Criterion of Local Unitary Equivalence for Multipartite States

by

Ting-Gui Zhang, Ming-Jing Zhao, Ming Li, Shao-Ming Fei, and Xianqing Li-Jost

Preprint no.: 79 2013
Criterion of Local Unitary Equivalence for Multipartite States

Ting-Gui Zhang1, Ming-Jing Zhao2, Ming Li1,3, Shao-Ming Fei1,4 and Xianqing Li-Jost1

1Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
2Department of Mathematics, School of Science, Beijing Information Science and Technology University, 100192, Beijing, China
3Department of Mathematics, School of Science, China University of Petroleum, 266555 Qingdao, China
4School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Abstract

We study the local unitary equivalence of arbitrary dimensional multipartite quantum mixed states. We present a necessary and sufficient criterion of the local unitary equivalence for general multipartite states based on matrix realignment. The criterion is shown to be operational even for particularly degenerated states by detailed examples. Besides, explicit expressions of the local unitary operators are constructed for locally equivalent states. In complement to the criterion, an alternative approach based on partial transposition of matrices is also given, which makes the criterion more effective in dealing with generally degenerated mixed states.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w
Quantum entanglement is one of the most extraordinary features of quantum physics. Multipartite entanglement plays a vital role in quantum information processing [1, 2] and interferometry [3]. One fact is that the degree of entanglement of a quantum state remains invariant under local unitary transformations, while two quantum states with the same degree of entanglement, e.g. entanglement of formation [4, 5] or concurrence [6, 7]), may be not equivalent under local unitary transformations. Another fact is that two entangled states are said to be equivalent in implementing quantum information tasks, if they can be mutually exchanged under local operations and classical communication (LOCC). LOCC equivalent states are interconvertible also by local unitary transformations [8]. Therefore, it is important to classify and characterize quantum states in terms of local unitary transformations.

To deal with this problem, one approach is to construct invariants of local unitary transformations. The method developed in [9, 10], in principle, allows one to compute all the invariants of local unitary transformations for bipartite states, though it is not easy to do this operationally. In [11] a complete set of 18 polynomial invariants is presented for the local unitary equivalence of two qubits mixed states. Partial results have been obtained for three qubits states [12, 13], some generic mixed states [14–16], tripartite pure and mixed states [17]. The local unitary equivalence problem for multipartite pure qubits states has been solved in [18]. By exploiting the high order singular value decomposition technique and local symmetries of the states, Ref. [19] presents a practical scheme of classification under local unitary transformations for general multipartite pure states with arbitrary dimensions, which extends results of n-qubit pure states [18] to that of n-qudit pure states. For mixed states, Ref. [20] solved the local unitary equivalence problem of arbitrary dimensional bipartite non-degenerated quantum systems by presenting a complete set of invariants, such that two density matrices are local unitary equivalent if and only if all these invariants have equal values. In [21] the case of multipartite systems is studied and a complete set of invariants is presented for a special class of mixed states. Recently, the authors in [22] have studied the local unitary equivalence problem for multi-qubit states in terms of Bloch representation.

In this paper, we study the local unitary equivalence problem in terms of matrix realignment [23, 24] and partial transposition [25, 26], the techniques used in dealing with the separability problem of quantum states and also in generating local unitary invariants [27]. We present a necessary and sufficient criterion for the local unitary equivalence of multipartite states, together with explicit forms of the local unitary operators. This gener-
alizes the results in [20, 33] from non-degenerated states to generally degenerated states for bipartite case. The criterion is shown to be still operational for states having eigenvalues with multiplicity no more than 2. It also generalizes the results in [20, 33] from bipartite states to generally multipartite states. Alternative ways are presented to deal with generally degenerated states by using our criterion.

We first review some definitions and results about matrix realignment from matrix analysis [28]. For any $M \times N$ matrix A with entries a_{ij}, $vec(A)$ is defined by

$$vec(A) \equiv [a_{11}, \cdots, a_{M1}, a_{12}, \cdots, a_{M2}, \cdots, a_{1N}, \cdots, a_{MN}]^T,$$

where T denotes transposition. Let Z be an $M \times M$ block matrix with each block of size $N \times N$, the realigned matrix \tilde{Z} is defined by

$$\tilde{Z} \equiv [vec(Z_{11}), \cdots, vec(Z_{M1}), \cdots, vec(Z_{1M}), \cdots, vec(Z_{MM})]^T.$$

Based on these operations, the authors in [29, 30] proved that

Lemma 1: Assume that the matrix \tilde{Z} has singular value decomposition, $\tilde{Z} = U\Sigma V^\dagger$, then $Z = \sum_{i=1}^r X_i \otimes Y_i$, where $vec(X_i) = \sqrt{\alpha_i} \sigma_i \mu_i$, $vec(Y_i) = \sqrt{\frac{1}{\alpha_i}} \sigma_i \nu_i^*$, $\alpha_i \neq 0$, $\Sigma = diag(\sigma_i)$ with $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_q \geq 0$, $\{\sigma_i\}_{i=1}^q$ are the singular values of the matrix \tilde{Z}, $q = \min(M^2, N^2)$, r is the number of nonzero singular values σ_i (the rank of the matrix \tilde{Z}), $U = [\mu_1, \mu_2, \cdots, \mu_M] \in \mathbb{C}^{M^2 \times M^2}$ and $V = [\nu_1, \nu_2, \cdots, \nu_N] \in \mathbb{C}^{N^2 \times N^2}$ are unitary matrices, with μ_i and ν_i the singular vectors of σ_i.

Lemma 1 implies that [31],

Lemma 2 An $MN \times MN$ unitary matrix U can be expressed as the tensor product of an $M \times M$ unitary matrix u_1 and an $N \times N$ unitary matrix u_2 such that $U = u_1 \otimes u_2$ if and only if rank $(\tilde{U}) = 1$.

Remark 1: Following Lemma 1, when rank $(\tilde{U}) = 1$, $vec(X) = \sqrt{\alpha_1} \sigma_1 \mu_1$ and $vec(Y) = \sqrt{\frac{1}{\alpha_1}} \sigma_1 \nu_1^*$, where μ_1 and ν_1 are the eigenvectors of $\tilde{U} \tilde{U}^\dagger$ and $\tilde{U}^\dagger \tilde{U}$ corresponding to non-zero eigenvalues. Therefore, from Lemma 2, the detailed form of u_1 and u_2 can be obtained.

Now consider the case of multipartite states. Let H_1, H_2, \cdots, H_n be complex Hilbert spaces of finite dimensions N_1, N_2, \cdots, N_n, respectively. Let $\{|j\rangle_{i1}^{N_1} \rangle_{j=1}, k = 1, 2, \cdots, n, \rangle$ be an orthonormal basis of H_k. A mixed state $\rho \in H_1 \otimes H_2 \otimes \cdots \otimes H_n$ can be written in terms of the spectral decomposition form of ρ, $\rho = \sum_{i=1}^{N_1N_2\cdots N_n} \lambda_i |\phi_i\rangle \langle \phi_i|$, where $|\phi_i\rangle = \sum_{j=1}^{N_1} \sum_{k=1}^{N_2} \cdots \sum_{l=1}^{N_n} \alpha_{jk\cdots l} |j\rangle_1 |k\rangle_2 \cdots |l\rangle_n$, $\alpha_{jk\cdots l}^* \in \mathbb{C}$ satisfying $\sum_{j=1}^{N_1} \sum_{k=1}^{N_2} \cdots \sum_{l=1}^{N_n} \alpha_{jk\cdots l}^* a_{jk\cdots l} = 1.$
Two multipartite mixed states ρ and ρ' in $H_1 \otimes H_2 \otimes \cdots \otimes H_n$ are said to be equivalent under local unitary transformations if there exist unitary operators u_i on the i-th Hilbert space H_i such that

$$\rho' = (u_1 \otimes u_2 \otimes \cdots \otimes u_n) \rho (u_1 \otimes u_2 \otimes \cdots \otimes u_n)\dagger.$$ (1)

In the following, for any $N_1N_2 \cdots N_n \times N_1N_2 \cdots N_n$ matrix T, we denote $T_{i\mid i}$ the $N_i \times N_i$ block matrix with each block of size $N_1N_2 \cdots N_i-1N_{i+1} \cdots N_n \times N_1N_2 \cdots N_{i-1}N_{i+1} \cdots N_n$. Namely, we view T as a bipartite partitioned matrix $T_{i\mid i}$ with partitions H_i and $H_1 \otimes H_2 \cdots H_{i-1} \otimes H_{i+1} \cdots H_n$. Accordingly, we have the realigned matrix $\tilde{T}_{i\mid i}$.

Lemma 3 Let U be an $N_1N_2 \cdots N_n \times N_1N_2 \cdots N_n$ unitary matrix, there exist $N_i \times N_i$ unitary matrices u_i, $i = 1, 2, \ldots, n$, such that $U = u_1 \otimes u_2 \otimes \cdots \otimes u_n$ if and only if the rank($\tilde{U}_{i\mid i}$) = 1 for all i.

Proof First, if there exist $N_i \times N_i$ unitary matrices u_i, $i = 1, 2, \ldots, n$, such that $U = u_1 \otimes u_2 \otimes \cdots \otimes u_n$, by viewing U in bipartite partition and using Lemma 2, one has directly that rank($\tilde{U}_{i\mid i}$) = 1 for all i.

On the other hand, if rank($\tilde{U}_{i\mid i}$) = 1, for any given i, we prove the conclusion by induction. First, for $n = 3$, from Lemma 2, we have $U = u_1 \otimes u_{23} = u_2 \otimes u_{13}$, i.e., $(u_1 \dagger \otimes I_2 \otimes I_3)U = I_1 \otimes u_{23} = u_2 \otimes ((u_1 \dagger \otimes I_3)u_{13})$. By tracing over the first subsystem, we get $N_1u_{23} = u_2 \otimes Tr_1((u_1 \dagger \otimes I_3)u_{13})$, i.e., $u_{23} = u_2 \otimes u_3'$ with $u_3' = Tr_1((u_1 \dagger \otimes I_3)u_{13})/N_1$. Assume that the conclusion is also true for $n-1$. Then for n, from Lemma 2, we have $U = u_1 \otimes u_1 = u_2 \otimes u_2 = \cdots = u_n \otimes u_n$, where u_i is an $N_i \times N_i$ unitary matrix and u_i is an $N_1N_2 \cdots N_{i-1}N_{i+1} \cdots N_n \times N_1N_2 \cdots N_{i-1}N_{i+1} \cdots N_n$ unitary matrix, $i = 1, 2, \ldots, n$. Hence $(I_1 \otimes \cdots \otimes I_{n-1} \otimes u_n)U = (I_1 \otimes \cdots \otimes I_{n-1} \otimes u_n)(u_1 \otimes u_1) = \cdots = u_n \otimes I_{n-1}$. By tracing the last subsystem we get $u_1 \otimes (Tr_n(I_2 \otimes \cdots \otimes I_{n-1} \otimes u_n))(u_1) = \cdots = (Tr_n(I_1 \otimes \cdots \otimes I_{n-1} \otimes u_n))(u_{n-1}) = N_nu_n$. Based on the assumption, we have that u_n can be written as the tensor of local unitary operators. Therefore, U also can be written as the tensor product of local unitary operators. □

If two density matrices ρ_1 and ρ_2 in $H_1 \otimes H_2 \otimes \cdots \otimes H_n$ are equivalent under local unitary transformations, they must have the same set of eigenvalues λ_k, $k = 1, 2, \cdots, N_1N_2 \cdots N_n$.

Let $X = (x_1, x_2, \cdots, x_{N_1N_2\cdots N_n})$ and $Y = (y_1, y_2, \cdots, y_{N_1N_2\cdots N_n})$ be the unitary matrices that diagonalize the two density matrices, respectively,

$$\rho_1 = X\Lambda X\dagger, \quad \rho_2 = Y\Lambda Y\dagger,$$ (2)
where \(\{x_i\} \) and \(\{y_i\} \) are the normalized eigenvectors of states \(\rho_1 \) and \(\rho_2 \),

\[
\Lambda = \text{diag}(\lambda_1 I_{n_1}, \lambda_2 I_{n_2}, \ldots, \lambda_r I_{n_r}),
\]

with \(r \leq N_1N_2 \cdots N_n \), \(\sum_{k=1}^{r} n_k = N_1N_2 \cdots N_n \), \(n_k \) is the multiplicity of the \(k \)th eigenvalue \(\lambda_k \). Therefore \(X^\dagger \rho_1 X = \Lambda = Y^\dagger \rho_2 Y \). Due to the degeneracy of \(\rho_1 \) and \(\rho_2 \), \(X \) and \(Y \) are not fixed in the sense that \(X^\dagger \rho_1 X = Y^\dagger \rho_2 Y \) is invariant under \(X \to XU \) and \(Y \to YU \), for any \(U = \text{diag}(u_1, u_2, \ldots, u_n) \), \((3) \)

where \(u_{nk} \) are \(n_k \times n_k \) unitary matrices, \(k = 1, \ldots, r \). Thus for given \(X \) and \(Y \), \(Y^\dagger X^\dagger \rho_1 XUY^\dagger = \rho_2 \).

Theorem 1 Let \(\rho_1 \) and \(\rho_2 \) be two multipartite mixed quantum states given in (2), \(\rho_1 = XAX^\dagger \) and \(\rho_2 = YAY^\dagger \). \(\rho_1 \) and \(\rho_2 \) are local unitary equivalent if and only if there exists an \(N_1N_2 \cdots N_n \times N_1N_2 \cdots N_n \) unitary matrix \(U \) of the form (3) such that \(\text{rank}(XUY^\dagger)_{i\bar{i}} = 1 \) for \(i = 1, 2, \ldots, n \).

Proof: If \(\rho_1 \) and \(\rho_2 \) are equivalent under local unitary transformations, i.e. \((u_1 \otimes u_2 \otimes \cdots \otimes u_n)\rho_1(u_1 \otimes u_2 \otimes \cdots \otimes u_n)^\dagger = \rho_2 \), then there exists a unitary matrix \(U \) of the form (3) such that \(Y = (u_1 \otimes u_2 \otimes \cdots \otimes u_n)XU \). From Lemma 3 the \(\text{rank}(XUY^\dagger)_{i\bar{i}} = 1 \), where \((XUY^\dagger)_{i\bar{i}} = u_i \otimes (u_1 \otimes \cdots \otimes u_{i-1} \otimes u_{i+1} \otimes \cdots \otimes u_n) \), \(i = 1, 2, \ldots, n \).

On the other hand, if there is an \(N_1N_2 \cdots N_n \times N_1N_2 \cdots N_n \) unitary matrix \(U \) such that \(\text{rank}(XUY^\dagger)_{i\bar{i}} = 1 \), for any \(i \), by Lemma 3 we have \(XUY^\dagger = u_1 \otimes u_2 \otimes \cdots \otimes u_n \). Then \(YU^\dagger X^\dagger \rho_1 XUY^\dagger = \rho_2 \) gives rise to \((u_1 \otimes u_2 \otimes \cdots \otimes u_n)^\dagger \rho_1(u_1 \otimes u_2 \otimes \cdots \otimes u_n) = \rho_2 \), which ends the proof.

Remark 2: If there exists an \(N_1N_2 \cdots N_n \times N_1N_2 \cdots N_n \) unitary matrix \(U \) of the form (3) such that \(\text{rank}(XUY^\dagger)_{i\bar{i}} = 1 \), for any \(i = 1, 2, \cdots, n \), then \(\rho_1 \) and \(\rho_2 \) are local unitary equivalent. From Lemma 1, we can get the explicit expressions of the local unitary matrices \(u_i \) in the following way. First, we view \(XUY^\dagger \) as an \(N_1 \times N_1 \) block matrix with each block of size \(N_2N_3 \cdots N_n \times N_2N_3 \cdots N_n \). Following Lemma 1, we have that \(XUY^\dagger = u_1 \otimes u_1 \), where \(u_1 \) and \(u_1 \) have explicit expressions from Remark 1, and \(u_1 \) is an \(N_2N_3 \cdots N_n \times N_2N_3 \cdots N_n \) unitary matrix. By viewing \(u_1 \) as an \(N_2 \times N_2 \) block matrix with each block of size \(N_3N_4 \cdots N_n \times N_3N_4 \cdots N_n \), we get the expression of \(u_2 \) in \(u_1 = u_2 \otimes u_2 \). In this way, we can get all the detailed expressions of \(u_1, u_2, \cdots, u_n \), such that \(XUY^\dagger = u_1 \otimes u_2 \otimes \cdots \otimes u_n \).

Theorem 1 has many advantages compared with the previous results about local unitary equivalence. It generalizes the results for non-degenerated bipartite states in [20] to general
bipartite mixed states including degenerated ones, for which the problem becomes quite
difficult usually and many criteria become non-operational [20]. Our criterion can be also
operational for particular degenerated bipartite states. Let us consider that \(\rho_1, \rho_2 \in H_1 \otimes H_2 \)
have \(s \) different eigenvalues with multiplicity 2 and the rest eigenvalues with multiplicity 1.
According to Theorem 1, \(\rho_1 \) and \(\rho_2 \) are local unitary equivalent if and only if there exists a
unitary matrix

\[
U = diag(u_1, \ldots, u_s, e^{i\theta_{s+1}}, \ldots, e^{i\theta_{N_1N_2}}),
\]

with \(u_r \in U(2), r = 1, \ldots, s, s = 0, 1, \ldots, \lfloor \frac{N_1N_2}{2} \rfloor \), such that \(\text{rank}(XUY^\dagger) = 1 \), where \(\lfloor x \rfloor \)
denotes the integer part of \(x \).

Any unitary matrix in \(U(2) \) can be written as, up to a constant phase, \(tI + i\sum_{j=1}^{3} z_j \sigma_j \)
with \(t^2 + \sum_{j=1}^{3} z_j^2 = 1 \), where \(I \) is the \(2 \times 2 \) identity matrix and \(\sigma_j \) are the Pauli matrices.
Therefore \(U \) has the following form:

\[
U = \begin{pmatrix}
 t_1 + iz_3 & z_3 + iz_2 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\
-z_1 + iz_2 & t_1 - iz_3 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & t_s + iz_{3s} & z_{3s-2} + iz_{3s-1} & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & -z_{3s-2} + iz_{3s-1} & t_s - iz_{3s} & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & e^{i\theta_{s+1}} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & \cdots & \cdots & e^{i\theta_{N_1N_2}} \\
\end{pmatrix}
\]

where \(t_j^2 + z_{3j}^2 + z_{3j-1}^2 + z_{3j-2}^2 = 1 \) for \(j = 1, \ldots, s \). One just needs to verify the existence
of the unitary matrix \(U \) such that \(\text{rank}(XUY^\dagger) = 1 \). The calculation of the rank of \(XUY \)
only concerns the quadratic homogeneous equations and can be done simply by using the
algorithm in Ref. [32] for solving systems of multivariate polynomial equations called XL
(eXtended Linearizations or multiplication and linearization) algorithm. As an example,
let us consider

\[
\rho_1 = \begin{pmatrix}
 1/4 & 0 & 0 & 1/4 \\
 0 & 1/4 & 1/4 & 0 \\
 0 & 1/4 & 1/4 & 0 \\
 1/4 & 0 & 0 & 1/4 \\
\end{pmatrix}, \quad \rho_2 = \begin{pmatrix}
 1/4 & 0 & 1/4 & 0 \\
 0 & 1/4 & 0 & -1/4 \\
 1/4 & 0 & 1/4 & 0 \\
 0 & -1/4 & 0 & 1/4 \\
\end{pmatrix}.
\]
Here ρ_1 and ρ_2 are degenerated states with the eigenvalues set $\Lambda = \text{diag}(\frac{1}{2}, \frac{1}{2}, 0, 0)$. Following (3), U has the form

$$U = \begin{pmatrix}
t_1 + iz_3 & z_1 + iz_2 & 0 & 0 \\
-z_1 + iz_2 & t_1 - iz_3 & 0 & 0 \\
0 & 0 & t_2 + iz_6 & z_4 + iz_5 \\
0 & 0 & -z_4 + iz_5 & t_2 - iz_6
\end{pmatrix}.$$

Correspondingly,

$$X = \begin{pmatrix}
\frac{1}{\sqrt{2}} & 0 & -1/\sqrt{2} & 0 \\
0 & 1/\sqrt{2} & 0 & -1/\sqrt{2} \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2} \\
1/\sqrt{2} & 0 & 1/\sqrt{2} & 0
\end{pmatrix}, \quad Y = \begin{pmatrix}
\frac{1}{\sqrt{2}} & 0 & -1/\sqrt{2} & 0 \\
0 & -1/\sqrt{2} & 0 & 1/\sqrt{2} \\
1/\sqrt{2} & 0 & 1/\sqrt{2} & 0 \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{pmatrix}.$$

It is easily verified that there are many matrices of the form (5) satisfying $\text{rank}(\tilde{X}UY^\dagger) = 1$, for instance,

$$U = \begin{pmatrix}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{pmatrix}.$$

Therefore ρ_1 and ρ_2 are local unitary equivalent. In fact, from singular values decomposition of $\tilde{X}UY^\dagger$, we can get the unique nonzero singular values $\frac{1}{2}$ with multiplicity 2. Using Lemma 1, we have $\mu_1 = \frac{1}{\sqrt{2}}(-1, 0, 0, 1)$ and $\nu_1 = \frac{1}{2}(1, -1, 1, 1)$. Therefore, from Lemma 2, we can choose $\text{vec}(X_1) = \sqrt{2}u_1$ and $\text{vec}(Y_1) = \sqrt{2}v_1$, such that X_1 and Y_1 are unitary matrices, and $(X_1 \otimes Y_1)\rho_1(X_1 \otimes Y_1)^\dagger = \rho_2$.

Concerning multipartite mixed states, let us consider two density matrices in $H_1 \otimes H_2 \otimes H_3$
with \(N_1 = N_2 = N_3 = 2 \),

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & b & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & c & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{c} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{b} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{a} & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\(\rho_1 = \frac{1}{K} \) and

\[
\begin{pmatrix}
\frac{1+b}{2} & 0 & -\frac{b-1}{2} & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{a+c}{2} & 0 & -\frac{c-a}{2} & 0 & 0 & 0 & 0 \\
\frac{b-1}{2} & 0 & 0 & \frac{1+b}{2} & 0 & 0 & -\frac{1}{2} & 0 \\
0 & \frac{c-a}{2} & 0 & \frac{a+c}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2a} + \frac{1}{2c} & 0 & \frac{1}{2a} - \frac{1}{2c} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2b} + \frac{1}{2c} & 0 & \frac{1}{2b} + \frac{1}{2c} & 0 \\
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} - \frac{1}{2b} & 0 & \frac{1}{2} + \frac{1}{2b} & 0 \\
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} - \frac{1}{2c} & 0 & \frac{1}{2} + \frac{1}{2c} & 0
\end{pmatrix}
\]

\(\rho_2 = \frac{1}{K} \),

\[
\text{where the normalization factor } K = 2 + a + b + c + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}. \rho_1 \text{ and } \rho_2 \text{ have the same eigenvalue set } \Lambda = \frac{1}{K} \text{diag}(2, 0, \frac{1}{a}, \frac{1}{b}, \frac{1}{c}, c). \text{ For the case } a \neq b \neq c \neq 0 \neq 1 \neq 2 \neq \frac{1}{2}, \rho_1 \text{ and } \rho_2 \text{ are not degenerated. In this case, one has}
\]

\[
X = \begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
Y = \begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 & \frac{1}{\sqrt{2}} \\
-\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

From (3), \(U \) is of the form \(U = \text{diag}(e^{i\theta_1}, e^{i\theta_2}, e^{i\theta_3}, e^{i\theta_4}, e^{i\theta_5}, e^{i\theta_6}, e^{i\theta_7}, e^{i\theta_8}) \). Hence

\[
XUY^\dagger = \frac{1}{\sqrt{2}} \begin{pmatrix}
e^{i\theta_1 + e^{i\theta_2}} & 0 & -e^{i\theta_1 + e^{i\theta_2}} & 0 & 0 & e^{i\theta_1 - e^{i\theta_2}} & 0 & e^{i\theta_1 - e^{i\theta_2}} \\
0 & -e^{i\theta_4} & 0 & e^{i\theta_4} & 0 & 0 & 0 & 0 \\
e^{i\theta_4} & 0 & e^{i\theta_6} & 0 & 0 & 0 & 0 & 0 \\
0 & e^{i\theta_8} & 0 & e^{i\theta_8} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -e^{i\theta_7} & 0 & e^{i\theta_7} & 0 & 0 \\
0 & 0 & 0 & 0 & -e^{i\theta_5} & 0 & e^{i\theta_5} & 0 \\
e^{i\theta_1 - e^{i\theta_2}} & 0 & e^{i\theta_2 - e^{i\theta_1}} & 0 & 0 & e^{i\theta_1 + e^{i\theta_2}} & 0 & e^{i\theta_1 + e^{i\theta_2}}
\end{pmatrix}
\]

It is easily verified that \(rank(XUY^\dagger)_{ii} = 1 \) for \(\theta_1 = \theta_2 = \theta_3 = \theta_5 = \theta_8 = 0, \theta_4 = \theta_6 = \theta_7 = \pi, i = 1, 2, 3 \). Therefore from Theorem 1 \(\rho_1 \) and \(\rho_2 \) are local unitary equivalent.
In fact, taking $i = 1$, from the singular values decomposition of (X^HY^\dagger), we can get the unique nonzero singular values $2\sqrt{2}$. From Lemma 1, we get $u_1 = \frac{1}{\sqrt{2}}(1,0,0,1)$ and $v_1 = \frac{1}{2\sqrt{2}}(1,0,1,0,1,0,1,-1,0,1,0,0,-1,0,1)$. Therefore, we can choose $vec(X_1) = \sqrt{2}u_1$ and $vec(X_2) = 2v_1$ such that they are unitary. Then $X_1 = I_2 \in H_1$ and

$$
X_2 = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix} \in H_2 \otimes H_3.
$$

One can easily find that $\text{rank}(\tilde{X}_2) = 1$. From the singular value decomposition of \tilde{X}_2, using Lemma 1 again, we get $Y_1 = \left(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \right)$, $Y_2 = I_2$, such that $X_2 = Y_1 \otimes Y_2$ is unitary. That is, $(X_1 \otimes Y_1 \otimes Y_2)\rho_1(X_1 \otimes Y_1 \otimes Y_2)\dagger = \rho_2$.

Our criterion is both necessary and sufficient for local equivalence of arbitrary multipartite mixed quantum systems. However, for general degenerated states, it could be less operational. In the following, complement to Theorem 1, we present an alternative way to judge the local equivalence based on partial transposition of matrices. For a density matrix $\rho \in H_1 \otimes H_2$ with entries $\rho_{m\nu,n\mu} = \langle e_m \otimes f_\mu|\rho|e_n \otimes f_\nu \rangle$, the partial transposition of ρ is defined by [26]:

$$
\rho^{T_2} = (I \otimes T)\rho = \sum_{m\mu,n\nu} \rho_{m\nu,n\mu}|e_m \otimes f_\mu\rangle\langle e_n \otimes f_\nu|,
$$

where ρ^{T_2} denotes the transposition of ρ with respect to the second system, $|e_n\rangle$ and $|f_\nu\rangle$ are the bases associated with H_1 and H_2 respectively.

Theorem 2 Two mixed states ρ_1 and ρ_2 in $H_1 \otimes H_2$ are local unitary equivalent if and only if $\rho_1^{T_2}$ and $\rho_2^{T_2}$ are local unitary equivalent.

Proof Without loss of generality, we assume that $\rho_1 = \sum \rho_{m\nu,n\mu}|e_m\rangle\langle e_n| \otimes |f_\mu\rangle\langle f_\nu|$. Then $\rho_1^{T_2} = \sum \rho_{m\nu,n\mu}|e_m\rangle\langle e_n| \otimes |f_\mu\rangle\langle f_\nu|$. On the one hand, if ρ_1 and ρ_2 are equivalent under local unitary transformations, one has

$$
\rho_2 = (u_1 \otimes u_2)\rho_1(u_1 \otimes u_2)\dagger = \sum \rho_{m\nu,n\mu}(u_1|e_m\rangle\langle e_n|u_1^\dagger) \otimes (u_2|f_\mu\rangle\langle f_\nu|u_2^\dagger).
$$

Hence

$$
\rho_2^{T_2} = \sum \rho_{m\nu,n\mu}(u_1|e_m\rangle\langle e_n|u_1^\dagger) \otimes (u_2^*|f_\mu\rangle\langle f_\nu|u_2^\dagger)
= \sum \rho_{m\nu,n\mu}(u_1 \otimes u_2^*)(|e_m\rangle\langle e_n| \otimes |f_\mu\rangle\langle f_\nu|)(u_1 \otimes u_2^\dagger)
= (u_1 \otimes u_2^*)\rho_1^{T_2}(u_1 \otimes u_2^*)\dagger.
$$
Therefore, $\rho_{T_2}^2$ and $\rho_{T_1}^2$ are also local unitary equivalent.

On the other hand, since $(\rho_{T_2})_{T_2}^T = \rho$, if $\rho_{T_1}^T$ and $\rho_{T_2}^T$ are equivalent under local unitary transformations, one can derive that ρ_1 and ρ_2 are also equivalent under local unitary transformations.

The Theorem 2 is also true for $\rho_{T_1}^T$. Generally the partial transposed states are no longer semi positive. They are just Hermitian matrices. Nevertheless Theorem 2 still works for the local unitary equivalence for Hermitian matrices. Theorem 2 can be directly generalized to multipartite systems:

Theorem 3 Two mixed states ρ_1 and ρ_2 in $H_1 \otimes H_2 \otimes \cdots \otimes H_n$ are local unitary equivalent if and only if $\rho_{T_k}^T$ and $\rho_{T_k}^T$ are local unitary equivalent, where $k \in \{1, 2, \ldots, n\}$, $\rho_{T_k}^T$ denotes the transposition of ρ with respect to the kth system.

Theorem 3 provides us an alternative way to determine the local unitary equivalence of multipartite states. If the given states are degenerated, the criterion given by Theorem 1 would be less operational. In this case one may consider the partial transposition of the states. For bipartite states, if the partially transposed states are not degenerated, we can check the local unitary equivalence by using the Theorem 1 and obtain the explicit local unitary matrices. There are many degenerated states such that their partially transposed ones are not degenerated, for example,

$$
\rho =
\begin{pmatrix}
\frac{1}{4} & 0 & 0 & \frac{1}{16} \\
0 & \frac{1}{8} & 0 & 0 \\
0 & 0 & \frac{1}{8} & 0 \\
\frac{1}{16} & 0 & 0 & \frac{1}{2}
\end{pmatrix}.
$$

If the partially transposed states are still degenerated, but less degenerated such that they have s different eigenvalues with multiplicity 2 and the rest eigenvalues with multiplicity 1, then the Theorem 1 can applied to determine the local unitary equivalence. For the multipartite states, the Theorem 3 could be applied to simplify problem.

In summary, based on matrix realignment we have presented a necessary and sufficient criterion of the local unitary equivalence for general multipartite mixed quantum states, and the corresponding explicit expression of the local unitary operators. The criterion proposed in [33] is a special case of Theorem 1 for bipartite case. Our criterion is even operational for a class of degenerated states. To deal with the general degenerated states, we have also
presented another criterion based on state partial transpositions, which, in complement to our criterion based on matrix realignment, may transform an un-operational problem to be an operational one, so as to make our criteria more effective. Detailed examples have been presented. Our approach gives a new progress toward to the local equivalence of multipartite mixed states.

Acknowledgments: This work is supported by the NSFC 11105226, 11275131; the Fundamental Research Funds for the Central Universities No.12CX04079A, No.24720122013; Research Award Fund for outstanding young scientists of Shandong Province No.BS2012DX045.