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Abstract

We present new separability criteria for both bipartite and multipar-
tite quantum states. These criteria include the criteria based on the
correlation matrix and its generalized form as special cases. We show
by detailed examples that our criteria are more powerful than the pos-
itive partial transposition criterion, the realignment criterion and the

criteria based on the correlation matrices.
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I. INTRODUCTION

Quantum entanglement, as the remarkable nonlocal feature of quantum mechanics, is
recognized as a valuable resource in the rapidly expanding field of quantum information sci-
ence, with various applications such as quantum computation [1, 2], quantum teleportation
[3], dense coding [4], quantum cryptographic schemes [5], quantum radar [6], entanglement
swapping [7] and remote state preparation (RSP) [8-11]. Quantum states without entan-
glement are called separable states, which constitute a convex subset of all the quantum
states. Distinguishing quantum entangled states from the separable ones is a basic and
longer standing problem in the theory of quantum entanglement. It has attracted great
interest in the last twenty years.

For mixed states we still have no general criterion. A strong criterion, named PPT
(partial positive transposition), to recognize mixed entangled quantum state was proposed
by Peres in 1996 in [12]. It says that for any bipartite separable quantum states the density
matrix must be semi-positive under partial transposition. Afterwards, by using the method

of positive maps the family Horodecki [13] showed that the Peres’ criterion is also sufficient



for 2 x 2 and 2 x 3 bipartite systems. For high-dimensional states, the PPT criterion
is only necessary. Horodecki [14] has constructed some classes of families of inseparable
states with positive partial transposes for 3 x 3 and 2 x 4 systems. States of this kind are
said to be bound entangled (BE). Another powerful operational criterion for separability
is the realignment criterion [15, 16]. It demonstrates a remarkable ability in detecting the
entanglement of many bound entangled states and even genuinely tripartite entanglement
[17]. Considerable efforts have been made in proposing stronger variants and multipartite
generalizations for this criterion [18, 19]. It was shown that PPT criterion and realignment
criterion are equivalent to the permutations of the density matrix’s indices [17].

Recently, some more elegant results for the separability problem have been derived. In
[20-22], a separability criteria based on the local uncertainty relations (LUR) was obtained.

The authors show that for any separable state p € Hy ® Hp,
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where G or G8 are arbitary local orthogonal and normalized operators (LOOs) in Ha®Hp.
This criterion is strictly stronger than the realignment criterion. Thus more bound entangled
quantum states can be recognized by the LUR criterion. The criterion is optimized in
[23] by choosing the optimal LOOs. The covariance matrix of a quantum state is also
used to study separability in [24]. It has been pointed out in [25] that the LUR criterion,
including the optimized one, can be derived from the covariance matrix criterion. In [26]
the author has given a criterion based on the correlation matrix of a state. The correlation
matrix (CM) criterion is then shown to be independent of PPT and realignment criterion
in [27], i.e. there exist quantum states that can be recognized by the correlation criterion
while the PPT, realignment criterion and the covariance matrix criterion fail. In [28], by
defining matricizations of the correlation tensors, the authors introduced a general framework
for detecting genuine multipartite entanglement and non-fully separability in multipartite
quantum systems.

In this paper, we present a generalized form of the correlation matrix criterion for bipar-
tite quantum systems [26, 27| and for multipartite quantum systems [29]. Our new criterion
includes the criterion based on the correlation matrix as a special case and is more powerful
than the later for detecting entanglement, as shown by detailed examples. Thus our crite-
rion will be more efficient than the Positive partial transposition criterion, the realignment

criterion and the covariance matrix criterion for some quantum states.



II. SEPARABILITY CRITERION FOR BIPARTITE QUANTUM STATES

Let Hf,_’;l and HgQ be two vector spaces with dimensions d; and ds respectively. By using
the generators of SU(d), \;, i = 1,2,...,d*> — 1, any quantum state p € Hff ® Hg? can be

writing as:
d3-1 d2-1 d?-1d2-1
—I®I A 1 IT® M\ t A A 1
p= d1d2 & +Z7”k E® +Zsz & H—;lzl ElAE ® Ar, (1)

where r, = ﬁTT(pAk ®I),s = ﬁTr(p[ ® N) and ty = %Tr(pkk ® A;). We denote T' the

matrix with entries ¢;; and define
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Theorem 1: If p € HY ® H¥ is separable, then for any d} ® d3 matrix M and (d} —

1) ® (d3 — 1) matrix N with real entries m;; and n;; respectively,

~ VI —dy +2)(d — dy +2)
!kaszﬂ < Sdd Omaz(M) (3)

(di —1)(ds — 1)
|;nkltkl| < \/ 1, Omaz(N), (4)

where 0,4, (M) and 0,4, (N) are the maximal singular values of M and N respectively.

Proof: A separable quantum state p can be expressed as:
p =D il (il © i) (. (5)
By writing the pure states |¢;) and |¢;) in their Bloch forms, we have that
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Comparing (1) with (6), we have

Tk = %Zpﬂik, 5= dilZPiyu, th = sz' Z%k%l (7)

) kl

Define 7; = (%,xﬂ, e ,xi(df_l))t and g; = (d_127yi1, e 7?J¢(d§_1))t, where ¢ stands for the

transposition. Since |1;) € H% and |¢;) € HE are all pure states, one has

Tr(l0) {0 = Tr( T+ Y mahef = 7 +23 k= 1 (®)
k k

e |7l = V/Xpad = (/% Hence |Z:|| = ,/d%%:%“. Similarly we have ||7;]| =

dg;jﬁ”. Therefore for any real matrices M and N, one obtains that
2
- . > - \/(d%—d1+2)(d§—d2+2)
E T = i kit < (i, My;)| < o (M);
| -~ miTh| = | ;kl:p My inTil Ez pil(Z ¥i)| 2d,dy Omaz(M)

N N di —1)(dy — 1
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The correlation matrix criterion in [26] illustrates that if quantum state p is separable,

(di—1)(d2—1)
4d1do

Theorem 1 in detecting entanglement by two corollaries.

then the Key-Fan norm ||T||xr < . In the following we show the power of
Corollary 1: The criterion based on the correlation matrix is included in Theorem 1.
Proof: Let T = UXVT be the singular value decomposition of T'. Since T is a real matrix,
one can always choose U and V' to be orthogonal matrices. Without loss of generality,twe
assume that d; < d,. Set N = (VAUT)!, where A is a block matrix of the form ([ 0) i
is the (d? — 1) x (d? — 1) identity matrix, 0 stands for a (d% — d3) x (d% — d3) zero matrix.

The singular values of N must be either 1 or 0. One obtains

1T kr = |Tr(USVIVAUT)| = [Tr(TNY)| = > nutyl
kl

(di —1)(d2 — 1) ~ ldi=1)(d2 — 1)
= \/ T, Omae(N) = \/ ddidy,

This means that one can get the correlation matrix criterion from Theorem 1. [

Corollary 2: If a bipartite quantum state p € Hjl ® Hg? is separable, then the following
inequality must hold:

'V/<(1% - (il + 2)((1% __(12 + 2) (9)
2d1ds ’

where ||Q||kr = TrvQQT stands for the trace norm of 2.

IT||xr <
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Proof: Assume d; < d,. Let T = XYY be the singular value decomposition of T, vx;ith
X and Y the corresponding orthogonal matrices. Set M = (YT XT)!, where I' = < I 0> v
and 0 are the d? x d? identity matrix and the (d3 — d?) X (d5 — d?) zero matrix, respectively.
The singular values of M are either 1 or 0. Then we obtain that

1T kr = |Tr(XSYTYTXT)| = [Tr(TM")| = | Y muTu
kl

2dds ma N 2dyds ’

which ends the proof of the corollary. ]

<

Corollary 1 shows that Theorem 1 is not weaker than the correlation matrix criterion in
detecting entanglement for quantum states in Hil ® H?. In fact, by the following example
we can show that Theorem 1 is strictly stronger than the correlation matrix criterion, the
realignment criterion and the PPT criterion.

Example: A 3 x 3 PPT entangled state is given in [30]:
1 4
p= ;1(19—Z|¢i><¢i\)7 (10)
i=0

where ) = [0)(10) — [1))/v2, [¢1) = (0) = [1))12)/v2, [¢2) = 12)(11) = [2))/V2, [¢5) =
(|1) = 2))]0)/v/2 and [14) = (|0) +[1) +[2))(|0) 4 |1) +|2)) /3. The state is shown to violate
the correlation matrix criterion. Let us mix p with white noise:

1—z

o(z) =zp+ Iy. (11)

The correlation matrix criterion detects the entanglement for 0.9493 < x < 1. If we choose

the matrix M in theorem 1 to be

0.8134 0.1905 —0.11 0.18 —0.4067 0.1798 0 0 0
0.1905 0.3849 —-0.243 —-0.806 0.2608 —0.0989 0 0 0
—-0.11 —-0.243 0.1043 -0.3511 —0.1506 0.8736 O 0 0
0.1798 —0.0989 0.8736 —0.3258 —0.1634 —0.2898 0 0 0
—0.4067 0.2608 —0.1506 —0.1634 —0.867 —0.1634 O 0 0 )
0.1798 —0.806 —0.3511 —0.2898 —0.1634 —0.3258 0 0 0

0 0 0 0 0 0 0964 0 0

0 0 0 0 0 0 0 0964 0

0 0 0 0 0 0 0 0 0.964

which has the maximal singular value 1.036. From (3) the state o(z) is entangled for 0.94 <
x < 1. Furthermore, by corollary 2 one can show that o(z) is entangled for 0.89254 < = < 1.

Here one finds that our criterion is much better than the correlation matrix criterion.



III. SEPARABILITY CRITERION FOR MULTIPARTITE QUANTUM STATES

In this section we consider the separability problem for N-partite quantum systems H; ®
Hy®---® Hy withdimH; =d;, 1=1,2,--- , N.

Let )\éi’“} =13, @13, @ @ Ny, @ Iy, ,, @+ @ Igy with Ay, , the generators of SU(d;),
appearing at the pith position and

{pipa-par} _ Hi\/ll sy {m} {Mz} {uar}
,];41042"'061\4 MTIN TI“[ )\ )\ >\a1\4 ]’
2MIIN

which can be viewed as the entries of the tensors 7 tH1hzpa}

For apy = -+ = ay =0 with 1 < M < N, we define that’j'ala?.uN = Tl and for
a; = -+ =ay = 0, define that 7,,..a, = m. Hence we have a tensor 7 with elements

{Toran, p =0,1,--  d2 —1}.
If we set /\ék} =1, forany 1 < k < N, then any multipartite state p € H1 Q@ Hy®- - -Q Hy
can be generally expressed by the tensor 7 as [29],
Z T, )\{1})\{2} Aiﬁ}, (12)

12-an Aoy
a1om N
where the summation is taken for all ay = 0,1,--- ,d} — 1.
To obtain the criterion for N-partite quantum systems, we adopt the definition of the nth
matrix unfolding 7" of a tensor 7, which is a matrix with 7,, to be the row index and the
rest subscripts of 7 to be column indices(detailed description can be found in Refs. [29, 31]).

The Ky Fan norm of the tensor 7 over N matrix unfoldings is defined as
T || kr = max{[|Tp|[xF}, n=12,--- N. (13)

Theorem 2: If a quantum state p € H; ® Hy ® --- ® Hy is fully separable, then
for any tensors M and W with real entries my,iy.iy, ik = 1,2, ,dz — 1, and wj,j,..jx,

Ji=1,2,---  di we have:

[di — 1
Z Mgy 1112 1N’ HkNl Tko'max(M); (14>

Q1420 N

- d? —d, +2
Z wj1j2"'jN7;1i2--~iN| < Hévzl kTUmax(W)a (15)
k

Jijz2-JN
where 0,,0.(M) and 0,4, (W) stand for the maximal eigenvalue of the matrix unfolding M,

and W,,. The maximum is taken over all kinds of mode n matricization.



Proof: Assume that p € H; ® Hy ® --- ® Hy is fully separable, one can always find the

following decomposition:
p=D_ pileWil® Wil e @ M)W, (16)

where [0") ("] are density matrices of pure states in H,,. Using the Bloch representation

of density matrix, we have that

m m 1 m
Wl = -1+ Zxxm (17)
where x7 = Tr(|Y]") (]| Aa,,)/2. By (8) one has that ||Z}"|| = dgzl;l. Denote 77" =

(2, s )t We obtain that ||| = | /%a55*2. Substituting (17) into (16) one
1 m
has that:

1
p = H;CV 1dk ®k2 1 k+z HN Zpl fotlAgll Z u2 Zpl zal 5032)\5&)\52

Hion - K120 02

e .,d
REED DN - S DU L AR

IRV ateS iedYs

+ Z Zpil’}al" zozN/\}Jq"')‘gN' (18)

alan @

Comparing (12) and (18), one gets

M
T mpeum}t — M Zpi;pf” coegphM (19>

Qoo HN
k=1

According to the definitions of £ ™ and Toronay 7;1a2...aN, we have that

[ Z

041042 ‘N Zpl wq'“ 'LaN szx O;L’ o OfN (20)
041012 ‘an Zpl zoq”' zaN szx Oaj o Oa:;zj‘vv (21)

where o stands for the out product.

Let M,, be mode n matricization of M. Then for any tensor M we have that

> Mot Toinin = 3T o i o0 N)) < IIY, ‘“T;klamw).
i1io-in
Inequality (15) can be derived similarly. ]
In [29], the authors have derived a generalized form of the correlation matrix criterion
which says that if a quantum state p € H; ® Hy ® --- ® Hy is fully separable, then
dp — 1

T = |7, < Y
T llkr = [|Tallxr <1, od

(22)



Here we show that one can obtain the generalized correlation matrix criterion from The-
orem 2.

Corollary 3: Inequality (22) is included in theorem 2. Moreover, if quantum state
p€ HH ® Hy®---® Hy is fully separable, then the following inequality holds:

. - d? —dj, + 2
T l|lkr = [|Tallgr < Hff:q/%~ (23)
k

Proof: Assume that the nth unfold 7, is just the one to attain the ||7||xr. One
immediately derives a singular value decomposition of 7,,, 7, = VnEnUJ for some orthogonal
matrices V,, and U,. Let M be the tensor with the nth matrix unfolding M, = VanUJL,

where II,, = ( 10 ), I is the (d? —1) x (d? —1) identity matrix and 0 is the zero matrix with
N

order such that II,, is a (d? — 1) x H’“(:dlz(—ilﬁl)_l) matrix. Since both V,, and U, are orthogonal

matrices, the maximal singular value must be 1. From Theorem 2 we have

| Y Miigein Tovigeein| = Tr(M,T)) = Tr(V,ILU U, S, V)

1192 1N

di — 1
= Tr(Z,) = T llke < T /=5
2dy,
which leads to the inequality (22). Inequality (23) can be proved similarly. n

Corollary 3 can detect some PPT entangled quantum states in multipartite quantum
systems, such as the three-qutrit bound entangled states p.®|1) (10| condidered by L. Clarisse
and P. Wocjan [32], where

10 1 0 0 0100
0601 0 0 0 —-10-10
10 2 0 —-1020 0 O
00 0 1 0 -10120
,Oc:% 00 -1 0 1 0100
0-10 -10 2 000
10 0 0 1 0200
0-10 1 0 00 20
00 0 0 0 0O0O0O

is the chess-board state and [¢) is an uncorrelated ancilla. If we mix p. ® [¢) ()| with white
noise and define o = pp. @ |¢) (1| + 1221, the entanglement is detected for 0.83265 < p < 1
by corollary 3.



IV. CONCLUSIONS AND REMARKS

It is a basic and fundamental question to distinguish separable quantum states from
entangled ones. Although the quantum separability problem has been shown to be NP-hard,
it is possible to derive some necessary criteria of separability. We have derived separability
criteria of quantum states for both bipartite and multipartite quantum ones. The criteria
are shown to be more efficient in detecting quantum entanglement of some quantum states
than the (generalized) criterion based on the correlation matrix, the PPT criterion, the
realignment criterion, and the covariance matrix criterion. Similar to the case of previous

separability criteria, our criteria can also be used to derive lower bounds for concurrence.
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