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Abstract: Let X = (X1, X2, · · · , Xm) be a system of real smooth vector fields defined in an open domain
Ω̃ ⊂ Rn, Ω ⊂⊂ Ω̃ be a bounded open subset in Rn with smooth boundary ∂Ω, △X =

∑m
j=1X

2
j . In this paper,

if λj is the jth Dirichlet eigenvalue for the degenerate elliptic operator −△X (or the degenerate Schrödinger

operator −△X + V ) on Ω, we deduce respectively that the lower estimates for the sums
∑k

j=1 λj in both
cases for the operator −△X to be finitely degenerate (i.e. the Hörmander condition is satisfied) or infinitely
degenerate (i.e. the Hörmander condition is not satisfied).
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1 Introduction and Main Results

Let Ω̃ be an open domain in Rn. For the systems of real smooth vector fields X = (X1, X2, · · · , Xm), we
introduce following function space (cf. [16, 22]):

H1
X(Ω̃) = {u ∈ L2(Ω̃) | Xju ∈ L2(Ω̃), j = 1, · · · ,m},

which is a Hilbert space with norm ∥u∥2
H1

X
= ∥u∥2L2 + ∥Xu∥2L2 , ∥Xu∥2L2 =

∑n
j=1 ∥Xju∥2L2 . Let Ω ⊂⊂ Ω̃ be a

bounded open subset with boundary ∂Ω, here we assume that ∂Ω is C∞ smooth and non characteristic for
the system of vector fields X. Next, the subspace H1

X,0(Ω) is defined as a closure of C∞
0 (Ω) in H1

X(Ω̃), which
is also a Hilbert space.

Let I = (j1, · · · , jk) with 1 ≤ ji ≤ m, we denote |I| = k. We say that the vector fieldsX = {X1, X2, · · · , Xm}
satisfy the Hörmander’s condition (cf. [5]) if X together with their commutators

XI = [Xj1 , [Xj2 , [Xj3 , · · · [Xjk−1
, Xjk ] · · · ]]],

up to some fixed length |I| ≤ Q span the tangent space at each point of Ω̃. Here Q is called the Hörmander
index of X on Ω̃, which is the smallest positive integer for the Hörmander condition above being satisfied.

If Q > 1, the operator △X =
∑m

j=1X
2
j is a degenerate elliptic operator. In this paper we consider the

following Dirichlet eigenvalue problems in H1
X,0(Ω) for the degenerate elliptic operators and the degenerate

Schrödinger operators, {
−△Xu = λu, in Ω,

u = 0, on ∂Ω;
(1.1)

and {
−△Xu− εV (x)u = µu, in Ω,

u = 0, on ∂Ω,
(1.2)
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where 0 < ε < 1, the potential function V (x) ≥ 0 satisfies the following Hardy type inequality,∫
Ω

V u2dx ≤
∫
Ω

|Xu|2dx, for all u ∈ H1
X,0(Ω). (1.3)

In the classical case, X = {∂x1 , · · · , ∂xn}, △X is the Laplacian △ and Hörmander index Q = 1, H. Weyl’s

asymptotic formula (see [21]) assets that λk ∼ Cn(
k

|Ω|n )
2
n , where {λk}k≥1 are Dirichlet eigenvalues for the

Laplacian △, |Ω|n is the n-dimensional Lebesgue measure of Ω and Cn = (2π)2B
− 2

n
n with Bn being the volume

of the unit ball in Rn. Later in [19], Pólya proved that the above asymptotic relation is in fact a one-sided
inequality if Ω is a plane domain which tiles R2 (and his proof also works in Rn) and he conjectured that, for
any domain in Rn, the inequality

λk ≥ Cn(
k

|Ω|n
)

2
n , for any k ≥ 1, (1.4)

holds.
In this direction Lieb [11] proved an inequality like (1.4) for any domain in Rn but with a constant C̃n that

differs from the constant Cn by a factor. Later in 1983, by using the Fourier transformation approach, Li and
Yau [10] gave a simple proof for the lower bound and obtain

k∑
i=1

λi ≥
nCn

n+ 2
k

n+2
n |Ω|−

2
n

n , for any k ≥ 1. (1.5)

If the system of vector fields X with the Hörmander index 1 ≤ Q < ∞, then we know that there is a
sequence of discrete eigenvalues for the problem (1.1) (or for the problem (1.2) respectively), which can be
ordered, after counting (finite) multiplicity, as 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · , and λk → +∞. For each
1 ≤ j ≤ Q and x ∈ Ω̃, we denote Vj(x) as the subspace of the tangent space Tx(Ω̃) which is spanned by the

vector fields {XI} with |I| ≤ j. If the dimension of Vj(x) is constant νj in a neighborhood of each x ∈ Ω̃,
then we say the system of the vector fields X satisfies the so called Métivier’s condition. Observe that the
Hörmander condition implies that νQ = n.

Under the Hörmander condition and the Métivier’s condition above, Métivier [12] proved that λk ≈ k
2
ν ,

where ν =
∑Q

j=1 j(νj − νj−1) (with ν0 = 0). However, in this case, it seems no result for the lower bound
of λk. On the other hand, if the Hörmander condition is not satisfied for the system of vector fields X (i.e.
Q = +∞, △X is infinitely degenerate), it seems that there is no any result for the eigenvalues estimates (even
for the asymptotic estimate).

In this paper, in case of the operator △X is degenerate elliptic, we shall use the approach in Li-Yau [10]
to give the corresponding estimates for the eigenvalues of the problems (1.1) and (1.2). We have the following
main results.

1.1 The case of △X to be finitely degenerate

First, we give the following well-known result:

Proposition 1.1. The system of vector fields X = (X1, · · · , Xm) satisfies Hörmander’s condition, and its
Hörmander index is Q, if and only if the following sub-elliptic estimate∥∥|∇|

1
Qu

∥∥2
L2(Ω)

≤ C(Q)(∥Xu∥2L2(Ω) + C̃(Q)∥u∥2L2(Ω)), (1.6)

holds for all u ∈ C∞
0 (Ω). Where ∇ = (∂x1 , · · · , ∂xn), C(Q) > 0 and C̃(Q) ≥ 0 are the best constants for the

estimate (1.6) to be satisfied.

Proof. See [4], [6] and [18].

Then for the problem (1.1), we have



3

Theorem 1.1. If the Hörmander condition is satisfied for the vector fields X and Q is the Hörmander index
of X. Let λj be the jth eigenvalue of the problem (1.1), then for all k ≥ 1,

k∑
j=1

λj ≥ C1k
1+ 2

Qn − C̃(Q)k, (1.7)

where C1 = nQ(2π)
2
Q

C(Q)·(nQ+2)(|Ω|nBn)
2

nQ
, C(Q) and C̃(Q) are the constants in Proposition 1.1, Bn is the volume of

the unit ball in Rn, |Ω|n is the volume of Ω.

Since kλk ≥
∑k

j=1 λj , then the result of Theorem 1.1 implies that

λk ≥ C1k
2

Qn − C̃(Q), for k ≥ 1.

Remark 1.1. If X = {∂x1 , ∂x2 , · · · , ∂xn}, then the Hörmander index of X is 1, C(1) = 1 and C̃(1) = 0. Thus
for all k ≥ 1, the lower bound estimate (1.7) gives the same result to the estimate (1.5) in [10].

Next, we consider the problem (1.2).

Theorem 1.2. Under the conditions of Theorem 1.1, let 0 < ε < 1 and the potential function V (x) satisfies

the Hardy type inequality (1.3). Then if λ̃j is the jth eigenvalue of the problem (1.2), we have

k∑
j=1

λ̃j ≥ (1− ε)
(
C1k

1+ 2
Qn − C̃(Q)k

)
, for all k ≥ 1, (1.8)

where C1 and C̃(Q) are the same constants in Theorem 1.1 and Proposition 1.1, Q is the Hörmander index
of X.

1.2 The case of △X to be infinitely degenerate

Here we suppose that X satisfies the finite type of Hörmander’s condition on Ω̃ except a union of smooth
surfaces Γ. Then the Hörmander condition is not satisfied for X on Γ and the operator △X is infinitely
degenerate elliptic operator. Also we suppose that the surface Γ is non characteristic for X, and the vector
fields X satisfies the following Logarithmic regularity estimate for all u ∈ C∞

0 (Ω̃),

∥(log Λ)su∥2L2(Ω) ≤ C0

[ ∫
Ω

|Xu|2dx+ ∥u∥2L2(Ω)

]
, (1.9)

where s > 1, C0 > 0 and Λ = (e2 + |∇|2) 1
2 . Thus, we know that, cf. [2, 16], the problem (1.1) (or the

problem (1.2) respectively) has a sequence of discrete eigenvalues, which can be ordered, after counting (finite)
multiplicity, as 0 < β1 ≤ β2 ≤ β3 ≤ · · · ≤ βk ≤ · · · , and βk → +∞.

Then we have

Theorem 1.3. Under the conditions above, let X satisfy the logarithmic regularity estimate (1.9), βj be the
jth eigenvalue of the problem (1.1), then for all k ≥ k0,

k∑
j=1

βj ≥ C2k(log k)
s − k, (1.10)

where k0 = max
{

22senωn−1|Ω|n
C0πn , 3

}
, C2 = n

(
C02

n+s(| log |Ω|nωn−1

n(2π)n |s + ns)
)−1

, ωn−1 is the area of the unit

sphere in Rn, |Ω|n is the volume of Ω, s and C0 are the numbers in (1.9).
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Since kβk ≥
∑k

j=1 βj , the the result of Theorem 1.3 gives that

βk ≥ C2(log k)
s − 1, for k ≥ k0.

Secondly, for the problem (1.2) we have

Theorem 1.4. Under the conditions above, let 0 < ε < 1 and the potential function V satisfies the Hardy
type inequality (1.3). If X satisfy the logarithmic regularity estimate (1.9), and β̃j is the jth eigenvalue of the
problem (1.2), then for all k ≥ k0,

k∑
j=1

β̃j ≥ (1− ε)
(
(C2k(log k)

s − k
)
, (1.11)

where k0 and C2 are the same constants as given in Theorem 1.3.

Remark 1.2. More results for the infinitely degenerate operators can be found in [1, 3], [7, 8, 9], [14, 15, 17]
and [20].

In this paper, The proofs of Theorem 1.1 and Theorem 1.2 will be given in Section 2, and in Section 3 we
shall prove Theorem 1.3 and Theorem 1.4. In Section 4, we shall give some examples in which the logarithmic
regularity estimates (1.9) and the Hardy type inequalities (1.3) will be satisfied.

2 Proofs of Theorem 1.1 and Theorem 1.2

Similar to the approach in [10], we introduce the following lemma.

Lemma 2.1. Let f be a real-valued function defined on Rn with 0 ≤ f ≤M1. For some s > 0, if∫
Rn

|z|sf(z)dz ≤M. (2.1)

Then we have the following inequality,

(

∫
Rn

f(z)dz)1+
s
n ≤M2(n, s,M1)M, (2.2)

where M2(n, s,M1) =
(

1
n

)n+s
n

(n+ s)(M1ωn−1)
s
n , ωn−1 is the area of the unit (n− 1)-sphere in Rn.

Proof. First, we choose R(M), such that ∫
Rn

|z|sg(z)dz =M, (2.3)

where

g(z) =

{
M1, |z| < R(M),

0, |z| ≥ R(M).

Then (|z|s −Rs(M))(f(z)− g(z)) ≥ 0, hence

Rs(M)

∫
(f(z)− g(z))dz ≤

∫
|z|s(f(z)− g(z))dz = 0. (2.4)

Now we have

M =

∫
Rn

|z|sg(z)dz =M1

∫ R(M)

0

rn−1+sωn−1dr =
M1ωn−1R

n+s(M)

n+ s
. (2.5)
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From the definition of g(z), we know ∫
Rn

g(z)dz =M1BnR
n(M), (2.6)

where Bn is the volume of the unit n-ball in Rn. Hence by using nBn = ωn−1 we can deduce that(∫
Rn

f(z)dz
)1+ s

n ≤
(∫

Rn

g(z)dz
)1+ s

n ≤M2(n, s,M1)M, (2.7)

where

M2(n, s,M1) =
( 1

n

)n+s
n

(n+ s)(M1ωn−1)
s
n .

Proof of Theorem 1.1.

Proof. Let {λk}k≥1 be a sequence of the Dirichlet eigenvalues of the problem (1.1), {ψk(x)}k≥1 be the corre-
sponding eigenfunctions, then {ψk(x)}k≥1 constitute an orthonormal basis of the Sobolev space H1

X,0(Ω). We
have

Lemma 2.2. For the system of vector fields X = (X1, · · · , Xm), if {ψj}kj=1 are the set of orthonormal

eigenfunctions which corresponding to the eigenvalues {λj}kj=1. Define

Ψ(x, y) =
k∑

j=1

ψj(x)ψj(y). (2.8)

Then for the partial Fourier transformation of Ψ(x, y) in the x-variable, Ψ̂(z, y) = (2π)−n/2
∫
Rn Ψ(x, y)e−ix·zdx,

we have ∫
Ω

∫
Rn

|Ψ̂(z, y)|2dzdy = k, and

∫
Ω

|Ψ̂(z, y)|2dy ≤ (2π)−n|Ω|n. (2.9)

Proof. Since ∫
Rn

Ψ2(x, y)dx =

∫
Rn

|Ψ̂(z, y)|2dz. (2.10)

Hence by the orthonormality of {ψj}kj=1, one has∫
Ω

∫
Rn

|Ψ̂(z, y)|2dzdy =

∫
Ω

∫
Rn

|Ψ(x, y)|2dxdy

=

∫
Ω

∫
Ω

|Ψ(x, y)|2dxdy = k.

(2.11)

On the other hand, ∫
Rn

|Ψ̂(z, y)|2dzdy =

∫
Ω

(2π)−n|
∫
Rn

Ψ(x, y)e−ix·zdx|2dy

=

∫
Ω

(2π)−n|
∫
Ω

Ψ(x, y)e−ix·zdx|2dy.

Using the Fourier expansion for the function e−ix·z, i.e.

e−ix·z =
∞∑
j=1

aj(z)ψj(x), with aj(z) =

∫
Ω

e−ix·zψj(x)dx.
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Then we know that
∑∞

j=1 |aj(z)|2 =
∫
Ω
|e−ix·z|2dx = |Ω|n. Thus

|
∫
Ω

Ψ(x, y)e−ix·zdx| ≤ |
∫
Ω

k∑
j=1

∞∑
l=1

al(z)ψl(x)ψj(x)ψj(y)dx|

= |
k∑

j=1

aj(z)ψj(y)|.

Using the estimates above, we have∫
Ω

|Ψ̂(z, y)|2dy ≤ (2π)−n

∫
Ω

|
k∑

j=1

aj(z)ψj(y)|2dy

= (2π)−n
k∑

j=1

|aj(z)|2 ≤ (2π)−n|Ω|n.

By using the results in Proposition 1.1 and Lemma 2.2, we have∫
Rn

∫
Ω

|z|
2
Q |Ψ̂(z, y)|2dydz =

∫
Rn

∫
Ω

∣∣∣|∇|
1
QΨ(x, y)

∣∣∣2 dydx, (2.12)

and ∫
Rn

∫
Ω

∣∣∣|∇|
1
QΨ(x, y)

∣∣∣2 dydx ≤ C(Q)(

∫
Ω

∫
Ω

|X(x)Ψ(x, y)|2dxdy + C̃(Q)

∫
Ω

∫
Ω

|Ψ(x, y)|2dxdy).

Next, we can deduce that∫
Ω

∫
Ω

|X(x)Ψ(x, y)|2dxdy =

∫
Ω

( m∑
l=1

∫
Ω

|
k∑

j=1

(Xl(x)ψj(x))ψj(y)|2dx
)
dy

=
m∑
l=1

(∫
Ω

k∑
j=1

|Xl(x)ψj(x)|2
)
dx

= −
∫
Ω

k∑
j=1

ψj(x)△Xψj(x)dx =
k∑

j=1

λj .

(2.13)

Thus from (2.11) and (2.12), we have∫
Rn

∫
Ω

|z|
2
Q |Ψ̂(z, y)|2dydz ≤ C(Q)(

k∑
j=1

λj + C̃(Q)k).

Now we choose f(z) =
∫
Ω
|Ψ̂(z, y)|2dy, M1 = (2π)−n|Ω|n, s = 2

Q and M = C(Q)(
∑k

j=1 λj + C̃(Q)k). Then
the result of Lemma 2.1 gives that, for any k ≥ 1,

k1+
2

nQ ≤M2(n,Q, |Ω|n)C(Q) · (
k∑

j=1

λj + C̃(Q)k), (2.14)

with M2(n,Q, |Ω|) = ((2π)−n|Ω|nBn)
2

nQ (
n+ 2

Q

n ). That means, for any k ≥ 1,

k∑
j=1

λj ≥ C1k
1+ 2

nQ − C̃(Q)k, (2.15)

with C1 = nQ(2π)
2
Q

C(Q)·(nQ+2)(|Ω|Bn)
2

nQ
. Theorem 1.1 is proved.
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Proof of Theorem 1.2.

Proof. From the Hardy type inequality (1.3) we know the operator −△X − εV (x) is a positive operator for
0 < ε < 1. Thus let {λ̃k}k≥1 be the Dirichlet eigenvalues of the problem (1.2), {φk}k≥1 be the corresponding
eigenfunctions which constitutes an orthonormal basis of the Sobolev space H1

X,0(Ω).
Observe that

(1− ε)

∫
Ω

|Xφj |2dx ≤
∫
Ω

φj(x)(−△Xφj(x)− εV φj(x)) = λ̃j .

If we denote Ψ̃(x, y) by Ψ̃(x, y) =
∑k

j=1 φj(x)φj(y), then similar to the proof of Theorem 1.1,

∫
Rn

∫
Ω

| ˆ̃Ψ(z, y)|2|z|
2
Q dydz =

∫
Rn

∫
Ω

∣∣∣|∇|
1
Q Ψ̃(x, y)

∣∣∣2 dydx ≤ C(Q)
(∑k

j=1 λ̃j

1− ε
+ C̃(Q)k

)
.

That means, for any k ≥ 1,
k∑

j=1

λ̃j ≥ (1− ε)C1k
1+ 2

nQ − (1− ε)C̃(Q)k, (2.16)

where C1 and C̃(Q) are the same constants as that in Theorem 1.1, Q is the Hörmander index of X. The
proof of Theorem 1.2 is complete.

3 The proofs of Theorem 1.3 and Theorem 1.4

First, we have the following extension for the result of Lemma 2.1.

Lemma 3.1. Let f be a real-valued function defined on Rn and 0 ≤ f ≤M1. For some s > 0, if∫
Rn

f(z)dz > e, and

∫
Rn

(log(e2 + |z|2))sf(z)dz ≤M3, (3.1)

where M3 ≥ 22s+nenM1ωn−1. Then we have the following inequality,∫
Rn

f(z)dz · (log(
∫
Rn

f(z)dz))s ≤M4(n, s,M1)M3, (3.2)

where

M4(n, s,M1) =
2n+s

n
(| log(M1ωn−1

n
)|s + ns).

Proof. Related to M3, we introduce a constant R(M3) > 0, satisfying∫
Rn

(log(e2 + |z|2))sg(z)dz =M3, (3.3)

where

g(z) =

{
M1, |z| < R(M3),

0, |z| ≥ R(M3).

Since M3 ≥ 22s+nenM1ωn−1, that means R(M3) ≥ 2e. In fact, if R(M3) < 2e, then

M3 =

∫
Rn

(log(e2 + |z|2))sg(z)dz

=M1ωn−1

∫ R(M3)

0

(log(e2 + r2))srn−1dr

≤M1ωn−1(log(5e
2))s(2e)n < 22s+nenM1ωn−1,
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which is incompatible with the condition of M3.

By R(M3) ≥ 2e, one has R(M3)
2 ≥

√
R(M3),

M3 ≥M1ωn−1

∫ R(M3)

R(M3)
2

(log(e2 + r2))srn−1dr

≥M1ωn−12
s

∫ R(M3)

R(M3)
2

(log r)srn−1dr

≥M1ωn−12
s
(R(M3)

2

)n(
log

R(M3)

2

)s

≥M1ωn−1
R(M3)

n

2n
(logR(M3))

s,

Since
[
(log(e2 + |z|2))s − (log(e2 + |R(M3)|2))s

]
(f(z)− g(z)) ≥ 0, we have∫

Rn

f(z)dz ≤
∫
Rn

g(z)dz.

Using the inequalities above and the fact
∫
Rn f(z)dz > e, we have∫

Rn

f(z)dz ·
(
log(

∫
Rn

f(z)dz)
)s

≤
∫
Rn

g(z)dz ·
(
log(

∫
Rn

g(z)dz)
)s

=M1Bn(R(M3))
n ·

[
log(M1Bn(R(M3))

n)
]s

≤M1Bn(R(M3))
n · 2s(| log(M1Bn)|s + (n logR(M3))

s)

=M1Bn2
s(| log(M1Bn)|s + ns)(R(M3))

n(logR(M3))
s.

By using nBn = ωn−1 and the estimates above, we can deduce that∫
Rn

f(z)dz ·
(
log(

∫
Rn

f(z)dz)
)s

≤ 2n+s

n
(| log(M1Bn)|s + ns)M3.

Taking M4(n, s,M1) =
2n+s

n (| log(M1ωn−1

n )|s + ns), then∫
Rn

f(z)dz · (log(
∫
Rn

f(z)dz))s ≤M4(n, s,M1)M3.

Since the boundary ∂Ω and the infinitely degenerate surface Γ are non characteristic for the vector fields
X and X satisfies logarithmic regularity estimate (1.9), the potential function V satisfies the Hardy type esti-
mate (1.3). Then from [2, 16] the problem (1.1) (or the problem (1.2) respectively) has a sequence of discrete
eigenvalues {βk}k≥1 (or {β̃k}k≥1) with βk → +∞ (or β̃k → +∞). Also we know that the corresponding
eigenfunctions {φk}k≥1 (or {φ̃k}k≥1) forms an orthonormal basis of the Sobolev space H1

X,0(Ω).

Proof of Theorem 1.3.

Proof. Taking Φ(x, y) =
∑k

j=1 φj(x)φj(y). Then from the results of Lemma 2.2,∫
Ω

∫
Rn

|Φ̂(z, y)|2dzdy = k, and

∫
Ω

|Φ̂(z, y)|2dy ≤ (2π)−n|Ω|n. (3.4)

Thus we have ∫
Rn

∫
Ω

|Φ̂(z, y)|2(log(e2 + |z|2))sdydz =
∫
Rn

∫
Ω

|(log(e2 + |∇|2)) s
2Φ(x, y)|2dydx, (3.5)
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and the Logarithmic regularity estimate (1.9) gives∫
Rn

∫
Ω

|(log(e2 + |∇|2)) s
2Ψ(x, y)|2dydx ≤ C0(

∫
Ω

∫
Ω

|X(x)Φ(x, y)|2dxdy +
∫
Ω

∫
Ω

|Φ(x, y)|2dxdy). (3.6)

Similar to the result of (2.13), we have∫
Ω

∫
Ω

|X(x)Φ(x, y)|2dxdy =
k∑

j=1

βj . (3.7)

Thus, from (3.4), (3.5) and (3.6) above, we can deduce that∫
Rn

∫
Ω

|Φ̂(z, y)|2(log(e2 + |z|2))sdydz ≤ C0(

k∑
j=1

βj + k). (3.8)

Now we choose

f(z) =

∫
Ω

|Φ̂(z, y)|2dy, M1 = (2π)−n|Ω|n, M3 = C0(
k∑

j=1

βj + k). (3.9)

Then we know that 0 ≤ f(z) ≤M1, and if k ≥ 3,∫
Rn

f(z)dz = k > e.

Therefore, if we take k0 = max{ 22senωn−1|Ω|n
C0πn , 3}, then M3 ≥ 22sen|Ω|ωn−1π

−n = 22s+nenM1ωn−1 for any
k ≥ k0. Thus from the result of Lemma 3.1, we have for any k ≥ k0

k(log k)s ≤M4(n, s, |Ω|n)C0 · (
k∑

j=1

βj + k), (3.10)

where M4(n, s, |Ω|n) = 2n+s

n (| log |Ω|nωn−1

n(2π)n |s + ns). That means, for any k ≥ k0,

k∑
j=1

βj ≥ C2k(log k)
s − k, (3.11)

where C2 = n
(
C02

n+s(| log |Ω|nωn−1

n(2π)n |s + ns)
)−1

. Theorem 1.3 is proved.

Proof of Theorem 1.4.

Proof. Let {β̃k}k≥1 be the sequence of Dirichlet eigenvalues of the infinitely degenerate Schrödinger operator
−△X − εV (x), {φ̃k}k≥1 be the corresponding eigenfunctions. Then the Hardy type estimate (1.3) gives

(1− ε)

∫
Ω

|Xφ̃j |2dx ≤
∫
Ω

φ̃j(x)(−△X φ̃j(x)− εV φ̃j(x)) = β̃j .

Taking Φ̃(x, y) =
∑k

j=1 φ̃j(x)φ̃j(y), then similar to the proof of Theorem 1.3, for k ≥ k0, we have

k∑
j=1

β̃j ≥ (1− ε)
(
(C2k(log k)

s − k
)
, (3.12)

where k0 and C2 are the same constants in Theorem 1.3. Theorem 1.4 is proved.
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4 Appendix

4.1 Finitely degenerate operators

4.1.1 Examples for degenerate operators

Example 4.1. Let X = (∂x1 , ∂x2 , · · · , xk1∂xn), then △X = ∂2x1
+ ∂2x2

+ · · · + (xk1∂xn)
2 with the Hörmander

index Q = k + 1 ≥ 1. This example can be extended to the case of x = (x′, x′′) ∈ Rl × Rn−l (1 ≤ l < n),
X = (∂x1 , ∂x2 , · · · , ϕ(x′)∂xn). The function ϕ(x′) is non negative and smooth, and for each (x′, x′′) ∈ Ω there
exists α0 ∈ Zl

+ (|α0| ≤ Q), such that ∂α0

x′ ϕ(x′)| ̸= 0.

Example 4.2. Let Xj = ∂xj + 2yj∂t, Yj = ∂yj − 2xj∂t, for j = 1, · · · , n, be the left invariant vector fields on
the Heisenberg group Hn, X = (X1, · · · , Xn, Y1, · · · , Yn). Then the degenerate elliptic operator

△Hn =

n∑
j=1

(
X2

j + Y 2
j

)
, (4.1)

is called Laplacian-Kohn operator on Hn. In this case the Hörmander index of X is Q = 2.

4.1.2 Some examples satisfying Hardy type inequality

Proposition 4.1. If vector fields X = (X1, · · · , Xn, Y1, · · · , Yn), Xj = ∂xj + 2yj∂t, Yj = ∂yj − 2xj∂t, for
j = 1, · · · , n, Ω is the bounded open set of Hn. Let singular potential functions

V1(x, y, t) =
(2n+ 1)4

(2n+ 2)2
1

((x2 + y2)2 + t2)
1
2

, (4.2)

and

V2(x, y, t) = (2n+ 1)2
x2 + y2

(x2 + y2)2 + t2
. (4.3)

Then V1 and V2 satisfy the following Hardy type inequality,∫
Ω

Viu
2dxdydt ≤

∫
Ω

|Xu|2dxdydt, for any u ∈ H1
X,0(Ω) and i = 1, 2.

Proof. See [13], Lemma 2.4 and Lemma 2.5.

Proposition 4.2. Let V (x) = (n−3
2 )2 1

|x|2 , n ≥ 3. Then for X = (∂x1 , ∂x2 , · · · , ϕ(x′)∂xn) as given in Example

4.1, we have following the Hardy type inequality,∫
Ω

V u2dx ≤
∫
Ω

|Xu|2dx, for any u ∈ H1
X,0(Ω). (4.4)

Proof. For n ≥ 3, C∞
0 (Ω\{0}) is dense in H1

X,0(Ω) (see [14]), then we only need to prove the result for the
function u ∈ C∞

0 (Ω\{0}).
Take a radial vector field R as,

R = x1∂x1 + x2∂x2 + · · ·+ xn−1∂xn−1 + xnφ(x
′)∂xn. (4.5)

Then one has R(V ) ≥ −2V and div(R) = n− 1 + φ(x′). Thus∫
Ω

−2V u2dx ≤
∫
Ω

R(V )u2dx = −
∫
Ω

div(R)V u2dx−
∫
Ω

V R(u2)dx.

This implies ∫
Ω

(n− 3 + φ(x′))V u2dx ≤ −
∫
Ω

V R(u2)dx.
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On the other hand,

−
∫
Ω

V R(u2)dx = −2

∫
Ω

V uR(u)dx

= −
∫
Ω

V (2ux1∂x1u+ 2ux2∂x2u+ · · ·+ 2uxn−1∂xn−1u+ 2uxnφ(x
′)∂xnu)dx

≤ 2
( ∫

Ω

V 2(x21 + x22 + · · ·+ x2n)u
2dx

) 1
2
( ∫

Ω

(
n−1∑
i=1

(∂xiu)
2 + (φ(x′)∂xnu)

2)dx
) 1

2 .

Observe that V (x21 + x22 + · · ·+ x2n) = (n−3
2 )2, and n− 3 + φ(x′) ≥ n− 3. Then we obtain,∫

Ω

V u2dx ≤
( ∫

Ω

V u2dx
) 1

2
( ∫

Ω

|Xu|2dx
) 1

2 ,

which means ∫
Ω

V u2dx ≤
∫
Ω

|Xu|2dx. (4.6)

4.2 Infinitely degenerate operator

4.2.1 Some examples satisfying Logarithmic regularity estimates

Let us introduce a sufficient condition for the infinitely degenerate vector fields X, in which the logarithmic
regularity estimate (1.9) will be satisfied. Let X = (X1, X2, · · · , Xm), a infinitely degenerate vector fields on
Ω̃ ⊂ Rn, XJ denote the repeated commutator

[Xj1 , [Xj2 , [Xj3 , · · · [Xjk−1
, Xjk ] · · · ]]], (4.7)

for J = (j1, · · · , jk), ji ∈ 1, · · · ,m, and |J | = k. For k ≥ 1, we take

G(x, k) = min
ξ∈Sn−1

∑
|J|≤k

|XJ (x, ξ)|2, g(t, j, k, x0) = G((exp tXj)(x0), k),

where (exp tXj)(x0) denotes the integral curve of Xj starting from x0 ∈ Γ. Here Γ = {x ∈ Ω̃; ∃ ξ ∈
Sn−1, XJ(x, ξ) = 0, for any J}, and gj,kI (x0) = 1

|I|
∫
I
g(t, j, k, x0)dt is the mean value of g(t, j, k, x0) on the

interval I. One has the following result:

Proposition 4.3. If s > 0, and there exists ε1 > 0 such that

inf
δ>0,k∈N,µ>0,1≤j≤m

{
sup

(
|I| 1s | log gj,kI (x0)|

)
; I ⊂ (−µ, µ), gj,kI (x0) < δ)

}
< ε1, (4.8)

for any x0 ∈ Γ, then there exist constants C0 > 0 which is independent with ε1 and Cε1 such that

∥(log Λ)su∥2L2(Ω) ≤ C0ε
2s
1

∫
Ω

|Xu|2dx+ Cε1∥u∥2L2(Ω),

for any u ∈ C∞
0 (Ω̃).

Proof. See [16], Proposition 5.2.

For infinitely degenerate operators, we have following examples.

Example 4.3. Let s > 0, and

φ(x1) =

{
e
− 1

|x1|1/s , x1 ̸= 0 ,

0, x1 = 0.
(4.9)

Then X = (∂x1 , · · · , ∂xn−1 , φ(x1)∂xn) with infinitely degenerate surface Γ = {x1 = 0}. We can prove that the
vector fields X will satisfy the logarithmic regularity estimate (1.9) (cf. [2, 14]).
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Actually, in this case, we know that G(x, 1) = minξ∈Sn−1

∑
|J|≤1 |XJ(x, ξ)|2 = minξ∈Sn−1(

∑n−1
j=1 ξ

2
j +

φ2(x′)ξ2n + (∂φ(x′)
∂xi

ξi)
2), Γ = {x = (0, x2, · · · , xn) ∈ Ω̃}. Thus for x0 = (x′, xn) = (0, x2, · · · , xn−1, xn) ∈ Γ,

and ξ0 = (0, · · · , 0, 1) ∈ Sn−1, the unit normal vector on Γ, we have G(x0, 1) = φ2(x′)|x1=0 = 0. Also from

[Xi, Xj ] =

{
∂φ(x′)
∂x1

∂xn i = 1, j = n,

0 else,

we can deduce that, for x0 ∈ Γ, G(x0, k) = 0 for k ≥ 2.
For t is small and let y = exp(tXj)(x0) = (y′, yn) = (y1, y2, · · · , yn), then g(t, j, 1, x0) = G((exp tXj)(x0), 1) =

G(y, 1) = φ2(y′), let t′ = (t, 0, · · · , 0) ∈ Rn−1, which means

g(t, j, 1, x0) =

{
φ2(t′), j = 1,

0, j ̸= 1.

Then

g1,1I (x0) =
1

|I|

∫
I

g(t, 1, 1, x0)dt =
1

|I|

∫
I

e
− 2

|t|1/s dt.

We consider |I| 1s | log g1,1I (x0)|, I ⊂ (−µ, µ). If 0 /∈ I, then as |I| → 0, | log g1,1I (x0)| ≤ M , one has

|I| 1s | log g1,1I (x0)| → 0. If 0 ∈ I, by the symmetry of φ(t), we suppose that I = (0, a), then

|I| 1s | log g1,1I (x0)| = −a 1
s log

(1
a

∫ a

0

e
− 2

|t|1/s dt
)
≤ −a 1

s log
(1
2
e
− 2

| a
2
|1/s

)
≤ 2

1
s+1 + a

1
s log 2.

So we choose ε0 = 2
1
s+1 + log 2, then as a → 0, |I| 1s | log g1,1I (x0)| < ε0. By using Proposition 4.3, we can

deduce that X = (∂x1 , · · · , ∂xn−1 , φ(x
′)∂xn) satisfies the logarithmic regularity estimate (1.9).

The examples below give more infinitely degenerate vector fields X in which the logarithmic regularity
estimate (1.9) will be satisfied (cf. [2, 16]).

Example 4.4. The system of vector fields X = (∂x1 , · · · , ∂xn−1 , φ(x1)∂xn), where

φ(x1) =

e
− 1

|x1 sin( π
x1

)|1/s
, x1 ̸= 0 ,

0, x1 = 0.
(4.10)

. Then X is infinitely degenerate on Γ =
∪

j∈Z+
Γj, for Γj = {x1 = 1

j }, j ≥ 1, and Γ0 = {x1 = 0}.

Example 4.5. The system of vector fields X = (∂x1 , · · · , ∂xn−1 , φ(x
′)∂xn), for k ≥ 1 and n ≥ 3, where

φ(x′) =

{
e
− 1

|x1|1/s x2
k, x1 ̸= 0,

0, x1 = 0.
(4.11)

The the infinitely degenerate surface for X is Γ = {x1 = 0}.

4.2.2 Some examples satisfying Hardy type inequalities

Let the vector fields X = (∂x1 , · · · , ∂xn−1 , φ(x
′)∂xn) is defined on an open domain Ω̃ ⊂ Rn for n ≥ 3. Ω

is a bounded open subset in Ω̃ which contains the origin, and ∂Ω is smooth. Denote x′ = (x1, · · · , xl) for
1 ≤ l < n, x = (x′, x′′), and φ(x′) is a non-negative C∞-smooth function in x′, which satisfies, for any α ∈ Zl

+,
that ∂αx′φ(x′)|x′=0 = 0. The infinitely degenerate surface of X is Γ = {x′ = 0}.

Proposition 4.4. i). If V1(x) = (n−3
2 )2 1

|x|2 , then V1(x) ∈ C∞(Ω\{0}) (for n ≥ 3), and∫
Ω

V1u
2dx ≤

∫
Ω

|Xu|2dx, for any u ∈ H1
X,0(Ω). (4.12)
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ii). If V2(x) = (n−2
2 )2

x−2
1 exp (− 1

|x1|2
)

exp (− 1
|x1|2

)+
∑n

i=2 x2
i

, x = (x1, x
′′) = (x1, x2, · · · , xn), then V2(x) ∈ C∞(Ω\{0}) (for

n ≥ 3), and when x1 → 0 we have V2(x1, x
′′) → 0 if x′′ ̸= 0 and V2(x1, x

′′) → +∞ if x′′ = 0. Thus for

Ω ⊂
{
x = (x1, x

′′) ∈ Ω̃ | |x1| ≤
√

1
5

}
, there holds

∫
Ω

V2u
2dx ≤

∫
Ω

|Xu|2dx, for any u ∈ H1
X,0(Ω). (4.13)

Proof. The proof of (4.12) is similar to the proof of the result in Proposition 4.2. Here we prove only the
inequality (4.13). Let us take the following radial vector field R2,

R2 = x31∂x1 + x2∂x2 + · · ·+ xn−1∂xn−1 + xnφ(x
′)∂xn. (4.14)

Then R2(V2) ≥ −2x21V2 and div(R2) = 3x21 + n− 2 + φ(x′), which means∫
Ω

−2x21V2u
2dx ≤

∫
Ω

R2(V2)u
2dx = −

∫
Ω

div(R2)V2u
2dx−

∫
Ω

V2R2(u
2)dx.

Thus we have ∫
Ω

(x21 + n− 2 + φ(x′))V2u
2dx ≤ −

∫
Ω

V2R2(u
2)dx, (4.15)

and

−
∫
Ω

V2R2(u
2)dx = −2

∫
Ω

V2uR2(u)dx

= −
∫
Ω

V2(2ux
3
1∂x1u+ 2ux2∂x2u+ · · ·+ 2uxn−1∂xn−1u+ 2uxnφ(x

′)∂xnu)dx

≤ 2
( ∫

Ω

V 2
2 (x

6
1 + x22 + · · ·+ x2n)u

2dx
) 1

2
( ∫

Ω

(Σn−1
i=1 (∂xiu)

2 + (φ(x′)∂xnu)
2)dx

) 1
2 .

Since x61 ≥ exp
{
− 1

|x1|2
}
for |x1| ≤

√
1
5 , then

V2(x
6
1 + x22 + · · ·+ x2n) ≤ x41

(n− 2

2

)2

≤
(n− 2

2

)2

,

and

x21 + n− 2 + φ(x′) ≥ n− 2.

Thus we have from (4.15), ∫
Ω

V2u
2dx ≤ (

∫
Ω

V2u
2dx)

1
2 (

∫
Ω

|Xu|2dx) 1
2 ,

which implies ∫
Ω

V2u
2dx ≤

∫
Ω

|Xu|2dx. (4.16)

The Hardy type inequality (4.13) is proved.
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