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Abstract

We study the invariants of arbitrary dimensional multipartite quantum states under local unitary

transformations. For multipartite pure states, we give a set of invariants in terms of singular values

of coefficient matrices. For multipartite mixed states, we propose a set of invariants in terms of

the trace of coefficient matrices. For full ranked mixed states with nondegenerate eigenvalues, this

set of invariants is also the necessary and sufficient conditions for the local unitary equivalence of

such two states.
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I. INTRODUCTION

Entanglement is one of the most extraordinary features of quantum theory [1]. The

subtle properties of multipartite entangled states allow for many fascinating applications of

quantum information, such as one-way quantum computing, quantum error correction and

quantum secret sharing [2, 3]. Thus, one of the main goals in quantum information theory

is to gain a better understanding of the non-local properties of quantum states. According

to the properties of quantum entanglement of multipartite systems, there are many ways to

classify the quantum states, such as local operations and classical communication (LOCC)

and stochastic LOCC (SLOCC) [4–7].

An important classification of quantum states is based on the local unitary (LU) trans-

formation. That is, given two states ρ and ρ′, one asks whether ρ can be transformed into

ρ′ by LU operations. To solve this problem, many approaches to construct invariants under

local unitary transformations have been presented in recent years. For example, in [8, 9] the

authors developed a method which allows one to compute all the invariants of local unitary

transformations in principle, though it is not easy to perform operationally. For multiqubit

pure states, the local unitary equivalence problem has been solved in [10], which is then

extended to the arbitrary dimensional case [11]. For two qubit mixed states, a complete set

of 18 polynomial invariants is presented in [12]. For high dimensional bipartite mixed states,

Zhou [13] has studied the nonlocal properties of quantum states and solved the local uni-

tary equivalence problem by presenting a complete set of invariants. Besides, other partial

results have also been obtained for three qubit states [14], some generic mixed states [16–18]

and tripartite mixed states [19]. But it is still far away from understanding the nonlocal

properties of multipartite states completely .

In this article, we study the invariants of arbitrary dimensional multipartite quantum

states under local unitary operations. For multipartite pure states, we give a set of invariants

in terms of singular values of coefficient matrices. For multipartite mixed states, we propose

a set of invariants in terms of the trace of coefficient matrices, which is also the necessary

and sufficient condition of local equivalence for full ranked mixed states with nondegenerate

eigenvalues.
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II. LOCAL UNITARY INVARIANTS FOR PURE STATE

First, we consider n partite pure states |ψ⟩ in Hilbert space H1 ⊗ H2 ⊗ · · · ⊗ Hn,

|ψ⟩ =
∑d1−1

s1=0

∑d2−1
s2=0 · · ·

∑dn−1
sn=0 as1s2···sn|s1s2 · · · sn⟩, with dim(Hi) = di, and |si⟩ the basic

vectors of Hi, i = 1, · · · , n, as1s2···sn ∈ C,
∑d1−1

s1=0

∑d2−1
s2=0 · · ·

∑dn−1
sn=0 |as1s2···sn|2 = 1. Now we

associate (d1d2 · · · dl)× (dl+1 · · · dn) coefficient matrix M(|ψ⟩)(l) to |ψ⟩ by arranging as1s2···sn

in lexicographical ascending order, where we have viewed the indices with respect to the

first l qubits as the row ones and the rest indices as the column ones, l = 1, 2, · · · , [n
2
]. For

fixed l, all the possible coefficient matrices can be derived by M(|ψ⟩)(l) with permutations

σ = (r1, c1)(r2, c2) · · · (rk, ck) (1)

where 1 ≤ r1 < r2 < · · · < rk ≤ l, l < c1 < c2 < · · · ≤ n, and (ri, ci) represents the

transposition of ri and ci. The case k = 0 stands for identical permutation, denoted by

σ = I. Each element in the set {σ} gives a permutation of {1, 2, · · · , n}. We denote

Mσ(|ψ⟩)(l) the coefficient matrix of M(|ψ⟩)(l) under permutation σ.

For example, for three qubit pure state |ψ⟩ =
∑1

s1,s2,s3=0 as1s2s3|s1s2s3⟩, we have

M (1) =

 a000 a001 a010 a011

a100 a101 a110 a111

 ,

M
(1)
(1,2) =

 a000 a001 a100 a101

a010 a011 a110 a111

 ,

M
(1)
(1,3) =

 a000 a010 a100 a110

a001 a011 a101 a111

 .

For four qubit pure state |ψ⟩ =
∑1

s1,s2,s3,s4=0 as1s2s3s4|s1s2s3s4⟩,

M (1) =

 a0000 a0001 a0010 a0011 a0100 a0101 a0110 a0111

a1000 a1001 a1010 a1011 a1100 a1101 a1110 a1111

 ,

M
(1)
(1,2) =

 a0000 a0001 a0010 a0011 a1000 a1001 a1010 a1011

a0100 a0101 a0110 a0111 a1100 a1101 a1110 a1111

 ,

M
(1)
(1,3) =

 a0000 a0001 a0100 a0101 a1000 a1001 a1100 a1101

a0010 a0011 a0110 a0111 a1010 a1011 a1110 a1111

 ,
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M
(1)
(1,4) =

 a0000 a0010 a1000 a1010 a0100 a0110 a1100 a1110

a0001 a0011 a1001 a1011 a0101 a0111 a1101 a1111

 ,

M (2) =


a0000 a0001 a0010 a0011

a0100 a0101 a0110 a0111

a1000 a1001 a1010 a1011

a1100 a1101 a1110 a1111

 ,

M
(2)
(2,3) =


a0000 a0001 a0100 a0101

a0010 a0011 a0110 a0111

a1000 a1001 a1100 a1101

a1010 a1011 a1110 a1111

 ,

M
(2)
(2,4) =


a0000 a0010 a0100 a0110

a0001 a0011 a0101 a0111

a1000 a1010 a1100 a1110

a1001 a1011 a1101 a1111

 .

If two n-partite pure states |ψ⟩ and |ϕ⟩ are LU equivalent, |ψ⟩ = U1 ⊗ U2 ⊗ · · · ⊗ Un|ϕ⟩,

where U1, U2, · · · , Un are local unitary operators in SU(d1,C), SU(d2,C), · · · , SU(dn,C),

respectively, then the coefficient matrices of |ψ⟩ and |ϕ⟩ satisfy the relation

Mσ(|ψ⟩)(l) = Uσ(1) ⊗ Uσ(2) ⊗ · · · ⊗ Uσ(l)Mσ(|ϕ⟩)(l)(Uσ(l+1) ⊗ · · · ⊗ Uσ(n))
T , ∀ l (2)

with superscript T the transpose. From (2) we have

(i) rank Mσ(|ψ⟩)(l) = rank Mσ(|ϕ⟩)(l).

(ii) Tr[Mσ(|ψ⟩)(l)Mσ(|ψ⟩)(l)†]α = Tr[Mσ(|ϕ⟩)(l)Mσ(|ϕ⟩)(l)†]α, α =

1, 2, · · · ,min{dσ(1)dσ(2) · · · dσ(l), dσ(1+1)dσ(1+2) · · · dσ(n)},

(iii) Mσ(|ψ⟩)(l) and Mσ(|ϕ⟩)(l) have the same singular values, ∀ l, σ.

The three conditions above are necessary for determining whether two arbitrary mul-

tipartite pure states are local unitary equivalent or not. In view of the condition (i), if

two pure states differ in the ranks of their corresponding coefficient matrices, then they

belong to different local unitary equivalent classes. While from the aspect of (ii), if two

coefficient matrices do not have the same trace relations, they are not local unitary equiv-

alent. Condition (ii) is strictly stronger than condition (i) since two matrices with the

same rank may have different trace relations. For example, the three qubit W state
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|W ⟩ = 1√
3
(|001⟩ + |010⟩ + |100⟩) and GHZ state |GHZ⟩ = 1√

2
(|000⟩ + |111⟩) have the

same rank, rank(Mσ(|W ⟩)(l)) = rank(Mσ(|GHZ⟩)(l)), but tr[Mσ(|W ⟩)(1)Mσ(|W ⟩)(1)†]2 =

5/9 ̸= tr[Mσ(|GHZ⟩)(1)Mσ(|GHZ⟩)(1)†]2 = 1/2. Therefore they are not LU equivalent.

In [15, 16], it has been shown that for bipartite pure states, condition (ii) is a necessary

and sufficient condition of LU equivalece. Condition (iii) is equivalent to condition (ii)

for pure states. Nevertheless, both condition (ii) and (iii) are only necessary for multipar-

tite states. For instance, consider three qubit pure states |ψ1⟩ = 1√
3
|000⟩ +

√
2
3
|111⟩ and

|ψ2⟩ = 1√
3
(|001⟩ + |010⟩ + |100⟩). Their coefficient matrices have the same trace relations

and the same singular values. But they can not be transformed into each other neither by

LU operations nor by SLOCC.

III. LOCAL UNITARY INVARIANTS FOR MIXED STATE

Now we consider the local unitary invariants for mixed states. Two n-partite mixed states

ρ and ρ′ in H1 ⊗ H2 · · · ⊗ Hn Hilbert space are said to be equivalent under local unitary

transformations if there exist unitary operators Ui on the i-th Hilbert space such that

ρ′ = (U1 ⊗ U2 ⊗ · · · ⊗ Un)ρ(U1 ⊗ U2 ⊗ · · · ⊗ Un)
†. (3)

One way to deal with the LU equivalence (3) is to use purification. After purification, an n-

partite mixed state becomes an (n+1)-partite pure state. Ref. [20] has revealed the relations

between the n-partite mixed states and their (n+ 1)-partite purified ones as follows,

Lemma 1 If one of the n-partite reduced density matrices of the (n+ 1)-partite pure state

|ψ⟩ is local unitary equivalent to the corresponding n partite reduced density matrices of

the (n + 1)-partite pure state |ϕ⟩, then two (n + 1)-partite pure states |ψ⟩ and |ϕ⟩ are also

local unitary equivalent.

Employing this Lemma, we have the following result.

Theorem 1 An n-partite mixed state ρ′ is LU equivalent to ρ if and only if its purified state

is LU equivalent to that of ρ.

Proof: Suppose ρ =
∑K

i=1 λi|vi⟩⟨vi| and ρ′ =
∑K′

i=1 λ
′
i|v′i⟩⟨v′i| are the spectra decompositions

of ρ and ρ′ respectively,
∑

i λi =
∑

i λ
′
i = 1, λi, λ

′
i ∈ R+. Let |ψ0⟩ = ΣK

i=1

√
λi|vi⟩|i⟩ be the

purification of ρ and |ψ′
0⟩ = ΣK′

i=1

√
λ′i|v′i⟩|i′⟩ the purification of ρ′. If ρ′ is LU equivalent to

ρ, then by Lemma 1 and the relations Trn+1[|ψ0⟩⟨ψ0|] = ρ and Trn+1[|ψ′
0⟩⟨ψ′

0|] = ρ′, we get
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that |ψ′
0⟩ is LU equivalent to |ψ0⟩.

On the other hand, if |ψ′
0⟩ = U1 ⊗ U2 ⊗ U3 ⊗ · · · ⊗ Un+1|ψ0⟩, then ρ′ = Trn+1[|ψ′

0⟩⟨ψ′
0|] =

Trn+1[(U1 ⊗ U2 ⊗ U3 ⊗ · · · ⊗ Un+1)|ψ0⟩⟨ψ0|(U1 ⊗ U2 ⊗ U3 ⊗ · · · ⊗ Un+1)
†] = (U1 ⊗ U2 ⊗ · · · ⊗

Un)Trn+1(|ψ0⟩⟨ψ0|)(U1⊗U2⊗· · ·⊗Un)
† = (U1⊗U2⊗· · ·⊗Un)ρ(U1⊗U2⊗· · ·⊗Un)

†. Hence

ρ′ is LU equivalent to ρ.

From Theorem 1 we see that the LU equivalence problem of n-partite mixed states can

be transformed into the LU equivalence of (n+1)-partite pure states. The LU classification

for arbitrary dimensional multipartite pure states has been studied in [11] by exploiting

the high order singular value decomposition technique and local symmetries of the states.

Employing the results in [11], the LU equivalence problem of mixed states can be solved

further.

Besides purification, one may also deal with the LU equivalence of mixed states directly

in terms of the LU invariants. Next we give a set of invariants in terms of the trace relations

about the coefficient matrices.

Theorem 2 For arbitrary n partite nondegenerate mixed states ρ with spectra decomposi-

tion, ρ =
∑K

i=1 λi|vi⟩⟨vi|,
∑

i λi = 1, λi ∈ R+, the following quantities are LU invariants,

(a) the rank K of ρ;

(b) the eigenvalues λi of ρ, i = 1, · · · , K;

(c) Tr[Mσ(|vi⟩)(l)Mσ(|vj⟩)(l)† · · ·Mσ(|vk⟩)(l)Mσ(|vm⟩)(l)†], i, j, · · · , k,m = 1, · · · , K, ∀ l, σ.

Proof Let ρ′ = (U1⊗U2⊗· · ·⊗Un) ρ (U1⊗U2⊗· · ·⊗Un)
†, where Ui, 1 ≤ i ≤ n, are arbitrary

unitary operators. Since the eigenvalues of ρ are nondegenerate, so the eigenvalues of ρ′ are

λi with the corresponding eigenvectors |v′i⟩ = U1 ⊗ U2 ⊗ · · · ⊗ Un|vi⟩ up to a global phase,

i = 1, · · · , K. Equivalently, Mσ(|v′i⟩)(l) = (Uσ(1) ⊗ Uσ(2) ⊗ · · · ⊗ Uσ(l))Mσ(|vi⟩)(l)(Uσ(l+1) ⊗

· · · ⊗ Uσ(n))
T . Therefore

Mσ(|v′i⟩)(l)Mσ(|v′j⟩)(l)† = Uσ(1)⊗Uσ(2)⊗· · ·⊗Uσ(l)Mσ(|vi⟩)(l)Mσ(|vj⟩)(l)†(Uσ(1)⊗Uσ(2)⊗· · ·⊗Uσ(l))
†,

(4)

for i, j = 1, ..., K, which gives rise to Tr[Mσ(|v′i⟩)(l)Mσ(|v′j⟩)(l)† · · ·Mσ(|v′k⟩)(l)Mσ(|v′m⟩)(l)†] =

Tr[Mσ(|vi⟩)(l)Mσ(|vj⟩)(l)† · · ·Mσ(|vk⟩)(l)Mσ(|vm⟩)(l)†]. Therefore, the rank, the eigenvalues

of ρ and the trace of products of the coefficient matrices are invariant under local unitary

transformations.

For example, for three qubit mixed states ρ1 = λ|W ⟩⟨W | + (1 − λ)|011⟩⟨011|,
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and ρ2 = λ|GHZ⟩⟨GHZ| + (1 − λ)|011⟩⟨011|, one has, tr[Mσ(|W ⟩)(1)Mσ(|W ⟩)(1)†]2 ̸=

tr[Mσ(|GHZ⟩)(1)Mσ(|GHZ⟩)(1)†]2. Thus they are not LU equivalent.

Generally the invariants in Theorem 2 are only necessary for LU equivalence. However,

for some special sets of multipartite mixed states, the above invariants are complete.

Theorem 3 For two arbitrary n partite nondegenerate and full rank mixed states ρ and ρ′

with spectra decomposition, ρ =
∑K

i=1 λ
′
i|vi⟩⟨vi|, ρ′ =

∑K
i=1 λi|v′i⟩⟨v′i|,

∑
i λi =

∑
i λ

′
i = 1,

λi, λ
′
i ∈ R+, they are local unitary equivalent if and only if

(a) λi = λ′i, i = 1, · · · , K;

(b) Tr[Mσ(|vi⟩)(l)Mσ(|vj⟩)(l)† · · ·Mσ(|vk⟩)(l)Mσ(|vm⟩)(l)†], i, j, · · · , k,m = 1, · · · , K,

∀ l, σ.

Proof. Here we only need to prove the sufficiency. If ρ and ρ′ satisfy conditions (a) and

(b), then they are local unitary equivalent under bipartite partition by Ref. [13]. Namely,

ρ′ = Vy1 ⊗ Vy2ρV
†
y1
⊗ V †

y2
(5)

and

|v′i⟩ = Vy1 ⊗ Vy2 |vi⟩, ∀i, (6)

for all possible bipartite partitions (y1, y2) of the system, where Vy1 and Vy2 are unitary trans-

formations. Since ρ and ρ′ are full ranked, {|vi⟩} and {|v′i⟩} constitute two orthonormal basis

for the whole vector space, which implies that there exists a unique unitary transformation

that maps |vi⟩ to |v′i⟩, ∀i. The uniqueness of the unitary transformation in Eq. (6) makes the

whole unitary transformation a tensor product one acting on the individual subsystems. In

this case, |v′i⟩ = U1⊗U2⊗· · ·⊗Un|vi⟩, ∀i, and ρ′ = U1⊗U2⊗· · ·⊗UnρU
†
1 ⊗U

†
2 ⊗· · ·⊗U †

n.

IV. CONCLUSION

We have investigated the invariants of arbitrary dimensional multipartite quantum states

under local unitary operations. We presented the set of coefficient matrices. The singular

values of these coefficient matrices are just the LU invariants for multipartite pure states. For

multipartite mixed states, the trace of the coefficient matrices are LU invariants, which give

rise to the necessary and sufficient conditions for full ranked mixed states with nondegenerate
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eigenvalues. As these LU invariants can be explicitly calculated, our approach gives a simple

way in verifying the LU equivalence of given quantum states.
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