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1 Introduction and Main Results

Let  be an open domain in R”. For the systems of real smooth vector fields X = (X1, Xa,--- , X,), we
introduce following function space (cf. [16, 22]):

HY(Q)={uec L*(Q) | X;uec L*(Q), j=1,---,m},

which is a Hilbert space with norm [[u|3,, = [[ull7. + || Xul3., [ Xul7. = Z;.Lzl | Xjul?2,. Let @ CC Q be a
bounded open subset with boundary 8Q,Xhere we assume that 02 is C*° smooth and non characteristic for
the system of vector fields X. Next, the subspace Hy ((9) is defined as a closure of C§°() in H(Q), which
is also a Hilbert space.

Let I = (41, -+ ,jk) with 1 < j; < m, we denote |I| = k. We say that the vector fields X = {X;, X5, -+, X, }
satisfy the Hérmander’s condition (cf. [5]) if X together with their commutators

: [Xjk—17Xj ] o ma

up to some fixed length |I| < @ span the tangent space at each point of Q. Here Q is called the Hormander
index of X on €2, which is the smallest positive integer for the Hormander condition above being satisfied.
If @ > 1, the operator Ax = E;nzl XJ2 is a degenerate elliptic operator. In this paper we consider the

X1 =X}y, [Xj,, [X

30"

following Dirichlet eigenvalue problems in H}(’O(Q) for the degenerate elliptic operators and the degenerate
Schrédinger operators,

—Axu=Au, in €,
u =0, on 0f);
and
—Axu—eV(x)u = pu, inf,
{u =0, on 0,
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where 0 < ¢ < 1, the potential function V' (x) > 0 satisfies the following Hardy type inequality,
/ Vuldax g/ | Xul*dz, for all u € Hy (). (1.3)
Q Q

In the classical case, X = {0y, ,0x, }, OAx is the Laplacian A and Hérmander index = 1, H. Weyl’s

asymptotic formula (see [21]) assets that \; ~ Cn(ﬁ)%, where {A;}r>1 are Dirichlet eigenvalues for the

_z
Laplacian A, |],, is the n-dimensional Lebesgue measure of Q and C,, = (27)2B,, " with B,, being the volume
of the unit ball in R™. Later in [19], Pélya proved that the above asymptotic relation is in fact a one-sided
inequality if  is a plane domain which tiles R? (and his proof also works in R™) and he conjectured that, for
any domain in R"™, the inequality

k
1€

Ak > Chp( )%, for any k > 1, (1.4)
holds. R

In this direction Lieb [11] proved an inequality like (1.4) for any domain in R™ but with a constant C,, that
differs from the constant C,, by a factor. Later in 1983, by using the Fourier transformation approach, Li and
Yau [10] gave a simple proof for the lower bound and obtain

k

Cn iz -2
Z)‘iz on g :2‘Q|n", for any k£ > 1. (1.5)
P n+2

If the system of vector fields X with the Hérmander index 1 < @ < oo, then we know that there is a
sequence of discrete eigenvalues for the problem (1.1) (or for the problem (1.2) respectively), which can be
ordered, after counting (finite) multiplicity, as 0 < A} < Ag < A3 < -+ < A\ < -+, and A\, — +oo. For each
1<j<Qandz e, we denote V;(z) as the subspace of the tangent space Tw(ﬁ) which is spanned by the
vector fields {X;} with |I| < j. If the dimension of Vj(z) is constant v; in a neighborhood of each x € ,
then we say the system of the vector fields X satisfies the so called Métivier’s condition. Observe that the
Hoérmander condition implies that vg = n.

Under the Hérmander condition and the Métivier’s condition above, Métivier [12] proved that A, ~ k+,
where v = 2?21 j(v; —vj_1) (with vy = 0). However, in this case, it seems no result for the lower bound
of Ag. On the other hand, if the Hérmander condition is not satisfied for the system of vector fields X (i.e.
Q = 400, Ax is infinitely degenerate), it seems that there is no any result for the eigenvalues estimates (even
for the asymptotic estimate).

In this paper, in case of the operator Ay is degenerate elliptic, we shall use the approach in Li-Yau [10]
to give the corresponding estimates for the eigenvalues of the problems (1.1) and (1.2). We have the following
main results.

1.1 The case of Ax to be finitely degenerate

First, we give the following well-known result:

Proposition 1.1. The system of vector fields X = (X1, -+, X,,) satisfies Hormander’s condition, and its
Hérmander indez is Q, if and only if the following sub-elliptic estimate

1 2 ~
V1% 4]f3 0, < C@QIXulZa0) + C@lul32): (L6)

holds for all u € C3°(Q). Where V = (84,,-+ ,04,), C(Q) > 0 and C(Q) > 0 are the best constants for the
estimate (1.6) to be satisfied.

Proof. See [4], [6] and [18]. O

Then for the problem (1.1), we have



Theorem 1.1. If the Hormander condition is satisfied for the vector fields X and Q is the Hormander index
of X. Let \j be the j'" eigenvalue of the problem (1.1), then for all k > 1,

k
Z > Ok aE — C(Q)E, (L.7)

nQ(2m) &

C(Q) (nQ+2)(1021n By) 7@
the unit ball in R™, ||, is the volume of Q.

C(Q) and é(Q) are the constants in Proposition 1.1, B,, is the volume of

where C7 =

Since kA, > Z§:1 Aj, then the result of Theorem 1.1 implies that
Ae > Cik@n — C(Q), for k> 1.

Remark 1.1. If X = {8,,,04,,- - , 0z, }, then the Hormander index of X is 1, C(1) = 1 and C(1) = 0. Thus
for all k > 1, the lower bound estimate (1.7) gives the same result to the estimate (1.5) in [10].

Next, we consider the problem (1.2).

Theorem 1.2. Under the conditions of Theorem 1.1, let 0 < & < 1 and the potential function V(x) satisfies
the Hardy type inequality (1.3). Then if \; is the j** eigenvalue of the problem (1.2), we have

k
Z > (1-¢) (clk”cen - 5(Q)k), for all k> 1, (1.8)

where C1 and G(Q) are the same constants in Theorem 1.1 and Proposition 1.1, Q is the Hérmander index
of X.

1.2 The case of Ax to be infinitely degenerate

Here we suppose that X satisfies the finite type of Héormander’s condition on Q) except a union of smooth
surfaces I'. Then the Hormander condition is not satisfied for X on I' and the operator Ax is infinitely
degenerate elliptic operator. Also we suppose that the surface I' is non characteristic for X, and the vector
fields X satisfies the following Logarithmic regularity estimate for all u € C§° (Q),

| Gog A)*ul}2(q < Co| / | Xulde + ulfa| (1.9)

where s > 1, Cp > 0 and A = (e + |V|?)2. Thus, we know that, cf. [2, 16], the problem (1.1) (or the
problem (1.2) respectively) has a sequence of discrete eigenvalues, which can be ordered, after counting (finite)
multiplicity, as 0 < 1 < Py < 3 < --- < B < -+, and B — +00.

Then we have

Theorem 1.3. Under the conditions above, let X satisfy the logarithmic regularity estimate (1.9), B; be the
jt eigenvalue of the problem (1.1), then for all k > ko,

k
Zﬂj > Cyk(logk)® — k, (1.10)
j=1
_ 2256”"%'71‘9% _ n+s [Qnwn—1s s -1 . .
where ko = max { =g 5,3, C2 = n(Co2""*(|log W| +n®)) , wp—1 is the area of the unit
sphere in R™, |Q|, is the volume of 0, s and Cy are the numbers in (1.9).
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Since kS > Zle B;, the the result of Theorem 1.3 gives that
Br > Ca(logk)® — 1, for k > k.
Secondly, for the problem (1.2) we have

Theorem 1.4. Under the conditions above, let 0 < € < 1 and the potential function V satisfies the Hardy
type inequality (1.3). If X satisfy the logarithmic reqularity estimate (1.9), and B; is the j'" eigenvalue of the
problem (1.2), then for all k > kg,

k
> B = (1-e)((Cakllog k) — k), (1.11)
j=1

where kg and Cy are the same constants as given in Theorem 1.3.

Remark 1.2. More results for the infinitely degenerate operators can be found in [1, 3], [7, 8, 9], [14, 15, 17]
and [20].

In this paper, The proofs of Theorem 1.1 and Theorem 1.2 will be given in Section 2, and in Section 3 we
shall prove Theorem 1.3 and Theorem 1.4. In Section 4, we shall give some examples in which the logarithmic
regularity estimates (1.9) and the Hardy type inequalities (1.3) will be satisfied.

2 Proofs of Theorem 1.1 and Theorem 1.2

Similar to the approach in [10], we introduce the following lemma.

Lemma 2.1. Let f be a real-valued function defined on R™ with 0 < f < M;. For some s > 0, if
/ 2* f(2)d= < M. (2.1)
]R’n

Then we have the following inequality,

( (2)dz)"w < My(n, s, My) M, (2.2)
-

n+s

where May(n, s, My) = (%) " (4 8)(Mywn_1)7, wa_1 is the area of the unit (n — 1)-sphere in R".

Proof. First, we choose R(M), such that
[ 1elaz)az = (2.3)

where
(2) = M, |z| < R(M),
“ 700, 12 = R(M).

Then (|z|* — R*(M))(f(z) — g(z)) > 0, hence

RO [(#6) - 9z < [ 1o:(4() — gl2))dz =0 (2:4)
Now we have ) . o R(M) s o Miyw,_1 R (M)
M = - |z|°g(2)dz = M1/0 T Wp—1dr = s . (2.5)



From the definition of g(z), we know

/n g(z)dz = M1B,R"(M), (2.6)

where B,, is the volume of the unit n-ball in R". Hence by using nB,, = w,_1 we can deduce that

s

([ se)"" < ([ o)™ < afospn @7

where
n+s

My(n, s, M) = (%) " (n+ 8)(Miwn_1)%.

Proof of Theorem 1.1.

Proof. Let {\;}r>1 be a sequence of the Dirichlet eigenvalues of the problem (1.1), {t%(z)}x>1 be the corre-
sponding eigenfunctions, then {¢x(z)}r>1 constitute an orthonormal basis of the Sobolev space H}QO(Q). We
have

Lemma 2.2. For the system of vector fields X = (X1,---,Xp), if {1/1] _, are the set of orthonormal
eigenfunctions which corresponding to the eigenvalues {)\; };“: Define

k
W)= v w) 28)

Then for the partial Fourier transformation of ¥(x,y) in the x-variable, \if(z, y) = (2m)~ /2 fw U(x,y)e ®2dz,
we have

// z,y)|?dzdy = k, and / (2, 9))2dy < (27) 7. (2.9)

Proof. Since
/ \112(a:,y)dx:/ |U(z,y)|dz. (2.10)

Hence by the orthonormality of {1, }*_,, one has

Jj=0b

/Q/ (2, )2 d=dy = /Q/w U (2, ) [2dady
:/Q/Q|‘I’($vy)\2dxdy:k.

(2.11)

On the other hand,

/ |\i/(z7y)|2dzdy:/ﬂ(27r)_"| \I/(ac,y)e_”‘zdx\Qdy

Rn
:/(277)_"|/ U(x,y)e " ?dx|*dy.
Q Q

ix-z

Using the Fourier expansion for the function e™"** i.e.

[e e}

ez Z 2)Y;(x), with a;(z) = /Qefm'zdjj(x)dx
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Then we know that 372 [a;(2)* = [, [e™**[*dz = |Q,. Thus
|/ @) =wdel | | 33 o s ()
j=11=1
= |Zaj(z)% (¥)
=1

Using the estimates above, we have

/|\I/zy|dy<27r /Zaﬂ y)|2dy
Z'CLJ 2m) 7" Q.
By using the results in Proposition 1.1 and Lemma 2.2, we have
/Rn/|z6 zy|dydz_/Rn/‘|V|Q\Iny)’ dydz, (2.12)
/RH/QMV\%\I/(:c,y)‘?dydng //|X (,y)2dzdy + O(Q )/Q/Q|\I’(ﬂc,y)|2dxdy).

Next, we can deduce that

//'X ”'df”dy—/ Z/IZXz 20 (@) (y) P ) dy
:i</QZXl(x)1/fj(x)|2)dx (2.13)

and

Thus from (2.11) and (2.12), we have

/n/|z|@\\llzy)| dydz < C(Q ZA +C(Q)k).

Jj=1

Now we choose f(2) = [, [¥(z,y)|dy, My = (27)"|Qln, s = & and M = C(Q)(X}_, A; + C(Q)k). Then
the result of Lemma 2. 1 gives that, for any k > 1,

KT < My(n, Q,|9,) Z/\ +C(Q (2.14)

nt2
with Ma(n, Q, Q) = ((27) ™|, Br) "2 ( ZQ ). That means, for any k > 1,

k
SN > CkttRE — C(Q)k, (2.15)
j=1
2
with C] = nQ2m) 9 5. Theorem 1.1 is proved. O

C(Q)-(nQ+2)(I1Q|Bn) "Q



Proof of Theorem 1.2.

Proof. From the Hardy type inequality (1.3) we know the operator —Ax — eV (x) is a positive operator for
0 <& < 1. Thus let {A\;}x>1 be the Dirichlet eigenvalues of the problem (1.2), {¢x}x>1 be the corresponding
eigenfunctions which constitutes an orthonormal basis of the Sobolev space H}(,O(Q)-

Observe that

(1-2) [ 1XosPdo < [ pia)=Bxes(e) = Vipy(a)) = &,
If we denote ¥(z,y) by U(z,y) = Zle @;(x)e;(y), then similar to the proof of Theorem 1.1,
-
A~
| [1iGaretae = [ [ 96| d < cla)(E=2 + Cio).
That means, for any k£ > 1,

k
ZX > (1-e)Chk'7a — (1 —e)C(Q)k, (2.16)

where C; and C (Q) are the same constants as that in Theorem 1.1, @ is the Hérmander index of X. The
proof of Theorem 1.2 is complete. O

3 The proofs of Theorem 1.3 and Theorem 1.4

First, we have the following extension for the result of Lemma 2.1.

Lemma 3.1. Let f be a real-valued function defined on R™ and 0 < f < My. For some s > 0, if

f(z)dz > e, and / (log(e? + |2]?))* f(2)dz < Ms, (3.1)
RTL

n

where Mg > 22577 Myw,,_1. Then we have the following inequality,

[ 1)z og( [ F(2)d=)" < Ma(n,, 1) M, (32)

where

onts Myw,—
My(n, s, My) = - (| log(—=2=1

)
Proof. Related to Ms, we introduce a constant R(Msz) > 0, satisfying

/ (log(e? + |2*))*g(2)dz = Ms, (3.3)
where

_ M17 |Z| < R(MS)a
o= {0, |2 > R(Ms).

Since Mz > 22T"e" Myw,, 1, that means R(M3) > 2e. In fact, if R(M3) < 2e, then
M= [ (log(e® +|2P)%g(:)d:

R(Ms)
= Miwn— / (log(e? + 7)) *r"*dr
0

S len_l(log(562))s(2e)” < 22S+n6nM1wn_17
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which is incompatible with the condition of Ms3.
By R(M3) > 2e, one has % >/ R(Mj3),

R(Ms)
Ms > len,l/ (log(e? + r2))*r™ Ldr

R(M3)
2

R(M3)
> len_12s/ (logr)*r™Ldr

R(M3g)
2

R(Ms3)"
2n

Since |(1og(e? + |2[2))* — (log(e? + |[R(Mz)[*))*| (f(2) = 9(2)) 2 0, we have

> Miwp,—1

(log R(Ms))*,

f(z)dz < / g(z)dz.

Rn

Using the inequalities above and the fact fRn z)dz > e, we have

[ sz (0] ree) < / g(z)dz - (log / g(=)d=))’

= My By (R(Ms))" - [log(My B (R(Mg))")|

< My Bn(R(Ms))" - 2°(|log(M1By)[* + (nlog R(Ms))°)

= My B,,2°(|log(M:By)|* 4 n°)(R(Ms))" (log R(Ms))”.
By using nB,, = w,—1 and the estimates above, we can deduce that

n—+s

)z (1os( | 1(:)d2))" < S loa(Ma B, )|+ ) s

Rn

Taking My(n,s, M;) = 2n“( log(M1&n=1ys 4 p%), then

f(2)dz - (log( f(2)dz))® < My(n,s, Mq1)Ms.
R R

O

Since the boundary 02 and the infinitely degenerate surface I' are non characteristic for the vector fields
X and X satisfies logarithmic regularity estimate (1.9), the potential function V satisfies the Hardy type esti-
mate (1.3). Then from [2, 16] the problem (1.1) (or the problem (1.2) respectively) has a sequence of discrete
cigenvalues {By}x>1 (or {Br}te>1) with B — +o0 (or B — +00). Also we know that the corresponding
cigenfunctions {¢x}x>1 (or {@x}r>1) forms an orthonormal basis of the Sobolev space H ((€2).

Proof of Theorem 1.3.
Proof. Taking ®(z,y) = Z?:l @;j(x)@;(y). Then from the results of Lemma 2.2,

/ / |<i>(z,y)|2dzdy =k, and / |<i>(z,y)|2dy < 2m)7"Qn.- (3.4)
Q Jrn Q
Thus we have

// (2, y)|* (log(e® + |2[) dydz—/ /\1oge +[V[2)5 (2, y)|2dyda, (3.5)



and the Logarithmic regularity estimate (1.9) gives

/ /\1oge + V[$)2¥(z, ) |2dyd:v<C0//|X (z,y)| d:cdy+//|<1>ac y)|Pdzdy).  (3.6)

Similar to the result of (2.13), we have

k
X X 2 X = S .
/Q/Q|X( () Pdedy gﬂ (3.7)

Thus, from (3.4), (3.5) and (3.6) above, we can deduce that

/ /\cpzy|(1og(e +|2]%))® dydz<0025]+k (3.8)
Rn =
Now we choose
k
/ [ (zy)*dy, My = (27) "0 My = Co( B, + k). (3.9)
j=1
Then we know that 0 < f(z) < My, and if k > 3,

f(z)dz =k >e.
RTL

2s n
Therefore, if we take kg = max{ug%w,?)}, then M3 > 2%%e"|Qlw, 177" = 225t"e"Miw, _; for any

k > ko. Thus from the result of Lemma 3.1, we have for any k > kg

k
k(logk)* < My(n, s, [n)Co - (> Bj + k), (3.10)
j=1

[Q]nwn—1

log o ® +n®). That means, for any k > ko,

where My(n, s, |Q],) = 2ner(

k
> B; > Cok(logk)® — k, (3.11)
j=1
-1
where Cy = n<002”+3(| log K:ll(";;’:)l;l |* + ns)) . Theorem 1.3 is proved. O

Proof of Theorem 1.4.

Proof. Let {Bk}kzl be the sequence of Dirichlet eigenvalues of the infinitely degenerate Schrédinger operator
—Ax —eV(z), {Pr}r>1 be the corresponding eigenfunctions. Then the Hardy type estimate (1.3) gives

(1-¢) /Q X5 [2de < /Q B3(2)(~Dx 3 () — £V E; (2)) = By

Taking ®(z,y) = Z?:l ©;(2)@;(y), then similar to the proof of Theorem 1.3, for k > ko, we have

k
ZB >(1-¢ ((Cgk(log k)* — k) (3.12)

where kg and Cs are the same constants in Theorem 1.3. Theorem 1.4 is proved. O
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4 Appendix

4.1 Finitely degenerate operators
4.1.1 Examples for degenerate operators

Example 4.1. Let X = (04,04, ,250,,), then Ax = 02 + 02, + -+ + (2}0,,)? with the Hormander
index Q = k+1 > 1. This example can be estended to the case of v = (z',2") € Rl x R*™ (1 <1 < n),
X = (Opyy0sy,-++ ,9(2')0s, ). The function ¢(z') is non negative and smooth, and for each (z',2") € Q there
exists ag € Z!, (lap] < Q), such that 950 p(2)| # 0.

Example 4.2. Let X; = 0., +2y;0;, Y; = 0y, — 21,0, for j = 1,--- ,n, be the left invariant vector fields on
the Heisenberg group H", X = (X1, -+, X, Y1, - ,Y,). Then the degenerate elliptic operator

Apn = zn: (x2+72), (4.1)
j=1

is called Laplacian-Kohn operator on H"™. In this case the Hérmander index of X is Q = 2.

4.1.2 Some examples satisfying Hardy type inequality

Proposition 4.1. If vector fields X = (Xq,---, Xp,Y1,---,Yy), Xj = O, + 2y;0;, Y; = 0, — 2x;0;, for
j=1,---,n, Q is the bounded open set of H". Let singular potential functions

2n +1)* 1
Vl(l'vyvt) = ( )2 15 (42)
(Bn+ 2P (22 + 22 + 1)
and
Va(z,y,t) = (2n+1)2ﬂ (4.3)
2\, Y, - (.132 ¥ y2)2 ¥+ t2 . .
Then Vi and Vi satisfy the following Hardy type inequality,
/ Viudrdydt < / | Xu*dzdydt, for anyu € Hy o(Q) and i =1, 2.
Q Q
Proof. See [13], Lemma 2.4 and Lemma 2.5. O

Proposition 4.2. Let V(x) = (”7_3)2#, n > 3. Then for X = (Opy,Ouy, -+, ¢(x')0y,,) as given in Example

4.1, we have following the Hardy type inequality,
/ Vulde < / | Xul?dz, for any u € H}(O(Q) (4.4)
Q Q

Proof. For n > 3, Cg°(Q\{0}) is dense in Hy ((Q) (see [14]), then we only need to prove the result for the
function u € C§°(2\{0}).
Take a radial vector field R as,

R = 21021 + 12029 + -+ + Tp_107_1 + Tp0(z") 0,y (4.5)

Then one has R(V) > —2V and div(R) =n — 1 + ¢(z’). Thus
/ —2Vuldr < / R(V)uldex = —/ div(R)Vudx — / V R(u?)dz.
Q Q Q Q
This implies

/Q(n -3+ (")) Vulde < —/QVR(u?)da:.
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On the other hand,
- / VR(u?)dxr = —2/ VuR(u)dx
Q 0

=— | V(Q2ux10s,u + 2uxe0s,u + - - + 2uzy_10,
Q

U+ 2uzy,p(x’)0y, u)dx

n—1

n—1

<o /Q V2022 + a2+ -+ 22)ulda) /Q (3 (020) + (p(a) 0, ) ) .

i=1

[

Observe that V(22 + 23 + - +22) = (%52)2, and n — 3 + ¢(2’) > n — 3. Then we obtain,

n 2
/Vu2dx§ (/ Vuzdx)%(/ |Xu|2dx)%,
Q Q Q

/Vuzdx§/|Xu|2dx. (4.6)
Q Q

which means

4.2 Infinitely degenerate operator
4.2.1 Some examples satisfying Logarithmic regularity estimates

Let us introduce a sufficient condition for the infinitely degenerate vector fields X, in which the logarithmic
regularity estimate (1.9) will be satisfied. Let X = (X1, Xy,---, X;,,), a infinitely degenerate vector fields on
Q C R™, X; denote the repeated commutator

[ler[ijv[stv"'[Xjkfwxj ]mv (4'7)
for J = (41, ,Jk), ji € 1,--+ ,m, and |J| = k. For k > 1, we take

G(z, k) = 5351;1331 Z |Xs(x, &) g(t, 4,k 20) = G((exptX;)(zo), k),
<k

where (exptX;)(zo) denotes the integral curve of X; starting from zo € T'. Here I' = {x € ;3 ¢ €
St X (2, &) = 0, for any J}, and gI’k(fvo) = ﬁ J;9(t. j, k,xo)dt is the mean value of g(t,j,k, 29) on the
interval I. One has the following result:

Proposition 4.3. If s > 0, and there exists €1 > 0 such that
{'sup (111* [1og g7 (20)1); T < (11, 1), g7 (w0) < 8) } < 1, (48)

for any xo € I', then there exist constants Co > 0 which is independent with €1 and Cg, such that

1
s

inf
§>0,k€N,1>0,1<5<m

g A) s o) < Coct [ [XulPdo +Coulfae

for any u € C3°(Q).
Proof. See [16], Proposition 5.2. O
For infinitely degenerate operators, we have following examples.

Example 4.3. Let s > 0, and
1
e =z #£0
olxy) = ’ ’ (4.9)
{0, T = 0.

Then X = (0gyy- -+, O0x, _,,0(21)0z,) with infinitely degenerate surface T' = {x1 = 0}. We can prove that the
vector fields X will satisfy the logarithmic reqularity estimate (1.9) (cf. [2, 14]).
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Actually, in this case, we know that G(z,1) = mingegn-1) ;<3 | X (2, 8)? = mingegn—l(z’;:_ll &+
P2 (x")E2 + (8“0(”3 &)%), T ={z = (0,29, ,x,) € Q}. Thus for zo = (z/,2,) = (0,22, - ,Tp_1,2,) € L,

and & = (0,---,0,1) € S*"1, the unit normal vector on I', we have G(x¢,1) = p?(2')|z,—0 = 0. Also from
Op(z") 1 i—
X, X;] = oo 0o P=Lj=m
0 else,

we can deduce that, for zg € T', G(xo,k) = 0 for k > 2.
For t is small and let y = exp(tX;)(x0) = (v, yn) = (Y1, Y2, - ,Yn), then g(¢, 4,1, z0) = G((exptX;)(xo),1) =
G(y,1) = ©*(y'), let t' = (¢,0,---,0) € R""!, which means

(), j=1,
0, j#L

9}7 (xO |I|/ t ]. 1 IIZO dt |/ h|1/> dt.

We consider Yo, T € (—pyp). If0 ¢ I, then as |[I| — 0, |loggy'(zo)] < M, one has
PH(xo)| = 0. If 0 € I, by the symmetry of o(t), we suppose that I = (0,a), then

g(tvjalaxO) = {

Then

Y A p—— 1 —=%
Ll (o) = —a* log (E/ e It/® dt) < —a*log (56 g1t ) <2+t 4 g% log2.
0

So we choose g9 = 25+1 + log 2, then as a — 0, 1’1(950)| < gg. By using Proposition 4.3, we can
deduce that X = (0y,," - ,04,_,,(x')0;, ) satisfies the logarithmic regularity estimate (1.9).

The examples below give more infinitely degenerate vector fields X in which the logarithmic regularity
estimate (1.9) will be satisfied (cf. [2, 16]).

Example 4.4. The system of vector fields X = (Oyy, -+ Ou,_,, p(21)0s, ), where

T ey sin(E)|1/¢
Sp(xl) = € ! L y L1 7& 0 ) (410)
0, xr1 = 0.

. Then X is infinitely degenerate on T' = UjEZ+ L, forT; ={z1 = %}, j>1,and Ty = {1 = 0}.
Example 4.5. The system of vector fields X = (O, yOu,_y, 0(€')0s,), for k > 1 and n > 3, where

@) =1¢ " R (4.11)
0, 1’1:0.

The the infinitely degenerate surface for X is T' = {x1 = 0}.

4.2.2 Some examples satisfying Hardy type inequalities

Let the vector fields X = (9y,,- - ,u, ,,0(2')y,) is defined on an open domain Q@ C R for n > 3. Q

is a bounded open subset in  which contains the origin, and 9 is smooth. Denote 2’ = (x1,--- ,2;) for
1<l<n,z=(2',2"), and ¢(z') is a non-negative C*°-smooth function in 2’, which satisfies, for any o € Z'_,
that 0% (2')|er=0 = 0. The infinitely degenerate surface of X is I' = {2’ = 0}.

Proposition 4.4. i). If Vi(z) = (%52)% % e then Vi(z) € C°(OQ\{0}) (forn >3), and

/ Viuldr < / | Xu|?dz, for anyu € H}(70(Q). (4.12)
Q Q
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—2
] “exp (7ﬁ)

D). I Va(a) = (450 Gr—asi e @ = @) = (e1,@2,0 @), then Va(x) € CX(Q{0}) (for

n > 3), and when 1 — 0 we have Va(z1,2"”) — 0 if 2”7 # 0 and Va(x1,2”) = +oo if 2’ = 0. Thus for
QC {x = (z1,2") € Q| |z1] < \/%}, there holds

/ Vauldr < / | Xul|?dz, for anyu € H}QO(Q). (4.13)
Q Q

Proof. The proof of (4.12) is similar to the proof of the result in Proposition 4.2. Here we prove only the
inequality (4.13). Let us take the following radial vector field Ra,

Ry = z‘i’@xl + 22022 + -+ Tp_10Tn_1 + Tpp(x)0x,,. (4.14)

Then Ry (V) > —223V, and div(Rg) = 322 +n — 2 + ('), which means

/—2x’;’v2u2dx§/RZ(VZ)zﬁdm:—/dz’v(Rz)X/Qu?dx—/ Vo Ry (u?)dz.
Q Q Q Q

Thus we have
/ (2 +n — 2+ p(z")Vouldr < —/ Vo Ry (u?)dz, (4.15)
Q Q

and

—/ VaRy(u?)dx = —2/ VauRy(u)dx
Q Q

=— / Vo (2ux3 0y, 4 22000yt + - - + 2uxy 10y, U+ 2uxnp(z)0,, u)dx

N|=

Q
<o Qv;(x?+x§+-~-+x3)u2dx)§(/9(z;?;ll(amu)u(w(x’)a%u)%dx) .

Since z§ > exp { — ﬁ} for |z1| < /4%, then

_9\2 _ 9.2
Va(a§ +ad+-+a2) <aif(“—) < (B

and
242+ ) >n-2

Thus we have from (4.15),
/ Vouldz < (/ Vqudaj)%(/ |Xu|2dﬂc)%7
Q Q Q

/Vqudxg/ | Xul?d. (4.16)
Q Q

which implies

The Hardy type inequality (4.13) is proved. O
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