —_

Kjy (M, D) =K, (M, D) =: K(M,D).

The following lemma is easy to prove by a contradiction (see the proof of [Bra02, Propo-
sition 1.44]).

Lemma 2.8. Suppose that for every M € LQ(Q,ngXHQI) and every D € D there exists
K(M,D) such that every sequence (hy)nen monotonly decreasing to 0 has subsequence

still denoted by (hy)nen which satisfies
K(M,D)=K}, \ _(M,D).

( n)nEN

Then the assumption [2.7 is satisfied.

Remark 5. From the proof of Lemma it can be easily seen that in the Assumption [2.7]
it is enough to impose that for each j € N, D € D there exists K(M;, D) such that for
every sequence (hy)neny monotonly decreasing to 0 we have

K(;n)neN(Mj, D) =K, (M;D)=K(M;D)VjeN, DeD.

Here {M,, }nen is any dense subset of L?(w, R2X2).

sym
We introduce the space of matrix fields which appear as limit strains in von Karman model

SUK(W) = {Ml + 1'3M2 : M17M2 (= LQ(W’RQXQ)}.

sym
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Remark 6. Starting from Lemma and Assumption [2.7] we could state the results, only
restricting ourselves on the space S,k (w) instead of LQ(Q,RE;HQI). We refrained ourselves
from doing so for the sake of generality, when it was meaningfull.

The proofs of the following claims are put in the Section [3l

Proposition 2.9. There exists a function Q) : w X RZan% X ngxrg such that for every A C w
open and every M € Syk(w)

M = My + x3M>, for some My, My € L*(w,R2X2).

sym

we have

(11) KOM.A) = [ Q' 3 (a), o) '
A

Moreover Q) satisfies the following property

(Q’1) for almost all ' € w the map Q(2/,-,-) is a quadratic form and satisfies
2 (|1G1]* +|G2?) < Q(2',G1,G2) < B (|G1]* + |G2/?) for all Gy, Gy € RZ2

sym *
The following lemma gives the alternative to the assumptions in (27]).

Lemma 2.10. Assume that for almost every x' € w there exists a sequence (rﬁl)neN
converging to 0 such that for every (hy)nen monotonly decreasing to 0 we have
K (M + w3, B(x’,rg’)) = Ko (M B(x’,rg’)) =Kl (M, B(m',rﬁ/)) :

Vn € N, My, My € R2X2

sym*
Then for every (hy)nen monotonly decreasing to 0, every M € Syx(w), A C w open the
following property holds

K(M,A) = Ky, (M, A) = K(tln)neN(M, A), Vn € N, M € S,k (w).

n)nEN

Denote by I° : A(w) — RJ the functional
I°(u,v) = / Q(2,sym Vu + Vv ® Vv, —V?v) da’.
w

Notice that for (uq,v1), (u2,v2) € A(w) with (u1,v1) ~ (ug,v2) we have I°(uy,vy) =
IO(’U,Q,UQ).

The following two theorems are part of the main results of the paper.

Theorem 2.11. Let Assumption [2.7 be satisfied.

(i) (Compactness). Let y" € H'(Q,R?) be a sequence with equibounded energy, that is
limsup I"(y") < oo. Then there erists (R,u,v) € SO(3) x A(w) such that y" —
h—0
(R,u,v) up to a subsequence.
(i) (Lower bound). Let y" € H'(Q,R?) be a sequence satisfying limsup I (y") < oo.
h—0
Assume that y* — (R, u,v). Then

lim inf I" (") > I°(u, v).
h—0
Theorem 2.12. Let Assumption [2.7 be satisfied. For every (R,u,v) € SO(3) x A(w) and
every sequence (hy)nen monotonly decreasing to 0 there exists a subsequence, still denoted
by (hn)nen such that y'™ € HY(Q,R3) with

Y — (R,u,v) and lim 1" (y") = 1%(u,v).

n—oo
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2.2. Locality of I'-closure.

Definition 2.13. For given n € N and w C R? Lipschitz domain we denote X" (w) the
family of functions (x1,...,x") € L°(w, {0,1}") such that >, x*(z') = 1, for a.e. 2’ €
w. Equivalently y € A™(w) if and only 1f there exists a measurable partition {4;};—1 ..
such that y; =14, fori=1,..

We look for the mixtures of n homogeneous materials whose energy densities W1, ..., W"
satisfy (W1)-(W4) with quadratic forms Q', ..., Q™. We suppose that allowable mixtures
are homogeneous in the variable x3 i.e. we suppose that the scaled energy functional of
the mixture is given by

n
(12) 1) = [ W Vi ) do.
i=1
where for i = 1,...,n and h > 0 we have x" € X™(w). The following definition is justified

by the results in the previous section.

Definition 2.14. We say that a sequence (x")n>0 in X™(w) has the limit energy density
Q if the following is valid

(a) for any A C w open and any M € Sy (w) there exists K(,n), _ (
any sequence (hy)nen monotonly decreasing to zero we have

M, A,w) such that for

K(X )h>0 (M A ) K(:(hn) (M’A’ ) K&hn) (M,A,W) )
where
K&hn)n (M7 A,(.U) -
min lim 1nf/ Ql x (M) + vhnwhn
mint [ Z RCALE
( ’f", I hatpln) — 0 strongly in L2 (A x I) }
K(J;hn) (M’A’w) =

n—oo

min hmsup/ QZ x,u( +th?/)h"
A><IZ ) ( )

( 1",1/)3",hn1p3”) — 0 strongly in L? (Ax1I) }

Q(SC Ml,MQ) = llHl K(X ) Ml —|—CC3M2,B(SC/,T),W) )

\B(I )] h>0 (

VM, My € R2X2 for ae. 2/ € w.

sym?

Remark 7. The assumption (a) in the previous definition can be weakened (see Assumption
27 Remark [l and Lemma [ZI0). Also, instead of taking balls around point 2’ € w in (b)
part, we can take any family of sets that shrinks nicely to 2’ € w (see e.g. |[Fol99, Chapter
3]). Notice that we also have for M € S,k (w) (using Lemma B0} see also (@) and (I0))

Ky M,A,w) = sup liminf K (M, A ,w,U)= sup limsup K,»(M,A,w,U),
UcN(©) h=0 UCN(0) h—0

= sup hmme W(M,A,w,U) = sup hmsupKO (M, A,w,U),
UcN(@©) h=0 UCN(0) h—0

ol
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where
Kon(M,A,w,U) = wEHln;lexIR?’ /Ax[ZQ z, (M) + Vi) XM (@) da
(11,92,hyp3)eU
KO (M, A,w,U) = inf ZQZ (2, o(M) + Vi) x} (o) da.

YEHI(AXI,R3)
=0 on dAXI, (Y1,¥2,h3)EU

Notice that for arbitrary M € Syi, A C w open, h > 0 the sequence (K, n (M, A, w,U)yc (o)
i.e. (th (M, Aw,U)yc N(0) 1s monotononly decreasing. Thus sup can be replaced by limit
as n — oo on any subsequence (U, )nen monotonly shrinking to 0. If A C w has Lipshitz
boundary and U is a set which is closed in weak H' topology and which guarantees that

symmetrized gradients control all H! norm (e.g. balls of radius r) then inf in the definition
of KXh(M ,A,w,U) is attained by the direct methods of the calculus of variation.

The goal is to show that for a.e. 2’ € w, Q(2/,-,-) can be obtained as a pointwise limit
of periodic homogenized energies. We recall some results from |[NV]. There it was shown
that under the periodicity assumption on W" i.e. Q", when we assume that the energy
densities oscillate with the period £(h) — 0, we obtain three different regimes, depending
on the parameter v := limy_,g % As a consequence, if we assume for i = 1,...,n,
Alh = &(n) (Ai + ZQ) N w and th = 1A?, where (A;)i=1,...» form the partition of the unit
cubeY = [—%, %)2, we obtain that the limit functional has the homogeneous energy density
given by the expression

13 My, M) = f ! M M) +U) dyd
(13) Qy(M, M2) UeLW(IIQyMsym)Z/AxIQ(y’( 1+ asbh) +U) dydas,

where ) = Y with the topology of torus and for v € [0,00] we defined the following
function spaces of relaxation fields

\VA v2 g1
Lo(S x Y. M) = { WV BV gy ) s ce MR,
(917 92) g3
p € HA(Y), g € L*(S x Y, R?) }
- Oy Y + 1
\% Y1
Loo(S x VM2, = { o W bt | i ce LS H D, RY)),
Vy + (c1,¢2) c3
Y e L*(S,HY(Y)), c € L*(S, R3)}
Ly(Sx Y, ME,) = { sym(Vy6, 1030) - ¢ € H'(S x y,R?’)} for 7 € (0, 00).
Moreover it was shown that for fixed My, Ma € R2%Y we have Q. (M1, Ma) — Qo(My, My)

as v — 0 ie. Qy(Mi, My) = Qoo(Mi, M) as v — oco. To prove that in almost every
point the energy density obtained by mixing n different materials can be obtained as the
pointwise limit of the energy densities given by the expression (I3]) we follow the approach
from |[BB09].

The following definition characterizes all homogeneous quadratic forms that can be ap-
proximated by simultaneous periodic homogenization and dimensional reduction.
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Definition 2.15. For 6 € [0,1]™ such that Y ;' ;0; = 1 we define Py as the set of all

quadratic functions @ : ngxn% X ngxn% — R which can be obtained as pointwise limits of the

quadratic functions @, of the form (I3)), for some v € (0, 00) and A¥ such that |A¥| = 6;,
foralli=1,...,n and k € N.

Remark 8. The set of all quadratic functions of all quadratic functions of the form (I3)
is not closed under the pointwise convergence. Sufficiency of the pointwise convergence is
justified by Lemma [A.T4l

The following theorem states the locality of I'-closure result and is the part of the main
result of the paper.

Theorem 2.16. Let w C R? open, connected set with Lipschitz boundary. The following
1$ satisfied
(i) Let (x>0 be a sequence in X™(w) which has the limit energy density Q. Then for
almost every x(, € w we have that Q(xy,-,-) belongs to the set 739(%), where 0 is the
weak star limit of X" in L.
(i) If Q : w x R2X2 x R2X2 — R is such that for a.e. x} € w we have that Q(z},-,)

sym sym
belongs to the set Py(yy) then there exists (X"ns0 a sequence in X™(w) which has the
limit energy density Q.

3. PROOFS

3.1. Proof of Lemma

Proof. Without loss of generality we can assume that R = I. Assume that 3" — (I, u,v)
and 3" — (R,u,v). Then, by definition, there exist two sequences (R" u" v") and
(Rh, @h, o) with
(14) u > u, W = W in L2, o =, " = T in L2,

R~ 1, R" > R,

as h — 0, and

_ x + h2ul ~ ' + h2uh
]éyh(x’,xg) drs = R" < bt > = R" < Lot .

Rearranging terms and introducing R" := (ﬁh)TRh yields

e (§) e (o ) ()

n(Laney )+ (757

/
for almost every 2’ € w and all h. In the limit A — 0 we get (R—I) ( % ) = 0. Combined
with & € SO(3), and R = RTR = R”, this implies R = I.
Set Al .= #. We claim that there exists A € Rkav? such that
(16) A A with sym A = 0,
sym Ah 1
2

A2,
h

(17)

—
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Here comes the argument. Dividing (&) by h, and rearranging terms, yields
N 0 “h 0 ul(2) 9 in [ ul(2))
_ 0 ah(z')
(o )27 ),

We deduce that the first term of the left hand side converges in L?(w). This implies that
Ale,, converges as h — 0. From the identity R"e3 = R"e; A Res, we deduce that

Aheg = (flhel AN Rhez +e1 A Aheg),
and thus A" converges to some limit A € R3*3. Eventually, the relation (A")TA" =

—o2mA viglds (I6) and (I7).

To complete the argument, it remains to prove that

(19) 9(z") = v@)+a- 2 where a := (A3, Asy)
(20) a(z") = u(@)+(A-Lta®a)r’ —v(2)a

for some skew symmetric matrix A € Mgkw. The first identity appears in the limit A — 0
in the third component of identity (I8]). For the proof of (20) we introduce the skew-

symmetric matrix A" € RZX?

Ah Ah
(21) Ay = 2‘5 - (Symh )b for B =12

Going back to (I8)), after dividing by h, we find that h_lflaﬁ, a, B € {1,2}, converges as

h — 0. This implies flaﬁ = 0. Combined with (IT7) we deduce that A" converges to some
A € RY*?. Now, a calculation yields (20) i.e. we divide (I8) by & and let h — 0 in the

skw *
first two components.

Step 2. Argument for “<”.

Suppose that y" € L%(w;R3) converges to the triple (R,u,v) in the sense of definition
(Zd). Let us now take arbitrary A € R2? and a € R?, and set

(22) R" = R"exp(—h*1(A)) exp(—hay),

where a, € R3*3 is defined by

(23) %:(}‘f)

We define 4", o" via identity (7). From the expansions

2

(24) exp(h?u(A)) = T + h%(A) 4+ O(h%), exp(hae) = I + hae + %ag + O(h%),

we conclude that
a'"(@) = W)+ (A= ga®a)r’ —o"(@)a+O(h),
") = W"(@)+a -2+ O(h),
where ||O(h)||2 < Ch, for some C' > 0. O
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3.2. Proof of Proposition 2.9l and Lemma [2.70L The following theorem is proved in
IGri0g].

Theorem 3.1. Let A C w with Lipschitz boundary and 1 € H'(A x I,R3) and h > 0.
Then we have the following decomposition

) i di(a’) + ra(a)zs + i (2)
b(x) = (@) +r(2') Aases +¥(x) = § a(a’) —ri(2')zs +da(x)
Y3(a’) + 3(z)

where

(25) 1& = /Iw dxs, v = ;/.%'363 AY(z) dxs,

I
and the following estimate is valid

(26)  [lsym V(i + 1 Awses)| 2 + [Vathl2e + 5116 )22 < CA)] sym Vi
Remark 9. Notice that
(27) lsym Va(¥h + 1 A z3e3) [ 72(ar ) =
[sym V' (b1, P)l[72 (4 + | sym V' (ra, =r1)[ 72 )
+72 101 (hds) + 72724y + 72 llO2(Meds) — 1172y

Thus from Korn’s inequality it follows

(28) (&b, o, Pds) g1y + 11, r2) s ) + 72 101 (Bads) + 72724
+2 1102 (hids) — 1l[72 4
< C(4) (H sym Vi (¢ + 1 A w3es) | Faqaxr) + 1717200y + (41,32, h%)”%?(A))
< C(A) ([l sym Ve + 7 A ses) 32y + 1102 b |32 a) ) -

Corollary 3.2. If we assume that (")~ C H' (Ax I,R3), is such that " = 0 on OAx I
for every h > 0 and
lim sup || sym V9" || 12 < oo,
h—0

then we have that on a subsequence

sym V" = 1(—23V"?0 + sym V'u) + sym V9",
for some v € H}(A), u € HJ(A,R?) and (¥")p>0 C H'(A x I,R3) such that 9" =0 on
OA x I and (Y1, )9, hab3) — O strongly in L. Moreover we have

lollZz + llullZ. < lirilsgp 11 8, b7
%

Analogously, if we assume that A =Y and additionally that foI Y =0 for every h > 0
then we have that on a subsequence
sym V" = 1(—23V"?0 + sym V'u) + sym V9",

for somev € H*(Y), u € HY(Y,R?) and (")p>0 € H (Y XI,R?) such that (11, by, hib3) —
0 strongly in L?. In this case we can also demand that [, v= [, u= [, 9" =0. More-
over we have

lollZz + llullZ. < lirilsgp 17 8, bl )| 72
%
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Proof. We prove the first claim. Use the decomposition from Theorem B.1] and write
(29) (@) = M) + (@) A azes + P (@),

We know that [[¢™!]|;2 — 0 as h — 0. By using Korn’s inequality with boundary
condition (see [Cia97]) we conclude from (25) and (27) that 7" — r weakly in H'(A4,R?)
and (¢, F) — u weakly in H'(A,R?), on a subsequence. By the compactness of the
trace we see that r = 0 on dA x I. Using the fact that

(80) o lOu(h) + rhla ey + 2 0o (hih) — P22 ay < CLA)|sym Va2,

and the compactness of the trace operator we conclude that there exists v € H3(A) such
that

hips — v weakly in HY(A), r = 0y, 75 = —010.

Define I}, as
0 811}
P=u+| 0 | —a5| 6w
L 0
h

It is easy to see that

sym Vhlh = L(—SCgVIQ’U + sym V'u).
Define ¢" = ¢" — [*. Tt is easy to see from (Z9) that (¢1,9, hib3) — 0 strongly in L2.
Also we have the estimate

V172 + lullF2 < limsup (&7, 5, hapf)|72 < limsup [[(7, 45, h§) |72
h—0 h—0

The second claim follows in the same way by using the Korn’s inequality with periodic
boundary condition (which can be easily proved by Fourier transform) and noticing that

fY><] ¢h =0 1mphes fY QZ)h =0 and (m) 1mphes that fy ’I"h - 0. O

Lemma 3.3. Let A C w with CY! boundary. If r € H'(A,R?) and 1& € HY(A,R3) is such
that fAi s dx =0, for every connected component A; of A (see LemmalA13), then there

exists o € H2(A) and w € H'(A) such that 13 = 2 +w and
(31) Mlllr2ay + I has G217 (ay + 1707 oy + N0l ay + 72100 + 2l 4
s l020 = 117204y <

C(A) (H sym V(¢ +7 A $3€3)H%2(Ax1) + HTH%?(A) +[[(3h1, o, h%)”%?(Axl)) :

Proof. We do the regularization of ¥ in the similar way as in [INV], Proposition 3.1] and
[HV, Lemma 3.8]. We look for the solution of the problem

peHL(A)
Vi, fAi =0

(32) min / Vo + (ro, —r1)|? da’.
A

The associated Euler-Lagrange equation of (32)) reads

{ —Nep=V"(r9,—r1) in A

33
(33) Opp= —(re,—11) -V on JA,
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Since V' - (2, —71) € L?, we obtain by standard regularity estimates that ¢ € H?(A) and
lellazcay S 7l arca), where we need the Ch! regularity of dA. The claim follows from
27), 28) and the following inequalities:

(34) 1010 + 7all720ay < N101(Mads) +7all72 4
(35) 1920 = rillfagny < NOa(hs) = raliFaqy
~ 2 -
ORI i G R N R A I o1

+2 102 (hids) — [Tz 4y + 7z 102 — T1[1 720y
J

Remark 10. If we assume that A = ) and that 1 € H'() x I,R3) then the claim of
Lemma [3.3]is valid and we can demand that ¢ € H?()), w € H*(Y). To adapt the proof
of Lemma [3.3] instead of solving the problem (B2), we need to solve

(37) min / Vo + (ro, —11) | da’.
eeHL(Y), Jy
Jy ¢=0

Using again the Korn’s inequality with periodic boundary condition we can omit |||/ 2
and || (11, 2, h)3)|| 2 on the right hand side of (B1]), under the additional assumption that
Jy ¥ =0.

In the similar way if we assume that 1& =0,r =0on 0A x I (without the assumption that
1) A, Y3dz = 0, for every connected component A; of A) the claim of Lemma B3 is valid
and we can demand that ¢ € H%(A), ¢ = 0 on A, w € H}(Y). Using again the Korn’s

inequality with boundary conditions we can omit ||r||;2 and || (1, ¥, htps)| 2 on the right
hand side of (3I]). To adapt the proof of Lemma B3] instead of solving the problem (B2)),
we need to solve the problem

(38) min / Vo + (ro, —r1)|* da’.
PEHG(A) J A

Proposition 3.4. Let A C w with CY' boundary. Denote by {Ai}i=1,.. 1 the connected
components of A.

(a) Let (Y")pso C HY(A x I,R3) be such that

(39) (¢’f,¢§,h¢§) — 0, strongly in L?, Vh,i/A Q,Z)g =0,
(40) liI}ILIS(ljlp || sym VhwhHLg(A) <M < 0.
H

Then there exist (p")pso C H2(A), (¥")pso € HY(A x I,R3) such that
sym V,o" = —z3u(sym V2p") + sym V" + o,

where o € L?(A x I,R3*3) is such that o" — 0, strongly in L%, and the following
properties hold
(41) tim (16"l (a) + 19" l2axr) ) = 0,

(42) timsup (" 201y + Va0 | 2axry) < CAM.
h—0
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(b) For every (om0 C H2(A), ($")s0 C H'(A x I, R?) such that

(HSOhHHI(A) + HWHL?(AXU) =0,

lim
h—0
timsup (1" 2y + V0" l122(4)) < M,
h—0
there exists a sequence (V")ps0 C HY(A x I,R3) such that

(W, 0%, hply) — O strongly in L?,
lim sup || sym Vhi/)hHLz(A) < 2M.
h—0

Proof. The proof follows immediately from Theorem [B.I] and Lemma B3l Namely, if we
use the decomposition from Theorem [B.I] and Lemma [3.3] we obtain

(43) 9" = "+ Awges + "

h 0 " ol +rh )
= g + . 0 — I3 32(ph + x3 32(ph —T{L +¢h-
0 =+ wh 0 0

From the expressions (25) and (28) it follows (¢1,, habs) — 0, (rf,rl) — 0, " — 0
strongly in L. This implies o™ — 0 strongly in L?. Since it holds for every i, [ A, Y3dr =0
(see [25)), from (20) and Lemma B3 we have that limsupy, ¢ [|w" || 514y < C(A)M and

since (¢")n>0 is bounded in H? we deduce by compactness that ¢ — 0 strongly in H'.
Thus we can find (@"),~o C H?(A) such that

(44)  lim Jw" — @ || 124y = 0, limsup |0" || g1 ay < C(A)M, lim A" || 24y = 0.
—0 h—0 h—0

This can be done by mollifying w” with the mollifiers of radius 7" — 0, r® > h. From

[@3) we have

op 0 1" " + 1y
(45) wh = ¢3 + . 0 \ — I3 azgoh + x3 82goh — 7“?
0 4w 0 0
R
0
- 0 + "
wh — @l

Now the claim follows from Lemma [3.3] and (44]) by defining

) Pt ol +rh o " 0 )
o= | gk | das | et —rh | +has | Bt | + 0 + P,
0 0 0 wh —
o = —h:cgb(V'2wh),
after using the identity
0 h:t?gal@h
symVy | O =symV, | hasdw" | — has(V?0D).
~h
w 0
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The second part of corollary is direct by defining

3 0 drh
P =gt + Oh o
% 0

g

Remark 11. The claim of Proposition [3:4] remains valid for A = ), the unit torus. In
the similar way the part (a) of Proposition B.4] remains valid without the assumption that
Vh,i f A wg = 0, under the additional assumption that wh = (0 on 0A x I. Then we can
impose that ¢ = 0 on 0A4, for all h > 0. This immediately follows from Remark [0l Part
(b) of Proposition B4 is true if we additionally assume that ¢" = V¢ = 0 on A and
Yh =0on A x I.

Lemma 3.5. There exists a constant C > 0 dependent only on o, 3 such that for each
sequence (hy)nen monotonly decreasing to 0 and A C w open set is valid

(46) K, (M A) = Ky (Mo, A)| < ClIMy — Mallza (1Ml + Mol 22)
lev M, € LQ(Qng;HQI)v

+

and the analogous claim for K(hn)neN'

Proof. For fixed My, M, € LQ(Q,ngXHQI) take an arbitrary r,h > 0 and 5" € H' (A x
I,R3) that satisfies for a = 1,2

(47) / QP (:c (M) + thq/);’h"> da <
Q
inf Q" (x,u(Ma) + Vi, ¥) dx + by,
peEHL(AxIR3) N3

(1,92, hnwg)ll 2 <7

i rhn i
(e Va2 hntg s )le <7

a,l » Pa,2 0 a,

We want to prove that for every r > 0 we have

[ @ (e + Vi) do = [ Qb (wal0e) + 90, 05™) da
AxI AxI

< C||My = Mal|pe ([Myl 2 + [|Mz| 22) + P
From that we would easily obtain (4g]).

(48)

Let us prove ({@8). From [{7) and (Q1), by testing with zero function, we can assume for
a=1,2:

al|My + sym Vy,, thH%Q S/

th (:C,L(Ma) + vhn th) dr < IBHMQH%Q
AxI

From this we have for a« = 1,2

(49) sym Va, v 32 <2 (2 = 1) | M2

£ _
Without any loss of generality we can also assume that

60 [ @ (wan) £ Vi) @ [

Qh" (3:, (M) + th¢£’h) dz.
AxIT
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We have

[ @ (o) 4 Vi) do— [ @ (2,0002) + V05" do
AxI AxI
h r,hn h r.hn
=/ Q"™ (w,b(Ml)Jthn iV ) dw—/ Q" (%6(M2)+th 3 ) dx
AxI AxI
h T’,hn h T‘7h‘7’l
=/ Q"™ (w,b(Ml)Jthn 1 ) dw—/ Q" (ww(Ml)Jthn > ) dx
AxI AxI
hn 7hn h r.hn
+ Q (x,L(M1) + Vi, g ) dx—/ Q (%L(M2) + Vi, ¥y > dzx
AxIT AxI

< B+ 342 (£ = 1) 1My = Mallza (1Ml + 1Ml z2)

]
Lemma 3.6. Suppose that for M € Lz(Q,REyXHQI) and D C w with CY' boundary and
(hn)nen monotonly decreasing to 0 we have
K(M,D) = lim Q" (z, (M) + thth") dz,

n—oo DxI

for some (" )nen such that (PP, i by, gL") — 0 strongly in L?>. Then there exists a

subsequence (hy () )ken and (Ox)ren C HY(D x I,R?) such that

(a) (Vg1,Vk2, hn(k)ﬁk’g) — 0 strongly in L?,
(b) (|sym th(k)ﬂk\Q)keN is equi-integrable,
sym Vy, Uk = —23t(sym V"2pp) + sym th(k)ﬁk,
where (]Vzgoklz)keN and (\th(k)ik\Q)kEN are equi-integrable and @y — 0 strongly in
H' and 1y, — 0 strongly in L. Also the following is valid

lim sup (H(pkHHz(D) + thn(kﬂ;ka(D)) < C(D) (ﬁHMH%2 + 1) .

k—o0
(c) there exists (Ar)ken such that for each k € N, A, C D x I and |Ag| — 0 as k — oo
and
[sym Vi, 0"® —sym Vy,  Okllz2(a,) = 0.
()
K(M7 D) = lim th(k) (1‘, [’(M) + vhn(k)ﬁk) dx.

k—o0 DxI

Moreover, one can additionally assume that for each k € N we have 9, = 0 on 0D x I
i.e. o = V' =0, on dD and v, =0 on 0D x I.

Proof. We can without loss of generality assume that [ D, Y™ dr = 0, Vn € N and every
connected component D; of D, i = 1,...,m. By comparing with the zero sequence one
can additionally assume that

[ sym Vi, " || p2py < BIM|[32 +1, V¥neN.

From Proposition 3.4l we have that there exist (3, )nen C H?(D) and (Jn)neN C HY(DxI)
such that

(51) sym th@bh" = —z3i(sym V’2gbh”) + sym Vh,ﬂzh” + oh",
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where o € L?(D x I,R3*3) and the following properties hold

620 Jim (18" ) + 19 o + 1o lzzm) =0,
(53) limjup (H@hnHm(D) + ||th¢hn||Lz(DX[)) <C(D) (B|M|2: +1).

Now we use Proposition and Theorem to obtain the sequence (i )reny C H2(D)

and (&k)keN such that (|V/280k|2)k€N and (|th(k)1/;k|2>k N are equi-integrable and for Ay,
€

defined by

A = g # @0 or Plm® 2y},
is valid |Ag| — 0 as k — oo and

tim (lenllm o) + lllzzwxn) =0.
Define ¥y as in Proposition B.4] by

3 0 01k
U =y + 0 —x3 | Oy
T, 0
P (k)

From the property (BIl), Remark [[2] equi-integrability and the fact that |Agx| — 0 as
k — oo we have the following

K(M,D) = lim DXIQh"(:C,L(M) + Vi, ") dx
= Jm [ QM (M)~ asVgh sy Vi, ) d
> klggo AkXIth(k) (:p’L(M) —333V'2s0k +symvhn(k)¢k) dx
— kh_fgo DXIthUc) (, (M) + Vp,, ,9k) dz > K(M, D).

The last inequality follows from the definition of K (M, D) and the fact that (Jy 1,9 2,
P(k)Vk,3) — O strongly in L?. The last claim in (b) follows from the equi-integrability
property and (53]). The last claim in (d) follows from Lemma 3.7 O

Lemma 3.7. Let A C w be an open, bounded set. Let (0,)nen C H'(A x I,R3) be defined
by

0 8180n

Oy = Yy + 0 —x3| O |,
Pn 0
hn

where (¥n)neny C HY (A x I,R3) and (¢,
(|vhn¢"|2)neN are equi-integrable and

(54) im ([lnllg1cay + [¥nll2(axn) = 0.

n—oo

~—

nen C H?(A). Suppose that (|V%pn|?), . and

Then there exist sequences (Gn)nen C H2(A), (Yn)nen € HY(Ax I,R3) and a sequence of
sets (Ap)nen such that for each n € N, A, < Apt1 < A and UpenA, = A and

(a) ¢n =0, V'¢y, =0 in a neighborhood of A, ¥n = 0 in a neighborhood of OA x I.
(b)wn:wn on Ap X I, @n:@n on Ap, _
(c) |én = enllgz = 0, |0 —Unllgr = 0, Vi, ¥n — Vi, ¥nllr2 — 0, as n — oo.
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(d) for D, defined by

~ ~ 0 81 an
U 1= Yp + p — I3 8235n s
2 o

we have

=0.
L2

lim Hsym Vi, On — sym Vj, 0y,

n—oo
Proof. By 6 :[0,4+00) — [0,400) denote the function:

0= s (IV%eulias) +IVntnlasnn) -
meas(S)<e

By the equi-integrability property we have n(¢) — 0 as ¢ — 0. For fixed k& € N choose
Aj, < A open set with Lipschitz boundary such that meas(A\Ay) < + and smooth cut-off
function 7, € C§°(A) such that 0 < g < 1 and 7, = 1 in a neighborhood of A;. We
can also assume that for every k € N, A < Api1 < A and that UgenAr = A. Define

Bhon = MkPns P = Mitn. Define g : N x [0,+00) = [0,+00) by
g(k,n) = 1@k — enllmz + [ Gkn — Yl + Vi, Pk — Vi, tnll 2.
Since we have for o, 8 =1, 2:
9apPrn = OaplikPn + Oank0sPn + MkOapPn,

aa¢k;,n = nk8a¢n + (9a77k¢)n,

ABthgn = MkO3Yn,
it is easy to conclude that there exists C' > 0 such that for every k,n € N we have

glk,n) < C(0(5) + Inelloz - (el + llvnllL2)) -

Since we also have, by the compactness, that ¢, — 0, strongly in H! we conclude by the
diagonalizing argument that there exists a sequence k(n) monotonly incresing such that
g(k(n),n) — 0 as n — oo. This proves (c). (d) follows directly from (c). O

The following lemma is an easy consequence of Lemma and Lemma

Lemma 3.8. The following properties are valid for every A, A1, Ay C w open sets and

M, My, My € L*(Q,RZ2):

(a) there exists K(M,A) such that for every (hy)nen monotonly decreasing to 0 we have
K (M,A) = K}, (M,A) = K(M, A),

(hn)nen (hn)nen
(b) if Ay C Ay we have
K(MlAlX[,AQ) = K(M7A1)7

(c)
K(M,A) = sup K(M, D),
(d)

K (M, A) < BIM[72(axpy»
(e) if Ay C Ay we have
K(M,Ay) < K(M, A2).
(f) Let (Ap)nen be the family of open subsets of w such that for each n € N A, C Apy1.
Let A=U%° | Ay,. Then lim, oo K(M, A,) = K(M, A),
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(g9) if A1 N Az =0 then we have
K(M, Ay U Ag) = K(M, Ay) + K (M, Ay),

(h)
|K (M1, A) — K(M2,A)] < C| My — M|z (|[Millgz + ([ M2l £2) ,
(i)
K(tM,A) = t?K (M, A),Vt € R.
()
K(Ml + MQ,A) + K(Ml — MQ,A) < 2K(M1,A) + QK(MQ,A),
(k)

K (M, A) > o[ M|[72( 45 p-

Proof. Using Lemma it is easy to see that for A C w open and an arbitrary D € D,
D C A we have

(55) thn)nEN(MlDX[,A) =K, ). (Mlpxr, A) = K(M, D),

for an arbitrary (hy,)neny monotonly decreasing to 0. Namely the inequality K () EN(M 1p,
A) > K(M,D), follows immediately from the definition in Remark @l To prove the
inequality K(J}rln) (M1p,A) < K(M, D) we first take the subsequence (hy(x))ren such
that

+ g
(56) K(hn(k))keN(MlDXI’ A) = I((hn(k))kGN (M1pxr, A).

neN

Then we take, using Lemma a further subsequence, still denoted by (M ))ren, and
(xx)ken C HY(D x I,R3) such that (Xk.1> Xk2> M) Xk,3) — O, strongly in L?, for each
keN, xp =0o0n 0D x I and

k—o0 DxI

By extending x; = 0 on (A\D) x I we obtain

K(M,D) = lim A Ith(k)(:C,L(Mlpxj)+th(k)xk)dx
X
. — Kt
= K(hn(k))kEN(MlDXI’A) - K(hn)neN(MlefaA)v

where we have used (B0). (a) and (b) follows from (55) and LemmaB5 by an approximation
argument i.e. by exhausting A with the sets in D. It is easy to notice from the definition
in Remark @ that K(M,D) < K(M,A), for D € D, D C A. (c) then easily follows from
(b) and Lemma From the definition in Remark E] by taking the null sequence, it is
easy to see that for every D € D we have K (M, D) < 5HMH%2(D). (d) now follows from
(c). (e) easily follows from (c). (f) is again the direct consequence of (b) and Lemma 3.5
To prove (g) first choose Dy, Dy € D, D1 < Ay and Dy < Ay. We have that D1 N Dy = ().
From the definition in Remark [ it is easy to see that

K (M, Dy U D;) = K(M,D1) + K(M, Ds).

(g) now follows from (f). To prove (h) notice that from Lemma B.5] we can conclude that
there exists C' > 0 dependent only on «, 5 such that for each D € D is valid

(57) [K(My, D) — K(M, D)| < C||My — M|z (| Myl + [|Mzl|zz2)
VMy, My € L?(w,R2%2).

sym
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(h) follows from (f) and (&1). To prove (i) we can take D € D and M € C2°(w, ngxn%) and
use density argument and (f). Define by

(58) K, (M,D,B(r)) = min Q" (2, L(M) + Vi, ¢) da.
yeHL(DxI,R3) DxI
(1, 2.hn )l 2 <r
The minimum in the above expression exists by the direct methods of the calculus of
variation. Notice that

K(M,D) =sup lim K, (M,D,B(r)),

r>0 N0

where supremum can be replaced by limit since K,, (M, D, B(r)) is monotonly increasing
in r. Since every Q™" is quadratic we have

t*K,, (M, D, B(r)) = K, (tM, D, B(|t|r)).
From this identity it follows K (tM, D) = t>?K (M, D). By approximation we obtain (i).
To prove (j) take My, M; € LQ(Q,RE},XH%), D €D and for a = 1,2, ™" € HY(D x I,R3)
such that

K, (M, D,B(r)) = Q" (z, (M) + Vi, ™™™ da.
DxI

and ||(¢77"", 09" hnps™") || L2 < r. Notice that:
K, (M1 + M, D, B(QT)) + K, (Ml — M, D, B(QT))

< / Q" (2, u(My + Ma) + Vi 5" 4 Vo ™) da
DxI

+ Q" (x, o(My — Ms) + thlbl’r’" — thwz”"’") dx
DxI

=2 Q" (&, o(My) + Vi, 1"") da +2 Q" (z,u(Ms) + V), *"")
DxI DxI

= K, (My,D,B(r)) + K,(Ma2, D, B(r)),

where we have used (e) of Proposition By letting n — oo and then r — 0 we obtain
that

K(Ml + Mo, D) + K(Ml — Mo, D) < 2K(M1, D) + QK(MQ, D)
(j) follows by density and (f). To prove (k) take M € Cl(Q,ngXn%), such that M =0 in a

neighborhood of I', D € D and (xn)nen C HY(D xI,R3) such that (xn.1, Xn,2: FnXn,3) — 0,
strongly in L? and such that

K(M,D) = lim Q" (2, u(M) + Vi, xn) da.

n—oQ DxI

From (Q1) we conclude

/ QM (@, o(M) + Vaxa)dz > a / M+ sym V' (xus s xno)|? de
DxI DxI

> ol M| —a/ div M - (o1 » Xn2) da.
Dx1
By letting n — oo and using the fact that (xn.1, Xn2) — 0 strongly in L? we have that
K(M,D) > a||M|3,. (k) follows from (f) and (h). O

Lemma 3.9. (a) For arbitrary M € L2(Q,R§yxr§) and Ay, Az, A3 C w open, such that
Ay C Ay U Az we have

K(M,Ay) < K(M, Az) + K(M, A3).



HOMOGENIZATION AND I'-CLOSURE OF VON KARMAN PLATE EQUATIONS 23

(b) For arbitrary M € LQ(Q,R;,XH%) and Ay, Ay, A3 C w open, such that Ay D As U As,
As N Az = 0 we have

K(M,Ay) > K(M, Az) + K(M, A3).
Proof. By using Lemma [ATT] and (¢) and (e) in Lemma 3.8 it is enough to prove that for
arbitrary Dy, Ds, D3 € D such that Dy C Dy U D3 we have
K(M,Dy) < K(M,Ds) + K(M, Ds).
Take D} € D such that D} < D3\Ds. From (f) of Lemma 3.8 we have
K (M, Dy UD}) = K(M,Ds) + K(M, D}).
From Lemma and Lemma B.8 we have
K(M,Dy) = K(M1p,x1,w)
< K(M1(p,upy)xr,w) + CHMHLz((Dg\(DQLJDg)Xj)HMHL2
= K(M, Dy U Dé) + CHMHL2((D3\(DQUD§)) [ M][ 2
= K(M,D;) + K(M, D3) + ClIMI L2 (D (Doupg) < 1) 1M ]| 2
< K(M, D2) + K(M, D3) + ClIM|| p2((p\(p,upy)xr) M ] 22-

The claim follows by the arbitrariness of Dj. To prove (b) it is enough to check that for
arbitrary Dy, D9, D3 € D such that D1 D Dy U D3, Dy N D3 = () we have

K(M,Dy) > K(M,Dy) + K(M, Ds).
This easily follows from the definition in Remark @l U

Now we are ready to improve Lemma for arbitrary A C w open.

Lemma 3.10. Take M € L?(, ngﬁ) and A C w open and a sequence (hy)nen monotonly
decreasing to 0. Then there exists a subsequence (hypy)ren and (Ux)ken C HY(A x I,R?)

such that

(a) (Ox,1,9%,2, hoy(eyr,3) — O strongly in L?,
(b) (] sym vhn(k)ﬁk|2)keN is equi-integrable,

sym Vy, 9k = —23i(sym V"2p1) + sym th(k)%g,

where (]Vzgoklz)keN and (\th(k)ik\Q)keN are equi-integrable and @y — 0 strongly in

H! and ik — 0 strongly in L2. Also the following is valid
liinsup (H%HH2(A) + \\th(k)lzk\\Lz(A)) <C (6“M”%2 + 1) ’
— 00

where C' is independent of the domain A and for each k € N we have ¥, = 0 in a
neighborhood of OA x I i.e. o, = V'@ =0, in a neighborhood of A and ¢ =0 in a
neighborhood of 0A x I.

(c)
K(M7 A) = lim th(k) (1‘, [’(M) + vhn(k)ﬁk) dx.

k—oo J AxT
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Proof. Take r > 0 such that B(r) D w. Extend Q" on (B(r)\w) x I by e.g. Q"(z,G) =
Blsym GJ?, for all z € (B(r)\w) x I. Apply Lemma B8 to M = M1, and D = B(r)
to obtain the sequences (Uy)keny C HY(B(r) x I,R®), (Gr)ren C H2(B(r)), (¥r)ren C
H'(B(r) x I,R3) that satisfy (a), (b), (d) of Lemma In the same way as in Lemma
[B.1 for each € > 0 we choose A. < A with Lipschitz boundary such that meas(A\A:) < e
and a cut off function 7. € C§°(A) which is 1 on A.. Again by using the diagonal procedure,
one obtains a sequence (@ )ren C H2(A) and (Y5 )peny C H' (A x I,R3) such that for each
kE € N, o = Vg, = 0 in a neighborhood of B(r)\A i.e. Y = 0 in a neighborhood of
(B(r)\A) x I and

lim (H@k — klla2(a) + 1Yk — wkHHl(Axf)) = 0.

Define again

5 0 01k
Vg 1= Yy, + 0 —x3 | Oapr
Y 0
P (k)

It is easy to see from (b) of Lemma [B:8 that

K(M,A) = K(Mlax, B(r) = lim oo Q" ® (2, (M1ax1) + Vi, Uk) dz
> lim Q") (@, 1(M) + Vi, Vi) dr > K (M, A).
k—o0o J AxT

From this we have the claim.

g

Proof of Proposition[2.9. The proof follows the standard steps in I'-convergence theory.
Notice that

(59) IM172(0) = [Mil172(0) + 12l M2]1Z2()-

Step 1. Existence of Q).

From Theorem [A.T2] and Lemma 39 as well as the properties (d) and (f) from Lemma
B.8 we conclude from Radon-Nykodim theorem that for an arbitrary M € S,x(w) there
exists Qns € L'(w), a positive function, such that

(60) K(M,A) = /AQM(:C’) dz’' VA C w open.

Take a countable dense subset M of R2%2 and define

sym
E := {2’ € w: 2 is a Lebesgue point for Qs +z401, for every My, My € M}.
Notice that meas(w\E) = 0. Define also
(61) Q(:C/’ My, MQ) = QM1+£E3M2 (x/) = }g% ml{ (Ml + w3 Mo, B(x',r)) s
for My, My € M and 2’ € E.
Notice that from the property (h) in Lemma B.8 we have
|Q(:C/’M1’M2) - Q(x/’M{’Méﬂ <
C (|My — Mi| + |Ma — Ms]) (|My + M| + |Ma + Ms)),
for all My, M7, Ms, M}, € M, 2’ € E.
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Thus we can extend Q(-,-) by continuity on E x R2X2 x R2X2. Extend it by 0 on w x R2X2x

sym sym* Sym
ngxnf Notice that such defined @ satisfies

(62) ’Q(xllevMQ) - Q(xlv Mi? Mé)’ <
C (| My — M| + | My — My|) (| My + M| + [ Mo + My)),
for all My, My, My, My € R22 2/ € E,

sym>

(63) 1Q(x', My, Mp)| < B (|My > + | Ma|?), for all My, My € RZ2, 2/ € w.

sym
Also, from the property (h) in Lemma 3.8 and (62]) we conclude that
(64)
Q(z', My, My) = lim i K (M) + x3Mo, B(2/, 7)) ,VMy, My € R2:2 and 2’ € E.

r—0 1B@'r)] sym

By approximating M € S,x(w) by piecewise constant maps with values in the set {M; +
x3My : My, My € M} we conclude from (b), (g), (h) of Lemmal[3.8 as well as the properties

(62) and (63]) that
(65) K(M,w) = / Q') My (a'), My (') d, VM € Sy (w).

By using (b) of Lemma B8 as well as the fact that Q(2’,0,0) = 0 V2’ € w we conclude
(I.

Step 2. Quadraticity and coercivity of Q.

To prove that @ is quadratic form we use (64]), Proposition and (i), (j) of Lemma [B.§
as well as the density argument. To prove coercivity we use (B9), (64) and property (k)
of Lemma [3.8 O

Proof of Lemma [210. By Remark[@land Lemma[2.§]it is enough to see that every sequence
(hn)nen monotonly decreasing to 0 has subsequence such (h,, ;) ren such that

— N
K(M,D) = K(hn(k))keN(M’ A) = K(hn(k))keN(M’ A), Vne N, M € Sy (w).
This follows from Lemma [2.6] Remark [6l and Proposition 2Z9i.e. (II]) and (61J). O

3.3. Proof of Theorem [2.17l The proof of the following proposition is given in [NV
Proposition 3.1]

Proposition 3.11. Let y € H'(,R3) and h > 0. There exist (R,u,v) € SO(3) x
HY(w,R?) x H? (w) and correctors w € H*(w), ¢ € HY(Q,R3) with

loc

/ w =0, /w(aﬁ,xg) drs =0  for almost every ' € w
w I

such that
st _ x! h2u 9 Vo 9
@ R (v fe) = (i )+ (a0 () #o
and
1
(67) ull s ey + 10l ) + w0l ) + ﬁWH%?(Q) S en(y) + en(y)”.

Here < means < up to a multiplicative constant that only depends on w. In addition, for
all D < w compactly contained in w we have

(68) IV20l22p) + IVl 32 sy S0 en(y) + en(w)?

where Sp means < up to a multiplicative constant that only depends on D next to w.
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If the boundary of w is of class CY1, then (u,v) € A(w) and G8) holds for D replaced by

w.

The following lemma is an easy consequence of Taylor expansion.

Lemma 3.12. Let G" K" € L2(Q,R3*3) be such that

(69) K" is skew-symmetric and

(70) timsup (|G 2 + | K"z < oo,
h—0

Consider

V(I + hEK? + R2GMH(T + hKh + h2Gh) — T
h? '
Then there exists a sequence (X")pso such that, X" : Q — {0,1}, X" — 1 boundedly in

measure and
1
X" <Eh - (symGh — §(Kh)2)>

Proof. Notice that the following claim is the direct consequence of Taylor expansion: There
exists 0 > 0 and a monotone increasing function 7 : (0,0) — (0, 00) such that lim, o n(r) =
0 and

(71) ‘\/(I FAT+A) ~ (T+symA+3A'4)| < p(A]) (sym A+ S At4)
VA € RS |A] < 6.

EM =

=0.
L2

lim
h—0

Now we use the truncation argument. Namely let " be the characteristic function of the
set S", where
h h 1 h 1

The claim follows after putting A = hK" + h?G" into the expression (1)), dividing by h?
and letting h — 0. U

We state one simple linearization lemma, which is already given in [NVI.

Lemma 3.13 (linearization). Let {E"} 0 C L2(, M3) satisfy

(72) limsup || E"|| 2 < oo and lim h2||E"|| e = 0.
h—0 h—0
Then
1 ~ ~
lim _/ Wh(x,I+h2Eh(x))dx—/Qh(x,Eh(x))dx _o.
h—0 | ht Jq Q

Proof. We have

1 h 2 5h h h
ﬁ/ﬂw (z,1+h’E (x))dx—/QQ (z, B (2)) dx

/\-ineq. ~ i
< %/‘Wh(x,l+h2Eh(x))—h4Qh($7Eh(x))‘dx
Q
@ - ~
< o / B> E" (z)* r(|W*E" (2)]) da
ht /g
<

(2| B 1) /Q B ()2 da,
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where in the last line we used that r(-) is monotonically increasing. By appealing to
([72) and lims_, r(8) = 0, we get limp_o7(h?||E"||1) [ [E™(2)|* dz = 0 and the proof is
complete. O

Proof of Theorem [Z11. First we assume that w is of class C2. Without loss of generality
we assume that

(73) liminf 1™ (") = lim sup I" (") < .

h—0 h—0
Due to the non-degeneracy of W (see (W2)) we have limsup,_,oe"(y") < oo. Hence,
Proposition BI1lis applicable, and we easily deduce the part (i), by taking in the expression
([66]) the integral over the interval I. From the estimate (67]) and (68]) we conclude that

" — v weakly in H?, u" — u weakly in H'.
Notice that from the expression (66]) we have that

Viy" = I+ hK" + h2G",

where
0 0 -0t
K" = 0 0  —dnh |,
81vh 62?)h 0

0 0 0
Gh = L(—x3V'2vh + V’uh) + Vol + 0 0 0
61wh 82wh 0

Notice that K, G" satisfy the hypothesis of Lemma 312 Define also

Eh — (Vhyh}zgvhyhff.

From the inequality valid for any F' € R3*3, |/ F'F—1| < dist(F, SO(3)), where the equal-
ity holds for F' € R3*3 such that det F' > 0, we conclude that limsup;,_,, ||E"||2 < oo.
We truncate the peaks of E and the set of points where det V3" is negative. Therefore,
consider the good set C" := {z € Q : |E"(z)| < h™!, det V9" (z) > 0} and let x} denote
the indicator function associated with C". It is easy to see that X}f — 1 boundedly in
measure. By applying Lemma we know that there exists a sequence (x4)nso such
that for all h, x4 : Q — {0,1}, x» — 1 boundedly in measure and

(74) lim ‘ =0.
h—

s (B = (symer = fn?) )

In the same way as in Proposition 4] we take (")~ such that

L2

(75)  lim [Jw" — @"||;2 = 0, limsup |[|@"| ;1 < C(w)limsup ||[w"| g1, lim Al[@"| 52 = 0.
h—0 h—0 h—0 h—0

Also we take the sequence (9");~0 C H3(w) such that
(76) 5" —v||gz = 0, h[|5"]|c2 — 0.

This can be done by taking a smooth sequence converging to v and reparametrizing it.
Notice that

(77)
symG" — J(KM? = (M +a3Ms) — w30 (V’Q(vh — v))

+ sym Vhi/;h + oh,
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where
M, = symV'u-— %V'v ® V',
My = -V,
~ u}f — Ul aﬂbh
P = | ul g | 4 ha B :
wh — " —3 (10102 4 [020"]?)
ot = -1 (V’vh @V -V V'v) — hasu(V?0M)
0 0
+1sym 0 0

hxgv/ (‘61@h’2 + ‘62?7h‘2) lalﬁh‘Q + ‘62?7h’2 - lalvh\Q — ‘62?)h’2

Notice that from (@7), (68) as well as (78] and (76]) and Sobolev embedding we conclude
that

(78) lim [|o" |2 = lim [["| 2 = lim [[o" — ]|z =0,
(79) limsup ||0" — v"| g2 < 00, limsup | V" |2 < oc.
h—0 h—0

By using Proposition and Theorem we find a subsequence (hy,y)) and sequences
(er)ken € HA(w), (dr)ken © HY(Q,R?), (x3.)ken such that

(80)  lim Jlogllgn = lim [|dllz2 =0,
k—o0 k—o00

(81) (IV'290k|2)k€N, <|th(,€)¢~)k|2)keN are equi-integrable,

(82)  x3k:Q2—{0,1},Vk, x31 — 1 boundedly in measure,

(83) {x=(2,23) € Q:pp(a)) # (vhn(k) —v)(2) or @Z:)k(x) # &h”(’c) ()} = {x3x = 0}.
Define

~ 0 O1on
I = Y + 0 —x3 | Oopr |,
Pk 0

han (i)
and notice that ~
SYM V(o) Ik = —230(V% k) + Sym Vo)) V-

From this and (8I]) and (83]) we conclude that the family (|sym Vh(n(k))ﬂk\Q)keN is equi-
integrable and
(84) {z€Q: sym Vi, 01 # —23V2(W"® —0) + V], 0} = {xg, = 0},

up to a set of measure zero (see Remark[12]). From (80) we conclude that (9,1, 9,2, hp ) V,3)
— 0 strongly in L?. Now we are ready to prove the lower bound. The key idea is that
the replacement by equi-integrable family enables us to establish the lower bound on the
whole set. Denote by

e =X1" X" X3k B = xp B0,

By appealing to the polar factorization for matrices with non-negative determinant, there
exists a matrix field R* : C" — SO(3) such that

Ve e Ot Vi (x) = Rh(x)\/(vhyh(x))tvhyh(x).
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Hence, by frame-indifference (see (W1)), non-negativity (see (W2))) and assumption (W3])
we have

Whn) (2, Vi, o0 (2) > X0 (@)™ (@ )XM(OC)W(%Vhy"(w))
W) (3,1 + b2y Bil)).

Thus,
1
1
> | Whao (2, I + h2 ) Ey(2) ) da.

n(k)
Due to the truncation we have limg_, o0 hy, (1) HEkHLN = 0. Hence, using (@), Lemma B.13]

and the equi-integrability of (| sym Vh(n(k;))ﬁkp)keN with (Q1) as well as (73)), (4), (77),
([8), (84]) and Proposition 2.9 we get

liminf I"(y") = hm mf Ik (yftni)
h—0

Y

hmmf/ Q"w (z, By (x)) dx
= liminf/ xFQMmw (:c,sym Gk — %(Khn(k))Q) dx
k—o0 QO

= lim inf/ Xth"(k> (x,Ml + xgMs + th(k)ﬁk> dx
Q

k—o0

— liminf / QM (:C,Ml + My + th(k)z?k) da
Q

k—o0

Y

/ Q(a', My, My) dx’ = I°(u,v).

To deal with arbitrary w Lipschitz one firstly takes D < w of class C? and conclude that
u € HY(w,R?), v € HY(w) N H?(D). In the same way as above we conclude

(85) hgnlnf[h /Q 2, My, My) dz’ > %HVQ’UHLQ(D)

where we have used (Q’1). Since the left hand side does not depend on D we conclude
that v € H?(w). By exhausting w with D < w of regularity C? we have the claim. O

3.4. Proof of Theorem

Proof. As in Lemma [B.10] take > 0 such that B(r) D w. Extend Q" on (B(r)\w) x I
by e.g. Q"(z,G) = B|symG|?, for all z € (B(r)\w) x I Without any loss of generality
we can assume that R = I. First we assume that v € C1(@,R?), v € C?(@). The
general claim will follow by density argument and by diagonalization, which is standard
in D-convergence. Denote by M; = symV'u — V0 ® V'v, My = —V’?p. By using
Lemma B.I0 we find a subsequence, still denoted by (hn)neny and (¢n)neny € H? (B(r))
and (Y )neny C H' (B(r) x I) such that such that for each ¢, — 0 strongly in H!, ,, — 0
strongly in L%. Moreover the following is valid

Eg; (!V’Qtpnlz)neN and (]thwnlz)neN are equi-integrable,
limsup (|lonl 2 + | Va, ¥nll2) < C (B M1 + 23Molf72 +1) .
n—oo
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(c) For (¥,)nen C H'(w x I) defined by

0 alSOn
Oy = Y + 0 — X3 829071 s
£n 0
hn,
we have
60 [ Q.2 M) de’ =t Q" (o, ((My + 2sMo)L) + Vi, 0, da
w n=0 JB(ryxI

We know that (9y, 1,9y 2, hnUn,3) — 0 strongly in L? and that
(87) sym Vi, ¥y, = —23sym V2" + sym V, 1y,

is equi-integrable. In the same way as in the proof of Lemma [B.I0] we can suppose that
on = V¢, = 0 in a neighborhood of B(r)\w and that ¢, = 0 in a neighborhood of
(B(r)\w) x I. By using Corollary [A:2] and Corollary [A.4] we find for each A > 0 and n € N,
©r € H?(B(r)) and ¢ € H* (B(r) x I,R3) such that

(88) lepllwese < Clr)A,
(89) lim sup [l¢} — @nllzz = 0,
A—00 neN
(90) suplimsup [[gpllp2 < O(r) (ﬁHMl +a3Mol[72(,) + 1) -
A>0 n—oo

and
(91) [l + [ Vhdpli= < CA,
(92)

tim sup ([0 = vnllze + V08 = Vi, tllze) = 0,

A—00 neN
(93) suplimsup ([ 2]|2 + [Va,vnlzz) <

A>0 n—oo

C(r) (BIM: + 23022y +1)

Notice that as the consequence of ([89) and (@2 we have for all

(94) tim Tim (gl + 02l ) = 0.

A—>00 N—00
Define

\ \ 0 7} SO?\L

7971 = wn + 0)\ — X3 62(‘02
Pn 0

Again we have
(95) sym Vi, Uy = —aze(sym V™gp) + sym Vy, 4.
Notice that due to ([89), ([@2) we have
(96) lim sup || sym Vj, 9 — sym Vj,, 9,12 = 0.

A—00 peN
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Define also for every n, A the function 3, : Q@ — R? by

) B 2! h%u(x’) —0h (U + ‘Pn) (1‘:)
yé(:c ,T3) = ( B3 ) + < hn, (v(x’) +<,02($/)) ) - h%xi’» —0; (U'BSOQ) (z')

0
+h%¢,’}(m',x3) + %hixg 0
101(v + n)(@)? + 102 (v + @p) (")
From (@4]) we have:

I A

(97) lim lim (‘ffy;;if—u( +‘%—v ):0,
A—00 N—00 n L2 n 2
where y* = (v, , v ,). Also we easily conclude, by the Taylor expansion, that for all A
Yn yn71 yn,Z

(Vin 02 Vo yr—1
(98) Tim [T Tl o =0,
where

(99) E)=1 (sym Viu— V' (v+ oM@V (v+ @) — 3:3V'21)) + sym Vj,, 9.
From property (W1), Lemma [B.I3] and (Bl we conclude that for every A we have
pe [ de = [ @ (e B as| -

Notice also that as a consequence of (89), (@4]), (96 we have
(101) lim lim ||E) — Ep|lz2 =0,

A—00 N—>00

(100) lim = 0.

n—oo

where
(102) E, = (symV'u — 3V'v @ Vv — 23V"*0) +sym V0.
From (Q1), (B) and (86l) we have

[ @ By~ [ Q' a0t a
Q w

(103) lim lim sup

A—00 n—oo

By forming the function

g livs
"

g()‘vn) = hn v

.
L2 (w)

L2(w)
1
+ ﬁ/ Whn(x7vhnyé) dx_/Q(x/7M17M2)dx/
Q w

we conclude from ([@7)), (I00) and (I03]) that

hm limsup g(A,n) = 0.

A—=00 n—oo

By performing diagonalizing argument we find monotone function \(n), such that lim,,
g(A(n),n) = 0. This gives the desired sequence. To deal with v € H'(w,R?), v € H?(w) we
need to do the further diagonalization. Namely first we choose uy € C(w, R?), v, € C?(@)
such that

llug — ullgr =0, lim ||vg — v||g2 = 0.
k—o0

Denote by
Mg =symVu— iVo eV, My = —V2,
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We have that My, — My, My — Ms strongly in L?. Then for each k € N we choose a
sequence of functions (yxn)nen C H'(92,R3) such that

: f]y;c,n_x/ Ji Ykn.3 .
7}520( R L2+‘IT_W‘L2 =0,
and
. 1
Hm _4/ Whn(x’vhnykm)dx—/Q(HC/’MLk,MQ,k)dHC' = 0.
n—00 hn Q .

From (Q’1) we see that

lim =0.

k—o0

/Q(xlle,kaMQ,k)dx/_/Q(xlaMlaMQ)dxl

Thus for the function formed by

+
L2(w)

é/ﬂwhn(ag,vhnyk,n) dx—/Q(x’,Ml,Mg)dx’

w

fl Yk,n,3 U‘

n

L2(w)

)

we see that limy_, o lim,, o0 g(k,n) = 0. Then, by diagonalizing, we obtain the sequence
k(n) such that lim,_,. g(k(n),n) = 0. O

At the end we prove one lemma that we will need in the next section

Lemma 3.14. Let D C R? be the open, bounded set with Lipschitz boundary and let
(QM) >0, Q be as above and let Assumption[Z.7 be valid. Then for every M = My +x3Ms €
Svx (w) we have

lim min Qh(x, (M) + V) de =
h—0 peHIY(DXIR3), D]
=0 on D x1I

min / Q(a', My + sym V'u, My — V"?v) da’.
D

ueH} (D,R?),
veHZ(D)
For every r > 0 we have
lim inf min Q"(z, (M) + Vy1p) d >
h—0 YEHL(DxI,R3), DxI

=0 on ODXIL,||(¢1,%2,h3)| 2 <7

min Q(2', My + sym V'u, My — V'"%v) dz’.
wE€H(D,R2),veHZ(D) J D
lull? o +lvl|2 5 <r2

In the similar way we have

li i "z, (M dr =
PN, nyQ (2, (M) + Vo) do

min / Q(y, My + sym V'u, My — V"?v) dy.
weHL(YV,R2), [y
vEHZ(Y)
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Proof. We shall only prove the first two statements. We prove the claim by using I'-
convergence i.e. compactness, liminf and limsup inequality. Take ¥ € H'(D x I,R?)
such that ¥" = 0 on 0D x I and such that

min Q" (x, (M) + Vo) dz =
veHY(DXIR3), D«
=0 on 0D XI

Q" (w, o(M) + V).
DxI

By comparing with zero function and using the property (Q1) we obtain

(104) lsym Vig"|Fe <2 (£ - 1) 1M

o
By Corollary there exist v € HZ(D), u € H(D,R?) (p")p~0 € H?(D) such that
¢" =0 on 0D and (")~0 C HY(D,R?) with the following property
sym Vi = 1(—23V"0 + sym V'u) + sym V0" + o,
where [[0"||z2 — 0 as h — 0, (Y&, 4 hph) — 0 in L2
We define
M| = My +symV'u, M= M, -V

From the the definition of () we have that

lim inf min Q" (z, (M) + V1) da >
h—0 peHL(DXIR3), |pxT
=0 on DX I

min Q(a', My + sym V'u, My — V"%v) da’.
uEHé(D,]R2), D
veHg(D)

This is the lower bound. The second statement follows immediatelly from Corollary
which implies that [|u]|3, + |Jv]|7. < 7% To prove the upper bound for the first statement
take ug € HZ(D), vo € H}(D) such that

/ Q(z, My + sym V'ug, My — V") da’ =
D

min / Q(a', My + sym V'u, My — V"%v) da’.
uweH}(D,R?), Jp
veHg(D)

Using Lemma [B.10] for arbitrary subsequence (h,)nen take its subsequence, still denoted
by (hn)nen, and (¥ )nen such that ¢, = 0 on 9D x I and

/D Q(a', My + sym V'ug, My — V™vg) =
lim Qh (L(M — 23V + sym V'ug) + th¢n) dx.

n—o0 D

Define (I,)nen C HY(D,R3) by

Uo,1 0 0100
ln=1 w2 |+ 0 |—23| G200
0 2 0

N
3
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Notice that I, =0 on D x I, for every n € N and that
sym Vy, 1, = t(—x3V"%vg + sym V'ug).

From this we have

limsup  min Q" (x,u(M) + V) dx <
n—oo YEHNDXIR3), Jpy
=0 on 8D XTI

lim sup Q" (z, (M) + Vi, (In + 1)) dx

n—0o0 DxI

/ Q(2', My + sym Vug, My — V?uvg) da’.
D

The arbitrariness of the sequence (hy)nen implies the claim.

The second statement goes in the same way, after noticing that for the minimizers (¢")5>0
we can without loss of generality assume that have mean value 0 on Y x [. O

3.5. Proof of Theorem [2.T6l First we prove one technical lemma.

Lemma 3.15. Let (x")n>0 be a sequence in X™(w) that has the limit energy density Q.
Assume that for every i = 1,...,n the functions x? converge weakly star x" X9 €
L®(w,[0,1]). Denote by 0; := [ 0;. Then there exists a sequence (X")p>0 in X™(w) such
that XP = 0; weakly star in L= (w,[0,1]) fori=1,...,n and

/X’?:éi’ Vh>0,1=1,...,n.
w
Moreover (Y")n>o has the same limit energy density Q.

Proof. Notice that > ; 6; = 1 for almost every 2’ € w, which has the consequence that
S, 0; = 1. It is not difficult to construct the sequence (Y")x~0 which satisfies

(105) U{XZ#X}—>O as h — 0, /}Z?z@i, YVh>0,i=1,...,n.

To make one such possible construction see [BB0Y, Lemma 3.2]. It is easy to see that we
immediately obtain )Zlh 2 9;. We now proceed as follows. To prove (a) take the sequence
(hn)neny monotonly decreasing to zero and its subsequence still denoted by (hy,)nen such
that

K (M,A,w) = K. (M, A w) =: K3, en (M, A,w),

(X ) nen (X ) nen

for all A C w open and M € Syx(w) (see Lemma [2.6] and (a) of Lemma [B.8). By us-
ing Lemma B.I0 we find a further subsequence, still denoted by (hn)nen, and a sequence
(On)nen € HY(AXI,R3) such that (9,1, 0.2, hnn3) — 0strongly in L2, (|sym Vs, 95, [*)nen
is equi-integrable and

Kighny g O1,4) = tin [ Zsz )+ Vi, 0n,) ¥ (a') d.
A><I

n—o0

Using the equi-integrability property, (Ql) and (I0F) it is easy to see that

/A Z Q' (z, L(M) + thﬁhn) "(z) dx —

><IZ1

/A IZQi (z, (M) + Vi, Op,) X" (') dz| = 0.
=1

lim
n—oo
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From this we have that

K( M’A’W)ZK(X}I) (M,A,w).

X" )nen ( h>0

In the same way, using Lemma 310, we obtain the opposite inequality. The claim now
follows from Lemma 2.8 O

Definition 3.16. For 6 € [0,1]" such that >.» 6; = 1 and w C R? with Lipschitz
boundary we define Gy(w) as the set of all homogeneous (independent of ' € w) quadratic
functions @ : R2%Y x R2%2 — R for which there exists a sequence (X")h>0 in X™(w) which

has the limit energy density  and for which is valid y/ X 6; weakly star in L™ (w, [0,1])
fori=1,...,nand forall h>0andi=1,...,n we have [ x" =0,

Lemma 3.17. The set Go(w) is independent of w C R2.

Proof. Let Q € Gp(w) be the homogeneous limit energy of the sequence (x")x>¢ for which
is valid x* = 0; for i = 1,...,n. Take & C R? with Lipschitz boundary and z, € w and
s > 0 such that z{, + s& C w. Deﬁne (X")n>0 a sequence in X™(@) in the following way

') =" (@l + sal), fori=1,... n.

Z

We immediately obtain that Y7 X9 for i = 1,...,n. Notice that for arbitrary ¢ €
H' ((z{, + s@) x I,R?) and arbitrary h > 0 we have

V(2 23) = V), stbah + sa’,x3), for v € @,

where 1) € H' (& x I,R3) is defined by ¢ (z/, 23) = %w(x’o + sa/,x3), for x € @. From this,
using the homogeneity of () and the definition of K, we obtain for arbitrary My, My € R2X2

sym
(106) QUMi, My) = A=Ky, (My + w3 Mo, 2 + s0,0)
— 82|W‘K(Xh/s)h>0 (Ml + .%'3M2,x/0 —|— Sa)’ w)
= B K ey (M1 + 23 M,6,3).

=]

This together with Lemma implies the claim. O

Proposition 3.18. The set Gy is closed on the pointwise convergence.

Proof. Take a sequence of homogeneous quadratic forms @y, : ngxn% RZYXHQI — R such that
for each k, Qx(-,) is the limit energy density of (x"*)>0, a sequence in X™(Y). We want
to do the diagonalization procedure to obtain a sequence (x")pso in X™(Y") which has the
limit energy density Q(-,-). It is easy to conclude for arbitrary My, My € ngxnf and A Cw
with Lipschitz boundary

lim thUPK nie (M1 + 23Ms, A,w, B(r)) < [A|Q(M, Ma),

k—oo  p0
where B(r) of radius r in L*(A x I,R?). By using Lemma [B.I4] and homogeneity we
conclude that for every r > 0

lim lim inf K ok (M + x3Mo, A, w, B(r)) >

k—oo h—0

lim  min / Qr(M; + sym V'u, My — V™?0) da’ >
k—o0 ueH}(DR2), [ 4
veHZ(D)

klgglo |A|Qr (M1, M) = |A|Q(M;y, My).
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Now we proceed as follows. Let D = {D,},en be a countable family of open sets with
Lipschitz boundary in Y, which is dense in Y. Take (My,, Man)nen C REE x R2XX a
dense subset and (7,)ncn monotonly decreasing to 0. Define M,, = M ,, + x3M>,,. Take

also {¢n tneny C L1(Y) which is dense in L!(Y). Form the function
Z grmin { s | [ (x40 = 00) outyan| 1 +
yeens Tl Y

o
> g min { g K (My, Do, ¥, B()) = QM Ma)

n,m,l=1

1}

We conclude that lim_, o lim sup;,_,¢ g(k, k) = 0. By using diagonal procedure (see [Att84,
Corollary 1.16]) we conclude that there exists a function h — k(h) such that k(h) — oo
as h — 0 and g(k:(h) h) — 0 as h — 0. This implies that

(107) ‘K nkny (Mp, D, Y, B(1g)) = Q(Mi p, May), Vn,m, k € N,
(108) ‘/ h F h) 6i> ©on(y) dy‘ — 0, Vn e N.

From (I07) we conclude using Lemma [2.6] Lemma 2.8 Proposition [209 and the density
of D that (x"*")),-¢ has the limit energy density Q(-,-). From (I08) we conclude by

density that Xh (k) = 0;. The claim now follows from Lemma [3.15]

0

For (x")n>0 a sequence in X™(w) and zf) € w, s > 0 such that 2}, + sY C w we denote by
(zh, s) a sequence in X™(Y) given by X" (x),s)(y) = x"/*(x} + sy), for any h > 0 and
y € Y. Denote by

B(ry,r2) = {¢ € L*(2( + sD,R°) « | ($1, ¥2)ll 12 < 71, [[0sllz2 < 72}

The following Lemma helps us in the proof of Proposition

Lemma 3.19. Let (x")n>0 be a sequence in X™(w) that has limit energy density Q. Then
for almost every x{, € w and every D C'Y with the Lipschitz boundary, r > 0, My, My €
R2X2 we have

Sym
|D|Q(xg, M1, M3) = lim hmme~ (My 4 x3M>y, D,Y, B(r,7))
s—0 h—0 (95 ,5)
= lim lim sup K~ h(xt5) (My + x3Ms, DY, B(r,7)) .
520 p0 ¥0-8

Proof. For My, M, € R%%2 denote by M = M + xz3M,. Take (¢ ., Jnso C H' (2 +

sym
sD,R3) such that (see Remark [7)

n

th (M, zg + sD,w,B(rl,rz)) = / ZQi ( (M) + Vh¢7»1 ra. 8) X?(:c’) dz,
(zo+sD)xI 35
wﬁl,rg,s =0on 8(906 + SD) x I, H(wh,rg,s,l’wrl,rg,s 2)HL2 <, thﬁl,rg,s,B)HLQ < 7.

For ¢s € HY((z)+sD)x I,R3), define ¢ € HY(DxI,R?) by (2, z3) = %¢s(x6+sx’,x3).
Using the fact that

Vil (2!, 23) = Vi ss(xg + 52’ 23), for x € D x I,
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we have that

(109) S%th/s (Ma :C(] + SD,W,B(T,T/S)) = KQ

(@) (M,D,Y,B(r,r)).

By using the definition of K (OXh)h>0 we easily obtain for every r,s > 0

hmsupK~ h(a, )(M,D,Y,B(r,r)) = limsup 2K s (M zy+ sD,w B(r,r/s))
h—0 h—0
< 2Ky, (M, 2 + 5D, w)
= 5 Q(y, My, M) dy
zy+sD

By taking z{, the Lebesgue point of Q(y, Mi, Ms) (this can be done for every M, Mo
because of property (Q’1)) we have that

lim llmsupK~h(x 5) (M,D,Y,B(r,r)) < |D|Q(xo, My, Ms).

520 p0

To prove the lower bound we use Lemma .14l Notice that

llgﬂ;élf th(m6,s) (Ma Da Ya B(T’ T)) =

.. 0
s%llzll;glfoh/s (M, xy + sD,w,B(r,r/s)) >

1 1:0003 0 —

= hgr;lglf Kxh/s (M, z + sD,w, B(oo, oo)) =

=5 min / Q(y, My + sym V'u, My — V') dy =
zH+sD

5" weH} (z)+sD R2),
6H2(x0+sD)

min / Q(zo + sy, My + sym V'u, My — V'"?v) dy.
uGHé(D,RQ), D
veHg(D)

By using Corollary [A.T5 we obtain that for a.e. zf, € w

5—0 ueH} (D R2)
ueHQ(D)

lim min /Qx0+sy,M1+symVu My — V") dy =

min /QxO,M1+symVu My — V") dy.
ueH} (D,R?)
ueHQ(D)

Since Q(zg, -, -) is constant and quadratic and since u = v = Vv = 0 on 9D it is easy to
see that the minimimum value is |D|Q(xo, M1, Ms). This finishes the proof of the lemma.

g

The following proposition is analogous to [BB09Y, Theorem 3.5]. Here we have to justify
diagonalization procedure with Lemma [3.19

Proposition 3.20. Q is the limit energy density of the sequence (x")n>o in X™(w) if and
only if for a.e. xj, € w we have Q(xy,-,-) € gg(%). Here 0 is the weak star limit of x i
L>*(w, [0,1]).
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Proof. We first prove the direction ”=". For every ¢ € C(Y) and every i = 1,...,n we
have:

(110) lim lim

r—0 h—0

[ (@) = 0 ot0)

/x, - (th/s( ) — .91-(:%)) o (1=20) dy

= lim lim &
s—0h—0 %

= lim &
s—0 %

/ (0:(y) — O:(ah)) o (L=22) dy
z6+sY

< lim gl & /xwrexy) 0(h)| dy = 0

Now we proceed in the same way as in Proposition BI8 Let D = {D,}nen be a
countable family of open sets with Lipshitz boundary in Y, which is dense in Y. Take
(M 5, M2 3)nen C ngﬁg ngﬁg a dense subset and (r,)nen monotonly decreasing to 0.

Define M,, = M ,, + 23Ma,,. Take also (¢n)neny C C(Y) which is dense in LY(Y). Form

the function
X206, 8)i(y) — 0i(20) ) enly)dy|, 17 +
J.( ) ent) ] 1}

g(s,h) Z o mln{ max
> s min {| 5y K g ) (Mo Do, Y B(11,10)) = Q(h, M, Ma)

7 7n
n,m,k=1

1}

From Lemma 319 and (II0) we conclude that lims_,olimsup;_,og(s,h) = 0. By using
diagonal procedure (see [Att84, Corollary 1.16]) we conclude that there exists a function
h — s(h) such that s(h) — 0 as h — 0 and g(s(h),h) — 0 as h — 0. This implies that

(111) 5 KSn g sy My Din, Y, B(r, i) = Q(a, Min, Mayn), Vn,m, k € N,

[ (¥t s000i05) = 6:68)) n(9) | 0. v

We conclude the claim as in Proposition B.I8 The proof of 7<” we divide into several
steps.

Step 1. We use the construction as in [BB0Y, Theorem 3.5]. We can, by diagonal
procedure construct for each k € N the sequence (x"*);~0 in X™(w) which satisfies

(i)

(112)

lim lim X?’k(:c’)gp(x') da’ = / 0; (2" (") da’;
k—ooh—0 J, w
for each i = 1,...,n and every ¢ € LY(w).

(ii) for each k € N there exists a partition of w into a finite number n(k) of Lipschitz
subset of w, {Uyr}i—1,. nk) and for I = 2,...n(k) there exists xgk € Uy, such that
(x™Fk |l )h>0 has the homogeneous limit energy density Q(z;,-,-). It is also valid
that |Uy x| — 0 as k — oc;

(iii) for the sequence of quadratic functions defined by

Qr(a', My, My) = 1y, , Q(z', My, My) + Z 1y, Q) 5, My, My),
=2
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the following property is satisfied for every r» > 0

(113) lim sup |Qk‘($l) Ml) MQ) - Q(‘T,a Mla M2)| dz = 0.
k=00 Juw | My |+ Ma|<r

This, together with the property (Q’1) implies the pointwise convergence i.e. that
Qu(x', My, Ms) — Q(x', My, My) for a.e. 2/ € w, for all My, My € ]ngxrfl

Step 2.. Upper bound. It is easy to prove for every r > 0, My, My € Rfyxn% and A C w
open with Lipschitz boundary we have

(114) lim lim sup th,k (M + zgMs, A, w, B(r)) < / Q(x', My, My) da’,
A

k—oo  h0

where B(r) is a ball of radius r in L?(Ax I, R?). Namely, by using Lemmal[3.I0 for every k €

N the following holds: for each sequence (h,)nen monotonly decreasing to 0 we can take
its subsequence, still denoted by (A, )nen, and the sequence (95%),en C HY(Upp x I,R3)
such that 95" = 0 on OU;  x I for every n € N, 1 =2, ..., n(k), [|(95", 0%, b9l g2 — 0

for every [ = 2,...,n(k) and

n
[ANU k| Q(zy g, My, My) = 1i_>m Q" (x, o(M) + thﬁf;k> X?’k(x') dz’.
n—0oo (AﬁUl’k)XI i=1
By testing with 9% = Z?:(];) 1Ul7k19£;k and using (I13)) we conclude (IT4]).
Step 3.. Lower bound. We want to prove that for every r > 0, My, M5 € ngxnf and A C w
open with Lipschitz boundary we have

(115)lim Jim inf KV i (My + 23 Ma, A,w, B(r)) >

min / Q(z, My + sym V'u, My — V"?v) da’ =: mq (M, Mz, A,w, B(r)) .
u€H(A,R2),veHZ(A) J A
llull? o +lvl|2 5 <r2

Take an arbitrary sequence (hy,)nen monotonly decreasing to 0. For each k € N take a
sequence (YF),en € H'(A x I,R3) such that ¥ = 0 on A x I for every k,n € N and
such that ||(vF, ¥k, hyF)|| 2 < r and

K (M1 + 23Ma, A,w, B(r)) = / >Q (m (M + 3 M) + thwfl) X" (') da.
AxI ;5

By using Corollary B.2]we conclude that there exists u € HE (A, R?), vE Hﬁ(A), (?ﬁi)hw C
H'(AxI,R?) such that [Jul|2,+[[v]2, <12, ¢k = 00n dAXT and (9F |, 0% 5, hytk 5) — 0
strongly in L? and the following identity is valid
(116) sym Vy, F = 1(—23V"?0 + sym V'u) + sym Vk.
From (II6]) we conclude that

liminf KV, » (M1 + z3Ms, A, w, B(r)) >

n—oo X

n(k)
Z K(Xh"’k)neN (M1 + sym V'u+ r3My — Stigv/Q’U, AN Ul,k;’ Ul7k;) =
=2
n(k)

Z / Q) ,, My + sym V'u, My — V'"%0).
1=2 (AﬂUl’k)XI ’
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Since we have

lim Q(z', My + sym V'u, My — V'"?v)dz’ =0,
k—oo AmUl,k:

we conclude by Lebesgue theorem of dominated convergence that

hm hmlnf Kohn’k (Ml + .’L'3M2, A7w7 B(T)) Z

k—oo n—oo X

/ Q(a', My + sym V'u, My — V"v) da’.
A

This implies (IT5)).

Step 5.. Diagonalization. We proceed similar as in the proof of Proposition B.I8 Take
{©n }nen a countable dense subset of L!(w), D = {D, }nen a countable family of open sets
with Lipschitz boundary in w, which is dense in w. Take (M p, M2 p)nen C ngxrg X nganl a
dense subset and (r,,)nen monotonly decreasing to 0. Define M,, = M; ,, + x3M>,,. Form

the function
| 1} n

g(k,h) = Z 2 min {'max

/Y (X?'k (y) — 91‘) en(y) dy

1 i=1,...,n
0o
Z S in { (th,k (My, D, w, B(ry)) — Q(x' My, May) dfﬂl) ,1} +
n,m,l=1 Dy, +
0o
Z W min { (mQ (Ml,na MQ,na Dmawa B(T)) - th,k(Mna Dm,w, B(Tl)))+ ) 1} .
n,m,l=1

Here ;1 = max{x,0}. We conclude that limy_,~ limsup;,_,og(k, h) = 0. By using diago-
nal procedureb we conclude that there exists a function h — k(h) such that k(h) — oo as
h — 0 and

lim sup ﬁth,k(h) (Mn7 Dmv W, B(Tk)) < Q(xlv Ml,nv MQ,TL) d.’IJl, vn7 m, ke N7

hin—:{)lf ‘D—lm‘th,k(h) (Mn) DTI’L)W) B(Tk)) 2 mQ (Ml,n) MQ,n) DTI’L)W) B(Tk)) dCC/, \V/TL, m, k € N)

— 0, Vn e N.

/w (X?’k(")(ﬂc') _ 9z‘($')> on(a') da’

The claim follows in the same way as in Proposition BI8, after noticing that

mQ (Ml,n7 M2,n7 A7 W, B(Tk)) — b Q(x/7 Ml,nv MQ,TL) d.’L',,

as rp — 0. N

Proof of Theorem [2.10. The second claim is the direct consequence of Proposition B.18]
and Proposition To prove the first claim from Lemma [3.17] and Proposition we
conclude that it is enough to prove that for § € [0,1]" such that ) ' ; 6; = 1 we have
Go(Y) C Py.

Take a sequence (x”) in X™(Y) such that Iy xPdy = 6; forall h > 0,43 =1,...,n and
such that x" = @ weakly star in L>(Y,[0,1]") and (x*)s>0 has the homogeneous limit
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energy density (). By using Lemma [3.14] and the periodic boundary conditions we have

ueHL1(Y,R2),
veHQ(y)

Q(My, M) = min /Q y, My + sym V'u, My — V') dy

= 1 M M- dy dzs.
hlg%)weHlm)}rxlIRS /yﬂZQ (y, 23, (M1 + 23Mp) + Viih) X (y) dy ds

This implies the claim. O

APPENDIX A. AUXILIARY RESULTS

Proposition A.1. Let 1 < p < oo, A > 0. Let A be a bounded open set in R™ with
Lipschitz boundary

(a) Suppose u € WIP(A) Then there exists u* € WH°(A) such that
[ut e < C(n,p, AN

C(n,p, A
redsd@ uy < SBEA [
{lul+IVu|=A/C(n,p,A)}

A

(Ju| + ]Vu\)pdx

In particular,

lim ()\p ‘{x cA: uMz)# u(m)}‘ ) =

A—00

If we define Hardy Littlewood mazimal function
Ma(x) = Sup][ a(y)dy,
r>0J B(z,r)

where a = |G| + |Vl (@ is the estension of u to W*2(R™) which has the compact
support) and

A={r eR": Ma(z) <\ and z is a Lebesque point of u, Vu and V>u},
then we can construct u® such that
{ut #u} = A%,

where A* is a closed subset of A* N A which satisfies |A\A* < C|A\A*|, for some
C>1.

(b) Assume additionally that A is has the boundary of class CY' and u € W?P(A).
Then there exists u* € W2(A) such that

[tz < Cln,p, AN,

{zeA: @) £u(@)}] <
C(n,p, A)

A /{<u|+w+|v2u|>>x/c< np.A))
where a = |u| + |Vu| + |V?ul. If we define

Ma(x) = sup][ a(y)dy,
B(z,r)

(Jul +Vul + |V2ul)? da,

r>0

and
A={reA: Ma(z) <\ and x is a Lebesgue point of u, Vu and VZu},
then we can construct u® such that
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where A* is a closed subset of A* which satisfies |A\A*| < C|A\A%|, for some
C>1.

Proof. See the proof of Proposition A2 in [FJMO02]. The condition in (b) that the domain
is of class C1'! is not demanded there. The argument is that one can extend W2P(A) to
W2P(R") when A is only Lipschitz (see e.g. [Ste70]). However, if for u € W?2P(A) we
denote this extension by Fu then it is not clear to the author weather the term

/ (|Bu| + |V Eu| + |V?Bul)? dz,
{(|Eul+|V Eu|+|V2Eu[)>\/C1(n,p,A)}
can be controlled with the term
/ (Jul + V] + [VulP d
{(ul+IVul+V2ul)>A/C2(n,p,A)}
For the standard extension operator, constructed using the reflexion, this can be easily

proved to be valid. O

Remark 12. Notice that due to [EG92, Theorem 3, Section 6] for u,v € WHP(A) we have
that

{u=v}={u=v,Vu=Vuv}UN,
where N is the set of measure zero. From this it follows that for u,v € W2P(A) we have
that
{u=v}={u=v,Vu=Vv,Viu=V>}UN,

where N is the set of measure zero.

Corollary A.2. Let 1 < p < oo, A >0 and let A be a open bounded open set in R™ with
Lipschitz boundary.

(a) Suppose that (uh)p~o C WIP(A) is a sequence such that u" — u weakly in WP,
uh =0 on T and (|Vu"|P)yo is equi-integrable. Then there exists (u™")y p=o such
that

[t fwre < Cln,p, AA,

lim supHu)"h —uhle,p = 0,
A—00 >0

C(n,p, Al -

(b) Assume additionally that A has the boundary of class CY' and that (u)~0 C W?P(A)
is a sequence such that u" — u weakly in W?P and (|V>u"|P)p>o is equi-integrable.
Then there exists (u)"h)ky;po such that

Hu’\’hsz,oo < C(n,p, A)A,

lim sup |[u™? — || y2p = 0,
A—00 >0

[y P

IN

IN

™" lyyr2. C(n,p, A)[u" w2

Proof. The proof is the direct consequence of Proposition [AJl We will prove only (a).
For each v and A > 0 we choose u™" such that
(117) M ree < C(n,p, AN

(118) an < Copd)

< (] + V)" da,
AP /{|uh+|th2>\/C(n,P7A)}
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where AN = {z € A : uM(x) # u(z)}. Notice that since u” — u strongly in LP and
(|Vu"|P) >0 is equi-integrable we have that

(119) lim sup

/ (Ju" + |Vu"])" dz = 0.
A=00 >0 J {|ul |+|Vul|>A/C(n,p,A)}

From this we easily see that limy_ o, supy,-o A?|AM| = 0. Using (I[I7)) we conclude that

lim sup (H’UJhHLp(AA,h) + ||vuh||Lp(A>\,h)) — 0,
A—00 >0

lim sup (HU’\’hHLP(AW) + HVU’\’hHLP(AA»h)) - 0.
A—00 >0

Notice also simple estimate

A < 20(n, p, A)?||lu"||?

Hu Wwlp

) + Hvu)\7hHI]ip(Ak,h)

Izp(AM
From this we have the claim since
J Pl = e = pganny + [V = V| anny
< M o anny + IV poanny + 16" o anmy + V6" | Lo ann)-
M s = ol anmge) + 196 o annye
M| o army + VUM o arm)-
d
The following proposition we prove by combining the ideas of extension given in [BF02]
and [BZ07] with Proposition [A1]

Proposition A.3. Let 1 < p < oo and A be a bounded open set in R? with Lipschitz
boundary. Suppose that u € WYP(A x I,R3). Then for every 0 < h < 1 there erists
uM e WH(A x I,R3) such that

[z + [V < Clnp, A,

(o€ A: M (2) £ ula)}] M/
{lu|+|Vru|>A/C(n,p,A)}

IN

(Jul + |Vhul)? da.

Proof. The idea is to look the problem on the physical domain A x hl, extend it by
reflection and translation to the domain A x I and then apply Proposition [A.T] and choose
the good strip. Define @ : A x I — R? as 2h periodic function in the variable z3 in the
following way

~hs 1 o u(ml,x—hg), if z3 € hl,

W, ws) = { w(@ 12 88),if g € [h/2,3h/2),

and extend it by periodicity on A x I. This implies that we have 2] + 1 = 2[# — %J +1
whole strips and at most 2 strips with the boundary x5 = 1/2 i.e. x3 = —1/2 where
the function @” does not exhaust the full period 2h. Denote for i € {—I,...,1} the sets
K; = [(2i — 1)h/2,(2i + 1)h/2] and Ly = [(2l + 1)h/2,1/2|, Ly = [-1/2,—(2] + 1)h/2].
Notice that I = U._yK; U Ly U Ly and

Vﬁh _ th(:t?/, a:_}?)’ if z3 € hl,
(Oru(a’, 1= 23), Gyu(a/,1 — 28), —F0gu(a’,1— 22)), if 3 € [h/2,3R/2).
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Notice that @" € WP(A x I,R?). We apply Proposition ATl on the function @" to obtain
the function @™" such that

IN

@M yy1.00 C(n,p, A)X

HoeA: M) £a@)y < A

< (Ja" + |va"|)" da.
AP /{lah+|vahzx/c(n,p,z4)}

We want to show that there exists strip which satisfies the appropriate estimate. Notice
that, due to our construction we have for every i € {—1[,...1} and j € {1,2}

(120) (|a"] + |Va|)" dz =

/{Iﬂ"+|Vﬁh2/\/0(n,p,A)}ﬁAxKi

h / (Ju] + [Vaul)? de,
{lu|+|Vru|>X/C(n,p,A)}

/ (|a" + |va"|)" dv
{|ah |+ Vah|>A/C(n,p,A))NAXL;

<n (ul + [Vyul)” da.
{lu|+Vru|>X/C(n,p,A)}

From this we conclude that there exists strip i.e. i € {—[,...,l} and the set A x K; such
that
FH{zr e Ax K;: M () # a(x)}] <
3C A
(n+,)/ (]u\ + ]th])p dx.
A {[ul+1Vhul =0/ Clnp,A)}

To obtain u™" we take @M ax,, translate it to the strip A x [~h/2, h/2], if necessary
reflect it, and then stretch it to the domain A x I. O

The proof of the following corollary goes in the same way as the proof of Corollary [A.2]
using Proposition [A.3] instead of Proposition [A.Jl We will just state the result.

Corollary A.4. Let 1 < p < oo and A be a bounded open set in R? with Lipschitz
boundary. Suppose that (u")p~o C WIP(A) is a sequence such that u" — u weakly in
WP and (|[Vpu"P)pso is equi-integrable. Then there exists (uM)y pso such that

[l + [Vt < Clnp, AN,

lim sup (Hu’\’h —ul| e + | Vputh — thhHLp) = 0,
A—00 >0

[ M| o + [Vaud e < C(n,p, A) (HuhllmﬂlvhuhHLP)-

The following proposition is just simple adaption of [FMP9&, Lemma 1.2].
Proposition A.5. Let p > 1. Let A C R"™ be a open bounded set.

(a) Let (wy)nen be a bounded sequence in WYP(A). Then there exist a subsequence
(Wn (k) )ken and a sequence (2x)ken C WLP(A) such that

(121) {2k # Wy} — 0,

as k — oo and (|V2k|p)k€N

function. If w, — w weakly in WP then z, — w weakly in WP,

1s equi-integrable. Each z, may be chosen to be Lipschitz
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(b) Let (wy)nen be a bounded sequence in W*P(A). Then there exist a subsequence
(Wn(k))ken and a sequence (z)ren C W*P(A) such that

(122) {2k # Wy} — 0,

as k — oo and (‘VQZk’p)keN s equi-integrable. Each z, may be chosen such that
2 € W22(S). If w, — w weakly in WP then z, — w weakly in W?2P.

Proof. Proof of (i) is given in [FMP98, Lemma 1.2]. The proof of (ii) goes in the same
way. We can assume that the boundary of A is of class C'! (to deal with general open
bounded set see the proof of Step 2 in [FMP98, Lemma 1.2]. Namely, we extend each wy,
on R" such that the support of each w;, lies in a fixed compact subset K C R™. We denote
this extension also by w,. Denote by a,, = |wy,| + |Vw,| + |V?w,| and by

Man(x) = sup f an(y)dy,
r>0J B(z,r)

the Hardy Littlewood maximal function. It is well known that

(123) M (an))llLr@ny < C(n,p)[wn@ lwze@ny < C(n,p, A)l[wn llwze(a)

We denote by p = {s}req the Young measures associated with the converging subse-
quence of (M (Vay,))nen. We have the following properties:

(a) [ JglsPdps < +oo.
(b) whenever (f(M(ay,))nen converges weakly in L!(Q), its weak limit is given by

f(x) = {pa, f), aex € Q.

For k € N we consider the truncation map T : R — R given by

r, |z| <k,
Tk-:{ k2, |z >k

EN
In the same way as in proof of Lemma [FMP98, Lemma 1.2] we obtain a subsequence
Wy(k) such that
I Tio(M (ap )P — f weakly in L'(A),
where

Flx) = /R (5PPdia(s).

Set

Rk = {1‘ e R": M(an(k)) < k}
Notice that for k large enough, since the support of w;, () lies in K, we have that R, C K,
where K7 is a compact subset of R", K1 D K. So without the loss of generality we can

assume that for each k we have Ry C K. Denote by R} the closed subset of Ry N A such
that

|A\Ry| < 2|A\Ry,
and

By Proposition [AT] (i) there exists z, € W% (A) such that

Zp = Wy a-e. on Ry, ||lzk|lpze < C(n,p, A)k.
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We have

1

Hr € Q:z # wyy}| < |Rk|+w

1

1
p
< ﬁHMa’n(k)HLP + Lp+17

and this term tends to zero as k — co. For a.e. x € R we have
IV22k] = V2w < |M (an))| = |Ti(M (an@))|
while if 2 € AN R, we have
V221, (2)| < C(n,p, A)k < C(n,p, A) | Te(M (any)) ()] -
For 2 € (AN Ry)\R}) we can only conclude
(V22 ()| < C(n,p, A)k.

Since we have

/|V2zk|d:c:/ |V2zk|d:c+/ |V2zk|d:c+/ | V22 |dx.
A Ry, A\Ry, (ANRy)\ Ry

/ |V22 [Pda
Ry,
/ ]VZZk]p
A\Ry,
C(n,p, A)

/ \VQZk]dx <
(ANR)\Ry k

taking into account that Ty (M (anr))) is equi-integrable, we have the claim. It is easy
to see that from the property (I22]) it follows that (zx)ren has the same weak limit as
(W) ken- O

and

IN

/ ITe(M (ango)P.
Ry,

IN

[ 0@
A\Ry,

A

The following proposition can be found in [BF02] (see also [BZ07]).

Proposition A.6. Let 1 < p < +oo and A C R? be a open bounded set with Lipschitz
boundary. Let (hy)nen be a sequence of positive numbers converging to 0 and let (wy)neN
be a bounded sequence in WHP(A x I, R3) satisfying:

limsup/ <6lwn Oowy, hiagwn>
neN  JAxI "

Suppose further that wy, — 1 weakly in WHP(A x I,R3). Then there exists a subsequence
(Wp (k) Jken and a sequence (2x)ken such that

P
dr < +o0.

(a) img o0 |[v € AX T zp(7) # wyy(z)| =0,
(b) {<8lzk 022, éagzk)} s equi-integrable,
(c) 21 — v weakly in WHP(A x I,R3)

The following proposition is the simple case of [DM93, Proposition 11.9.]

Proposition A.7. Let X be a finite dimensional vector space over the real numbers and
F: X —[0,400) an arbitrary function. If

a) F(0) =0,
b) F(tz) < t?F(x) for every x € X and for every t > 0,
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c) Flx+y)+ F(x —y) <2F(x) + 2F (y) for every z,y € X,

then F' is a quadratic form. Conversely if F is a quadratic form then (a), (b), (c) are
satisfied, and, in addition,

d) F(tz) = t2F(z) for every x € X and for every t € R with t # 0,
e) Flx +y)+ F(x —y) = 2F(x) + 2F (y), for every z,y € X.

If w is a Lipschitz domain by A = A(w) we denote the class of all open subsets of w; while
by B = B(w) we denote the class of all Borel subsets of w. By Ay we denote the class of
all open sets of w that are compactly contained in w. The following definitions, Lemma
and theorem can be found in [DM93, Chapter 14].

Definition A.8. For a function o : A — R we say that it is increasing if a(A4) < a(B),

whenever 4,B € A, A C B. We say that the increasing function o : 4 — R is inner
regular if

a(A) =sup{a(B): Be A, B< A}.

Definition A.9. We say that a subset D of A is dense in A if for every A, B € A, with
A < B, there exists D € D, such that A < D < B.

Remark 13. If o : A — R is an increasing function and D is the dense subset of A then
we have that

a(A) =sup{a(D): D e D, D < A}.
Definition A.10. Let a : A — R be non-negative increasing function. We say that

a) « issubadditive on Aif a(A) < a(A;)+a(Asz) for every A, A1, Ao € Awith A C AjUAs;

b) « is superadditive on A if a(A) > a(A;1)+a(As) for every A, A;, Ay € Awith AJUA; C
A and A1 N Ay :(0;

c) a is a measure on A if there exists a Borel measure p : B — [0,400] such that
a(A) = u(A) for every A € A.

The following is [DM93, Lemma 14.20]

Lemma A.11. Let A, B,C € A with C < AU B. Then there exist A", B’ € Ay such that

C<AUB', A <A, B<B.

The following is Theorem [DM93, Theorem 14.23].

Theorem A.12. Let o : A — [0,400] be a non-negative increasing function such that
a(B) = 0. The following conditions are equivalent.

(i) « is a measure on A;
(71) o is subadditive, superadditive and inner reqular on A.

Remark 14. Tt can be seen that the measure p which extends « is given by

w(E) =inf{a(A): A€ A, E C A}

We give some simple lemma about the sets with Lipschitz boundary.

Lemma A.13. Let A C R" be an open, bounded set with Lipschitz boundary. Then A has
finite number of connected components.
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Proof. Denote by {['4}aeca the connected components of 0A. We want to prove that
there is only finitely many such components. Suppose that there is infinite many such
components. Then for each n € N we can find z,, € I';,, where I'; # I';, for all i # j.
Since JA is compact we have that at least on a subsequence, still denoted by (zy)nen
Tn — x € JA. Since A has Lipschitz boundary we can find a Lipschitz frame around point
x € 0A, with radius e > 0. This means that there exists a bijective map f, : B(z,e) —
B(0,1) such that f, and f, ! are Lipschitz continuous and such that f, (0AN B(x,¢)) =
B(0,1) n{x,, = 0} and AN B(z,e) = B(0,1) N {x, > 0}. This contradicts the fact that
T, — x and that x, belong to different connected components of A. Thus we have proved
that A has finitely many connected components. Take now all the connected components
of the set A and denote them by { A, }aea. Using that A has Lipschitz boundary it is easy
to see that 0A C Ugep0An. Then it is easy to check that 0A = U,ep0A,. Moreover it
is easy to see that for o # 3, 04y N 0Ag = 0. Namely, if there is z € 04, N OAg, then
by taking Lipschitz frame around z, it can be seen that A, and Ag would be connected.
Also it is easy to see that every connected component of the boundary can be part of the
boundary at most one of the connected component of A. This implies that there can be
only finitely many connected components of A and that they have disjoint closure. g

We give one lemma about convergence of minimizers for specific elliptic system. This is the
well known claim that the pointwise convergence of the coefficients implies the convergence
of minimizers. We give the proof for the sake of completeness.

Lemma A.14. Let D C R? with Lipschitz boundary. Let (Qn)nen, Q : DX RZXEXRZX2 —
R satisfy the property (Q’1). Assume that Q,(y, M1, Ms) — Q(y, My, My) for a.e. y € D,
for all My, My € R2X2. Then we have

sym *
min Qn(y, My + Vu, My — V?v)dy —
uweH1(D,R2), veH2(D), J D
(u,v)EU(D)
min Q(y, My + sym Vu, My — VZv) dy,
uweH1(D,R?), veH2(D), J D
(u,v)EU(D)

as n — oo, for arbitrary My, My € L*(D,R2%2). Here U(D) is any closed subset in weak

sym

H'(D,R?) x H%(D) topology which has the property
(124) (w,0) €U = |lullgr + o]l 2 < C(D) (|[sym V'ull 2 + [|V?0] )

for some C(D) > 0 independent of u,v. Moreover, if (un,v,) are the minimizers of the
problem

min Qn(y, My + V'u, My — V"?v) dy,
weH1(D,R?), veH2(D), J D
(u,v)EU(D)

then we have that || sym V' (u, — u)||z2 — 0 and ||V"*(vy, — v)||12 — O where (u,v) are the
minimizers of the problem

/ Q(y, My + sym V'u, My — V"?v) dy.
D

Proof. In the proof we will take M; = My = 0. We will use the arguments from I'-
convergence. The minimums exist, by the direct methods of the calculus of variation,
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using (Q'1) and ([24). Take u,, € H'(D,R?), v, € H?(D) which satisfy

Qn(y,sym Viuy, vlzvn) = min Qn(y,sym V'u, VIQU) dy,
D weH1(D,R2), veH2(D), Jp
(u,v)eU(D)

(u,v) e U(D).

Denote by u,v the weak limits (on a subsequence) of (up)nen, (Vn)nen in H' ie. H?
respectively. For y € D, denote by A, (y) : R2X2 x R2X2 — R2X2 x R2X2 the symmetric

Sym Sym sym sym
linear operator which realizes the form @, (y,-,) i.e. for which is valid

An(y) (M7, M) - (M7, M3) = Qu(y, My, M3), VMj, M; € RE2

sym>

and by A(y) : RY2 x RY2 — RZ2 x RZ%2 the symmetric linear operator which realizes

sym m
the form Q(y, -, -). Notice that |A,(y)| < B, |A(y)| < B, for any y € D and A, (y) — A(y)
for a.e. y € D. We obtain

(129) [ @ulysym V' V) dy =
/D A () (sym V'u, V%0) - (sym V'u, V'?0) dy +
2 /D A (y)(sym V'u, V?v) - (sym V' (u, — u), V?(v, — v)) dy +
/D An(y) (sym V' (s, — 1), V(v — 0)) - (sym V' (up, — u), V2 (v, — v)) dy
> /D Au(y) (sym V', ") - (sym V', V"2v) dy +

2/ A (y)(sym V'u, V'QU) . (sym V' (up, — u), V'2(vn — v)) dy +
D

15 (Isym V' (un — w)172 + V(v = )172) -

By the Lebesgue theorem of the dominated convergence we have

[ Ao V', 9% - (sym ¥, V) dy
D

- / A(y)(sym V'u, V'?0) - (sym V'u, V'?v) dy,
D
as n — Q.

Using the fact that
2
(/ (An(y) — Ay)) (sym V'u, V20) - (sym V' (u — ), V(0 — vy)) dy) <
D

/D |(An(y) — A(y)) (sym V'u, V'2v)[* dy /D | (sym V' (u — ), V(v = 0,))|” dy
— 0

by the Lebesgue theorem of the dominated convergence, as well as that
/ A(y)(sym V'u, V?v) - (sym V' (u— ), V?(w — vn)) dy — 0,
D
we have that

/Qn(y,symvlun,vl%n)dyZ/ Q(y,symV'u,V'zv)dy,
D D
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which is the lower bound. The upper bound is trivial, since we can use constant sequence
Up = u, v, = v. Argumenting as in I'-convergence we can prove the claim, using the
arbitrariness of the sequence (s,)>2 ;. Notice that we have also proved that the minimizers
(tn, v,) weakly converge (on a subsequence) to the minimizer (u,v) in H' x H?. Going

back to (I25]) we also obtain necessary estimate. O
Corollary A.15. Let Y = [-1,1]%. Let Q : w x ngxrg X ngxrg — R satisfy the property

(Q’1). Then for almost every x(, € w the following property is valid

min / Q(xh + sy, My + sym V'u, My — V"?v) dy —
uweH1(D,R2), veH2(D), J D
(u,v)eU(D)
min / Q(xp, My + sym V'u, My — V") dy,
uweH1(D,R?), veH2(D), Jp
(u,v)EU(D)
as s — 0, for arbitrary and D C 'Y with Lipschitz boundary and My, My € L2(D,R§yxr§).

Here U(D) is any closed subset in weak H'(D,R?)x H%(D) topology which has the property
(u,v) €U = lullgs + [[vllg= < C(D) (| sym V'ul[ g2 + [[V0|2) |
for some C(D) > 0 independent of u,v.

Proof. From |AFP00, Lemma 5.38] for almost every z(, € w the following property is
valid: for any sequence (sy)7°; monotonly decreasing to 0, there exists a subsequence,
still denoted by (s, )nen and E C Y of measure 0 such that

lim Q(a + spmyy, ) = Qxp, ),

locally uniformly in RZ%2 x R2%? for every y € Y\E. Using Lemma (AT4) we conclude
that

min Q(x) + spy, My + sym V'u, My — V"?0) dy —
ueH1(D,R2), veH2(D), J D
(u,v)eU(D)

min Q(xp, My + sym V'u, My — V"?v) dy.
weH1(D,R?), veH2(D), J D
(u,v)eU(D)

The arbitrariness of the sequence gives the claim. O
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