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Abstract

We study the concurrence of arbitrary dimensional bipartite quantum systems. By using a

positive but not completely positive map, we present an analytical lower bound of concurrence.

Detailed examples are used to show that our bound can detect entanglement better and can improve

the well known existing lower bounds.
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Quantum entanglement plays significant roles in quantum information processing [1].

The concurrence [2] is one of the important measures of quantum entanglement. It plays

an essential role in describing quantum phase transitions in various interacting quantum

many-body systems [3, 4]. However, due to the extremizations involved in the calculation,

for general high dimensional case only a few explicit analytic formulae for concurrence have

been found for some special symmetric states [5].

To estimate the concurrence for general bipartite states, the lower bounds of concurrence

have been extensively studied [6–18]. In [18] a lower bound of concurrence based on a positive

map was obtained, which is better than other lower bounds for some quantum states. In

this paper we use a series of generalized positive maps which include the one in [18] as a

special case. We show that these generalized maps can also give rise to lower bounds of

concurrence which improves the existing ones.

Let H1 and H2 be n-dimensional vector spaces. A bipartite quantum pure state |ϕ⟩ in

H1 ⊗H2 has a Schmidt form

|ϕ⟩ =
∑
i

αi|e1i ⟩ ⊗ |e2i ⟩, (1)

where |e1i ⟩ and |e2i ⟩ are the orthonormal bases in H1 and H2 respectively, αi are the Schmidt

coefficients satisfying
∑

i α
2
i = 1. The concurrence of the state |ψ⟩ is given by

C(|ϕ⟩) =
√

2(1− Trρ21) = 2

√∑
i<j

α2
iα

2
j , (2)

where ρ1 is the reduced density matrix obtained by tracing over the second subsystem of

the density matrix ρ = |ϕ⟩⟨ϕ|, ρ1 = Tr2|ϕ⟩⟨ϕ|.

A general mixed state in H1⊗H2 has pure state decompositions, ρ =
∑

i pi|ϕi⟩⟨ϕi|, where

pi ≥ 0 and
∑

i pi = 1. The concurrence is extended to mixed states ρ by the convex roof,

C(ρ) = min
{pi,|ϕi⟩}

∑
i

piC(|ϕi⟩). (3)

where the minimum is taken over all possible pure state decompositions {pi, |ϕi⟩} of ρ.

Let f(ρ) be a real-valued and convex function of ρ such that for any pure state |ϕ⟩ with

Schmidt decomposition (1),

f(|ϕ⟩⟨ϕ|) ≤ 2
∑
i<j

αiαj. (4)
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Breuer derived in [10] that C(ρ) satisfies

C(ρ) ≥

√
2

N(N − 1)
f(ρ). (5)

The f(ρ) corresponding to the lower bounds in [8] are the ones with respect to the PPT

criterion and the realignment criterion, fppt(ρ) = ||ρT1|| − 1, fr(ρ) = ||ρ̃|| − 1, where || · ||

stands for the trace norm of a matrix, T1 the partial transposition associated with the space

H1 and ρ̃ the realigned matrix of ρ. Namely

CPPT (ρ) ≥

√
2

n(n− 1)
(∥ρT1∥ − 1), (6)

Cr(ρ) ≥

√
2

n(n− 1)
(∥ρ̃∥ − 1). (7)

The lower bound obtained in [18] corresponds to f1(ρ) = ∥(I ⊗ Φ)ρ∥ − (n− 1),

C1(ρ) ≥

√
2

n(n− 1)
[∥(I ⊗ Φ)ρ∥ − (n− 1)], (8)

where the positive but not completely positive map Φ maps an n× n matrix A, (A)ij = aij,

i, j = 1, ...n, to an n × n matrix Φ(A) with (Φ(A))ij = −aij for i ̸= j, and (Φ(A))ii =

(n− 2)aii + ai′i′ , i
′ = i+ 1( mod n),

Φ(A) = (n− 1)
n∑

i=1

EiiAEii +
n∑

i=1

Ei,i+1AEi,i+1

−(
n∑

i=1

Eii)A(
n∑

i=1

Eii),

(9)

Eij is the matrix with the (i, j) entry 1 and the other entries 0.

We consider the linear map Φt,π defined by

Φt,π(X) =


a11 −x12 · · · −x1n
−x21 a22 · · · −x2n
...

...
. . .

...

−xn1 −xn2 · · · ann

 , (10)

where X = (xij) ∈ Mn(C) is any n × n complex matrix, aii = (n − 1 − t)xii + txπ(i),π(i),

i = 1, ..., n, 0 ≤ t ≤ n and π is any permutation of (1, 2, . . . , n). When t = 1, the map Φt,π

is reduced to Φ in (9).
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According to [19], Φt,π is positive if and only if 0 ≤ t ≤ n
l(π)

, where l(π) is the length of

π. π is said to be cyclic if l(π) = n. It has been shown that the map corresponds to the

optimal witness when l(π) = n for n = 3 [19]. In the following we consider the case that π

is cyclic, i.e. 0 ≤ t ≤ 1. Without loss of generality, we assume that the cyclic π is defined

by π(i) = i+ 1(modn), i = 1, 2, . . . , n.

Theorem. For any bipartite quantum state ρ ∈ H1 ⊗H2, the concurrence C(ρ) satisfies

C(ρ) ≥

√
2

n(n− 1)
[∥(In ⊗ Φt,π)ρ∥ − (n− 1)], (11)

where In is the n× n identity matrix, π is cyclic and 0 ≤ t ≤ 1.

Proof. Set f(ρ) = ∥(In ⊗ Φt,π)ρ∥ − (n − 1). It is apparent that f(ρ) is real-valued and

convex due to the convexity of the trace norm. What we need is to show that for any pure

state (1), the inequality (4) holds.

As the trace norm does not change under local coordinate transformations, we can take

|ϕ⟩ = (α1, 0, · · · , 0, 0, α2, 0, · · · , 0, 0, 0, α3, 0, · · · , 0, · · · , αn)
t, where t denotes transpose, the

Schmidt coefficients satisfy 0 ≤ αi ≤ 1, (i = 1, 2, · · · , n) and
∑n

i=1 α
2
i = 1.

It is direct to verify that In ⊗ Φt,π(|ϕ⟩⟨ϕ|) has n2 − 2n eigenvalues 0 and n eigenvalues

tα2
1, tα

2
2, · · · , tα2

n. And the rest n eigenvalues are given by the eigenvalues of the following

matrix,

B =


(n− 1− t)α2

1 −α1α2 · · · −α1αn

−α1α2 (n− 1− t)α2
2 · · · −α2αn

...
...

. . .
...

−αnα1 −αnα2 · · · (n− 1− t)α2
n

 .

The eigenpolynomial equation of B is given by

g(λ) =|λIn −B| = λn − (n− 1− t)λn−1 + (n− t)(n− 2− t)(
∑
i<j

α2
iα

2
j )λ

n−2

+ · · ·+ (−1)k(n− t)k−1(n− 1− k − t)(
∑

i1<i2<···<ik

α2
i1
α2
i2
· · ·α2

ik
)λn−k

+ · · ·+ (−1)n−1(n− t)n−2(1− t)(
∑

i1<i2<···<in−1

α2
i1
α2
i2
· · ·α2

in−1
)λ

+ (−1)n+1t(n− t)n−1

n∏
i=1

α2
i .

(12)
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Let λ1, λ2, · · · , λn, λ1 ≤ λ2 ≤ . . . ≤ λn, be the roots of the equation g(λ) = 0. We have

n∑
i=1

λi = n− 1− t,

n∏
i=1

λi = (−1)2n+1t(n− t)n−1

n∏
i=1

α2
i .

(13)

The inequality (4) we need to prove has the form now,

n∑
i=1

|λi|+ t− (n− 1) ≤ 2
∑
i<j

αiαj. (14)

Set β =
∏n

i=1 α
2
i . If β = 0, then g(0) = 0, 0 is an eigenvalue of B. From the derivation

of g(λ) with respect to λ, we have

g′(λ) = nλn−1 − (n− 1)(n− 1− t)λn−2 + (n− 2)(n− t)(n− 2− t)(
∑
i<j

α2
iα

2
j )λ

n−3

+ · · ·+ (−1)k(n− k)(n− t)k−1(n− 1− t)(
∑

i1<i2<···<ik

α2
i1
α2
i2
· · ·α2

ik
)λn−k−1

+ · · ·+ (−1)n−1(n− t)n−2(1− t)(
∑

i1<i2<···<in−1

α2
i1
α2
i2
· · ·α2

in−1
).

(15)

If n is even, for all λ ≤ 0, we have g′(λ) ≤ 0, that is g(λ) is monotonically decreasing for

λ ≤ 0. Taking g(0) = 0 into account, we obtain that g(λ) = 0 has no negative root, then

the inequality (14) becomes:

n∑
i=1

λi + t− (n− 1) ≤ 2
∑
i<j

αiαj. (16)

According to the equations (13), (16) always holds.

If n is odd, for all λ ≤ 0, we have g′(λ) ≥ 0, which means that g′(λ) is monotonically

increasing for λ ≤ 0. Hence g(λ) = 0 has no negative root as well, and the inequality (16)

also holds.

If β ̸= 0, g′(λ) is a monotonic function when λ ≤ 0. From g(0) = (−1)n+1t(n −

t)n−1
∏n

i=1 α
2
i , we can get that the equation g(λ) = 0 has only one negative root λ1. The

inequality (14) becomes

n∑
i=1

λi − 2λ1 + t− (n− 1) ≤ 2
∑
i<j

αiαj. (17)
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To prove the above inequality, we only need to prove λ1 ≥ −
∑

i<j αiαj by using of the

equations (13). From the definition of the g(λ), we have g(−
∑

i<j αiαj) = |−
∑

i<j αiαjIn−

B| = (−1)n|
∑

i<j αiαjIn + B|. Due to the property of the diagonally dominant matrix∑
i<j αiαjIn+B, |

∑
i<j αiαjIn+B| ≥ 0 when n is even. We can get that λ1 ≥ −

∑
i<j αiαj

as g(λ) is monotonically decreasing when λ ≤ 0. In the same way one can prove the result

when n is odd. �
As the positive map Φt,π in (10) includes the map Φ in (9) as a special case, our lower

bound (11) is a generalized form of (8) in [18]. Therefore all states whose entanglement can

be identified by [18] can be also identified by our lower bound (11). In fact, the lower bound

(11) can detect entanglement that other lower bounds cannot. Let us consider a state of

n = 3,

ρ =
1

(4x+ 5y)



y 0 0 0 0 0 0 0 0

0 x 0 x 0 x 0 x 0

0 0 y 0 0 0 0 0 0

0 x 0 x 0 x 0 x 0

0 0 0 0 y 0 0 0 0

0 x 0 x 0 x 0 x 0

0 0 0 0 0 0 y 0 0

0 x 0 x 0 x 0 x 0

0 0 0 0 0 0 0 0 y



,

where x > 0 and y > 0. Under the positive map Φt,π, the density matrix ρ′ = (I3 ⊗ Φt,π)ρ

has the following form,

ρ′ =
1

(4x+ 5y)



a 0 0 0 0 0 0 0 0

0 b 0 −x 0 −x 0 −x 0

0 0 2y 0 0 0 0 0 0

0 −x 0 b 0 −x 0 −x 0

0 0 0 0 a 0 0 0 0

0 −x 0 −x 0 2x 0 −x 0

0 0 0 0 0 0 a 0 0

0 −x 0 −x 0 −x 0 b 0

0 0 0 0 0 0 0 0 2y



,
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where a = (2− t)y + tx and b = (2− t)x+ ty. The set of eigenvalues of ρ′ is given by

λ1 =λ2 =
2y

4x+ 5y
,

λ3 =λ4 = λ5 =
(2− t)y + tx

4x+ 5y
,

λ6 =λ7 =
(3− t)x+ ty

4x+ 5y
,

λ8,9 =
1

4x+ 5y

[
(2− t)x+ ty

±
√
[(2− t)x+ ty]2 + 4[(3 + 2t)x2 − 2txy]

]
.

For (3 + 2t)x− 2ty > 0, from (11) the concurrence of ρ satisfies,

C(ρ) ≥ 1

4x+ 5y

[
(2− t)x+ ty

±
√
[(2− t)x+ ty]2 + 4[(3 + 2t)x2 − 2txy]

]
.

(18)

From the lower bound of concurrence in [18] one has,

C(ρ) ≥
−(x+ y) +

√
(x+ y)2 + 4[5x2 − 2xy]

4x+ 5y
. (19)

The lower bound (6) gives rise to

C(ρ) ≥ 2(2x− y)

4x+ 5y
. (20)

While from lower bound (7) one has

C(ρ) ≥ 2
√

4x2 + y2 − 4y

4x+ 5y
. (21)

To compare these lower bounds, we take y = 1 and t = 1/2. The lower bounds obtained

in [7, 8, 18] fail to detect the entanglement of ρ when 1
4
< x < 2

5
, see Fig.. Our lower bound

is better than other lower bounds for x ∈ (1
4
, 1).

The lower bound (11) depends on the parameter t. The choice of t depends on detailed

quantum states. Fig. shows the entanglement detection ability of (11) according to t. One

can see that when t = 0 (11) can detect the entanglement of (18) better, see Fig..

We have presented a new lower bound of concurrence for arbitrary dimensional bipartite

quantum systems, in terms of a positive but not completely positive map. The lower bound

in [18] can detect entanglement for some quantum states better than some well-known

separability criteria, and improves the lower bounds such as from the PPT, realignment
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Fig. 1. The lower bound of concurrence of (18), solid line for bound (18), dashed line for bound

(19), dotted line for bound (20), and thick line for bound (21).
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Fig. 2. The lower bound of concurrence of (18) based on the maps Φt,π for t ∈ [0, 1].
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Fig. 3. The lower bound of concurrence of (18) from (11). Solid, dashed and dotted lines

correspond respectively to the maps Φ0,π, Φ 1
2
,π and Φ1,π.
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criteria and the Breuer’s entanglement witness. Our bound is even better than the one in

[18], since our bound includes the bound in [18] as a special case. It helps to detect quantum

entanglement for certain classes of quantum states.
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