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Abstract

The present paper is concerned with the existence of multiple solutions for
semi-linear corner-degenerate elliptic equations with subcritical conditions.
First, we introduce the corner type weighted p-Sobolev spaces and discuss
the properties of continuous embedding, compactness and spectrum. Then,
we prove the corner type Sobolev inequality and Poincaré inequality, which
are important in the proof of the main result.
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1. Introduction

WriteM = [0, 1)×X×[0, 1) as a local model of stretched corner-manifolds
(i.e. manifolds with corner singularities) with dimension N = n + 2 ≥ 3.
Here X is a closed compact sub-manifold of dimension n embedded in the
unit sphere of Rn+1. LetM0 denote the interior ofM and ∂M = {0}×X×{0}
denote the boundary of M. The so-called corner-Laplacian is defined as

∆M = (r∂r)
2 + (∂x1)

2 + · · ·+ (∂xn)
2 + (rt∂t)

2,

which is a degenerate elliptic operator on the boundary ∂M. The present
paper is concerned with the existence of multiple weak solutions for the
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following Dirichlet problem{
−∆M u = g(z, u) z := (r, x, t) ∈ M0

u = 0 on ∂M.
(1.1)

Our main result can be stated as follows.

Theorem 1.1. Let g(z, u) : M × R → R be a Carathéodory function with
the following assumptions

(H-1) let g(z, u) be odd, i.e g(z,−u) = −g(z, u);
(H-2) 2 < p < 2∗ = 2N

N−2 and there exists a constant C0 > 0 such that the
following estimate holds almost everywhere

|g(z, u)| ≤ C0(1 + |u|p−1);

(H-3) For the primitive G(·, u) =
∫ u
0 g(·, v)dv, there exist q > 2 and a con-

stant R0 such that for almost every z ∈ M and |u| ≥ R0 we have

0 < qG(z, u) ≤ g(z, u)u.

Then the Dirichlet problem (1.1) admits infinity many weak solutions in the

corner type weighted Sobolev space H1,(N−1
2
,N
2
)

2,0 (M).

To show this result, methods of variational theory are employed, which
can be trace back to Ambrosetti and Rabinowitz [1] in 1973, and Rabinowitz
[11] in 1974. In [2], Bartolo, Benci and Fortunato proved optimal multiplicity
results in the case of degenerate critical values. All these results also can
be found in book [15]. Authors studied the Dirichlet problem of semi-linear
elliptic equations on stretched cone in [3] and [4]. The corresponding cone
Laplacian ∆B = (x1∂x1)

2 + (∂x2)
2 + · · · + (∂xn)

2, which is degenerate at
x1 = 0. This kind of operator is a simple example of conical differential
operators. Also the authors studied similar nonlinear problem in [5] for the
edge Laplacian△E = (x1∂x1)

2+(∂x2)
2+· · ·+(∂xn)

2+(x1∂y1)
2+· · ·+(x1∂yq)

2

with edge singularity at x1 = 0. On the other hand, the pseudo-differential
operators with conical singularities and edge singularities have been wildly
studied from various motivations by Egorov and Schulze [6], Schulze [13],
Schrohe and Seiler [12], Melrose and Mendoza [9] and Mazzeo [8]. In this
paper, we pursue further study for the existence of solutions to semi-linear
degenerate elliptic equations on manifold with corner singularities. Here the
so called corner Laplacian ∆M = (r∂r)

2 + (∂x1)
2 + · · · + (∂xn)

2 + (rt∂t)
2 is

degenerate at both r = 0 and t = 0, which is named after the local structure
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of manifold with corner singularities. R. Melrose and P. Piazza studied the
structure of manifolds with corners in [10]. Schulze discussed the calculus
of corner degenerate pseudo-differential operators in [14].

This paper is organized as follows. The motivation of corner degenerate
Laplacian ∆M will be given as first. Then, in section 2, we introduce the

corner type weighted p-Sobolev spaces Hm,(γ1,γ2)
p (M) with 1 ≤ p < +∞, the

smoothness m ∈ N and the double weight data γ1, γ2 ∈ R. The continuous

embedding, compactness and spectral property of Hm,(γ1,γ2)
p (M) will be also

given in section 2. Further, we extend the classic Sobolev inequality and
Poincaré inequality to the corner type weighted Sobolev spaces in section 3,
which are crucial for the proof of Theorem 1.1. Finally, we give the proof for
the existence of multiple solutions for the Dirichlet problem 1.1 in section 4.

2. Corner type weighted p-Sobolev spaces

Let X ⊂ Sn be a bounded open set in the unit sphere of Rn+1
x̃ , then the

straight cone is defined as

X∆ =
{
x̃ ∈ Rn+1 | x̃ = 0 or

x̃

|x̃|
∈ X

}
.

In general, we can define an infinite cone in Rn+1 as a quotient space

X∆ = (R+ ×X)/({0} ×X),

with base X. By using the cylindrical coordinates in Rn+1 \ {0}, the coor-
dinates (r, φ) ∈ X∆ \ {0} are the standard coordinates. This gives us the
description of X∆ \ {0} in the form R+ ×X. The stretched cone is defined
as

X∧ = R+ ×X.

Set (r, x) ∈ X∧. It is sufficient to consider the case for 0 ≤ r < 1, which
gives us a finite cone

E = ([0, 1)×X)/({0} ×X). (2.1)

The finite stretched cone to E is

E = [0, 1)×X,

with a smooth boundary ∂E = {0} ×X.
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An infinite corner can be defined as

E∆ = (E × R+)/(E × {0}),

where the base E is a finite cone defined in (2.1). The stretched corner is

E∧ = E× R+.

Let (r, x, t) ∈ E∧, we focus, in this paper, on the case of 0 ≤ t < 1, then the
finite corner is

M = (E × [0, 1))/(E × {0}).

Thus
M = E× [0, 1) = [0, 1)×X × [0, 1), (2.2)

is a finite stretched corner with the smooth boundary ∂M = ∂E × {0} =
{0} ×X × {0} (see figure 1 and figure 2 below).

Figure 1 Figure 2

The typical degenerate differential operator A on the stretched cone E
is as follows,

A = r−µ
∑
j≤µ

aj(r)(r∂r)
j = r−µAE,

with coefficients aj(r) ∈ C∞(R+,Diffµ−j(X)). Here AE is degenerate cone
operator. Denote Diffµdeg(E) for the set of cone differential operators as A.
The typical differential operator B on the stretched corner M is then of the
following form

B = t−ν
∑
l≤ν

bl(t)(t∂t)
l,

where the coefficients bl(t) ∈ C∞(R+,Diffν−ldeg (E)), i.e.

bl(t) = r−(ν−l)
∑

j≤(ν−l)

ajl(r, t)(r∂r)
j ,
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with ajl(r, t) ∈ C∞(R+,Diffν−l−j(X)). It implies that

B = (rt)−ν
∑
j+l≤ν

ãjl(r, t)(r∂r)
j(rt∂t)

l = (rt)−νBM,

where ãjl(r, t) ∈ C∞(R+,Diffν−l−j(X)) and BM is called as a degenerate
corner operator. In fact we have following Riemannian metric on the corner
M

dt2 + t2(dr2 + r2gX),

where gX is a Riemannian metric on X. Then the corresponding gradient
operator with corner degeneracy is

∇M = (r∂r, ∂x1 , ..., ∂xn , rt∂t).

Now we define the weighted Lγ1,γ2p space on R+ × Rn × R+ as follows.

Definition 2.1. Let (r, x, t) ∈ R+ × Rn × R+, weight datas γ1 ∈ R, γ2 ∈ R
and 1 ≤ p < +∞. Then Lγ1,γ2p (R+ ×Rn ×R+,

dr
r dx

dt
rt ) denotes the space of

all u(r, x, t) ∈ D′(R+ × Rn × R+) such that

∥u∥Lγ1,γ2
p

=
( ∫

R+×Rn×R+

|r
N
p
−γ1t

N
p
−γ2u(r, x, t)|pdr

r
dx
dt

rt

)1/p
< +∞.

By the above weighted Lγ1,γ2p space, we can define the following weighted
p-Sobolev spaces on R+ × Rn × R+ with natural scale for all 1 ≤ p <∞.

Definition 2.2. Let m ∈ N, γ1, γ2 ∈ R, and set N = n + 2, the weighted
Sobolev space

Hm,(γ1,γ2)
p (R+ × Rn × R+) = {u ∈ D′(R+ × Rn × R+)|

(r∂r)
l∂αx (rt∂t)

ku(r, x, t) ∈ Lγ1,γ2p (R+ × Rn × R+,
dr

r
dx
dt

rt
)},

for k, l ∈ N and the multi-index α ∈ Nn, with k + |α| + l ≤ m. Moreover,

the closure of C∞
0 functions in Hm,(γ1,γ2)

p (R+ × Rn × R+) is denoted by

Hm,(γ1,γ2)
p,0 (R+ × Rn × R+).

Similarly, we can define the following weighted p-Sobolev spaces on an
open stretched corner R+ ×X × R+,

Hm,(γ1,γ2)
p (R+ ×X × R+) =

{
u ∈ D′(R+ ×X × R+)|

(r∂r)
l∂αx (rt∂t)

ku(r, x, t) ∈ Lγ1,γ2p (R+ ×X × R+,
dr

r
dx
dt

rt
)
}
,
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for k, l ∈ N and the multi-index α ∈ Nn, with k + |α| + l ≤ m, which is a
Banach space with the following norm,

∥u∥Hm,(γ1,γ2)
p

=
{ ∑
l+|α|+k≤m

∫
R+×X×R+

|r
N
p
−γ1t

N
p
−γ2

(r∂r)
l∂αx (rt∂t)

ku(r, x, t)|pdr
r
dx
dt

rt

}1/p
.

Moreover, the subspace Hm,(γ1,γ2)
p,0 (R+ ×X × R+) denotes as the closure of

C∞
0 functions in Hm,(γ1,γ2)

p (R+ ×X × R+).
Now we can introduce the following weighted p-Sobolev space on the

finite stretched corner M defined in (2.2).

Definition 2.3. Let m ∈ N, 1 ≤ p < ∞, and γ1, γ2 ∈ R, Wm,p
loc (M0) is the

classical local Sobolev space. Then we define

Hm,(γ1,γ2)
p (M) =

{
u(r, x, t) ∈Wm,p

loc (M0) |

(ωσ)u ∈ Hm,(γ1,γ2)
p (R+ ×X × R+)

}
,

for any cut-off functions ω = ω(r, x) and σ = σ(t, x), supported by a collar
neighborhoods of (0, 1)× ∂M and ∂M× (0, 1) respectively.

It can be deduced from Definition 2.3 that Hm,(γ1,γ2)
p (M) is a Banach

space for 1 ≤ p < ∞, and is a Hilbert space for p = 2. Also we have that

rγ
′
1tγ

′
2Hm,(γ1,γ2)

p (M) = Hm,(γ1+γ′1,γ2+γ
′
2)

p (M).
Here ω(r, x) and σ(t, x) can be simply denoted by ω(r) and σ(t) respec-

tively. Observe that there exist ε1 ∈ (0, 1) and ε2 ∈ (0, 1), depending on
ω(r) and σ(t) respectively, such that ω(r) = 1 for r ∈ supp ω∩{0 < r ≤ ε1}
and σ(t) = 1 for t ∈ supp σ ∩ {0 < t ≤ ε2}. Thus

Hm,(γ1,γ2)
p,0 (M) =[ω(r)][σ(t)]Hm,(γ1,γ2)

p,0 (R+ ×X × R+)

+[1− ω(r)][σ(t)]Hm,γ2
p,0 (Ωε1 ×X × R+)

+[ω(r)][1− σ(t)]Hm,γ1
p,0 (R+ ×X × Ωε2)

+[1− ω(r)][1− σ(t)]Wm,p
0 (Ωε1 ×X × Ωε2), (2.3)

where Ωε1 = (ε1, 1) and Ωε2 = (ε2, 1), and the weighted p-Sobolev spaces
Hm,γ1
p,0 (R+ × X × Ωε2) and Hm,γ2

p,0 (Ωε1 × X × R+) are the closures of C∞
0
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functions in the following weighted edge p-Sobolev spaces (cf. [5])

Hm,γ1
p (R+ ×X × Ωε2) := {u(r, x, t) ∈Wm,p

loc (R+ ×X × Ωε2) |

r
N
p
−γ1(r∂r)

k∂αx (r∂t)
lu ∈ Lp(R+ ×X × Ωε2 ,

dr

r
dx
dt

r
)}

for k, l ∈ N and multi-index α ∈ Nn, with k + |α|+ l ≤ m, and

Hm,γ2
p (Ωε1 ×X × R+) := {u(r, x, t) ∈Wm,p

loc (Ωε1 ×X × R+)|

t
N
p
−γ2(t∂r)

k∂αx (t∂t)
lu ∈ Lp(Ωε1 ×X × R+,

dr

t
dx
dt

t
)},

for k, l ∈ R and multi-index α ∈ Rn, with k + |α|+ l ≤ m.
We have the following embedding theorem:

Proposition 2.4. The embedding Hm′,(γ′1,γ
′
2)

p,0 (M) ↪→ Hm,(γ1,γ2)
p,0 (M) is con-

tinuous for m′ ≥ m, γ′1 ≥ γ1, γ
′
2 ≥ γ2 and is compact for m′ > m, γ′1 ≥ γ1,

γ′2 ≥ γ2.

Proof. The weighted corner Sobolev spaces Hm,(γ1,γ2)
p,0 (M) are in the form of

non-direct sum as (2.3). Then, for classical Sobolev spaces Wm,p
0 (Ωε1 ×X×

Ωε2), it is well known that the embedding

Wm′,p
0 (Ωε1 ×X × Ωε2) ↪→Wm,p

0 (Ωε1 ×X × Ωε2) (2.4)

is continuous for m′ ≥ m and is compact for m′ > m. According to Propo-
sition 2.6 in [5], we know that the following embedding

[1−ω(r)][σ(t)]Hm′,γ′2
p,0 (Ωε1 ×X×R+) ↪→ [1−ω(r)][σ(t)]Hm,γ2

p,0 (Ωε1 ×X×R+)

is continuous for m′ ≥ m, γ′2 ≥ γ2 and is compact for m′ > m, γ′2 ≥ γ2; and
the embedding

[ω(r)][1−σ(t)]Hm′,γ′1
p,0 (R+×X×Ωε2) ↪→ [ω(r)][1−σ(t)]Hm,γ1

p,0 (R+×X×Ωε2)

is continuous for m′ ≥ m, γ′1 ≥ γ1 and is compact for m′ > m, γ′1 ≥ γ1.
By (2.3), it is sufficient to prove that the embedding

[ω(r)][σ(t)]Hm′,(γ′1,γ
′
2)

p,0 (R+×X×R+) ↪→ [ω(r)][σ(t)]Hm,(γ1,γ2)
p,0 (R+×X×R+)

is continuous for m′ ≥ m, γ′1 ≥ γ1, γ
′
2 ≥ γ2 and is compact for m′ > m,

γ′1 ≥ γ1, γ
′
2 ≥ γ2, for any cut-off functions ω(r) and σ(t) with support in a

collar neighborhoods of (0, 1)× ∂M and ∂M× (0, 1) respectively.
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For ũ(r, x, t) ∈ Hm,(γ1,γ2)
p (R+×X×R+), we set u(r, x, t) = ω(r)σ(t)ũ(r, x, t)

and the following mappings

Sp,γ2 : u(r, x, t) → e
−τ(N

p
−γ2)u(r, x, e−τ ) := v(r, x, τ) (2.5)

with τ = − ln t, and

Sp,γ1 : v(r, x, τ) → e
−ρ(N

p
−γ1)v(e−ρ, x, e−ρζ) := w(ρ, x, ζ) (2.6)

with ρ = − ln r, ζ = − ln t
r . Thus we have following transform:

(r, x, t) → (ρ, x, ζ) = (− ln r, x,
− ln t

r
), (2.7)

and (ρ, x, ζ) ∈ Ω̃ρ,x,ζ iff (r, x, t) ∈ Ωr,x,t = {(r, x, t) | (r, x) ∈ supp ω, and (x, t) ∈
supp σ}. Then the mapping

Sp,(γ1,γ2) := Sp,γ1 ◦ Sp,γ2 : u(r, x, t) →

w(ρ, x, ζ) = e
−ρ(N

p
−γ1)e

−(e−ρζ)(N
p
−γ2)u(e−ρ, x, e−(e−ρζ)) (2.8)

gives an isomorphism as follows

Sp,(γ1,γ2) : [ω(r)][σ(t)]H
m,(γ1,γ2)
p,0 (R+×X×R+) → [ω̃(ρ)][σ̃(ζ)]Wm,p

0 (R×X×R)
(2.9)

where Wm,p(·) denotes the classical Sobolev spaces, ω̃(ρ) = ω(e−ρ), σ̃(ζ) is
a cut-off function in ζ = − ln t

r for t ∈ suppσ(t) and r ∈ suppω(r).
From the transform (2.7), we have ∂ρ = r∂r − t ln t∂t, ∂ζ = rt∂t, and the

determinant of Jacobian is 1
r2t

. Then for Ω̃ρ,x,ζ = Ω̃ and Ωr,x,t = Ω,

∥w(ρ, x, ζ)∥p
Wm,p(Ω̃)

=
∑

k+|α|+l≤m

∫
Ω̃
|∂kρ∂αx ∂lζw(ρ, x, ζ)|pdρdxdζ

=
∑

k+|α|+l≤m

∫
Ω̃
|∂kρ∂αx ∂lζe

−ρ(N
p
−γ1)e

−(e−ρζ)(N
p
−γ2)u(e−ρ, x, e−(e−ρζ))|pdρdxdζ

∼
∑

k+|α|+l≤m

∫
Ω̃
|e−ρ(

N
p
−γ1)e

−(e−ρζ)(N
p
−γ2)∂kρ∂

α
x ∂

l
ζu(e

−ρ, x, e−(e−ρζ))|pdρdxdζ

∼
∑

k+|α|+l≤m

∫
Ω
|r

N
p
−γ1t

N
p
−γ2(r∂r)

k∂αx (rt∂t)
lu(r, x, t)|pdr

r
dx
dt

rt

= ∥u(r, x, t)∥p
Hm,(γ1,γ2)

p (Ω)
.
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Similarly, if ũ(r, x, t) ∈ Hm′,(γ′1,γ
′
2)

p,0 (R+ × X × R+), then for u(r, x, t) =
ω(r)σ(t)ũ(r, x, t), we have

Sp,(γ1,γ2)u(r, x, t) = e
−ρ(N

p
−γ1)e

−(e−ρζ)(N
p
−γ2)u(e−ρ, x, e−(e−ρζ))

= e−ρ(γ
′
1−γ1)e−(e−ρζ)(γ′2−γ2)a(ρ, x, ζ)

where a(ρ, x, ζ) = e
−ρ(N

p
−γ′1)e

−(e−ρζ)(N
p
−γ′2)u(e−ρ, x, e−(e−ρζ)) ∈ Wm′,p

0 (R ×
X × R). Then Sp,(γ1,γ2) induces another isomorphism

Sp,(γ1,γ2) : [ω(r)][σ(t)]H
m′,(γ′1,γ

′
2)

p,0 (R+ ×X × R+) →

[ω̃(ρ)][σ̃(ζ)]e−ρ(γ
′
1−γ1)e−(e−ρζ)(γ′2−γ2)Wm′,p

0 (R×X × R). (2.10)

From the isomorphisms (2.9) and (2.10), since, for ρ ∈ supp ω̃(ρ) and ζ ∈
supp σ̃(ζ), the embedding

[ω̃(ρ)][σ̃(ζ)]e−ρ(γ
′
1−γ1)e−(e−ρζ)(γ′2−γ2)Wm′,p

0 (R×X × R)
↪→ [ω̃(ρ)][σ̃(ζ)]Wm,p

0 (R×X × R)

is continuous for m′ ≥ m, γ′1 ≥ γ1, γ
′
2 ≥ γ2 and is compact for m′ > m,

γ′1 ≥ γ1, γ
′
2 ≥ γ2. Thus we prove the result for the embedding

[ω(r)][σ(t)]Hm′,(γ′1,γ
′
2)

p,0 (R+×X×R+) ↪→ [ω(r)][σ(t)]Hm,(γ1,γ2)
p,0 (R+×X×R+),

as required.

Let H−m,(−γ1,−γ2)
2 (M) denote the dual space of Hm,(γ1,γ2)

2,0 (M) with the
following norm

∥g∥H−m,(−γ1,−γ2)
2 (M)

= sup
ψ∈C∞

0 (M),ψ ̸=0

|⟨g, ψ⟩|
∥ψ∥Hm,(γ1,γ2)

2,0 (M)

.

We have

Proposition 2.5. There exist the eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · → +∞

of the elliptic operator −∆M with homogeneous Dirichlet data, such that
the corresponding eigenfunctions {φk}k≥1 constitute the orthonormal basis

of H1,(N−1
2
,N
2
)

2,0 (M).
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Proof. For any u, v ∈ H1,(N−1
2
,N
2
)

2,0 (M) and u ̸= 0, we denote ⟨·, ·⟩ := ⟨·, ·⟩
L

N−1
2 ,N2

2

,

⟨−∆Mu, u⟩ = ∥∇Mu∥2
L

N−1
2 ,N2

2

> 0,

and
⟨−∆Mu, v⟩ = ⟨u,−∆Mv⟩.

This implies that the operator−∆M is positive and self-adjoint inH1,(N−1
2
,N
2
)

2,0 (M).

Then Lax-Milgram theorem gives that for any f ∈ H−1,(−N−1
2
,−N

2
)

2 (M), the
following Dirichlet problem{

−∆Mu = f, z ∈ M0,

u = 0 on ∂M,
(2.11)

admits a unique solution in H1,(N−1
2
,N
2
)

2,0 (M). Therefore the mapping

−∆M : H1,(N−1
2
,N
2
)

2,0 (M) → H−1,(−N−1
2
,−N

2
)

2 (M)

is continuous. Furthermore, the inverse operator (−∆M)−1 is well-defined
and a continuous map as follows

(−∆M)−1 : H−1,(−N−1
2
,−N

2
)

2 (M) → H1,(N−1
2
,N
2
)

2,0 (M).

By Proposition 2.4, the embedding

i : H1,(N−1
2
,N
2
)

2,0 (M) → L
(N−1

2
,N
2
)

2 (M)

is compact, and then the embedding

i∗ : L
(N−1

2
,N
2
)

2 (M) → H−1,(−N−1
2
,−N

2
)

2,0 (M)

is continuous. Thus the operator

K := (−∆M)−1 ◦ i∗ ◦ i : H1,(N−1
2
,N
2
)

2,0 (M) → H1,(N−1
2
,N
2
)

2,0 (M)

is compact and self-adjoint. Then there exist eigenvalues {ηk}k≥1 of K,
such that ηk > 0 and ηk → 0 as k → +∞. The corresponding normal

eigenfunctions {φk}k≥1 form a complete basis of H1,(N−1
2
,N
2
)

2,0 (M) with

Kφk = ηkφk for k ≥ 1.

This completes the proof.
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3. Some important inequalities on corner type weighted p-Sobolev
Spaces

In this section, we shall prove the following Sobolev inequality and
Poincarè inequality on corner type weighted p-Sobolev spaces. These in-
equalities will be important in the proof of the main result. Similar inequal-
ities on doubling spaces were discussed in [7]. However from the example in
[5], we know that the corner type weighted p-Sobolev spaces in this paper
will be not the doubling spaces.

Proposition 3.1 (Corner Sobolev Inequality). Assume 1 ≤ p < N , 1
p∗ =

1
p −

1
N , N = 1 + n+ 1 and γ1, γ2 ∈ R. For u(r, x, t) ∈ C∞

0 (R+ × Rn × R+),
the following estimate holds

∥u∥
L
γ∗1 ,γ∗2
p∗ (R+×Rn×R+)

≤ α(c3 + c4)∥r∂ru∥Lγ1,γ2
p (R+×Rn×R+)

+ α(c1 + c2 + c3 + c4)

n∑
i=1

∥∂xiu∥Lγ1,γ2
p (R+×Rn×R+)

+ α(c2 + c4)∥rt∂tu∥Lγ1,γ2
p (R+×Rn×R+)

+ (c1 + c2)∥u∥Lγ1,γ2
p (R+×Rn×R+)

+ (c1 + c3)∥u∥Lγ1−1,γ2
p (R+×Rn×R+)

(3.1)

where γ∗1 = γ1 − 1, γ∗2 = γ2 − 1, and α = (N−1)p
N−p with constants c1 =

1
N

∣∣∣ (N−1)(N−γ1p)
N−p

∣∣∣ 1
N
∣∣∣ (N−1)(N−γ2p)

N−p

∣∣∣ 1
N
, c2 =

1
N

∣∣∣ (N−1)(N−γ1p)
N−p

∣∣∣ 1
N
, c3 =

1
N

∣∣∣ (N−1)(N−γ2p)
N−p

∣∣∣ 1
N
,

and c4 =
1
N .

Proof. First we consider the case of p = 1 with p∗ = N
N−1 . Let γ′1, γ

′
2 ∈ R.

For u(r, x, t) ∈ C∞
0 (R+ × Rn × R+), we have

|rN−1−γ′1tN−1−γ′2u(r, x, t)| ≤
∣∣∣ ∫ xi

−∞
∂xi(r

N−1−γ′1tN−1−γ′2u)dxi

∣∣∣
≤

∫ +∞

−∞
|rN−1−γ′1tN−1−γ′2(∂xiu)|dxi := Ii, for i = 1, . . . , n.

Similarly, for r- and t- direction, we have

|rN−1−γ′1tN−1−γ′2u(r, x, t)| ≤
∫ +∞

0
|(r∂r)(rN−1−γ′1tN−1−γ′2u)|dr

r

≤ |N − 1− γ′1|
∫ +∞

0
|rN−1−γ′1tN−1−γ′2u|dr

r
+

∫ +∞

0
|rN−1−γ′1tN−1−γ′2(r∂ru)|

dr

r

:= II + III,

11



|rN−1−γ′1tN−1−γ′2u(r, x, t)| ≤
∫ +∞

0
|(rt∂t)(rN−1−γ′1tN−1−γ′2u)|dt

rt

≤ |N − 1− γ′2|
∫ +∞

0
|rN−γ′1tN−1−γ′2u|dt

rt
+

∫ +∞

0
|rN−1−γ′1tN−1−γ′2(rt∂tu)|

dt

rt

:= IV + V.

Multiplying the above N = n+ 2 inequalities, one has

|rN−1−γ′1tN−1−γ′2u(r, x, t)|N ≤ I1 · · · In(II + III)(IV + V )

= I1 · · · InIIIV + I1 · · · InIIV + I1 · · · InIIIIV + I1 · · · InIIIV.

Since 1
N−1 < 1, the following inequality holds

|rN−1−γ′1tN−1−γ′2u(r, x, t)|
N

N−1

≤ (I1 · · · InIIIV + I1 · · · InIIV + I1 · · · InIIIIV + I1 · · · InIIIV )
1

N−1

≤ (I1 · · · InIIIV )
1

N−1 + (I1 · · · InIIV )
1

N−1 + (I1 · · · InIIIIV )
1

N−1

+ (I1 · · · InIIIV )
1

N−1 .

Integrating both sides of the above inequality by dr
r , we have∫

R+

|rN−1−γ′1tN−1−γ′2u(r, x, t)|
N

N−1
dr

r
≤

∫
R+

(I1 · · · InIIIV )
1

N−1
dr

r

+

∫
R+

(I1 · · · InIIV )
1

N−1
dr

r
+

∫
R+

(I1 · · · InIIIIV )
1

N−1
dr

r
+

∫
R+

(I1 · · · InIIIV )
1

N−1
dr

r

Now we apply Hölder inequality on the right hand side of the above
inequality, then For the first term, one has∫

R+

(I1 · · · InIIIV )
1

N−1
dr

r
≤ |N−1−γ′1|

1
N−1 |N−1−γ′2|

1
N−1 (

∫
R+

|rN−1−γ′1tN−1−γ′2u|dr
r
)

1
N−1

n∏
i=1

(

∫
R

∫
R+

|rN−1−γ′1tN−1−γ′2(∂xiu)|
dr

r
dxi)

1
N−1 (

∫
R+

∫
R+

|rN−γ′1tN−1−γ′2u|dr
r

dt

rt
)

1
N−1 .

Similarly, for the other three terms, it follows that∫
R+

(I1 · · · InIIV )
1

N−1
dr

r
≤ |N−1−γ′1|

1
N−1 (

∫
R+

|rN−1−γ′1tN−1−γ′2u|dr
r
)

1
N−1

n∏
i=1

(

∫
R

∫
R+

|rN−1−γ′1tN−1−γ′2(∂xiu)|
dr

r
dxi)

1
N−1 (

∫
R+

∫
R+

|rN−1−γ′1tN−1−γ′2(rt∂tu)|
dr

r

dt

rt
)

1
N−1 ,

12



∫
R+

(I1 · · · InIIIIV )
1

N−1
dr

r
≤ |N−1−γ′2|

1
N−1 (

∫
R+

|rN−1−γ′1tN−1−γ′2(r∂ru)|
dr

r
)

1
N−1

n∏
i=1

(

∫
R

∫
R+

|rN−1−γ′1tN−1−γ′2(∂xiu)|
dr

r
dxi)

1
N−1 (

∫
R+

∫
R+

|rN−γ′1tN−1−γ′2u|dr
r

dt

rt
)

1
N−1 ,

and∫
R+

(I1 · · · InIIIV )
1

N−1
dr

r
≤ (

∫
R+

|rN−1−γ′1tN−1−γ′2(r∂ru)|
dr

r
)

1
N−1

n∏
i=1

(

∫
R

∫
R+

|rN−1−γ′1tN−1−γ′2(∂xiu)|
dr

r
dxi)

1
N−1 (

∫
R+

∫
R+

|rN−1−γ′1tN−1−γ′2(rt∂tu)|
dr

r

dt

rt
)

1
N−1 .

Repeating the same process with respect to dx1, . . . dxn and dt
rt , we have∫

R+

∫
Rn

∫
R+

|rN−1−γ′1tN−1−γ′2u|
N

N−1
dr

r
dx
dt

rt

≤|N − 1− γ′1|
1

N−1 |N − 1− γ′2|
1

N−1 (

∫
R+

∫
Rn

∫
R+

|rN−1−γ′1tN−1−γ′2u|dr
r
dx
dt

rt
)

1
N−1

n∏
i=1

(

∫
R+

∫
Rn

∫
R+

|rN−1−γ′1tN−1−γ′2(∂xiu)|
dr

r
dx
dt

rt
)

1
N−1

(

∫
R+

∫
Rn

∫
R+

|rN−γ′1tN−1−γ′2u|dr
r
dx
dt

rt
)

1
N−1

+|N − 1− γ′1|
1

N−1 (

∫
R+

∫
Rn

∫
R+

|rN−1−γ′1tN−1−γ′2u|dr
r
dx
dt

rt
)

1
N−1

n∏
i=1

(

∫
R+

∫
Rn

∫
R+

|rN−1−γ′1tN−1−γ′2(∂xiu)|
dr

r
dx
dt

rt
)

1
N−1

(

∫
R+

∫
Rn

∫
R+

|rN−1−γ′1tN−1−γ′2(rt∂tu)|
dr

r
dx
dt

rt
)

1
N−1

+|N − 1− γ′2|
1

N−1 (

∫
R+

∫
Rn

∫
R+

|rN−1−γ′1tN−1−γ′2(r∂ru)|
dr

r
dx
dt

rt
)

1
N−1

n∏
i=1

(

∫
R+

∫
Rn

∫
R+

|rN−1−γ′1tN−1−γ′2(∂xiu)|
dr

r
dx
dt

rt
)

1
N−1

(

∫
R+

∫
Rn

∫
R+

|rN−γ′1tN−1−γ′2u|dr
r
dx
dt

rt
)

1
N−1

13



+(

∫
R+

∫
Rn

∫
R+

|rN−1−γ′1tN−1−γ′2(r∂ru)|
dr

r
dx
dt

rt
)

1
N−1

n∏
i=1

(

∫
R+

∫
Rn

∫
R+

|rN−1−γ′1tN−1−γ′2(∂xiu)|
dr

r
dx
dt

rt
)

1
N−1

(

∫
R+

∫
Rn

∫
R+

|rN−1−γ′1tN−1−γ′2(rt∂tu)|
dr

r
dx
dt

rt
)

1
N−1 := A+B + C +D.

Here and in what follows, write
∫
· · · dσ for

∫
R+

∫
Rn

∫
R+

· · · drr dx
dt
rt . Since

N−1
N < 1, the following estimate holds

(

∫
|rN−1−γ′1tN−1−γ′2u|

N
N−1dσ)

N−1
N ≤ A

N−1
N + B

N−1
N + C

N−1
N + D

N−1
N .

For ai ≥ 0, i = 1, .., N , we have (
∏N
i=1 ai)

1
N ≤ 1

N (
∑N

i=1 ai). Applying this

14



inequality on A
N−1
N , B

N−1
N , C

N−1
N , and D

N−1
N , it then follows that

(

∫
|rN−1−γ′1tN−1−γ′2u|

N
N−1dσ)

N−1
N

≤ 1

N
|N − 1− γ′1|

1
N |N − 1− γ′2|

1
N (

∫
|rN−1−γ′1tN−1−γ′2u|dσ

+

n∑
i=1

∫
|rN−1−γ′1tN−1−γ′2(∂xiu)|dσ +

∫
|rN−γ′1tN−1−γ′2u|dσ)

+
1

N
|N − 1− γ′1|

1
N (

∫
|rN−1−γ′1tN−1−γ′2u|dσ

+

n∑
i=1

∫
|rN−1−γ′1tN−1−γ′2(∂xiu)|dσ +

∫
|rN−1−γ′1tN−1−γ′2(rt∂tu)|dσ)

+
1

N
|N − 1− γ′2|

1
N (

∫
|rN−1−γ′1tN−1−γ′2(r∂ru)|dσ

+

n∑
i=1

∫
|rN−1−γ′1tN−1−γ′2(∂xiu)|dσ +

∫
|rN−γ′1tN−1−γ′2u|dσ)

+
1

N
(

∫
|rN−1−γ′1tN−1−γ′2(r∂ru)|dσ

+

n∑
i=1

∫
|rN−1−γ′1tN−1−γ′2(∂xiu)|dσ +

∫
|rN−1−γ′1tN−1−γ′2(rt∂tu)|dσ)

=(c3 + c4)

∫
|rN−1−γ′1tN−1−γ′2(r∂ru)|dσ

+ (c1 + c2 + c3 + c4)

n∑
i=1

∫
|rN−1−γ′1tN−1−γ′2(∂xiu)|dσ

+ (c2 + c4)

∫
|rN−1−γ′1tN−1−γ′2(rt∂tu)|dσ

+ (c1 + c2)

∫
|rN−1−γ′1tN−1−γ′2u|dσ + (c1 + c3)

∫
|rN−γ′1tN−1−γ′2u|dσ,

where c1 = 1
N |N − 1 − γ′1|

1
N |N − 1 − γ′2|

1
N , c2 = 1

N |N − 1 − γ′1|
1
N , c3 =

1
N |N−1−γ′2|

1
N , c4 =

1
N . It implies that the inequality (3.1) holds for p = 1.

Now we consider the cases of 1 < p < N . Let α = (N−1)p
N−p > 1, then

|u|α ∈ C1
0 (R+ × Rn × R+), thus we can use the estimate above to deduce

15



that

(

∫
|rN−1−γ′1tN−1−γ′2 |u|α|

N
N−1dσ)

N−1
N

≤(c3 + c4)

∫
|rN−1−γ′1tN−1−γ′2(r∂r|u|α)|dσ

+ (c1 + c2 + c3 + c4)
n∑
i=1

∫
|rN−1−γ′1tN−1−γ′2(∂xi |u|α)|dσ

+ (c2 + c4)

∫
|rN−1−γ′1tN−1−γ′2(rt∂t|u|α)|dσ)

+ (c1 + c2)

∫
|rN−1−γ′1tN−1−γ′2 |u|α|dσ + (c1 + c3)

∫
|rN−γ′1tN−1−γ′2 |u|α|dσ.

Since |u|α = (u · ū)
α
2 (here we use the fact that if a function u is real-

valued, then ū = u), and |∂xj |u|α| = |∂xj (u
α
2 · ū

α
2 )| ≤ α|u|α−1|∂xju|. Then

we have

(

∫
|rN−1−γ′1tN−1−γ′2 |u|α|

N
N−1dσ)

N−1
N

≤α(c3 + c4)

∫
rN−1−γ′1tN−1−γ′2 |u|α−1|(r∂ru)|dσ

+ α(c1 + c2 + c3 + c4)

n∑
i=1

∫
rN−1−γ′1tN−1−γ′2 |u|α−1|(∂xiu)|dσ

+ α(c2 + c4)

∫
rN−1−γ′1tN−1−γ′2 |u|α−1|(rt∂tu)|dσ)

+ (c1 + c2)

∫
rN−1−γ′1tN−1−γ′2 |u|α−1|u|dσ

+ (c1 + c3)

∫
rN−γ′1tN−1−γ′2 |u|α−1|u|dσ.

Let 1
q = 1 − 1

p , γ
∗
1 =

γ′1(N−p)
(N−1)p ∈ R and γ∗2 =

γ′2(N−p)
(N−1)p ∈ R, we then have

αN
N−1 = p∗,

(N−1−γ′1)N
N−1 = N

p∗ − γ∗1 ,
(N−1−γ′2)N

N−1 = N
p∗ − γ∗2 , and (α − 1)q = p∗.

Moreover, set β1 = (N−1−γ′1)
N(p−1)
(N−1)p , β2 = (N−1−γ′1)

N−p
(N−1)p = N

p −(γ∗1+1)

and φ1 = (N−1−γ′2)
N(p−1)
(N−1)p , φ2 =

N
p −(γ∗2 +1), which imply that β1+β2 =

N − 1 − γ1, φ1 + φ2 = N − 1 − γ2. Writing γ1 = γ∗1 + 1, γ2 = γ∗2 + 1 and
from N−1

N − 1
q = 1

p∗ , Hölder inequality gives that
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∥u∥
L
γ∗1 ,γ∗2
p∗ (R+×Rn×R+)

= (

∫
|r

N
p∗−γ

∗
1 t

N
p∗−γ

∗
2u|p∗dσ)1/p∗

≤α(c3 + c4)(

∫
|r

N
p
−γ1t

N
p
−γ2(r∂ru)|pdσ)1/p

+ α(c1 + c2 + c3 + c4)

n∑
i=1

(

∫
|r

N
p
−γ1t

N
p
−γ2(∂xiu)|pdσ)1/p

+ α(c2 + c4)(

∫
|r

N
p
−γ1t

N
p
−γ2(rt∂tu)|pdσ)1/p

+ (c1 + c2)(

∫
|r

N
p
−γ1t

N
p
−γ1u|pdσ)1/p

+ (c1 + c3)(

∫
|r

N
p
−(γ1−1)

t
N
p
−γ2u|pdσ)1/p.

where c1 =
1
N

∣∣∣ (N−1)(N−γ1p)
N−p

∣∣∣1/N ∣∣∣ (N−1)(N−γ2p)
N−p

∣∣∣1/N , c2 = 1
N

∣∣∣ (N−1)(N−γ1p)
N−p

∣∣∣1/N ,
c3 =

1
N

∣∣∣ (N−1)(N−γ2p)
N−p

∣∣∣1/N , and c4 = 1
N .

In the case of γ1 = γ2 = N
p , we have the constants in (3.1), c1 = c2 =

c3 = 0. Then, Hölder inequality implies that for u(r, x, t) ∈ H1,(γ1,γ2)
p (R+ ×

Rn × R+)

∥u∥
L
γ∗1 ,γ∗2
p∗ (R+×Rn×R+)

≤ c ∥∇Mu∥Lγ1,γ2
p (R+×Rn×R+) (3.2)

where ∇M = (r∂r, ∂x1 , . . . , ∂xn , rt∂t) is the corner type gradient operator

on M = [0, 1) × X × [0, 1), and here the constant c = (N−1)p
(N−p)N is the best

constant as we had in standard Sobolev spaces.
Similarly, if γ2 =

N
p and γ1 ∈ R, then c1 = c3 = 0, which give us

∥u∥
L
γ∗1 ,γ∗2
p∗ (R+×Rn×R+)

≤ c̄ ∥u∥H1,(γ1,γ2)
p (R+×Rn×R+)

with constant c̄ = (N−1)p
N−p

(
1
N

∣∣∣ (N−1)(N−γ1p)
N−p

∣∣∣1/N + 1
N

)
.

Proposition 3.2 (Poincaré inequality). For u(r, x, t) ∈ H1,(γ1,γ2)
p,0 (M), 1 ≤

p <∞, the following estimate holds

∥u∥Lγ1,γ2
p (M) ≤ d ∥∇Mu∥Lγ1,γ2

p (M) (3.3)

where d is the diameter of M.
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Proof. Set

Q = {(r, x, t) ∈ RN | 0 < r < d, ai < xi < ai+d, for i = 1, ..., n, and 0 < t < d}

where d ∈ R+ is the diameter of M, i.e. M ⊂ Q.
Suppose u(r, x, t) ∈ C∞

0 (M0). For (r, x, t) ∈ M ⊂ Q, we have

|u(r, x, t)|p ≤ (

∫ x1

a1

|∂x1u(r, s, x2, ..., xn, t)|ds)p.

Applying Hölder inequality, for a1 < x′1 < a1 + d, we have

|u(r, x, t)|p ≤ dp−1(

∫ x1+d

a1

|∂x1u(r, s, x2, ..., xn, t)|pds).

Then, the mean value theorem implies that

|u(r, x, t)|p ≤ dp|∂x1u(r, x′1, x2, ..., xn, t)|p.

Multiplying the both sides with term rN−γ1ptN−γ2p, and then integrating
with respect to dr

r dx
dt
rt := dσ on Q, we obtain that∫

Q
rN−γ1ptN−γ2p|u(r, x, t)|pdσ ≤ dp

∫
Q
rN−γ1ptN−γ2p|∂x1u(r, x′1, x2, ..., xn, t)|pdσ.

The definition of Q and the assumption u(r, x, t) ∈ C∞
0 (M0) give that∫

M
rN−γ1ptN−γ2p|u(r, x, t)|pdσ ≤ dp

∫
M
rN−γ1ptN−γ2p|∂x1u(r, x′1, x2, ..., xn, t)|pdσ.

Since C∞
0 (M0) is dense in H1,(γ1,γ2)

p,0 (M), the estimate above implies that

for u(r, x, t) ∈ H1,(γ1,γ2)
p,0 (M),

∥u(r, x, t)∥Lγ1,γ2
p (M) ≤ d ∥∂x1u(r, x, t)∥Lγ1,γ2

p (M) ≤ d ∥∇Mu(r, x, t)∥Lγ1,γ2
p (M),

as required.

Proposition 3.3. The following embedding

H1,(N−1
2
,N
2
)

2,0 (M) ↪→ H0,(N−1
l
,N
l
)

l,0 (M)

is compact, for 1 < l < 2∗.
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Proof. According to Definition 2.3, it is sufficient to show the compactness
of the embedding

[ω(r)][σ(t)]H1,(N−1
2
,N
2
)

2,0 (R+×X×R+) ↪→ [ω(r)][σ(t)]H0,(N−1
l
,N
l
)

l,0 (R+×X×R+).
(3.4)

In fact, by virtue of Proposition 3.6 in [5], the following two embeddings are
compact for 1 < l < 2∗

[1−ω(r)][σ(t)]H1,N
2

2,0 (Ωε1 ×X ×R+) ↪→ [1−ω(r)][σ(t)]H0,N
l

l,0 (Ωε1 ×X ×R+),

[ω(r)][1−σ(t)]H1,N−1
2

2,0 (R+×X×Ωε2) ↪→ [ω(r)][1−σ(t)]H0,N−1
l

l,0 (R+×X×Ωε2),

where Ωε1 and Ωε2 are given in (2.3).
For the classical Sobolev spacesWm,p

0 (Ωε1×X×Ωε2), Rellich-Kondrachov
theorem gives the compactness of the following embedding

[1−ω(r)][1−σ(t)]W 1,2
0 (Ωε1×X×Ωε2) ↪→ [1−ω(r)][1−σ(t)]W 0,l

0 (Ωε1×X×Ωε2).

It remains to prove the compactness of (3.4). Similar to the transform in

(2.7), for u(r, x, t) ∈ [ω(r)][σ(t)]H0,(N−1
l
,N
l
)

l,0 (R+ ×X × R+), the mapping

Sl,(N−1
l
,N
l
) : u(r, x, t) →e−ρ(

N
l
−N−1

l
)e−(e−ρζ)(N

l
−N

l
)u(e−ρ, x, e−(e−ρζ))

:= w(ρ, x, ζ)

gives the isomorphism

Sl,(N−1
l
,N
l
) : [ω(r)][σ(t)]H

0,(N−1
l
,N
l
)

l,0 (R+×X×R+) → [ω̃(ρ)][σ̃(ζ)]W 0,l
0 (R×X×R),

(3.5)
where ρ = − ln r for r ∈ supp ω, ω̃(ρ) = ω(e−ρ), σ̃(ζ) is the cut-off function
in ζ = − ln t

r with r ∈ suppσ(r) and t ∈ suppσ(t).

Moreover, for u(r, x, t) ∈ [ω(r)][σ(t)]H1,(N−1
2
,N
2
)

2,0 (R+ ×X × R+) we have

Sl,(N−1
l
,N
l
)u(r, x, t) = e−ρ(

N
l
−N−1

l
)e−(e−ρζ)(N

l
−N

l
)u(e−ρ, x, e−(e−ρζ))

= e−ρ(
1
l
− 1

2
)S2,(N−1

2
,N
2
)u(r, x, t)

According to (2.9), Sl,(N−1
l
,N
l
) induces the following isomorphism

Sl,(N−1
l
,N
l
) : [ω(r)][σ(t)]H

1,(N−1
2
,N
2
)

2,0 (R+×X×R+) → [ω̃(ρ)][σ̃(ζ)]W 1,2
0 (R×X×R).

(3.6)
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Since we know that, for ρ ∈ supp ω̃ and ζ ∈ supp σ̃, [ω̃(ρ)][σ̃(ζ)]W 1,2
0 (R×

X×R) is compactly embedded in [ω̃(ρ)][σ̃(ζ)]W 0,l
0 (R×X×R) for 1 < l < 2∗.

Thus from the isomorphisms (3.5) and (3.6), the embedding

[ω(r)][σ(t)]H1,(N−1
2
,N
2
)

2,0 (R+×X×R+) ↪→ [ω(r)][σ(t)]H0,(N−1
l
,N
l
)

l,0 (R+×X×R+).

is compact. Proposition 3.3 is proved.

4. Proof of Theorem 1.1

Now we recall the (PS)c condition (Palais-Smale condition, c.f. [1]).

Definition 4.1. Let E be a Banach space, I ∈ C1(E;R) and c ∈ R, We say
that I satisfies the (PS)c condition, if for any sequence {uk} ⊂ E with the
properties:

I(uk) → c and ∥ I ′(uk) ∥E′→ 0,

there exists a subsequence which is convergent, where I ′(·) is the Fréchet
differentiation of I and E′ is the dual space of E. If it holds for any c ∈ R,
we say that I satisfies (PS) condition.

We also need the following well-known result:

Proposition 4.2 (cf. [15]). Suppose E is an infinite dimensional Banach
space and the functional I ∈ C1(E;R) satisfies (PS) condition, with

I(u) = I(−u) for all u ∈ E, and I(0) = 0.

Suppose E = V + ⊕ V − where V − is a finite dimensional space and assume
the following conditions

(i) There exist constants α > 0, ρ > 0, such that for any u ∈ V + with
∥u∥ = ρ we have I(u) ≥ α.

(ii) For any finite dimensional subspace W ⊂ E, there exists a constant
R depending on W such that for any u ∈ W with ∥u∥ ≥ R we have
I(u) ≤ 0.

Then I admits an unbounded sequence of critical values.

Proof of Theorem 1.1. Define the following energy functional

J(u) =
1

2

∫
M
r|∇Mu|2dσ −

∫
M
rG(z, u)dσ, dσ :=

dr

r
dx
dt

rt
.
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By the assumption that G(·, u) =
∫ u
0 g(·, v)dv, the nonlinear elliptic equation

(1.1) is the Euler-Lagrange equation for the energy functional J(u). We say

that u ∈ H1,(N−1
2
,N
2
)

2,0 (M) is a weak solution of (1.1) if

⟨J ′(u), v⟩ =
∫
M
r(∇Mu)(∇Mv)dσ −

∫
M
rg(z, u)vdσ

=

∫
M
r[−∆Mu− g(z, u)]vdσ = 0

for any v ∈ H1,(N−1
2
,N
2
)

2,0 (M), where ⟨·, ·⟩ := ⟨·, ·⟩
L

N−1
2 ,N2

2

and J ′(·) denotes the

Fréchet differentiation. Therefore, the critical points of J(u) inH1,(N−1
2
,N
2
)

2,0 (M)
are the weak solutions of Dirichlet problem (1.1).

Now we prove that J(·) satisfies (PS) condition. Let uk ∈ H1,(N−1
2
,N
2
)

2,0 (M)
and {uk} be a (PS) sequence of J , then we have

qJ(uk)− ⟨J ′(uk), uk⟩ ≤ c1 + o(1)∥uk∥
H

1,(N−1
2 ,N2 )

2,0

where q > 2, c1 depends on q and o(1) → 0 as k → +∞. Furthermore,

qJ(uk)− ⟨J ′(uk), uk⟩

=
q

2

∫
M
r|∇Muk|2dσ − q

∫
M
rG(z, uk)dσ −

( ∫
M
r|∇Muk|2dσ −

∫
M
rg(z, uk)ukdσ

)
=
q − 2

2

∫
M
r|∇Muk|2dσ +

∫
M
rg(z, uk)ukdσ −

∫
M
rqG(z, uk)dσ

By Poincaré inequality, we have∫
M
r|∇Muk|2dσ ≥ c2∥u∥2

H
1,(N−1

2 ,N2 )

2,0

where the constant c2 > 0 depends on the constant d in (3.3). The as-
sumptions (H-2) and (H-3) give us that for |uk| ≥ R0,

∫
M r[g(z, uk)uk −

qG(z, uk)]dσ > 0 and for |uk| < R0,
∫
M r[g(z, uk)uk − qG(z, uk)]dσ is finite.

Then there exists a constant β0 > 0 such that

(q − 2)c2
2

∥uk∥2
H

1,(N−1
2 ,N2 )

2,0

−β0 ≤ qJ(uk)−⟨J ′(uk), uk⟩ ≤ c1+o(1)∥uk∥
H

1,(N−1
2 ,N2 )

2,0

which implies that {uk} is bounded in H1,(N−1
2
,N
2
)

2,0 (M). Moreover, there
exists a weak convergent subsequence of {uk}, also denoted by {uk}, i.e,

uk ⇀ u in H1,(N−1
2
,N
2
)

2,0 (M).
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By Proposition 3.3, for 1 < p < 2∗,

uk → u in H
0,(N−1

p
,N
p
)

p,0 (M).

Applying Hölder inequality and corner type Poincaré inequality, we have

∥uk − u∥2
H

1,(N−1
2 ,N2 )

2,0

=

∫
M
r|∇M(uk − u)|2dσ +

∫
M
r|uk − u|2dσ

≤ c5

∫
M
r|∇M(uk − u)|2dσ

= c5⟨J ′(uk − u), uk − u⟩+ c5

∫
M
rg(z, (uk − u))(uk − u)dσ

≤ c5⟨J ′(uk − u), uk − u⟩+ c6

∫
M
r|uk − u|dσ + c5

∫
M
r|uk − u|pdσ

≤ c5⟨J ′(uk − u), uk − u⟩+ c7(

∫
M
r|uk − u|pdσ)1/p + c6

∫
M
r|uk − u|pdσ

= c5⟨J ′(uk − u), uk − u⟩+ c7∥uk − u∥
H

0,(N−1
p ,Np )

p,0

+ c6∥uk − u∥p
H

0,(N−1
p ,Np )

p,0

→ 0 as k → ∞,

where c5 > 1, c6, c7 > 0 depend on d in (3.3) and c7 also depends on the
measure of M, denoted by |M |, in the sense of dr

r dx
dt
rt . That implies that

the functional J satisfies (PS) condition.
Now we check the conditions of Proposition 4.2 will be satisfied. Since

g is odd, J(u) = J(−u) and J(0) = 0. According to Proposition 2.5, the

eigenfunctions {φk}k≥1 constitute the orthogonal basis of H1,(N−1
2
,N
2
)

2,0 (M).
For some fixed k0 ∈ N, set

V + = span{φk | k ≥ k0}.

Let u ∈ V + and ∥u∥
H

1,(N−1
2 ,N2 )

2,0

= ρ > 0, then we have

J(u) ≥ 1

2

∫
M
r|∇Mu|2dσ − c0

∫
M
r|u|dσ − c8

∫
M
r|u|pdσ,

where c0 > 0 in (H-2) and c8 > 0 depends on c0 and p. By Hölder inequality
and 0 < r < 1, we have∫

M
r|u|pdσ =

∫
M
(r

1
s |u|

2
s )(r1−

1
s |u|p−

2
s )dσ

≤ (

∫
M
r|u|2dσ)

1
s (

∫
M
r(1−

1
s
)q|u|(p−

2
s
)qdσ)

1
q ,
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where q > 1 and 1
q + 1

s = 1. Set (p − 2
s )q = 2∗ and σ = 2

s , we have

s = 2∗−2
2∗−p > 1 and σ = 2(2∗−p)

2∗−2 > 0. Then, 1
q = 1 − 1

s = (p − σ) 1
2∗ , and it

follows∫
M
r|u|pdσ ≤ (

∫
M
r|u|2dσ)

1
2
σ(

∫
M
r|u|2∗dσ)

1
2∗ (p−σ) = ∥u∥σ

L
N−1

2 ,N2
2

∥u∥p−σ
L

N−1
2∗ , N

2∗
2∗

.

According to Proposition 3.2,

∥u∥σ
L

N−1
2 ,N2

2

≤ λ
−σ

2
k0

∥∇Mu∥σ
L

N−1
2 ,N2

2

≤ λ
−σ

2
k0

∥u∥σ
H

1,(N−1
2 ,N2 )

2,0

Then the corner type Sobolev inequality implies that

∥u∥p−σ
L

N−1
2∗ , N

2∗
2∗

≤ c∥u∥p−σ
H

1,(N−1
2 ,N2 )

2,0

. (4.1)

Furthermore,

J(u) ≥ c9∥u∥2
H

1,(N−1
2 ,N2 )

2,0

− c10λ
−σ

2
k0

∥u∥p
H

1,(N−1
2 ,N2 )

2,0

− c11∥u∥
H

1,(N−1
2 ,N2 )

2,0

= (c9 − c10λ
−σ

2
k0

∥u∥p−2

H
1,(N−1

2 ,N2 )

2,0

)∥u∥2
H

1,(N−1
2 ,N2 )

2,0

− c11∥u∥
H

1,(N−1
2 ,N2 )

2,0

where c9 > 0 depends on d in (3.3), c10 > 0 depends on c0, p and c in (4.1),
and c11 > 0 depends on c0 and the measure |M |. Let k0 be large enough

such that c9 − c10λ
−σ

2
k0
ρp−2 > c9

2 . Then we choose ρ =
c11+

√
c211+2c9
c9

> 0 to
obtain

J(u) ≥ c9
2
ρ2 − c11ρ = 1 := α.

Let V − := span{φk | k < k0} which is a finite dimensional space such

that V + ⊕ V − = H1,(N−1
2
,N
2
)

2,0 (M). By virtue of the assumption (H-3), we
have

q

u
≤ g(z, u)

G(z, u)
for u ≥ R0,

− q
u
≥ g(z, u)

G(z, u)
for u ≤ −R0.

Integrating the above two inequalities with respect to u on [R0, u] and
[u,−R0] respectively, we obtain

q ln
u

R0
≤ ln

G(z, u)

G(z,R0)
for u ≥ R0,
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q ln
R0

−u
≥ ln

G(z,−R0)

G(z, u)
for u ≤ −R0,

which implies that

G(z, u) ≥ β1(z)|u|q for |u| ≥ R0,

where β1(z) > 0. In fact, G(z, u) is bounded if |u| < R0. Then there exists
a constant β2 > 0 such that

G(z, u) ≥ β1(z)|u|q − β2 (4.2)

holds for almost every (z, u) ∈ M×R. For any finite dimensional subspaces

W ⊂ H1,(N−1
2
,N
2
)

2,0 (M), let u ∈ W , and set ∥u∥ := ∥u∥
H

1,(N−1
2 ,N2 )

2,0

for short.

Then we have u = ∥u∥u0 with ∥u0∥ = 1. The estimate (4.2) gives us that

J(u) =
∥u∥2

2

∫
M
r|∇Mu0|2dσ −

∫
M
rG(z, ∥u∥u0)dσ

≤ ∥u∥2

2
− ∥u∥q

∫
M
rβ1(z)|u0|qdσ + β2|M|,

where |M| is the measure of M in the sense of dσ. Since q > 2, and∫
M rβ1(z)|u0|

qdσ > 0, then there exists R > 0 such that for ∥u∥ > R,
J(u) ≤ 0. Thus the conditions of Proposition 4.2 are satisfied. This im-
plies that the functional J has an unbounded sequence of the critical values.
Therefore the problem (1.1) has infinity many weak solutions in the corner

type weighted Sobolev space H1,(N−1
2
,N
2
)

2,0 (M). Theorem 1.1 is proved.

Acknowledgments The first version of this paper was done when the
authors visited the University of Potsdam during August of 2012, with sup-
port by a joint cooperation project between China and Germany. The last
version was completed when the first author was visiting the Max-Planck In-
stitute for Mathematics in the Sciences, Leipzig during the summer of 2013.
They would like to thank Professor B.-W. Schulze (University of Potsdam)
and Professor J. Jost (Max-Planck Institute for Mathematics in the Sci-
ences, Leipzig) for their invitations and support.

References

[1] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical
point theory and applications, J. Functional Analysis, 14 (1973), 349-
381.

24



[2] P. Bartolo, V.Bence and D. Fortunato, Abstract critical point theorems
and application to some nonlinear problems with strong resonance at
infinity, Nonlin. Anal.Theory Meth. Appl. 7 (1983)

[3] Hua Chen, Xiaochun Liu and Yawei Wei, Cone Sobolev Inequality and
Dirichlet Problem for Nonlinear Elliptic Equations on Manifold with
Conical Singularites, Calculus of variations and PDEs (2012) 43: 463-
484.

[4] Hua Chen, Xiaochun Liu and Yawei Wei, Multiple solutions for semi-
linear totally characteristic elliptic equations with subcritical or critical
cone Sobolev exponents, J. Differential Equations 252 (2012), 4200-4228.

[5] Hua Chen, Xiaochun Liu and Yawei Wei, Dirichlet problem for semi-
linear edge-degenerate elliptic equations with singular potential term, J.
Differential Equations 252 (2012), 4289-4314.

[6] Ju. V. Egorov, B.-W. Schulze, Pseudo-differential operators, singular-
ities, applications, Operator Theory, Advances and Applications 93,
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