
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

A Note on State Decomposition Independent

Local Invariants

by

Ting-Gui Zhang, Naihuan Jing, Xianqing Li-Jost, Ming-Jing Zhao,

and Shao-Ming Fei

Preprint no.: 77 2013





A Note on State Decomposition Independent Local Invariants

Ting-Gui Zhang1, Naihuan Jing2, Xianqing Li-Jost1, Ming-Jing Zhao1, Shao-Ming Fei1,3

1 Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

2 Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA

3 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

E-mail: tinggui333@163.com (Ting-Gui Zhang)

Abstract

We derive a set of invariants under local unitary transformations for arbitrary dimensional

quantum systems. These invariants are given by hyperdeterminants and independent from

the detailed pure state decompositions of a given quantum state. They also give rise to nec-

essary conditions for the equivalence of quantum states under local unitary transformations.

PACS number: 03.67.-a, 02.20.Hj, 03.65.-w

I. INTRODUCTION

Invariants under local unitary transformations are tightly related to the discussions on

nonlocality - a fundamental phenomenon in quantum mechanics, to the quantum entan-

glement and classification of quantum states under local transformations. In recent years

many approaches have been presented to construct invariants of local unitary transforma-

tions. One method is developed in terms of polynomial invariants Refs. [1, 2], which allows

in principle to compute all the invariants of local unitary transformations, though it is not

easy to perform operationally. In Ref. [3], a complete set of 18 polynomial invariants is

presented for the locally unitary equivalence of two qubit-mixed states. Partial results have

been obtained for three qubits states [4], tripartite pure and mixed states [5], and some

generic mixed states [6–8]. Recently the local unitary equivalence problem for multiqubit

[9] and general multipartite [10] pure states has been solved.

However, generally one still has no operational ways to judge the equivalence of two

arbitrary dimensional bipartite or multipartite mixed states under local unitary transforma-

tions. An effective way to deal with the local equivalence of quantum states is to find the

complete set of invariants under local unitary transformations. Nevertheless usually these

invariants depend on the detailed expressions of pure state decompositions of a state. For
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a given state, such pure state decompositions are infinitely many. Particularly when the

density matrices are degenerate, the problem becomes more complicated. Since in this case

even the eigenvector decompositions of a given state are not unique.

In this note, we give a way of constructing invariants under local unitary transformations

such that the invariants obtained in this way are independent from the detailed pure state

decompositions of a given state. They give rise to operational necessary conditions for the

equivalence of quantum states under local unitary transformations. We show that the hy-

perdeterminants, the generalized determinant for higher dimensional matrices [11], can be

used to construct such invariants. The hyperdeterminant is in fact closely related to the

entanglement measure like concurrence [12] and 3-tangle [13]. It has also been used in clas-

sification of multipartite pure state [14–16]. By employing hyperdeterminants, we construct

some trace invariants that are independent of the detailed pure state decompositions of a

given state. These trace invariants are a priori invariant under local unitary transformations.

II. STATE DECOMPOSITION INDEPENDENT LOCAL INVARIANT

LetH1 andH2 be n andm-dimensional complex Hilbert spaces, with {|i⟩}ni=1 and {|j⟩}mj=1

the orthonormal basis of spaces H1 and H2 respectively. Let ρ be an arbitrary mixed state

defined on H1 ⊗H2,

ρ =
I∑

i=1

pi|vi⟩⟨vi|, (1)

where |vi⟩ is a normalized bipartite pure state of the form:

|vi⟩ =
n,m∑
k,l=1

a
(i)
kl |kl⟩,

n,m∑
k,l=1

a
(i)
kl a

(i)∗
kl = 1, a

(i)
kl ∈ C,

where ∗ denotes complex conjugation. Denote Ai the matrix with entries given by the

coefficients of the vector
√
pi|vi⟩, i.e. (Ai)kl = (

√
pia

(i)
kl ) for all i = 1, · · · , I. Define I × I

matrix Ω such that

(Ω)ij = tr(AiA
†
j), i, j = 1, · · · , I.

The pure state decomposition (1) of a given mixed state ρ is not unique. For another

decomposition:

ρ =
I∑

i=1

qi|ψi⟩⟨ψi|, (2)
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with

|ψi⟩ =
n,m∑
k,l=1

b
(i)
kl |kl⟩,

n,m∑
k,l=1

b
(i)
kl b

(i)∗
kl = 1, b

(i)
kl ∈ C,

one similarly has matrices Bi with entries (Bi)kl = (
√
qib

(i)
kl ), i = 1, · · · , I, and I × I matrix

Ω′ with entries

(Ω′)ij = tr(BiB
†
j ), i, j = 1, · · · , I.

A quantity F (ρ) is said to be invariant under local unitary transformations if F (ρ) =

F ((u1 ⊗ u2)ρ(u1 ⊗ u2)
†) for any unitary operators u1 ∈ SU(n) and u2 ∈ SU(m), where †

stands for transpose and complex conjugation. Generally F (ρ) may depend on the detailed

pure state decomposition. We investigate invariants F (ρ) that are independent on the

detailed decompositions of ρ. That is, expression in Eq. (1) and expression in Eq. (2) give

the same value of F (ρ) for a given state ρ. These kind of invariants are of special significance

in determining the equivalence of two density matrices under local unitary transformations.

Two density matrices ρ and ρ̃ are said to be equivalent under local unitary transformations

if there exist unitary operators u1 (resp. u2) on the first (resp. second) space of H1 ⊗ H2

such that

ρ̃ = (u1 ⊗ u2)ρ(u1 ⊗ u2)
†. (3)

A necessary condition that (3) holds is that the local invariants have the same values

F (ρ) = F (ρ̃). Therefore if the expression of the invariants F (ρ) do not depend on the detailed

pure state decomposition, one can easily compare the values of the invariants between F (ρ)

and F (ρ̃). Otherwise one has to verify F (ρ) = F (ρ̃) by surveying all the possible pure

state decompositions of ρ and ρ̃. In particular, when ρ is degenerate, even the eigen-vector

decomposition is not unique, which usually gives rise to the main problem in finding an

operational criterion for local equivalence of quantum states. In fact, we have presented a

complete set of invariants in [18]. However, these invariants depend on the eigenvectors of a

state ρ. When the state is degenerate, this set of invariants is no longer efficient as criterion

of local equivalence.

We set out to discuss how to find parametrization independent local unitary invariants.

First of all we give an elementary result that the determinant can be used to give invariants

that are independent from the choice of the pure state decomposition. The idea is much

similar to that of cohomological classes such as Chern classes in topology and geometry.
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Theorem 1: The coefficients Fi(Ω), i = 1, 2, ..., I, of the characteristic polynomials of the

matrix Ω,

det(Ω− λE) = λI + λI−1F1(Ω) + · · ·+ λFI−1(Ω) + FI(Ω) = ΣI
i=0λ

I−iFi(Ω), (4)

where E is the I×I unit matrix, F0(Ω) = 1, det denotes the determinant, have the following

properties:

(i) Fi(Ω) are independent of the pure state decompositions of ρ;

(ii) Fi(Ω) are invariant under local unitary transformations, i = 1, · · · , I.

Proof: (i) If Eq. (1) and Eq. (2) are two different representations of a given mixed state

ρ, we have Bi = ΣjUijAj for some unitary operator U [17]. Consequently,

Ω′
ij = tr(BiB

†
j ) = tr

[∑
k,l

UikAkU
∗
jlA

†
l

]
=

∑
k,l

UikU
∗
jl tr(AkA

†
l ) =

∑
k,l

UikU
∗
jlΩkl = (UΩU †)ij,

i.e. Ω′ = UΩU †. Therefore det(Ω′ − λE) = det(UΩU † − λE) = det(Ω − λE). Thus

the matrices Ω and Ω′ have the same characteristic polynomials. Namely Fi(Ω) = Fi(Ω
′).

Therefore Fi(Ω) are invariants under the pure state decomposition transformations.

(ii) Let P ⊗Q ∈ SU(n)⊗ SU(m). Under the local unitary transformations one has

ρ̃ = (P ⊗Q)ρ(P ⊗Q)† =
I∑

i=1

pi(P ⊗Q)|vi⟩⟨vi|(P ⊗Q)† =
I∑

i=1

pi|wi⟩⟨wi|,

with

|wi⟩ = P ⊗Q|vi⟩ =
n,m∑
k,l=1

a
(i)′
kl |kl⟩,

n,m∑
k,l=1

a
(i)′
kl a

(i)′∗
kl = 1, a

(i)′
kl ∈ C.

Denote (A′
i)kl =

√
pia

(i)′
kl . We have

A′
i = PAiQ

t. (5)

Therefore tr(AiA
†
j) = tr(A′

iA
′†
j ) and Ω(ρ) = Ω(ρ̃). Hence Fi(Ω(ρ)) = Fi(Ω(ρ̃)), and Fi(Ω),

i = 1, · · · , I, are invariant under local unitary transformations.

In particular, the invariants F1 =
∑
tr(

∑
iAiA

†
i ) and FI = det(Ω). For the case I = 2,

one has

Ω =

 tr(A1A
†
1) tr(A1A

†
2)

tr(A2A
†
1) tr(A2A

†
2)


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and F1 = tr(A1A
†
1) + tr(A2A

†
2), F2 = tr(A1A

†
1)tr(A2A

†
2)− tr(A1A

†
2)tr(A2A

†
1).

Remark: The number of local invariants Fi is uniquely determined by the rank r of the

mixed state ρ, i.e. I = r. Therefore we only need to calculate the invariants corresponding

to the eigenvector decomposition. Because for arbitrary pure state decomposition ρ =

ΣJ
j=1qj|ψj⟩⟨ψj| with J > r, the above determinant is the same as that of the eigen-vector

decomposition of ρ = Σr
ipi|ϕi⟩⟨ϕi| after adding J−r zero vectors. The determinant det(Ω′−

λE) of the eigen-vector decomposition of ρ after adding J−r zero vectors and det(Ω−λE) of

ρ = Σr
j=1qj|ψj⟩⟨ψj| without J−r zero vectors have the relation: det(Ω′−λE) = λJ−r det(Ω−

λE). This means that the number of independent local invariants given by (4) does not

depend on the number of pure states in the ensemble of a given ρ. Therefore if two mixed

states ρ and ρ̃ have different ranks, they are not local unitary equivalent. If their ranks are

the same, one only needs to calculate the corresponding invariants with respect to the same

numbers I of pure states in the pure state decompositions.

In fact for a quantum state ρ in eigenvector decomposition ρ =
∑

i λi|ψi⟩⟨ψi|, the corre-

sponding matrix Ω is a diagonal one with ρ’s eigenvalues λi as the diagonal entries. In this

case the local invariants from Theorem 1 are just the coefficients of the characteristic poly-

nomial of the quantum state ρ. Theorem 1 shows that these coefficients are local invariants

and pure state decomposition independent. Moreover the approach employed in Theorem 1

can be generalized to construct more local invariants that are independent of the detailed

pure state decompositions by using hyperdeterminant [11].

In order to derive more parametrization independent quantities we consider the multilin-

ear form fA : V ⊗ · · · ⊗ V︸ ︷︷ ︸
2s

7→ C given by

fA(ei1 , · · · , eis , ej1 , · · · , ejs) = tr(Ai1A
†
j1
· · ·AisA

†
js
), (6)

where ei are standard basis elements in V = Cs. The multilinear form f can also be written

as a tensor in V ∗ ⊗ · · · ⊗ V ∗:

fA =
∑
i,j

tr(Ai1A
†
j1
· · ·AisA

†
js
)e∗i1 ⊗ · · · ⊗ e∗is ⊗ e∗j1 ⊗ · · · ⊗ e∗js , (7)

where e∗i are standard 1-form on Cs such that e∗i (ej) = δij, and i = (i1, · · · , is), j =

(j1, · · · , js). In general we call the 2s-dimensional matrix or hypermatrix A = (Aij) =

(tr(Ai1A
†
j1
· · ·AisA

†
js
)) formed by the coefficients of (7) the hypermatrix of the multilinear

form fA relative to the standard basis.
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First we give the following result for coordinate-changes, which generalizes the well-known

result in linear algebra.

Lemma 1 The multilinear form fA is changed to a new multilinear form fB under the

change of variables xi =
∑

j Cijx
′
j, and the hyper-matrix B is given by

B = (C ⊗ · · · ⊗ C ⊗ CT · · · ⊗ CT )A. (8)

For an r-dimensional matrix A = (Ai1···ir) where 0 ≤ ik ≤ nk we associate the multilinear

form fA =
∑

i1···ir Ai1···ire
∗
i1
⊗ e∗ir , and say that A is of format (1 + n1) × · · · × (1 + nr). If

one uses the standard coordinate v =
∑

l xlel where xl = e∗l (v), we can write the multilinear

form fA as

fA(x
(1), · · · , x(r)) =

∑
i1···ir

Ai1···irx
(1)
i1

· · ·x(r)ir
. (9)

The Cayley hyperdeterminant Det(A) [11] is defined to be the resultant of the multilinear

form fA, that is, Det(A) is the normalized integral equation of the hyperplane given by the

multilinear form fA. We recall that the resultant is a polynomial in components of the tensor

f which is zero if and only if the map f has a non-trivial point where all partial derivatives

with respect to the components of its vector arguments vanish.

For a fixed l ∈ {1, . . . , 2s}, the general linear group GL(s) acts on the ith factor of f as

follows:

g(l).f(v1, · · · , v2s) = f(v1, · · · , g(vl), · · · , v2s). (10)

The group GL(I)2s := GL(I) × · · · × GL(I) thus acts on the multilinear form f . Suppose

g(x
(1)
i ) =

∑
j C

j
i x

(1)
j , then the action of g on the first factor is given by

g(1).f(x
(1)
i1
, · · · , x(2s)i2s

) =
I∑

k=1

∑
j1···j2s

Ck
i1
Ai1···i2s

j1···j2sx
(1)
j1

· · ·x(2s)j2s
. (11)

In general the action of GL(I) on the lth component can be expressed as a product on the

hypermatrix with respect to the lth index, and we define that

(g(l).A)i1i2···ir =
I∑

k=1

CilkAi1···k···ir , (12)

where k is running through the lth index set.

It is known that [11] the hyperdeterminant exists for a given format and is unique up to

a scalar factor, if and only if the largest number in the format is less than or equal to the
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sum of the other numbers in the format. Hyperdeterminants enjoy many of the properties

of determinants. One of the most familiar properties of determinants, the multiplication

rule det(AB) = det(A)det(B), can be generalized to the situation of hyperdeterminants as

follows. Given a multilinear form f(x(1), ..., x(r)) and suppose that a linear transformation

acting on one of its components using an n× n matrix B, yr = Bxr. Then

Det(f.B) = Det(f)det(B)N/n, (13)

where N is the degree of the hyperdeterminant. Therefore we have the following result.

Lemma 2 The hyperdeterminant of format (k1, . . . , kr) is an invariant under the action of

the group SL(k1)⊗· · ·⊗SL(kr), and subsequently also invariant under SU(k1)⊗· · ·⊗SU(kr).

Proof: For (A,B, · · · , C) ∈ SL(k1)⊗ · · · ⊗ SL(kr), it follows from Eq. (13) that

Det((A(1) ·B(2) · · · ·C(r)·)f) = Det(f)det(A)N/k1det(B)N/k2 · · · det(C)N/kr = Det(f). (14)

The three-dimensional hyperdeterminant of the format 2 × 2 × 2 is known as the Cay-

ley’s hyperdeterminant [19]. In this case the hyperdeterminant of a hypermatrix A with

components aijk, i, j, k ∈ {0, 1}, is given by

Det(A) = a2000a
2
111 + a2001a

2
110 + a2010a

2
101 + a2100a

2
011 − 2a000a001a110a111 (15)

−2a000a010a101a111 − 2a000a011a100a111 − 2a001a010a101a110

−2a001a011a110a100 − 2a010a011a101a100 + 4a000a011a101a110

+4a001a010a100a111.

This hyperdeterminant can be written in a more compact form by using the Einstein

convention and the Levi-Civita symbol εij, with ε00 = ε11 = 0, ε01 = −ε10 = 1; and

bkn = (1/2)εilεjmaijkalmn, Det(A) = (1/2)εilεjmbijblm. The four-dimensional hyperdeter-

minant of the format 2× 2× 2× 2 has been calculated in Ref. [15].

For the general mixed state ρ in Eq. (1), we can define a hypermatrix Ωs with entries

(Ωs)i1i2···isj1j2···js = tr(Ai1A
†
j1
Ai2A

†
j2
· · ·AisA

†
js
), (16)

for ik, jk = 1, · · · , I, s ≥ 1, 0 ≤ ij ≤ kj. The format of Ωs is I × · · · × I.
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Theorem 2: Det(Ωs − λE), with E = (Ei1,i2,··· ,is,j1,j2,··· ,js) = (δi1j1δi2j2 · · · δisjs), is in-

dependent of the pure state decompositions of ρ. It is also invariant under local unitary

transformations of ρ. In particular, all t-coefficient polynomials of Det(Ωs − λE) are local

invariants independent from the pure state decompositions.

Proof: We first show that it is also independent from the pure state decomposition of ρ.

Let Eq. (1) and Eq. (2) be two different representations of a given mixed state ρ. We have

Ω′
i1i2···isj1j2···js = tr(Bi1B

†
j1
Bi2B

†
j2
· · ·BisB

†
js
) (17)

= tr
[
Σi′1j

′
1,··· ,i′sj′sUi1i′1

Ai′1
U∗
j1j′1

A†
j′1
· · ·Uisi′sAi′sU

∗
jsj′s

A†
j′s

]
= (U ⊗ U ⊗ · · · ⊗ U)(Ωs)i1i2···isj1j2···js(U

† ⊗ U † ⊗ · · · ⊗ U †).

Therefore Ω′
s = (U ⊗U ⊗ · · · ⊗U)ΩA

s (U
† ⊗U † ⊗ · · · ⊗U †). Using the action, the associated

multilinear form fω is acted upon by U ⊗ U ⊗ · · · ⊗ U and U † ⊗ U † ⊗ · · · ⊗ U † as follows:

(U(1) · · · ·U(s) · U †
(1) · · · ·U

†
(s)·)fω

Using the formula under the action (14) we get Det(Ω′
s − λE) = Det(Ωs − λE), and thus

Det(Ωs−E λ) does not depend on the detailed pure state decompositions of a given ρ. Note

that in general we don’t know the exact formula for the hyperdeterminant, but we can still

derive its invariance abstractly.

On the other hand, under local unitary transformations ρ̃ = (P ⊗Q)ρ(P ⊗Q)† for some

local unitary operators P⊗Q ∈ SU(n)⊗SU(m), similar to the proof of the second part of the

Theorem 1 and using Lemma 13 in [11], it is easy to get Ωs = Ω′
s. Therefore Det(Ωs − λE)

is invariant under local unitary transformations.

As an application of our theorems we now give an interesting example. Consider two

mixed states ρ1 = diag{1/2, 1/2, 0, 0} and ρ2 = diag{1/2, 0, 1/2, 0}. ρ1 has a pure state

decomposition with

A0 =

 1√
2
0

0 0

 , A1 =

 0 1√
2

0 0

 .

While ρ2 has a pure state decomposition with

B0 =

 1√
2
0

0 0

 , B1 =

 0 0

1√
2
0

 .
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We have the corresponding matrices (Ω(ρ1))i,j = tr(AiA
†
j) and (Ω(ρ2))i,j = tr(BiB

†
j ), i, j =

0, 1. From Theorem 1 one can find that these two states have the same values of the

invariants in Eq. (4), Fi(Ω(ρ1)) = Fi(Ω(ρ2)).

We now consider further the four-dimensional hyperdeterminant of the format 2×2×2×2

[15]. Let (Ω(ρ1))ijkl = tr(AiA
†
jAkA

†
l ) ≡ ar, r = 0, · · · , 15, where r = 8i+ 4j + 2k + l. From

Ref. [15], one invariant with degree 4 is given by

N(ρ1) = det


a0 a1 a8 a9

a2 a3 a10 a11

a4 a5 a12 a13

a6 a7 a14 a15

 =
1

256
.

However for ρ2 we have N(ρ2) = 0. Therefore ρ1 and ρ2 are not equivalent under local

unitary transformations.

In Ref. [20], the Ky Fan norm of the realignment matrix of the quantum states N (ρ)

is proved to be invariant under local unitary operations. By calculation we find N (ρ1) =

N (ρ2) = 1√
2
. This means the Ky Fan norm of the realignment matrix can not recognize

that ρ1 and ρ2 are not equivalent under local unitary transformations. Therefore Theorem

2 has its superiority over it with respect to these two states.

Our results can be generalized to multipartite case. Let H1, H2, · · · , Hm be

n1, n2, · · · , nm-dimensional complex Hilbert spaces with {|k1⟩}n1
k1=1, {|k2⟩}n2

k2=1, · · · ,

{|km⟩}nm
km=1 the orthonormal basis of H1, H2, · · · , Hm respectively. Let ρ be an arbitrary

mixed state defined on H1 ⊗H2 ⊗ · · · ⊗Hm, ρ =
∑I

i=1 pi|vi⟩⟨vi|, where |vi⟩ is a multipartite

pure state of the form: |vi⟩ =
∑n1,n2,··· ,nm

k1,k2,··· ,km=1 a
(i)
k1k2···km |k1k2 · · · km⟩, a

(i)
k1k2···km ∈ C. Now we

view |vi⟩ as bipartite pure state under the partition between the first l subsystems and the

rest, 1 ≤ l < n. Then Ai = (
√
pia

(i)
k1k2···km) can be regarded as the N1 × N2 matrix with

N1 = n1 × n2 × · · · × nl and N2 = nl+1 × nl+2 × · · · × nm for all i = 1, · · · , I. We define the

matrix Ωs with entries (Ωs)i1i2···isj1j2···js = tr(Ai1A
†
j1
· · ·AisA

†
js
), for ik, jk = 1, · · · , I, s ≥ 1.

Then we have that Det(Ωs − λE) does not depend on the pure states decompositions and

is invariant under local unitary transformations.

9



III. CONCLUSION

We have investigated the invariants under local unitary transformations for arbitrary di-

mensional quantum systems. These invariants are independent of the detailed pure state

decompositions of a given state. They give rise to the necessary conditions for the equiv-

alence of quantum states under local unitary transformations. These invariants may be

also used in characterizing quantum correlations such as quantum entanglement [21] and

quantum discord [22], since all these quantities are just the invariants under local unitary

transformations and are independent of the pure state decompositions.
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