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Abstract

Fidelity and relative entropy are two significant quantities in quantum information the-

ory. We study the quantum fidelity and relative entropy under unitary orbits. The maximal

and minimal quantum fidelity and relative entropy between two unitary orbits are explicitly

derived. The potential applications in quantum computation and information processing are

discussed.

1 Introduction

There are many important quantities in characterizing a bipartite or multipartite quantum state,

such as the mutual information, quantum correlation and entanglement etc. in quantum in-

formation theory. To investigate the variations of such quantities under unitary dynamics has

practical applications. In [1, 2], by searching for the maximally and minimally correlated states

on a unitary orbit, the authors studied the amount of correlations, quantified by the quantum

mutual information, attainable between the components of a quantum system, when the system

undergoes isolated, unitary dynamics. The correlations in a bipartite or multipartite state within

the construction of unitary orbits have been also examined in [3].

∗E-mail: godyalin@163.com
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In fact, there are also many important quantities in characterizing the relations between two

quantum states, such as the quantum fidelity and relative entropy. They give rise to the mea-

sures of a kind of distance between two quantum states. They can be also used to characterize the

property of a given quantum state, for instance, to quantify the quantum entanglement between

two parts of a state, which is the shortest distance between the state and the set of all sepa-

rable states. Such distances between two quantum states have many applications in quantum

information processing. In [4] it has been shown that the problem of deterministically quantum

state discrimination is equivalent to that of embedding a simplex of points whose distances are

maximal with respect to the Bures distance or trace distance of two quantum states.

In this paper, we study the quantum fidelity and relative entropy under arbitrary unitary

dynamics. Under general unitary evolutions, every given quantum state belongs to a continuous

orbit. We analyze the ‘distance’ between two quantum states under general unitary evolutions:

the maximal and minimal quantum fidelity and relative entropy between two such unitary orbits,

by using the combinatory techniques in majorization theory and operator monotones. It is also

shown that they are intervals between these minimal and the maximal values.

The paper is organized as follows: In Sect. 2 we derive the maximal and minimal values

of the quantum fidelity between the unitary orbits of two quantum states. Moreover, we prove

that the values of the quantum fidelity fill out an interval. We also discuss the fidelity evolution

generated by Hamiltonian. In Sect. 3 we consider the optimal problems for relative entropy and

derive the maximal and minimal values of the relative entropy between the unitary orbits of two

quantum states. We summarize and discuss in Sect. 4.

2 Quantum fidelity between unitary orbits

The fidelity between two d × d quantum states, represented by density operators ρ and σ, is

defined as

F(ρ, σ) = Tr

(√√
ρσ

√
ρ

)
≡ Tr

(∣∣√ρ
√

σ
∣∣) . (2.1)

This is an extremely fundamental and useful quantity in quantum information theory. In quan-

tum information processing, one wishes to transform a given quantum state to the final target

state. For instance, in the quantum computation with qubits or qutrits, it is essential to estimate

the “distance" between the desired target state and the approximate state that can be realized by

projected Hamiltonian [5, 6]. Practically, due to the inevitable interaction between the quantum

systems and its environment and possible experimental imperfectness, it is crucial to characterize

quantitatively to what extent can an evolved quantum state be close to the target state. For this
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purpose, the fidelity is often used as the measure of the distance between two quantum states.

The squared fidelity above has been called transition probability [7, 8]. Operationally it is the

maximal success probability of transforming a state to another one by measurements on a larger

quantum system. The fidelity is also employed in a number of problems such as quantifying

entanglement [9] and quantum error correction [10].

Let U (Hd) denote the set of d× d unitary matrices on d-dimensional Hilbert space Hd. For a

given density matrix ρ, its unitary orbit is defined by

Uρ =
{
UρU† : U ∈ U (Hd)

}
. (2.2)

Clearly a density operator ρ whose evolution is governed by a von Neumann equation remains

in a single orbit Uρ. The orbits Uρ are in one-to-one correspondence with the possible spectra for

density operators ρ.

We investigate the bound of the quantum fidelity between the unitary orbits Uρ and Uσ of

two quantum states ρ and σ. Due to the unitary invariance of fidelity, the problem boils down to

determining the following extremes: minU∈U(Hd) F(ρ,UσU†) and maxU∈U(Hd) F(ρ,UσU†).

Let F(p, q) = ∑j
√
pjqj denote the classical fidelity between two probability distributions

p = {pj} and q = {qj}.

Theorem 2.1. The quantum fidelity between the unitary orbits Uρ and Uσ satisfy the following relations;

max
U∈U(Hd)

F(ρ,UσU†) = F(λ↓(ρ),λ↓(σ)), (2.3)

min
U∈U(Hd)

F(ρ,UσU†) = F(λ↓(ρ),λ↑(σ)), (2.4)

where λ↓(ρ) (resp. λ↑(ρ) is the probability vector consisted of the eigenvalues of ρ, listed in decreasing

(resp. increasing) order.

Proof. We prove this Theorem for non-singular density matrices. The general case follows by

continuity. Indeed, assume that the theorem is correct for non-singular density matrices. Let σ

be singular. Then σ + ε1 is non-singular. Since limε→0+ λ↓(σ + ε1) = λ↓(σ) and

max
U∈U(Hd)

F(ρ,U(σ + ε1)U†) = F(λ↓(ρ),λ↓(σ + ε1)),

by taking the limit ε → 0+, we have that the theorem will be also true for singular density

matrices.

Since the eigenvectors of two density matrices can always be connected via a unitary, the

problem is reduced to the case where [ρ, σ] = 0. Without loss of generality, we assume that ρ and
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σ have the following spectral decompositions:

ρ =
d

∑
j=1

λ↓
j (ρ)|j〉〈j| and σ =

d

∑
j=1

λ↓
j (σ)|j〉〈j|,

where λ
↓
j (ρ) and λ

↓
j (σ) are the eigenvalues of states ρ and σ respectively.

It has been shown that for any n × n Hermitian matrices A and B, there exist two unitary

matrices V1 and V2 such that [11],

exp (A/2) exp (B) exp (A/2) = exp
(
V1AV

†
1 +V2BV

†
2

)
.

Hence for Hermitian matrices ρ and UσU†, we have V1 and V2 ∈ U (Hd) such that

√
ρUσU†√ρ = exp

(
V1 log ρV†

1 +V2U log σU†V†
2

)
. (2.5)

Therefore

F(ρ,UσU†) = Tr

(√√
ρUσU†

√
ρ

)

= Tr

(
exp

(
V1 log ρV†

1 +V2U log σU†V†
2

2

))

= Tr

(
exp

(
log ρ + Û log σÛ†

2

))
,

where Û = V†
1 V2U.

As for arbitrary Hermitian matrices A and B, one has the Golden-Thompson’s inequality:

Tr
(
eA+B

)
6 Tr

(
eAeB

)
,

in which the equality holds if and only if [A, B] = 0 [12, 13], we have

Tr

(
exp

(
log ρ + Û log σÛ†

2

))
6 Tr

(√
ρÛ

√
σÛ†

)
6 F(ρ, ÛσÛ†). (2.6)

Since the unitary group U (Hd) is compact, the supremum is actually attained on some unitary.

Let U0 ∈ U (Hd) be such that

max
U

F(ρ,UσU†) = F(ρ,U0σU†
0 ) = Tr

(
exp

(
log ρ + Û0 log σÛ†

0

2

))
.

We see that F(ρ,U0σU†
0 ) = F(ρ, Û0σÛ†

0 ), namely, the inequality (2.6) must be an equality. Hence[
ρ, Û0σÛ†

0

]
= 0, and Û0 is just a permutation operator since [ρ, σ] = 0.
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We have shown that if [ρ, σ] = 0, then there exists a permutation matrix P such that

max
U

F(ρ,UσU†) = F(ρ, PσP†).

Obviously the maximum is attained when the permutation P is the identity operator 1d. That is,

if [ρ, σ] = 0, then

max
U

F(ρ,UσU†) = F(ρ, σ) =
d

∑
j=1

√
λ↓
j (ρ)λ

↓
j (σ),

which proves (2.3).

On the other hand, we have

F(ρ,UσU†) = Tr
(∣∣∣√ρU

√
σU†

∣∣∣
)
> Tr

(√
ρU

√
σU†

)
.

Since for Hermitian matrices A and B [14],

〈λ↓(A),λ↑(B)〉 6 Tr (AB) 6 〈λ↓(A),λ↓(B)〉, (2.7)

where 〈u, v〉 := ∑j ūjvj, we obtain

min
U

F(ρ,UσU†) > min
U

Tr
(√

ρU
√

σU†
)
=

d

∑
j=1

√
λ
↓
j (ρ)λ

↑
j (σ). (2.8)

The above inequality becomes an equality for U ∈ U (Hd) such that U|j〉 = |d − j+ 1〉, which

proves (2.4).

Theorem 2.1 gives a easy way to estimate the maximal and minimal values of the quantum

fidelity between the unitary orbits of two quantum states. They are simply given by the eigen-

values of the density matrices.

Theorem 2.2. The set
{
F(ρ,UσU†) : U ∈ U (Hd)

}
is identical to the interval

[
F(λ↓(ρ),λ↑(σ)), F(λ↓(ρ),λ↓(σ))

]
. (2.9)

Proof. Note that any unitary matrix U can be parameterized as U = exp(tK) for some skew-

Hermitian matrix K. In order to prove the set
{
F(ρ,UσU†) : U ∈ U (Hd)

}
is an interval, we

denote

g(t) = F(ρ,UtσU
†
t ) = Tr

(√√
ρUtσU†

t

√
ρ

)
, (2.10)

where Ut = exp(tK) for some skew-Hermitian matrix K. Here t 7→ Ut is a path in the unitary

matrix space.
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We need an integral representation of operator monotone function:

ar =
sin(rπ)

π

∫ +∞

0

a

a+ x
xr−1dx,

where 0 < r < 1, a > 0). For convenience, let µ(x) = xr. Then we have

ar =
sin(rπ)

rπ

∫ +∞

0

a

a+ x
dµ(x),

where r ∈ (0, 1), a ∈ (0,+∞)).

Assume that all the operations are taken on the support of operators. Given a nonnegative

operator A, we have:

Ar =
sin(rπ)

rπ

∫ +∞

0
A(A+ x)−1dµ(x), r ∈ (0, 1).

In particular, for r = 1
2 , we have

√
A =

2

π

∫ +∞

0
A(A+ x)−1dµ(x), (2.11)

which gives rise to

d
√
A

dt
=

2

π

∫ +∞

0

[
dA

dt
(A+ x)−1 + A

d(A+ x)−1

dt

]
dµ(x)

=
2

π

∫ +∞

0
(A+ x)−1 dA

dt
(A+ x)−1xdµ(x),

and

Tr

(
d
√
A

dt

)
=

2

π

∫ +∞

0
Tr

(
(A+ x)−2 dA

dt

)
x dµ(x)

=
2

π
Tr

([∫ +∞

0
(A+ x)−2xdµ(x)

]
dA

dt

)

=
2

π
Tr

(
ϕ(A)

dA

dt

)
,

where

ϕ(A) :=
∫ +∞

0
(A+ x)−2xdµ(x) =

π

4
A−1/2. (2.12)

Set At =
√

ρUtσU
†
t
√

ρ. One has

dAt

dt
=

√
ρUt[K, σ]U

†
t

√
ρ. (2.13)
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Replacing A with At in (2.12), we get

dg(t)

dt
=

dTr
(√

At

)

dt
= Tr

(
d
√
At

dt

)

=
1

2
Tr

(
A−1/2

t

dAt

dt

)

=
1

2
Tr
(
U†

t

√
ρA−1/2

t

√
ρUt[K, σ]

)
.

From Theorem 2.1 the maximal and minimal values of F(ρ,UσU†) are attained for some U such

that [ρ, UσU†] = 0. Hence g(t) = F(ρ,UtσU
†
t ), where Ut = exp(tK), achieves its maximal values

at t = 0. An extremal point of g(t) is then given by

0 =
d g(t)

dt
|t=0 =

1

2
Tr
(
K[σ,

√
ρA−1/2

0

√
ρ]
)

(2.14)

for all skew-Hermitian matrices K. Thus [σ,
√

ρA−1/2
0

√
ρ] = 0, which is compatible with [ρ, σ] =

0.

The above discussion also indicates that the real function g(t) is differentiable at each point

over R for all skew-Hermitian K. That is, g(t) is a continuous function because the unitary matrix

group is path-connected. Therefore

g(R) =
[
F(λ↓(ρ),λ↑(σ)), F(λ↓(ρ),λ↓(σ))

]
,

where we are implicitly taking the union over all the images of g for all skew-hermitian K. And

the set
{
F(ρ,UσU†) : U ∈ U (Hd)

}
is identical to the interval

[
F(λ↓(ρ),λ↑(σ)), F(λ↓(ρ),λ↓(σ))

]
.

Remark 2.3. A quantum system usually evolves unitarily with {Ut = exp(−itH) : t ∈ R} accord-

ing to certain Hamiltonian H, rather than the whole unitary group. The problem is then reduced

to determine the optimized values: mint∈R F(ρ,UtσU
†
t ) and maxt∈R F(ρ,UtσU

†
t ) for given den-

sity operators ρ and σ. Note that every matrix Lie group is a smooth manifold. Thus the unitary

matrix group U (Hd), a compact group, is connected if and only if it is path-connected [15]. It is

seen that any unitary matrix is path-connected with 1d via a path Ut = exp(tK) for some skew-

Hermitian matrix K, i.e. K† = −K. Indeed since any unitary matrix U can be parameterized

in this way for both unitary matrix U and V, there exists a skew-Hermitian matrix K such that

UV−1 = exp(K). Let Ut = exp(tK)V. Then U0 = V and Ut = U. That is, Ut, t ∈ [0, 1] is a path

between U and V.

Hence if [H, ρ] = 0 or [H, σ] = 0, then

max
t∈R

F(ρ,UtσU
†
t ) = min

t∈R

F(ρ,UtσU
†
t ) = F(ρ, σ).
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Assume that [H, ρ] 6= 0 and [H, σ] 6= 0, and denote

g(t) := F(ρ,UtσU
†
t ). (2.15)

Clearly since g(t) is a continuous function and the unitary group U (Hd) is compact, the extreme

values of g(t) over R do exist. Thus the range of g(t) is a closed interval. But determining

the extreme values is very complicated and difficult. We leave this open question in the future

research.

3 Relative entropy between unitary orbits

We have studied the quantum fidelity between unitary orbits. One may also consider other

measures of ’distance’ instead of quantum fidelity. In this section we consider the relative entropy

between unitary orbits of two quantum states. We first give a Lemma about vectors and stochastic

matrices.

For a given d-dimensional real vector u = [u1, u2, · · · , ud]
T ∈ R

d, we denote

u↓ = [u↓1 , u
↓
2, . . . , u

↓
d]

T

the rearrangement of u in decreasing order, {u↓i } is a permutation of {ui} and u↓1 > u↓2 > · · · > u↓d.

Similarly, we denote

u↑ = [u↑1 , u
↑
2, · · · , u

↑
d]

T

the rearrangement of u in increasing order. A real vector u is majorized by v, u ≺ v, if ∑
k
i=1 u

↓
i 6

∑
k
i=1 v

↓
i for each k = 1, . . . , d and ∑

d
i=1 u

↓
i = ∑

d
i=1 v

↓
i . A matrix B = [bij] is called bi-stochastic if

bij > 0, ∑
d
i=1 bij = ∑

d
j=1 bij = 1 [16]. A real vector u is majorized by v if and only if u = Bv for

some d× d bi-stochastic matrix B [17].

Denote by Bd the set of all d × d bi-stochastic matrices. A unistochastic matrix D is a bi-

stochastic matrix satisfying D = U ◦U, where ◦ is the Schur product, defined between two ma-

trices as A ◦ B = [aijbij] for A = [aij ] and B = [bij]; U is a unitary matrix and U is the complex

conjugation of U. We denote Bu
d the set of all d× d unistochastic matrices.

Let Sd be the permutation group on the set {1, 2, · · · , d}. For each π ∈ Sd, we define a d× d

matrix Pπ = [δiπ(j)], Pπu = [uπ(1), · · · , uπ(d)]
T. Pπ is bi-stochastic and the set of bi-stochastic

matrices is a convex set. The Birkhoff-von Neumann theorem states that the bi-stochastic matrices

are given by the convex hull of the permutation matrices [18]: A d× d real matrix B is bi-stochastic

if and only if there exists a probability distribution λ on Sd such that B = ∑π∈Sd
λπPπ.
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Lemma 3.1. For any two real vectors u, v ∈ R
d, we have

{〈u, Bv〉 : B ∈ Bu
d} = {〈u, Bv〉 : B ∈ Bd}, (3.1)

which in turn is identical to the interval
[
〈u↓, v↑〉, 〈u↓, v↓〉

]
.

Proof. Firstly, we show that

{〈u, Bv〉 : B ∈ Bd} = [〈u↓, v↑〉, 〈u↓, v↓〉]. (3.2)

From the Birkhoff-von Neumann theorem, we see that each B ∈ Bd can be written as a convex

combination of permutation matrices:

B = ∑
π∈Sd

λπPπ, ∀π ∈ Sd : λπ > 0, ∑
π∈Sd

λπ = 1.

Thus 〈u, Bv〉 = ∑π∈Sd
λπ〈u↓, Pπv

↓〉. Since for any real numbers x1 6 · · · 6 xd and y1 6 · · · 6 yd,

one has
d

∑
i=1

xiyd+1−i 6

d

∑
i=1

x1yπ(i) 6

d

∑
i=1

xiyi

under any permutation π, it is seen that

〈u↓, v↑〉 6 〈u↓, Pπv
↓〉 6 〈u↓, v↓〉, ∀π ∈ Sd. (3.3)

As the set
{
〈u↓, Pπv

↓〉 : π ∈ Sd

}
is discrete and finite, it follows that the convex hull of this

set is a one-dimensional simplex with their boundary points 〈u↓, v↑〉 and 〈u↓, v↓〉. Therefore (3.2)
holds.

Secondly, we show that {〈u, Bv〉 : B ∈ Bu
d} = {〈u, Bv〉 : B ∈ Bd}. Indeed, since Bu

d is a proper

subset of Bd, one has {〈u, Bv〉 : B ∈ Bu
d} ⊂ {〈u, Bv〉 : B ∈ Bd}. Now for arbitrary D ∈ Bd, clearly

Dv ≺ v, there exists a unistochastic matrices D′ ∈ Bu
d such that Dv = D′v [18, Thm.11.2.]. This

implies that 〈u,Dv〉 = 〈u,D′v〉 in
{
〈u,Dv〉 : D ∈ Bu

d

}
. That is

{〈u, Bv〉 : B ∈ Bu
d} ⊃ {〈u, Bv〉 : B ∈ Bd}.

Finally, they are identically to an interval
[〈
u↓, v↑

〉
,
〈
u↓, v↓

〉]
.

In fact, the following consequence can be derived directly from (2.7) and the Lemma above,

〈λ↓(A),λ↑(B)〉 6 Tr
(
AUBU†

)
6 〈λ↓(A),λ↓(B)〉 (3.4)

for arbitrary U ∈ U (Hd). Moreover, since

Tr
(
AUBU†

)
= ∑

i,j

λ↓
i (A)λ

↓
j (B)

∣∣〈ai |U| bj
〉∣∣2 = 〈λ↓(A),DUλ↓(B)〉,
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where DU =
[∣∣〈ai |U| bj

〉∣∣2
]
∈ Bu

d , one has

{
Tr
(
AUBU†

)
: U ∈ U (Hd)

}
=

{
〈λ↓(A),DUλ↓(B)〉 : DU ∈ Bu

d

}
(3.5)

=
[
〈λ↓(A),λ↑(B)〉, 〈λ↓(A),λ↓(B)〉

]
. (3.6)

Therefore the set
{
Tr
(
AUBU†

)
: U ∈ U (Hd)

}
is an interval:

{
Tr
(
AUBU†

)
: U ∈ U (Hd)

}
=
[
〈λ↓(A),λ↑(B)〉, 〈λ↓(A),λ↓(B)〉

]
.

The relative entropy of two quantum states ρ and σ is defined by

S(ρ||σ) = Tr (ρ(log ρ − log σ)) (3.7)

if supp(ρ) ⊆ supp(σ), where supp(ρ) is the support of ρ defined as the span of the eigenvectors

with the corresponding eigenvalues great than zero. Let H(p||q) denote the classical relative

entropy of two probability distributions p = {pj} and q = {qj},

H(p||q) =





∑
j

pj(log pj − log qj), if supp(p) ⊆ supp(q),

+∞, otherwise.

Since S(UρU†||σ) = −S(ρ) − Tr
(
UρU† log σ

)
, from (2.7) and the analysis above, we have the

following results for relative entropy:

Theorem 3.2. For arbitrary given two quantum states ρ, σ ∈ D (Hd), with σ full-ranked,

min
U∈U(Hd)

S(UρU†||σ) = H(λ↓(ρ)||λ↓(σ)), (3.8)

max
U∈U(Hd)

S(UρU†||σ) = H(λ↓(ρ)||λ↑(σ)). (3.9)

Moreover, the set
{
S(UρU†||σ) : U ∈ U (Hd)

}
is an interval,

{
S(UρU†||σ) : U ∈ U (Hd)

}
=
[
H(λ↓(ρ)||λ↓(σ)), H(λ↓(ρ)||λ↑(σ))

]
.

Theorem 3.2 shows that the maximal and minimal values of the relative entropy between

the unitary orbits of two quantum states are determined by the classical relative entropy of

probability distributions given by the eigenvalues of two density matrices. In addition, one can

show that Theorem 3.2 also gives rise to the following inequality:

H(λ↓(ρ)||λ↓(σ)) 6 S(ρ||σ) 6 H(λ↓(ρ)||λ↑(σ)). (3.10)
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4 Discussions

We have solved the problem of evaluating the fidelity between unitary orbits of quantum states.

The analytical formulas for the minimal and maximal values have been obtained. It has been also

proved that the fidelity goes through the whole interval between the minimal and the maximal

values.

As a "measure of the distance" between the fixed state and the evolved one, we have used the

fidelity F(ρ, σ(t)), where σ(t) = e−itHσeitH . The analysis can be also analogously used for other

kinds of measures, for instance, the constrained optimization problem for the relative entropy:

max
t∈R

S(UtρU
†
t ||σ) and min

t∈R

S(UtρU
†
t ||σ), (4.1)

where Ut = e−itH is the unitary dynamics generated by a Hamiltonian H. The above constrained

optimization problems are related with the speed of quantum dynamical evolution [19, 20].

Our results can be also applied to other subjects in quantum computation and quantum

information processing, such as optimal quantum control, in which the state ρ(0) at time zero

evolves into the state ρ(t) at time t, ρ(t) = U(t)ρ(0)U†(t) for some unitary operator U(t). The

unitary operator U(t) is determined by the Hamiltonian of the system H(t) satisfying the time-

dependent Schrödinger equation, U̇(t) = −iH(t)U(t), with U(0) = 1 the identity operator.

H(t) is a Hermitian matrix of the form, H(t) = Hd + ∑
m
i=1 vi(t)Hi, where Hd is called the drift

Hamiltonian which is internal to the system, and ∑
m
i=1 vi(t)Hi is the control Hamiltonian such

that the coefficients vi(t) can be externally manipulated [21, 22]. If the target state is not in the

scope of the states that can be generated be the given Hamiltonian. Then one has to find a "best"

unitary operator to reach a final state such that the best fidelity between the target state and the

final state is attained.

The results obtained in this context can be also used to study the modified version of super-

additivity of relative entropy and that of sub-multiplicativity of fidelity in [23]. In fact, the

concerned problems have a surprisingly rich mathematical structure and need to be investigated

further.
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