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WEAK EXPANSIVENESS FOR ACTIONS OF SOFIC GROUPS

NHAN-PHU CHUNG AND GUOHUA ZHANG *

Abstract. In this paper, we shall introduce h-expansiveness and asymptotical

h-expansiveness for actions of sofic groups. By the definitions, each h-expansive

action of sofic groups is asymptotically h-expansive. We show that each expansive

action of sofic groups is h-expansive, and, for any given asymptotically h-expansive

action of sofic groups, the entropy function (with respect to measures) is upper

semi-continuous and hence the system admits a measure with maximal entropy.

Observe that asymptotically h-expansive property was firstly introduced and

studied by Misiurewicz for Z-actions using the language of topological conditional

entropy. And thus in the remaining part of the paper, we shall compare our

definitions of weak expansiveness for actions of sofic groups with the definitions

given in the same spirit of Misiurewicz’s ideas when the group is amenable. It

turns out that these two definitions are equivalent in this setting.

1. Introduction

Dynamical system theory is the study of qualitative properties of group actions
on spaces with certain structures. In this paper, by a topological dynamical system
we mean a continuous action of a countable discrete sofic group on a compact metric
space. Sofic groups were defined implicitly by Gromov in [Gro99a] and explicitly by
Weiss in [Wei00], which include all amenable groups and residually finite groups.

Recently, Lewis Bowen introduced a notion of entropy for measure-preserving
actions of a countable discrete sofic group admitting a generating measurable par-
tition with finite entropy [Bow10, Bow12]. The main idea here is to replace the
important Følner sequence of a countable discrete amenable group with a sofic
approximation for a countable discrete sofic group. Very soon after [Bow10], in
the spirit of L. Bowen’s sofic measure-theoretic entropy, Kerr and Li developed an
operator-algebraic approach to sofic entropy [KL11, KL13b] which applies not only
to continuous actions of countable discrete sofic groups on compact metric spaces
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but also to all measure-preserving actions of countable discrete sofic groups on s-
tandard probability measure spaces. From then on, there are many other papers,
presenting different but equivalent definitions of sofic entropy [Ker13, Zha12], ex-
tending sofic entropy to sofic pressure [Chu13] and to sofic mean dimension [Li13],
and discussing combinatorial independence for actions of sofic groups [KL13a].

Let X be a compact metric space. Any homeomorphism T : X → X gen-
erates naturally a topological dynamical system by considering the group {T n :
n ∈ Z}. Even the given map T : X → X is just a continuous map (may be
non-invertible), we still call it a topological dynamical system by considering the
semi-group {T n : n ∈ Z+}. A self-homeomorphism of a compact metric space
is expansive if, for each pair of distinct points, some iterate of the homeomorphism
separates them by a definite amount. Expansiveness is in fact a multifaceted dynam-
ical condition which plays a very important role in the exploitation of hyperbolicity
in smooth dynamical system [Mañ87]. In the setting of considering a continuous
mapping over a compact metric space, two classes of weak expansiveness, the h-
expansiveness and asymptotical h-expansiveness, were introduced by Rufus Bowen
[Bow72] and Misiurewicz [Mis76], respectively. By the definitions, each h-expansive
system is asymptotically h-expansive. Both of h-expansiveness and asymptotical
h-expansiveness turn out to be important in the study of smooth dynamical system
[Bur11, DFPV12, DM09, DN05, LVY].

It is direct to define expansiveness for actions of groups. That is, let G be a
discrete group acting on a compact metric space X (with the metric ρ), then we say
that (X,G) is expansive if there is δ > 0 such that for any two different points x1

and x2 in X there exists g ∈ G with ρ(gx1, gx2) > δ. Such a δ is called an expansive
constant. Symbolic systems are standard examples for expansive actions. This
obvious extension of the notion of expansiveness has been investigated extensively
in algebraic actions for Zd [ES02, LS99, Sch90, Sch95] and for more general groups
[Bow11, CL, DS07]; and a general framework of dynamics of d ∈ N commuting
homeomorphisms over a compact metric space, in terms of expansive behavior along
lower dimensional subspaces of Rd, was firstly proposed by Boyle and Lind [BL97].

Now, a natural question rises: how to define weak expansiveness using entropy
techniques when considering actions of countable sofic groups?

The problem is addressed in this paper. When considering a continuous mapping
over a compact metric space, R. Bowen introduced h-expansiveness using sepa-
rated and spanning subsets by considering topological entropy of special subsets
[Bow72], and then Misiurewicz introduced asymptotical h-expansiveness, weaker
than h-expansiveness, using open covers by introducing topological conditional en-
tropy [Mis76]. It was Li who used firstly open covers for actions of sofic groups
to consider sofic mean dimension [Li13], and then this idea was used in [Zha12]
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to consider equivalently the entropy for actions of sofic groups. To fix the prob-
lem of defining weak expansiveness naturally for actions of sofic groups, we shall
use open covers again to introduce the properties of h-expansiveness and asymp-
totical h-expansiveness in the spirit of Misiurewicz [Mis76]. The idea turns out
to be successful. From the definitions, each h-expansive action of sofic groups
is asymptotically h-expansive; we shall prove that each expansive action of sofic
groups is h-expansive (Theorem 3.1), and hence, h-expansiveness and asymptotical
h-expansiveness are indeed two classes of weak expansiveness. Additionally, similar
to the setting of considering a continuous mapping over a compact metric space, for
any given asymptotically h-expansive action of sofic groups, the entropy function
(with respect to measures) is upper semi-continuous (Theorem 3.5) and hence the
system admits really a measure with maximal entropy.

Observe that the asymptotically h-expansive property was first introduced and
studied by Misiurewicz for Z-actions using the language of topological condition-
al entropy. We can define topological conditional entropy for actions of amenable
groups in the same spirit, and so it is quite natural to ask if we could define asymp-
totical h-expansiveness for actions of amenable groups along the line of topological
conditional entropy. The answer turns out to be true, that is, our definitions of weak
expansiveness for actions of sofic groups are equivalent to the definitions given in
the same spirit of Misiurewicz’s ideas of using topological conditional entropy when
the group is amenable (Theorem 6.1). In [Mis76] Misiurewicz provided a typical
example of an asymptotically h-expansive system, that is, any continuous endomor-
phism of a compact metric group with finite entropy is asymptotically h-expansive.
We shall show that in fact this holds in a more general setting with the help of The-
orem 6.1, precisely, any action of a countable discrete amenable group acting on a
compact metric group by continuous automorphisms is asymptotically h-expansive
if the action has finite entropy (Theorem 7.1).

The paper is organized as follows. In section 2 we prove that each expansive action
of sofic groups admits a measure with maximal entropy based on the sofic measure-
theoretic entropy introduced in [Bow10]. In section 3 we introduce h-expansive
and asymptotically h-expansive actions of sofic groups in the spirit of Misiurewicz
[Mis76]. Each h-expansive action of sofic groups is asymptotically h-expansive by
the definitions. We show that each expansive action of sofic groups is h-expansive,
and each asymptotically h-expansive action of sofic groups admits a measure with
maximal entropy (in fact, its entropy function is upper semi-continuous with respect
to measures). In section 4 we present our first interesting non-trivial example of an
h-expansive action of sofic groups which is in fact the profinite action of a countable
group. In order to understand further our introduced weak expansiveness for actions
of sofic groups in the setting of amenable groups, in section 5 we define topological
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conditional entropy for actions of amenable groups in the same spirit of Misiurewicz.
And then in section 6 we compare our definitions of weak expansiveness for actions
of sofic groups with the definitions given in section 5 when the group is amenable.
It turns out that these two definitions are equivalent in this setting. And then in
section 7 we show that any action of a countable discrete amenable group acting on
a compact metric group by continuous automorphisms is asymptotically h-expansive
if the action has finite entropy.

2. Expansive actions of sofic groups

Let G be a countable discrete group. For each d ∈ N, denote by Sym(d) the
permutation group of {1, · · · , d}; and then we say that G is sofic if there is a
sequence Σ = {σi : G→ Sym(di), g 7→ σi,g, di ∈ N}i∈N such that

lim
i→∞

1

di
|{a ∈ {1, · · · , di} : σi,sσi,t(a) = σi,st(a)}| = 1 for all s, t ∈ G

and

lim
i→∞

1

di
|{a ∈ {1, · · · , di} : σi,s(a) 6= σi,t(a)}| = 1 for all distinct s, t ∈ G.

Here, by |• | we mean the cardinality of a set •. Such a sequence Σ with limi→∞ di =
∞ is referred as a sofic approximation of G. Observe that the condition limi→∞ di =
∞ is essential for the variational principle concerning entropy of actions of sofic
groups (see [KL11] and [Zha12] for the global and local variational principles, re-
spectively), and it is automatic if G is infinite.

Throughout the paper, G will be a countable discrete sofic group, with a fixed sofic
approximation Σ as above and act on a compact metric space (X, ρ).

In this section, based on sofic measure-theoretic entropy introduced in [Bow10],
we mainly prove that, for an expansive action of sofic groups, the entropy function
is upper semi-continuous with respect to measures, and hence the action admits a
measure with maximal entropy. Additionally, we show that in general the entropy
function of a finite open cover is also upper semi-continuous with respect to measures.

Denote by M(X) the set of all Borel probability measures on X, which is a
compact metric space if endowed with the well-known weak star topology; and by
M(X,G) the set of all G-invariant elements µ in M(X), i.e., µ(A) = µ(g−1A) for
each g ∈ G and all A ∈ BX , where BX is the Borel σ-algebra of X. Note that if
M(X,G) 6= ∅ then it is a compact metric space.

For a set Y , we denote by FY the set of all non-empty finite subsets of Y . By
a cover of X we mean a family of subsets of X with the whole space as its union.
If elements of a cover are pairwise disjoint, then it is called a partition. Denote by
CX ,C

o
X ,C

c
X and PX the set of all finite Borel covers, finite open covers, finite closed
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covers and finite Borel partitions of X, respectively. For V ∈ CX and ∅ 6= K ⊂ X we
set V = {V : V ∈ V}, and set N(V, K) to be the minimal cardinality of sub-families
of V covering K (with N(V, ∅) = 0 by convention).

Throughout the whole paper, we shall fix the convention log 0 = −∞.

Now we recall the sofic measure-theoretic entropy introduced in [Bow10, §2].
Let α = {A1, · · · , Ak} ∈ PX , k ∈ N and σ : G → Sym(d), d ∈ N, and let ζ be

the uniform probability measure on {1, · · · , d} and β = {B1, · · · , Bk} a partition of
{1, · · · , d}. Assume µ ∈ M(X,G). For F ∈ FG, we denote by Map(F, k) the set of
all functions φ : F → N such that φ(f) ≤ k for all f ∈ F , and we set

dF (α, β) =
X

φ∈Map(F,k)

|µ(Aφ)− ζ(Bφ)|,

where

Aφ =
\
f∈F

f−1Aφ(f) and Bφ =
\
f∈F

σ(f)−1Bφ(f) for each φ ∈ Map(F, k).

Now for each ε > 0, let APµ(σ, α : F, ε) (or just AP (σ, α : F, ε) if there is no
any ambiguity) be the set of all partitions β = {B1, · · · , Bk} of {1, · · · , d} with
dF (α, β) ≤ ε. In particular, |AP (σ, α : F, ε)| ≤ kd. We define

Hµ,Σ(α : F, ε) = lim sup
i→∞

1

di
log |AP (σi, α : F, ε)| ≤ log |α|,

Hµ,Σ(α : F ) = lim
ε→0

Hµ,Σ(α : F, ε) = inf
ε>0

Hµ,Σ(α : F, ε) ≤ log |α|,

hµ,Σ(α) = inf
F∈FG

Hµ,Σ(α : F ) ≤ log |α|.

Observe that AP (σi, α : F, ε) may be empty, and in the case that AP (σi, α : F, ε) =
∅ for all large enough i ∈ N we have Hµ,Σ(α : F, ε) = −∞ by the convention
log 0 = −∞. Hence, hµ,Σ(α) may take a value in [0, log |α|] ∪ {−∞}.

The main result of [Bow10] tells us that, if there exists an α ∈ PX generating
the σ-algebra BX (in the sense of µ) then the quantity hµ,Σ(α) is independent of
the selection of such a partition, and this quantity, denoted by hµ,Σ(X,G), is called
the measure-theoretic µ-entropy of (X,G). Indeed, L. Bowen defined the measure-
theoretic entropy in a more general case when the action admits a generating parti-
tion β (not necessary finite) with finite Shannon entropy [Bow10]. We say that the
partition β ⊂ BX generates the σ-algebra BX (in the sense of µ) if for each B ∈ BX

there exists A ∈ A such that µ(A∆B) = 0, where A is the smallest G-invariant
sub-σ-algebra of BX containing β.

Observing that, for an expansive action (X,G) of sofic groups with an expansive
constant δ > 0, if ξ ∈ PX satisfies diam(ξ) < δ, where diam(ξ) denotes the maximal
diameter of subsets in ξ, then, for each µ ∈M(X,G) (if M(X,G) 6= ∅), ξ generates
BX [Wal82, Theorem 5.25], and so the quantity hµ,Σ(X,G) is well defined.
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For technical reasons for r1, r2 ∈ [−∞,∞] we set r1 + r2 = −∞ by convention
in the case that either r1 = −∞ or r2 = −∞, and for r1, r2 ∈ (−∞,∞] we set
r1 + r2 =∞ by convention in the case that either r1 =∞ or r2 =∞.

We say that a function f : Y → [−∞,∞) defined over a compact metric space
Y is upper semi-continuous if lim supy′→y f(y′) ≤ f(y) for each y ∈ Y . The follow-
ing result shows that each expansive action of sofic groups admits a measure with
maximal entropy.

Theorem 2.1. Let (X,G) be an expansive action of sofic groups with M(X,G) 6= ∅.
Then h•,Σ(X,G) : M(X,G)→ [0,∞)∪{−∞} is an upper semi-continuous function.

Proof. The proof is inspired by [Wal82, Theorem 8.2].
Let δ > 0 be an expansive constant for (X,G) and ξ ∈ PX with diam(ξ) < δ.

Then ξ generates BX and so hµ,Σ(X,G) ∈ [0, log |ξ|]∪{−∞} for each µ ∈M(X,G).
Now fix η > 0 and µ ∈ M(X,G). It suffices to find an open set U ⊂ M(X,G)

containing µ such that hν,Σ(X,G) ≤ hµ,Σ(X,G) + η for each ν ∈ U .
We choose F ∈ FG and ε > 0 such that Hµ,Σ(ξ : F, 2ε) ≤ hµ,Σ(X,G) + η.

Say ξ = {A1, · · · , Ak} and let 0 < ε1 <
ε

2M2 with M = |Map(F, k)| = k|F |. Let
φ ∈ Map(F, k). Since µ is regular, there exists a compact set Kφ ⊂ Aφ with
µ(Aφ \Kφ) < ε1, and then for each i = 1, · · · , k we define

Li =
[
f∈F
{fKφ : φ(f) = i} ⊂ Ai.

Then L1, · · · , Lk are pairwise disjoint compact subsets of X, and so there exists ξ′ =
{A′1, · · · , A′k} ∈ PX such that diam(ξ′) < δ and, for each j = 1, · · · , k, Lj ⊂ int(A′j)
where int(A′j) denotes the interior of A′j. Observe that

Kφ ⊂ int

�\
f∈F

f−1A′φ(f)

�
= int(A′φ)

�
here A′φ =

\
f∈F

f−1A′φ(f)

�
by the construction of ξ′, and so using Urysohn’s Lemma we can choose uφ ∈ C(X),
where C(X) denotes the set of all real-valued continuous functions over X, with
0 ≤ uφ ≤ 1 which equals 1 on Kφ and vanishes on X \ int(A′φ). Set

U = {ν ∈M(X,G) : |ν(uφ)− µ(uφ)| < ε1 for all φ ∈ Map(F, k)}
which is an open set of M(X,G) containing µ. Let ν ∈ U . Then ν(A′φ) ≥ ν(uφ) >
µ(uφ) − ε1 ≥ µ(Kφ) − ε1 and hence µ(Aφ) − ν(A′φ) < 2ε1 for each φ ∈ Map(F, k).
Observe {Aφ : φ ∈ Map(F, k)} ∈ PX and {A′φ : φ ∈ Map(F, k)} ∈ PX . Note
that if p1, · · · , pm, q1, · · · , qm, c are nonnegative real numbers with m ∈ N such thatPm
i=1 pi =

Pm
i=1 qi = 1 and pj − qj < c for each j = 1, · · · ,m then

qi − pi =
X
j 6=i

(pj − qj) < mc
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and hence |pi−qi| < mc for any i = 1, · · · ,m. This implies
���ν(A′φ)−µ(Aφ)

��� < 2ε1M

for each φ ∈ Map(F, k), and soX
φ∈Map(F,k)

|ν(A′φ)− µ(Aφ)| ≤ 2ε1M
2 ≤ ε.

Thus APν(σi, ξ
′ : F, ε) ⊂ APµ(σi, ξ : F, 2ε) for each i ∈ N, and then

Hν,Σ(ξ′ : F ) ≤ Hν,Σ(ξ′ : F, ε) ≤ Hµ,Σ(ξ : F, 2ε) ≤ hµ,Σ(X,G) + η.

As diam(ξ′) < δ, ξ′ ∈ PX generates BX by the construction of δ, and so we get
hν,Σ(X,G) ≤ hµ,Σ(X,G) + η for each ν ∈ U as desired. This finishes the proof. �

In the spirit of L. Bowen’s entropy as above, Kerr and Li introduced alternatively
the sofic measure-theoretic entropy [KL11, KL13b] as follows.

Let (Y, ρ) be a metric space and ε > 0. A set ∅ 6= A ⊂ Y is said to be (ρ, ε)-
separated if ρ(x, y) ≥ ε for all distinct x, y ∈ A. We write Nε(Y, ρ) for the maximal
cardinality of finite non-empty (ρ, ε)-separated subsets of Y (and set Nε(∅, ρ) = 0
by convention). A basic fact is that if ∅ 6= A ⊂ Y is a maximal finite (ρ, ε)-separated
subset of Y then for each y ∈ Y there exists x ∈ A such that ρ(x, y) < ε.

For each d ∈ N and (x1, · · · , xd), (x′1, · · · , x′d) ∈ Xd, we set

(2.1) ρd((x1, · · · , xd), (x′1, · · · , x′d)) =
d

max
i=1

ρ(xi, x
′
i).

For F ∈ FG, δ > 0 and σ : G→ Sym(d), g 7→ σg with d ∈ N, put

Xd
F,δ,σ =

8<:(x1, · · · , xd) ∈ Xd : max
s∈F

Ì
dX
i=1

1

d
ρ2(sxi, xσs(i)) < δ

9=; ;

and then for µ ∈M(X) and L ∈ FC(X), we set

Xd
F,δ,σ,µ,L =

(
(x1, · · · , xd) ∈ Xd

F,δ,σ : max
f∈L

�����1d dX
i=1

f(xi)− µ(f)

����� < δ

)
.

By [KL13b, Proposition 3.4] the measure-theoretic µ-entropy of (X,G) can be de-
fined as (recalling the convention log 0 = −∞)

hµ(G,X) = sup
ε>0

inf
L∈FC(X)

inf
F∈FG

inf
δ>0

lim sup
i→∞

1

di
logNε

�
Xdi
F,δ,σi,µ,L

, ρdi
�
.

The sofic measure-theoretic entropy can be defined equivalently using finite open
covers as follows [Zha12, §2]. We remark that it was Li who used firstly open covers
for actions of sofic groups to consider sofic mean dimension in [Li13].

Let U ∈ CX , we set (recalling the convention log 0 = −∞)

hF,δ,µ,L(G,U) = lim sup
i→∞

1

di
logN

�
Udi , Xdi

F,δ,σi,µ,L

�
.
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In particular, hF,δ,µ,L(G,U) takes the value −∞ once Xdi
F,δ,σi,µ,L

= ∅ for all i ∈ N
large enough. Now we define the measure-theoretic µ-entropy of U as

hµ(G,U) = inf
L∈FC(X)

inf
F∈FG

inf
δ>0

hF,δ,µ,L(G,U) ≤ logN(U, X).

It is not hard to check that

hµ(G,X) = sup
U∈CoX

hµ(G,U).

Moreover, by the proof of [KL11, Theorem 6.1], it was proved implicitly hµ(G,X) =
−∞ (and hence hµ(G,U) = −∞ for all U ∈ CoX) for each µ ∈M(X) \M(X,G).

Observe that both of hµ(G,U) and hµ(G,X) may take the value of −∞, and by
[KL11, KL13b] if µ ∈M(X,G) and BX admits a generating partition (in the sense
of µ) with finite Shannon entropy then hµ(G,X) is just the quantity hµ,Σ(X,G)
introduced before.

The following result is easy to obtain:

Proposition 2.2. Let U ∈ CoX . Then h•(G,U) : M(X)→ [0, logN(U, X)]∪ {−∞}
is an upper semi-continuous function.

Proof. Let µ ∈ M(X). For any ε > 0 we may choose L ∈ FC(X), F ∈ FG and δ > 0
such that hF,2δ,µ,L(G,U) ≤ hµ(G,U) + ε. Now we consider the non-empty open set

µ ∈ V = {ν ∈M(X) : |ν(f)− µ(f)| < δ for all f ∈ L}.
Then for each ν ∈ V we have Xd

F,δ,σ,ν,L ⊂ Xd
F,2δ,σ,µ,L for each σ : G→ Sym(d), d ∈ N,

which implies hν(G,U) ≤ hF,δ,ν,L(G,U) ≤ hF,2δ,µ,L(G,U) ≤ hµ(G,U) + ε. This
implies that the considered function is upper semi-continuous. �

3. Weak expansiveness for actions of sofic groups

Note that, when considering a continuous mapping over a compact metric space,
since the introduction of h-expansiveness and asymptotical h-expansiveness, both
of them turn out to be very important classes in the research area of dynamical
systems. It is shown by R. Bowen [Bow72] that positively expansive systems, ex-
pansive homeomorphisms, endomorphisms of a compact Lie group and Axiom A
diffeomorphisms are all h-expansive, by Misiurewicz [Mis76] that every continuous
endomorphism of a compact metric group is asymptotically h-expansive if it has fi-
nite entropy, and by Buzzi [Buz97] that any C∞ diffeomorphism on a compact man-
ifold is asymptotically h-expansive. Moreover, there are more nice characterizations
of asymptotical h-expansiveness obtained recently for this setting. For example, a
topological dynamical system is asymptotically h-expansive if and only if it admits
a principal extension to a symbolic system by Boyle and Downarowicz [BD04], i.e.,
a symbolic extension which preserves entropy for each invariant measure; if and
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only if it is hereditarily uniformly lowerable by Huang, Ye and the second author
of present paper [HYZ10] (for a detailed definition of the hereditarily uniformly
lowerable property and its more story see [HYZ10]).

In this section we explore similar weak expansiveness for actions of sofic groups.

By [KL13b, Proposition 2.4] the topological entropy of (X,G) can be defined as

h(G,X) = sup
ε>0

inf
F∈FG

inf
δ>0

lim sup
i→∞

1

di
logNε

�
Xdi
F,δ,σi

, ρdi
�
,

which is introduced and discussed in [KL11, KL13b]. Before proceeding, we need to
recall the topological entropy for actions of sofic groups introduced in [Zha12, §2]
using finite open covers. Let U ∈ CX . For F ∈ FG and δ > 0 we set

hF,δ(G,U) = lim sup
i→∞

1

di
logN

�
Udi , Xdi

F,δ,σi

�
.

Observe again that hF,δ(G,U) takes the value of −∞ whenever Xdi
F,δ,σi

= ∅ for all
i ∈ N large enough. Now we define the topological entropy of U as

h(G,U) = inf
F∈FG

inf
δ>0

hF,δ(G,U) ≤ logN(U, X).

It is not hard to check that

h(G,X) = sup
U∈CoX

h(G,U).

Observe that both of h(G,U) and h(G,X) may take the value of −∞.
The sofic topological entropy and sofic measure-theoretic entropy are related to

each other [KL11, Theorem 6.1] and [Zha12, Theorem 4.1]: for U ∈ CoX ,

(3.1) h(G,X) = sup
µ∈M(X,G)

hµ(G,X) and h(G,U) = max
µ∈M(X,G)

hµ(G,U),

where in the right-hand sides as above we set it as−∞ by convention ifM(X,G) = ∅.
In the spirit of Misiurewicz [Mis76], the above idea can be used to introduce weak

expansiveness of h-expansiveness and asymptotical h-expansiveness for actions of
sofic groups. Let U1,U2 ∈ CX . For F ∈ FG and δ > 0 we set

hF,δ(G,U1|U2) = lim sup
i→∞

1

di
log max

V ∈Udi2
N
�
Udi

1 , X
di
F,δ,σi

∩ V
�
≤ hF,δ(G,U1),

h(G,U1|U2) = inf
F∈FG

inf
δ>0

hF,δ(G,U1|U2) ≤ h(G,U1),

h(G,X|U2) = sup
U1∈CoX

h(G,U1|U2) ≤ h(G,X),

h∗(G,X) = inf
U2∈CoX

h(G,X|U2) ≤ h(G,X).

Then h(G,X|{X}) = h(G,X) by the definitions. We say that (X,G) is h-expansive
if h(G,X|U) ≤ 0 for some U ∈ CoX , and asymptotically h-expansive if h∗(G,X) ≤ 0.
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Each h-expansive action of sofic groups is asymptotically h-expansive by the def-
initions. The next result shows that each expansive action of sofic groups is h-
expansive, and thus these two kinds of expansiveness are indeed weak expansiveness.

Theorem 3.1. Let (X,G) be an expansive action of sofic groups with κ > 0 an
expansive constant and U ∈ CX . Assume that diam(U) ≤ cκ for some c < 1. Then
h(G,X|U) ≤ 0.

Proof. Let V ∈ CoX and ε > 0. It suffices to prove that h(G,V|U) ≤ ε.
Let τ > 0 be a Lebesgue number of V. As (X,G) is an expansive action of sofic

groups with κ > 0 an expansive constant, it is not hard to choose F ∈ FG such
that maxs∈F ρ(sx, sx′) < κ implies ρ(x, x′) < τ

2
(for example see [Wal82, Chapter 5,

§5.6]). Now let δ > 0 be small enough such that

(3.2) |Θd| · |V|
8δ2|F |

(1−c)2κ2
·d
< eεd

for all d ∈ N large enough, where Θd is the set of all subsets θ of {1, · · · , d} with

|θ| < 8δ2|F |
(1− c)2κ2

· d.

For any map σ : G→ Sym(d), g 7→ σg with d ∈ N, recall

Xd
F,δ,σ =

8<:(x1, · · · , xd) ∈ Xd : max
s∈F

Ì
dX
i=1

1

d
ρ2(sxi, xσs(i)) < δ

9=; ,
in particular, once (x∗1, · · · , x∗d) ∈ Xd

F,δ,σ then, by direct calculations,

(3.3)

�����¨i ∈ {1, · · · , d} : ρ(sx∗i , x
∗
σs(i)) ≥

(1− c)κ
2

for some s ∈ F
«����� < 4δ2|F | · d

(1− c)2κ2
.

Now let V ∈ Ud and say (x1, · · · , xd) ∈ Xd
F,δ,σ ∩ V (if it is not empty). For

any (x′1, · · · , x′d) ∈ Xd
F,δ,σ ∩ V , applying (3.3) to (x1, · · · , xd) and (x′1, · · · , x′d) and

observing ρ(sxi, sx
′
i) ≤ ρ(sxi, xσs(i)) + ρ(xσs(i), x

′
σs(i)

) + ρ(sx′i, x
′
σs(i)

), it is easy to see

|{i ∈ {1, · · · , d} : ρ(sxi, sx
′
i) ≥ κ for some s ∈ F}| < 8δ2|F |

(1− c)2κ2
· d.

In other words, if we associate each θ ∈ Θd with Xd
F,δ,σ,V,θ, the set of all (x′1, · · · , x′d)

in Xd
F,δ,σ ∩ V with θ = |{i ∈ {1, · · · , d} : ρ(sxi, sx

′
i) ≥ κ for some s ∈ F}|, then

(3.4)
[
θ∈Θd

Xd
F,δ,σ,V,θ = Xd

F,δ,σ ∩ V.

For each θ ∈ Θd, if (x1”, · · · , xd”), (x#
1 , · · · , x

#
d ) ∈ Xd

F,δ,σ,V,θ then, by the selection of

F , ρ(xi”, xi) <
τ
2
, ρ(x#

i , xi) <
τ
2

and then ρ(xi”, x
#
i ) < τ for all i ∈ {1, · · · , d} \ θ,
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thus Xd
F,δ,σ,V,θ can be covered by at most |V||θ| many elements of Vd. This implies

N(Vd, Xd
F,δ,σ ∩ V ) ≤

X
θ∈Θd

N(Vd, Xd
F,δ,σ,V,θ) (using (3.4))

≤ |Θd| · |V|
8δ2|F |

(1−c)2κ2
·d
< eεd (using (3.2)),

and hence h(G,V|U) ≤ ε by the definition, finishing the proof. �

Observing that, for V1,V2 ∈ CX and K ⊂ X,

(3.5) N(V1, K) ≤ N(V2, K) ·max
V ∈V2

N(V1, K ∩ V ),

it is direct to obtain the following easy while useful observation.

Lemma 3.2. Let U1,U2 ∈ CX and µ ∈M(X). Then

hµ(G,U1) ≤ hµ(G,U2) + h(G,U1|U2) and hµ(G,X) ≤ hµ(G,U2) + h(G,X|U2),

h(G,U1) ≤ h(G,U2) + h(G,U1|U2) and h(G,X) ≤ h(G,U2) + h(G,X|U2).

Proof. Let {Fn : n ∈ N} ⊂ FG increase to the whole group G and {δn > 0 : n ∈ N}
decrease to 0. By the definitions it is direct to see

hµ(G,U) = inf
L∈FC(X)

lim
n→∞

hFn,δn,µ,L(G,U)

for each U ∈ CX and

h(G,U1|U2) = lim
n→∞

hFn,δn(G,U1|U2).

Now for each n ∈ N and L ∈ FC(X), using (3.5) it is easy to obtain

hFn,δn,µ,L(G,U1) ≤ hFn,δn,µ,L(G,U2) + hFn,δn(G,U1|U2),

and then hµ(G,U1) ≤ hµ(G,U2) + h(G,U1|U2) by taking limits on both sides, in
particular, hµ(G,U1) = −∞ when hµ(G,U2) = −∞ (and hence hµ(G,X) = −∞ if
and only if hµ(G,U2) = −∞), which implies hµ(G,X) ≤ hµ(G,U2) + h(G,X|U2)
even if h(G,X|U2) = ∞ (recalling our technical convention of −∞ +∞ = −∞).
The remaining items can be proved similarly. �

As direct corollaries, we have:

Corollary 3.3. h∗(G,X) <∞ if and only if h(G,X) <∞, and h∗(G,X) = −∞ if
and only if h(G,X) = −∞.

Corollary 3.4. Assume that (X,G) is h-expansive. Then there exists U ∈ CoX with

h(G,X) = h(G,U) and hµ(G,X) = hµ(G,U) for each µ ∈M(X).

Moreover, we can prove the following result.
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Theorem 3.5. Let µ ∈M(X). Then

(3.6) lim sup
ν→µ

hν(G,X) ≤ hµ(G,X) + h∗(G,X).

In particular, if (X,G) is asymptotically h-expansive then the function h•(G,X) :
M(X)→ [0,∞) ∪ {−∞} is upper semi-continuous.

Proof. Let U ∈ CoX . By Proposition 2.2 and Lemma 3.2 we have

lim sup
ν→µ

hν(G,X) ≤ lim sup
ν→µ

hν(G,U) + h(G,X|U)

≤ hµ(G,U) + h(G,X|U) ≤ hµ(G,X) + h(G,X|U).

Then (3.6) follows directly by taking the infimum over all U ∈ CoX .
Now we assume that (X,G) is asymptotically h-expansive, that is, h∗(G,X) ≤ 0.

Then h(G,X) < ∞ by Corollary 3.3, and hence hη(G,X) ∈ [0,∞) ∪ {−∞} for
each η ∈ M(X) by (3.1) (recalling the fact that hη(G,X) = −∞ for each η ∈
M(X) \M(X,G)). Moreover, using (3.6) we obtain

lim sup
ν→µ

hν(G,X) ≤ hµ(G,X) + h∗(G,X) ≤ hµ(G,X)

from our technical convention. This finishes the proof. �

Remark 3.6. As a direct corollary of Theorem 3.5, we have: if the action (X,G) is
asymptotically h-expansive then both of its sofic topological mean dimension and its
sofic metric mean dimension with respect to any compatible metric are at most zero
[Li13, Proposition 4.3 and Theorem 6.1]. For the definition of sofic topological mean
dimension and sofic metric mean dimension see [Li13, §2 and §4], respectively.

Combining Theorem 3.5 with (3.1) one has:

Corollary 3.7. Each asymptotically h-expansive action of sofic groups admits a
measure with maximal entropy.

In general, the converse does not hold, for example, any Z-action with infinite
entropy admits a measure with infinite entropy, whereas, it is not asymptotically
h-expansive. Furthermore, [Mis76, Example 6.4] shows us a Z-action with finite
entropy such that it is not asymptotically h-expansive, while its each invariant mea-
sure has maximal entropy. Observe that, as we shall show later, the definitions of
weak expansiveness given here for actions of sofic groups are equivalent to definitions
given in the same spirit of Misiurewicz’s ideas when the group is amenable.

Remark 3.8. Theorem 2.1 is a consequence of Theorem 3.1 and Theorem 3.5.
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4. Profinite actions

In this section we provide our first interesting non-trivial h-expansive action of
sofic groups using the language of the profinite action.

Recall that the action (X,G) is distal if infg∈G ρ(gx, gy) > 0 for all distinct x, y ∈
X, and equicontinuous if for each δ > 0 there exists ε > 0 such that ρ(x, y) ≤ ε
implies ρ(gx, gy) ≤ δ for all g ∈ G.

The following result should be known, we provide here a proof for completeness.

Lemma 4.1. Assume that the action (X,G) is equicontinuous. Then it is distal.
And if additionally X is infinite then it is not expansive.

Proof. First we prove that (X,G) is distal. Else, there exist distinct points x1, x2 ∈
X with infg∈G ρ(gx1, gx2) = 0. As (X,G) is equicontinuous, there exists ε > 0 such
that ρ(x, y) < ε implies ρ(gx, gy) ≤ 1

2
ρ(x1, x2) for each g ∈ G. Say g′ ∈ G with

ρ(g′x1, g
′x2) < ε, and then 0 < ρ(x1, x2) = ρ((g′)−1g′x1, (g

′)−1g′x2) ≤ 1
2
ρ(x1, x2) by

the selection of ε, a contradiction.
Now additionally we assume that X is infinite. If (X,G) is expansive, then there

exists δ > 0 with supg∈G ρ(gx, gy) > δ for all distinct x, y ∈ X. Using again the
equicontinuity of (X,G), we could choose ε′ > 0 such that ρ(x, y) < ε′ implies
ρ(gx, gy) ≤ δ for each g ∈ G. As X is infinite, by the compactness of X we could
choose distinct points y1, y2 ∈ X with ρ(y1, y2) < ε′, a contradiction to the selection
of δ. That is, (X,G) is not expansive, finishing the proof. �

See [Aus88] for a more detailed story of distal actions and equicontinuous actions.

Observe that, by the definitions each action of sofic groups is h-expansive if it has
topological entropy at most zero, and Kerr and Li proved that each distal action of
sofic groups has topological entropy at most zero [KL13a, Corollary 8.5]. Thus each
distal action of sofic groups is h-expansive. With help of this observation, we can
provide our first interesting h-expansive example.

Let G be a countable group. A chain of G is a sequence G = G0 ≥ G1 ≥ · · ·
of subgroups with finite indices in G. For a chain (Gn), we have a tree structure
T (G, (Gn)) defined naturally as follows. The vertices are {gGn : n ∈ N, g ∈ G}
and (g1Gn, g2Gm) is an edge if m = n + 1 and g2Gm ⊂ g1Gn. The boundary
∂T (G, (Gn)) of T (G, (Gn)) consists of all sequences (x0, x1, · · · ) of vertices with xn
adjacent to xn+1 for each n ∈ Z+. Then ∂T (G, (Gn)) is a compact metrizable space
endowed with the topology generated by the open basis consisting of all subsets
Ox = {(x0, x1, · · · ) ∈ ∂T (G, (Gn)) : xN = x} with x ∈ G/GN and N ∈ Z+. The
natural left actions of G on G/Gn induce the profinite action (∂T (G, (Gn)), G), an
action of G on ∂T (G, (Gn)) by homeomorphisms. In this case the profinite action
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(∂T (G, (Gn)), G) is equicontinuous, since for any x = gGn ∈ G/Gn and h ∈ G we
have hOx = Oy with y = hgGn ∈ G/Gn.

Combining with the above discussions, we obtain:

Proposition 4.2. Let G be a countable sofic group and (Gn) a chain of G. Then the
profinite action of G on ∂T (G, (Gn)) is h-expansive. Furthermore if ∂T (G, (Gn)) of
T (G, (Gn)) is infinite then the action is not expansive.

Dynamical properties of profinite actions have been studied extensively for resid-
ually finite groups in [AE12, AN12]. They were also used to investigate orbit equiv-
alence rigidity for Kazdhan property (T) groups [Ioa11, OP10].

5. Topological conditional entropy for actions of countable
discrete amenable groups

In this section we shall introduce topological conditional entropy for actions of
countable discrete amenable groups in the same spirit of Misiurewicz.

Recall that G is a countable discrete group. Denote by eG the unit of G. G is
called amenable, if there exists a sequence {Fn : n ∈ N} ⊂ FG, called a Følner
sequence of G, such that

lim
n→∞

|gFn∆Fn|
|Fn|

= 0,∀g ∈ G.

In the class of countable discrete groups, amenable groups include all solvable groups
and groups with subexponential growth. In the group G = Z, the sequence Fn =
{0, 1, · · · , n−1} defines a Følner sequence, as, indeed, does {an, an+1, · · · , an+n−1}
for any sequence {an}n∈N ⊂ Z; and in the finite group G, if {Fn : n ∈ N} is a Følner
sequence of G, then Fn = G once n is large enough.

Throughout this section and next section, additionally, we will assume that G is
always a countable discrete amenable group.

The well-known Ornstein-Weiss Lemma plays a crucial role in the study of entropy
theory for actions of amenable groups [OW87]. The following version of it is taken
from [Gro99b, 1.3.1]. For a more detailed story see the section of Appendix.

Proposition 5.1. Let f : FG → R be a nonnegative function such that f(Eg) =
f(E) and f(E ∪ F ) ≤ f(E) + f(F ) for all E,F ∈ FG and g ∈ G. Then for any

Følner sequence {Fn : n ∈ N} of G the sequence
n
f(Fn)
|Fn| : n ∈ N

o
converges and the

value of the limit is independent of the selection of the Følner sequence {Fn : n ∈ N}.

Let ∅ 6= T ⊂ G. We say that T tiles G if there exists ∅ 6= GT ⊂ G such that
{Tc : c ∈ GT} forms a partition of G, that is, Tc1∩Tc2 = ∅ if c1 and c2 are different
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elements from GT and
S
c∈GT Tc = G. Denote by TG the set of all non-empty finite

subsets of G which tile G. Observe that TG 6= ∅, as TG ⊃ {{g} : g ∈ G}.
As shown by [Wei03, Theorem 3.3 and Proposition 3.6], tiling sets play a key role

in establishing a counterpart of Rokhlin’s Lemma for actions of countable discrete
amenable groups. The class of countable discrete amenable groups admitting a tiling
Følner sequence (i.e., a Følner sequence consisting of tiling subsets of the group) is
large, including all countable residually finite amenable groups [Wei01].

The following result is proved as [DZ, Proposition 2.5].

Proposition 5.2. Let f : FG → R be a function and G admit a tiling Følner
sequence. Assume that f(Eg) = f(E) and f(E∪F ) ≤ f(E)+f(F ) whenever g ∈ G
and E,F ∈ FG satisfy E ∩F = ∅. Then for any tiling Følner sequence {Fn : n ∈ N}
of G, the sequence

n
f(Fn)
|Fn| : n ∈ N

o
converges and the value of the limit is independent

of the choice of the tiling Følner sequence {Fn : n ∈ N}. Furthermore,

lim
n→∞

f(Fn)

|Fn|
= inf

F∈TG

f(F )

|F |

�
and so = inf

n∈N

f(Fn)

|Fn|

�
.

Let W1,W2 ∈ CX . If each element of W1 is contained in some element of W2

then we say that W1 is finer than W2 (denote by W1 �W2 or W2 �W1). The join
W1∨W2 is given by W1∨W2 = {W1∩W2 : W1 ∈W1,W2 ∈W2} ∈ CX , which extends
naturally to a finite collection of covers. Let F ∈ FG, we set (W1)F =

W
g∈F g

−1W1,
and then we consider a nonnegative function mW1,W2 : FG → R given by

mW1,W2(F ) = max
K∈(W2)F

logN((W1)F , K) for each F ∈ FG.

It is easy to obtain the following useful observation.

Lemma 5.3. mW1,W2(E ∪ F ) ≤ mW1,W2(E) +mW1,W2(F ) for all E,F ∈ FG.

Proof. Let E,F ∈ FG. From the definition we chooseK ∈ (W2)E∪F withmW1,W2(E∪
F ) = logN((W1)E∪F , K). Say K1 ∈ (W2)E and K2 ∈ (W2)F with K = K1 ∩ K2

(no matter if E and F are disjoint), such K1 and K2 must exist. Now let V1 ⊂
(W1)E cover K1 with |V1| = N((W1)E, K1) and let V2 ⊂ (W1)F cover K2 with
|V2| = N((W1)F , K2). Obviously we can cover K1 ∩ K2 (i.e. K) using the family
V1 ∨ V2. Observing that |V1 ∨ V2| ≤ |V1| · |V2| and each element of V1 ∨ V2 is
contained in some element of (W1)E∪F , we have that N((W1)E∪F , K) ≤ |V1 ∨V2| ≤
N((W1)E, K1) ·N((W1)F , K2), which implies the conclusion directly. �

It is easy to check G-invariance of the nonnegative function mW1,W2 : FG → R.
Observing Lemma 5.3, we could apply Proposition 5.1 to define

ha(G,W1|W2) = lim
n→∞

1

|Fn|
mW1,W2(Fn) ≥ 0,



16 NHAN-PHU CHUNG AND GUOHUA ZHANG

which is independent of the selection of the Følner sequence {Fn : n ∈ N}. In
particular, if G admits a tiling Følner sequence then by Proposition 5.2 one has

ha(G,W1|W2) = inf
F∈TG

1

|F |
mW1,W2(F )

�
and so = inf

n∈N

1

|Fn|
mW1,W2(Fn)

�
≥ 0.

Then we define the topological conditional entropy of (X,G) with respect to W2 by

ha(G,X|W2) = sup
U∈CoX

ha(G,U|W2),

and define the topological entropy of (X,G), ha(G,X), and topological conditional
entropy of (X,G), ha,∗(G,X), respectively, as: ha(G,X) = ha(G,X|{X}) and

ha,∗(G,X) = inf
V∈CoX

ha(G,X|V)

�
= inf

V∈CoX
ha(G,X|V)

�
≥ 0.

Recalling that in the special case of G = Z acting on a compact metric space
X, equivalently, giving a homeomorphism T : X → X, the above definition recov-
ers the definition given by Misiurewicz in [Mis76], which was then used to discuss
weak expansiveness for Z-actions. In fact, Misiurewicz [Mis76] introduced topolog-
ical conditional entropy in the setting of giving a compact Hausdorff space and a
continuous transformation of X into itself.

6. Comparison between sofic and amenable cases

The following result is the main result of this section, which shows that our defi-
nitions of weak expansiveness for actions of sofic groups are equivalent to definitions
given in the same spirit of Misiurewicz’s ideas when the group is amenable.

Theorem 6.1. (X,G) is asymptotically h-expansive if and only if ha,∗(G,X) = 0.
Similarly, (X,G) is h-expansive if and only if ha(G,X|V) = 0 for some V ∈ CoX .

Let Y be a finite set, {Ai : i ∈ I} ⊂ {∅}∪FY and δ ≥ 0. We say that {Ai : i ∈ I}

δ-covers Y if

����� Si∈IAi
����� ≥ δ|Y |. {Ai : i ∈ I} are ε-disjoint if there exist pairwise

disjoint subsets Bi ⊂ Ai with |Bi| ≥ (1− ε)|Ai| for each i ∈ I.
The next result is the Rokhlin Lemma for sofic approximations of countable dis-

crete groups [KL13b, Lemma 4.5].

Lemma 6.2. Let Γ be a countable group with the unit e and 0 ≤ τ < 1, 0 < η < 1.
Then there are an l ∈ N and η′, η′′ > 0 such that, whenever e ∈ E1 ⊂ · · · ⊂ El
are finite subsets of Γ with |E−1

k−1Ek \ Ek| ≤ η′|Ek| for k = 2, · · · , l, there exists
e ∈ E ∈ FΓ such that for every good enough sofic approximation σ : Γ → Sym(d)
for Γ with some d ∈ N (i.e., σ : Γ→ Sym(d) is a map such that

σst(a) = σsσt(a), σs(a) 6= σs′(a), σe(a) = a
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for all a ∈ B with B ⊂ {1, · · · , d} satisfying |B| ≥ (1 − η′′)d and s, t, s′ ∈ E with
s 6= s′), and any set V ⊂ {1, · · · , d} with |V | ≥ (1− τ)d, there exist C1, · · · , Cl ⊂ V
such that

(1) the sets σ(Ek)Ck, k ∈ {1, · · · , l} are pairwise disjoint;
(2) {σ(Ek)Ck : k ∈ {1, · · · , l}} (1− τ − η)-covers {1, · · · , d};
(3) {σ(Ek)c : c ∈ Ck} is η-disjoint for each k ∈ {1, · · · , l}; and
(4) for every k ∈ {1, · · · , l} and c ∈ Ck, Ek 3 s 7→ σs(c) is bijective.

Before proceeding, we also need the following easy observation.
Recall that ρ is a compatible metric on the compact metric space X.

Lemma 6.3. Let K ⊂ X be a closed subset and F ∈ FG,U ∈ CoX . Then there exists
δ > 0 such that

KF,δ =
§

(xs)s∈F ∈ XF : max
s∈F

ρ(xs, sx) < δ for some x ∈ K
ª

can be covered by at most N(UF , K) elements of UF .

Proof. Obviously, there exists V ⊂ UF such that |V| ≤ N(UF , K) and

∪V ⊃ KF where KF = {(sx)s∈F : x ∈ K}.

For example, let W ⊂ UF such that |W| = N(UF , K) and ∪W ⊃ K. Now for each
W ∈ W, as W ∈ UF , say W =

T
s∈F

s−1U(s) with U(s) ∈ U for each s ∈ F , we setÓW =
Q
s∈F

U(s) ∈ UF . Then we can take V to be {ÓW : W ∈W}.

Note that ∪V is an open subset of XF and KF ⊂ XF is a closed subset, there
exists δ > 0 such that KF,δ ⊂ ∪V. This finishes the proof. �

Then, following the ideas of [KL13b, Lemma 5.1] we have:

Proposition 6.4. Let U,U2 ∈ CoX and U1 ∈ CcX with U1 � U2. Then

h(G,U|U1) ≤ ha(G,U|U2) and thus h(G,X|U1) ≤ ha(G,X|U2).

Proof. Let ε > 0. We choose 1 > η > 0 small enough such that

(6.1)
ha(G,U|U2) + ε

1− η
+ 2η log |U| ≤ ha(G,U|U2) + 2ε

and K ∈ FG, δ
′ > 0 such that, once F ∈ FG satisfies |KF∆F | ≤ δ′|F | then

(6.2)
1

|F |
max

K∈(U2)F

logN(UF , K) ≤ ha(G,U|U2) + ε.

Observing that U2 ∈ CoX and U1 ∈ CcX satisfy U1 � U2, we can choose δ′′ > 0 such
that, for each U1 ∈ U1 there exists U2 ∈ U2 containing the open δ′′-neighborhood
of U1. Now let l ∈ N and η′ > 0 be as given by Lemma 6.2 with respect to τ = η
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and η. In FG we take eG ∈ F1 ⊂ · · · ⊂ Fl such that |F−1
k−1Fk \ Fk| ≤ η′|Fk| for

each k = 2, · · · , l and |KFk∆Fk| ≤ δ′|Fk| for all k = 1, · · · , l. As the group G is
amenable, such subsets F1, · · · , Fl must exist. Thus, by (6.2),

(6.3)
l

max
k=1

1

|Fk|
max

K∈(U2)Fk

logN(UFk , K) ≤ ha(G,U|U2) + ε.

For each k = 1, · · · , l and any K ∈ (U2)Fk , let δ(k,K) > 0 be as given by Lemma
6.3 with respect to K,Fk and U, and then set δk = min{δ(k,K) : K ∈ (U2)Fk}. We

take δ > 0 such that δ ≤ min
n

(δ′′)2, δ2
1, · · · , δ2

l ,
η
|Fl|

o
and

(6.4)
[|Fl|δd]X
j=0

 
d

j

!
< (1 + ε)d for all large enough d ∈ N.

Now let σ : G→ Sym(d) be a good enough sofic approximation for G with some
d ∈ N (and hence d ∈ N is large enough). If (x1, · · · , xd) ∈ Xd

Fl,δ,σ
then

max
s∈Fl

Ì
dX
i=1

1

d
ρ2(sxi, xσs(i)) < δ,

which implies that |J(x1, · · · , xd, Fl)| ≥ (1− |Fl|δ)d, where

J(x1, · · · , xd, Fl) =
�
i ∈ {1, · · · , d} : max

s∈Fl
ρ(sxi, xσs(i)) <

√
δ
�
.

Denote by Θ the set of all subsets of {1, · · · , d} with at least (1 − |Fl|δ)d many
elements, and for each θ ∈ Θ denote by Xd

Fl,δ,σ,θ
the set of all (x1, · · · , xd) ∈ Xd

Fl,δ,σ

with J(x1, · · · , xd, Fl) = θ. Then

(6.5) |Θ| =
[|Fl|δd]X
j=0

 
d

j

!
< (1 + ε)d (using (6.4)) and

[
θ∈Θ

Xd
Fl,δ,σ,θ

= Xd
Fl,δ,σ

.

Let θ ∈ Θ. As σ is good enough, by Lemma 6.2 there exist C1, · · · , Cl ⊂ θ with

(1) the sets σ(Fk)Ck, k ∈ {1, · · · , l} are pairwise disjoint;
(2) {σ(Fk)c : c ∈ Ck} is η-disjoint for each k = 1, · · · , l;
(3) {σ(Fk)Ck : k ∈ {1, · · · , l}} (1− 2η)-covers {1, · · · , d}; and
(4) for every k ∈ {1, · · · , l} and c ∈ Ck, Fk 3 s 7→ σs(c) is bijective.

Set Jθ = {1, · · · , d} \ ∪{σ(Fk)Ck : k ∈ {1, · · · , l}}. Then

(6.6) |Jθ| ≤ 2ηd and
lX

k=1

|Fk| · |Ck| ≤
1

1− η

lX
k=1

|σ(Fk)Ck| ≤
d

1− η
.

Now let W ∈ (U1)d, say W =
Qd
i=1 U

(i)
1 and for each i = 1, · · · , d the open δ′′-

neighborhood of U
(i)
1 is contained in U

(i)
2 ∈ U2. For each k = 1, · · · , l and any
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ck ∈ Ck, as Ck ⊂ θ and Fk ⊂ Fl, if (x1, · · · , xd) ∈ Xd
Fl,δ,σ,θ

∩W , then

max
s∈Fk

ρ(xσs(ck), sxck) <
√
δ ≤ δ′′,

and so sxck ∈ U
(σs(ck))
2 (as xσs(ck) ∈ U (σs(ck))

1 ) for all s ∈ Fk by the selection of δ′′,
thus

xck ∈
\
s∈Fk

s−1U
(σs(ck))
2 (denoted by Q) ∈ (U2)Fk ,

which implies by applying Lemma 6.3 and (6.3) that we can cover

{(xi)i∈σ(Fk)ck : (x1, · · · , xd) ∈ Xd
Fl,δ,σ,θ

∩W}

⊂
�

(xi)i∈σ(Fk)ck : max
s∈Fk

ρ(xσs(ck), sx) < δk for some x ∈ Q
�

by at most (observing the selection of δk)

N(UFk , Q) ≤ e|Fk|·[h
a(G,U|U2)+ε]

elements of Uσ(Fk)ck , and so it is not hard to cover

{(xi)i∈σ(Fk)Ck : (x1, · · · , xd) ∈ Xd
Fl,δ,σ,θ

∩W}
using at most

e|Ck|·|Fk|·[h
a(G,U|U2)+ε]

elements of Uσ(Fk)Ck . Thus

logN(Ud, Xd
Fl,δ,σ,θ

∩W ) ≤
lX

k=1

|Ck| · |Fk| · [ha(G,U|U2) + ε] + |Jθ| log |U|

≤ d

 
ha(G,U|U2) + ε

1− η
+ 2η log |U|

!
(using (6.6))

≤ d(ha(G,U|U2) + 2ε) (using (6.1)).(6.7)

Combining (6.5) with (6.7) we obtain

logN(Ud, Xd
Fl,δ,σ

∩W ) ≤ d(ha(G,U|U2) + 2ε+ log(1 + ε)).

By the arbitrariness of ε > 0 and W ∈ (U1)d we obtain the conclusion. �

We also have [KL13b, Lemma 4.6], an improved version of Lemma 6.2 for an
amenable group. Recall that the group G is amenable throughout the whole section.

Lemma 6.5. Let 0 ≤ τ < 1, 0 < η < 1 and K ∈ FG, δ > 0. Then there are an
l ∈ N and F1, · · · , Fl ∈ FG with |KFk \ Fk| < δ|Fk| and |FkK \ Fk| < δ|Fk| for all
k = 1, · · · , l, such that for every good enough sofic approximation σ : G→ Sym(d)
for G with some d ∈ N and any set V ⊂ {1, · · · , d} with |V | ≥ (1− τ)d, there exist
C1, · · · , Cl ⊂ V such that

(1) the sets σ(Fk)Ck, k ∈ {1, · · · , l} are pairwise disjoint;
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(2) {σ(Fk)Ck : k ∈ {1, · · · , l}} (1− τ − η)-covers {1, · · · , d}; and
(3) for every k ∈ {1, · · · , l}, the map Fk × Ck 3 (s, c) 7→ σs(c) is bijective.

Let U ∈ CX , ε > 0 and F ∈ FG, δ > 0. We set

hF,δ(G, ε|U) = lim sup
i→∞

1

di
log max

V ∈Udi
Nε

�
Xdi
F,δ,σi

∩ V, ρdi
�

(recalling (2.1)),

h(G, ε|U) = inf
F∈FG

inf
δ>0

hF,δ(G, ε|U).

Now let V ∈ CX and ε1, ε2 > 0. Assume that diam(V) < ε1 and any open ball with
radius ε2 is contained in some element of V. It is easy to obtain

hF,δ(G, ε1|U) ≤ hF,δ(G,V|U) ≤ hF,δ(G, ε2|U),

h(G, ε1|U) ≤ h(G,V|U) ≤ h(G, ε2|U).

Thus we have

(6.8) h(G,X|U) = lim
ε→0

h(G, ε|U) = sup
ε>0

h(G, ε|U).

Following the ideas of [KL13b, Lemma 5.2] we have:

Proposition 6.6. Let U ∈ CX . Then h(G,X|U) ≥ ha(G,X|U).

Proof. Let U1 ∈ CoX . We only need to prove h(G,X|U) ≥ ha(G,U1|U).
We choose ε > 0 such that any open ball with ρ-radius ε is contained in some

element of U1, and let θ > 0, F ∈ FG, δ > 0. We are to finish the proof by showing

(6.9)
1

d
log max

V ∈Ud
Nε

�
Xd
F,δ,σ ∩ V, ρd

�
≥ ha(G,U1|U)− 3θ

once σ : G→ Sym(d) is a good enough sofic approximation for G with some d ∈ N.
Let M > 0 be large enough and δ′ > 0 small enough such that the diameter of

the space X is at most M and

(6.10)
√
δ′M <

δ

2
, δ′ log |U| < θ and (1− δ′)ha(G,U1|U) ≥ ha(G,U1|U)− θ.

Applying Lemma 6.5, there are an l ∈ N and F1, · · · , Fl ∈ FG so that

(6.11)
l

min
k=1

min
s∈F

|s−1Fk ∩ Fk|
|Fk|

≥ 1− δ′

and

(6.12)
l

min
k=1

1

|Fk|
max
K∈UFk

logN((U1)Fk , K) ≥ max{0, ha(G,U1|U)− θ},

such that once σ : G → Sym(d) is a good enough sofic approximation for G with
some d ∈ N then there exist C1, · · · , Cl ⊂ {1, · · · , d} satisfying

(1) the sets σ(Fk)Ck, k ∈ {1, · · · , l} are pairwise disjoint;
(2) {σ(Fk)Ck : k ∈ {1, · · · , l}} (1− δ′)-covers {1, · · · , d};
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(3) for every k ∈ {1, · · · , l}, the map Fk × Ck 3 (s, c) 7→ σs(c) is bijective; and
(4) for all k ∈ {1, · · · , l} and s ∈ F, sk ∈ Fk, ck ∈ Ck, σssk(ck) = σsσsk(ck).

Remark again that the group G is amenable, such subsets F1, · · · , Fl must exist.
Now assume that σ : G → Sym(d) is a good enough sofic approximation for G

with some d ∈ N and let C1, · · · , Cl ⊂ {1, · · · , d} be constructed as above.

For each k ∈ {1, · · · , l} and any K ∈ UFk , we take a maximal (ρFk , ε)-separated
subset Ek,K of K which is obviously finite, where

ρFk(x, x
′) = max

g∈Fk
ρ(gx, gx′) for x, x′ ∈ X.

Then for each y ∈ K there exists an x ∈ Ek,K such that ρFk(x, y) < ε. Observe that
any open ball with ρ-radius ε is contained in some element of U1, and hence any
open ball with ρFk-radius ε is contained in some element of (U1)Fk , thus

(6.13) |Ek,K | ≥ N((U1)Fk , K).

Now let (y1, · · · , yl) be any l-tuple with

yk ∈
Y
c∈Ck

Ek,Kc , where k ∈ {1, · · · , l} and Kc ∈ UFk for each c ∈ Ck.

From the construction of C1, · · · , Cl, it is not hard to see that there exists at least
one point (x1, · · · , xd) ∈ Xd such that once i ∈ σ(Fk)Ck for some k ∈ {1, · · · , l},
say i = σsk(ck) with sk ∈ Fk and ck ∈ Ck, then xi = skyk(ck). Let (x1, · · · , xd) ∈
Xd be such a point (corresponding to the l-tuple (y1, · · · , yl)). Let s ∈ F and
i ∈ {1, · · · , d}. Once i = σsk(ck) for some sk ∈ Fk and ck ∈ Ck, k ∈ {1, · · · , l}, if
ssk ∈ Fk, then sxi = sskyk(ck) = xσssk (ck) = xσsσsk (ck) = xσs(i). Which implies that

(6.14)
1

d

dX
i=1

ρ2(sxi, xσs(i)) =
1

d

X
i∈{1,··· ,d}\E

ρ2(sxi, xσs(i)) ≤
M2

d
|{1, · · · , d} \ E|,

where

E =
l[

k=1

σ(s−1Fk ∩ Fk)Ck.

Using the construction of C1, · · · , Cl again, by (6.11) one has

(6.15) |E| =
lX

k=1

|s−1Fk∩Fk| · |Ck| ≥ (1− δ′)
lX

k=1

|Fk| · |Ck| ≥ d(1− δ′)2 ≥ d(1−2δ′).

Combining (6.14) with (6.15), we obtain

1

d

dX
i=1

ρ2(sxi, xσs(i)) ≤ 2δ′M2.

In particular, (x1, · · · , xd) ∈ Xd
F,δ,σ follows from the selection of M and δ′.
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On one hand, from the above constructions, it is easy to check that, given
Kc ∈ UFk for each k ∈ {1, · · · , l} and any c ∈ Ck, each point (x1, · · · , xd) ∈ Xd

corresponding to an l-tuple from
Ql
k=1

Q
c∈Ck Ek,Kc is contained in a fixed element of

W
.
=

lY
k=1

Uσ(Fk)Ck × {X}
{1,··· ,d}\

lS
k=1

σ(Fk)Ck

.

On the other hand, assume that (x1, · · · , xd) ∈ Xd and (x′1, · · · , x′d) ∈ Xd correspond
to distinct l-tuples (y1, · · · , yl) and (y′1, · · · , y′l) from

Ql
k=1

Q
c∈Ck Ek,Kc , where Kc ∈

UFk for each k ∈ {1, · · · , l} and any c ∈ Ck, respectively. Thus, for some k ∈
{1, · · · , l} and c ∈ Ck, yk(c) and y′k(c) are distinct elements of Ek,Kc , in particular,
ρFk(yk(c), y

′
k(c)) ≥ ε, and then

ρd((x1, · · · , xd), (x′1, · · · , x′d)) ≥ max
i∈σ(Fk)c

ρ(xi, x
′
i)

= max
s∈Fk

ρ(syk(c), sy
′
k(c)) = ρFk(yk(c), y

′
k(c)) ≥ ε.

This implies that

max
W∈W

Nε

�
Xd
F,δ,σ ∩W, ρd

�
≥

������ lY
k=1

Y
c∈Ck

Ek,Kc

������ =
lY

k=1

Y
c∈Ck
|Ek,Kc|

≥
lY

k=1

Y
c∈Ck

N((U1)Fk , Kc) (using (6.13)).

Combining the above estimation with the fact that {σ(Fk)Ck : k ∈ {1, · · · , l}}
(1− δ′)-covers {1, · · · , d}, we obtain that

log
�
|U|δ′d max

V ∈Ud
Nε

�
Xd
F,δ,σ ∩ V, ρd

��
≥ log max

W∈W
Nε

�
Xd
F,δ,σ ∩W, ρd

�
≥

lX
k=1

|Ck| max
K∈UFk

logN((U1)Fk , K)

≥
lX

k=1

|Ck| · |Fk| ·max{0, ha(G,U1|U)− θ} (using (6.12))

≥ d(1− δ′) max{0, ha(G,U1|U)− θ}
≥ d[ha(G,U1|U)− 2θ] (using (6.10)).(6.16)

Then (6.9) follows from (6.10) and (6.16). �

Now let us prove our main result of this section.
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Proof of Theorem 6.1. Assume that (X,G) is asymptotically h-expansive. Let ε >
0. Then there exists U1 ∈ CoX such that h(G,X|U1) < ε. Thus ha,∗(G,X) ≤
ha(G,X|U1) < ε by Proposition 6.6, and finally ha,∗(G,X) = 0.

Now assume that ha,∗(G,X) = 0 and let ε > 0. By the definition, there exists
U3 ∈ CoX with ha(G,X|U3) < ε. As X is a compact metric space, we can take
U4 ∈ CoX with U4 � U3, then h(G,X|U4) < ε by Proposition 6.4, and so h∗(G,X) ≤
h(G,X|U4) < ε, thus h∗(G,X) ≤ 0. That is, (X,G) is asymptotically h-expansive.

We could prove similarly the remaining part of the theorem. �

Setting U1 = U2 = {X} in Proposition 6.4 and U = {X} in Proposition 6.6, we
obtain directly the following observation [KL13b, Theorem 5.3].

Corollary 6.7. h(G,X) = ha(G,X).

7. Actions over compact metric groups

In this section we shall provide more interesting asymptotically h-expansive ex-
amples when we consider actions of countable discrete amenable groups.

Recall that any C∞ diffeomorphism on a compact manifold is asymptotically h-
expansive by Buzzi [Buz97]. Moreover, if we consider a differentiable action (X,G)
in the sense that the homeomorphism of X given by each g ∈ G is a C(1) map, where
X is a compact smooth manifold (here we allow a smooth manifold to have different
dimensions for different connected components, even including zero dimension) and
G is a countable discrete amenable group containing Z as a subgroup of infinite
index, then the action (X,G) has zero topological entropy by Li and Thom [LT14,
Lemma 5.7], and so it is h-expansive.

Moreover, inspired by Misiurewicz’s work [Mis76, §7], in the following we prove:

Theorem 7.1. Let G be a countable discrete amenable group acting on a compact
metric group X by continuous automorphisms. Then the action (X,G) is asymptot-
ically h-expansive if and only if ha(G,X) <∞.

Remark 7.2. Let G be a countable discrete amenable group acting on a compact
metrizable group X by continuous automorphisms. If (X,G) has finite topological
entropy then, by Corollary 3.7, Corollary 6.7 and Theorem 7.1, it admits an invari-
ant measure with maximal entropy. If the amenable group G is infinite and (X,G)
has infinite topological entropy, then, by the affinity property of measure-theoretic en-
tropy (for actions of a countable discrete infinite amenable group), it will also admit
an invariant measure with maximal entropy. Indeed, if let µ be the normalized Haar
measure of the compact metric group X (and hence µ is automatically G-invariant),
then the measure-theoretic µ-entropy coincides with the topological entropy of the
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system [Den06, Theorem 2.2]. Remark that X was assumed to be abelian in [Den06,
Theorem 2.2], which is in fact not needed.

Remark 7.3. The conclusion of Theorem 7.1 does not hold if we remove the group
structure from X even for the Z-actions. There are many such actions. The first one
may be the Gurevic’s example (for the detailed construction see for example [Wal82,
Page 192]), which is a Z-action having finite entropy and without any invariant mea-
sure attaining maximal entropy. Another example is [Mis76, Example 6.4], which is
a Z-action with finite entropy such that it is not asymptotically h-expansive, while
its each invariant measure has maximal entropy.

The “only if” part of Theorem 7.1 comes from Corollary 3.3. The proof of its
“if” part relies on the concept of homogeneous measures. And so first we recall the
definition of homogeneous measures following [Mis76, §7].

Let G be a group acting on a compact metric space X, and denote by α the
action. Let µ ∈M(X). For each U ∈ CoX , we set

P (U) =
[
x∈X

�
U ∈ U : x ∈ U and µ(U) = max

V ∈U,x∈V
µ(V )

�
∈ CoX .

The measure µ is called α-homogeneous if there exist mappings D : CoX → CoX and
c : CoX → (0,∞) such that for any U ∈ CoX and each F ∈ FG we have

µ(V ) ≤ c(U)µ(U) for all U ∈ P (UF ) and V ∈ D(U)F .

In general, it is not easy to check if a measure is homogeneous. While for G = Z
Misiurewicz gave a sufficient condition for the existence of such a measure [Mis76,
Theorem 7.2], which can be generalized to a general group G as follows.

Following the spirit of Misiurewicz [Mis76], let H be a group acting on a compact
metric space (X, ρ) with the action Φ, that is, Φ is a homomorphism of H into the
group of all homeomorphisms of X. Recall that Φ is transitive if for any x, y ∈ X
there exists g ∈ H with gx = y, and equicontinuous if for each ε > 0 there exists
δ > 0 such that ρ(x1, x2) < δ implies ρ(gx1, gx2) < ε for all x1, x2 ∈ X and g ∈ H.
Recall that µ ∈ M(X) is invariant with respect to Φ if gµ = µ for each g ∈ H.
While the transitivity here is different from the usual one in topological dynamics,
the definitions of equicontinuity and invariance of a measure are just as usual.

Lemma 7.4. Let G be a group acting on a compact metric space X, and denote by
α the action. Let H be a group with T , an action of G on H by homomorphisms
g 7→ Tg for each g ∈ G, equivalently, each Tg : H → H is a homomorphism. Now
assume that Φ is a transitive equicontinuous action of H on X by homeomorphisms
such that µ ∈ M(X) is invariant with respect to Φ and g(hx) = (Tgh)(gx) for all
x ∈ X, g ∈ G and h ∈ H. Then µ is α-homogeneous.
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Proof. Let U ∈ CoX . We aim to construct some D(U) ∈ CoX with c(U) = 1 such that
both of mappings D and c satisfy the condition of µ being α-homogeneous.

Let ε > 0 be a Lebesgue number of U. By the equicontinuity of Φ there exists
δ > 0 such that ρ(x1, x2) ≤ δ implies ρ(hx1, hx2) < ε

3
for all x1, x2 ∈ X and h ∈ H.

Now let W be a non-empty open set with diameter at most δ. For each x ∈ X,
denote by Wx the set of all y ∈ X such that both x and y are contained in hW for
some h ∈ H, then ρ(x, y) < ε

3
for each y ∈ Wx, and so Wx ⊂ Ux for some Ux ∈ U.

Observe that the family of non-empty open subsets {hW : h ∈ H} covers X by the
transitivity of the action Φ, and so we could choose D(U) ∈ CoX with D(U) ⊂ {hW :
h ∈ H}. Now we show that D(U) and c(U) = 1 satisfy the required properties.

Let F ∈ FG. Set WF,x =
T
γ∈F γ

−1Wγx ⊂
T
γ∈F γ

−1Uγx ∈ UF for each x ∈ X.
Let U ∈ D(U)F , and say U =

T
g∈F g

−1(hgW ) with hg ∈ H for any g ∈ F . Then
gx ∈ hgW and hence hgW ⊂ Wgx for all x ∈ U and g ∈ F . Thus, for any x ∈ U ,

U =
\
g∈F

g−1(hgW ) ⊂
\
g∈F

g−1Wgx = WF,x 3 x

and hence (observing WF,x ⊂
T
γ∈F γ

−1Uγx ∈ UF )

(7.1) µ(U) ≤ µ(WF,x) ≤ max{µ(V ) : x ∈ V and V ∈ UF}.
Let x ∈ X and k ∈ H. For y ∈ X, y ∈ kWx, equivalently k−1y ∈ Wx, if and

only if both x and k−1y are contained in hW for some h ∈ H, equivalently both
kx and y are contained in khW for some h ∈ H, if and only if y ∈ Wkx. Thus
kWx = Wkx. Now let h ∈ H,Y ⊂ X and g ∈ G. By assumptions, g(h(g−1Y )) =
(Tgh)(g(g−1Y )) = (Tgh)Y , equivalently, h(g−1Y ) = g−1((Tgh)Y ). And hence

h(g−1Wgx) = g−1((Tgh)Wgx) = g−1(W(Tgh)(gx)) = g−1(Wg(hx)).

Which implies that, for all x ∈ X and any h ∈ H,F ∈ FG,

hWF,x = h

�\
γ∈F

γ−1Wγx

�
=
\
γ∈F

h(γ−1Wγx) =
\
γ∈F

γ−1Wγ(hx) = WF,hx.

As the action Φ is transitive and µ is invariant with respect to Φ, we obtain

(7.2) µ(WF,x) = µ(WF,y) for all x, y ∈ X and any F ∈ FG.

Summing up, for each F ∈ FG and any U ∈ D(U)F and Q ∈ P (UF ), let x ∈ U , and
by the construction of P (UF ) we could choose y ∈ Q with µ(Q) = max{µ(V ) : y ∈
V and V ∈ UF}, and then

µ(U) ≤ µ(WF,x) (using (7.1)) = µ(WF,y) (using (7.2))

≤ max{µ(V ) : y ∈ V and V ∈ UF} (using (7.1) again) = µ(Q).

Recalling c(U) = 1, we see that the measure µ is α-homogeneous. �

As a direct corollary, we have:
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Proposition 7.5. Let G be a group acting on a compact metric group X by contin-
uous automorphisms, and denote by α the action. Let µ ∈M(X) be the normalized
Haar measure of the group X. Then µ is α-homogeneous.

Proof. Set H = X and let T be the action α of G on H by automorphisms Tg :
H → H, h 7→ gh. Now let Φ be the action of H on X by homeomorphisms h : X →
X, x 7→ hx for all h ∈ X. Obviously, the action Φ is transitive and the measure µ is
invariant with respect to the action Φ and

g(hx) = (gh)(gx) = (Tgh)(gx) for all x ∈ X, g ∈ G and h ∈ H,

recalling that G acts on H = X by automorphisms. Observe that by the well-known
Birkhoff-Kakutani Theorem the compact metric group X admits a left-invariant
compatible metric (for example see [EW11, Page 430, Lemma C.2]), which implies
that the action Φ is equicontinuous. Thus the measure µ is α-homogeneous by
Lemma 7.4. �

For a Z-action acting on a compact metric space X, if the action admits a ho-
mogeneous measure and has finite topological entropy, then it is asymptotically
h-expansive [Mis76, Theorem 7.1]. In the following, we shall see that the proof
there also works for a general countable discrete infinite amenable group G.

Let (X,G) be an action of a countable group G on a compact metric space X
with µ ∈M(X), F ∈ FG,U ∈ CoX . We put

MF (U) = max
U∈UF

µ(U) > 0 and mF (U) = min
U∈P (UF )

µ(U).

For U,V ∈ CoX , MF (V) ≤MF (U) whenever V � U, and if µ is α-homogeneous then

(7.3) MF (V) ≤MF (D(U)) ≤ c(U)mF (U) and hence mF (U) ≥ MF (V)

c(U)
> 0

whenever V � D(U). Let U ∈ CoX and Y ⊂ X. The star of Y with respect to U and
the star of U is defined, respectively, as

st(Y,U) = ∪{U ∈ U : U ∩ Y 6= ∅} and StU = {st(U,U) : U ∈ U} ∈ CoX .

Following [Mis76, Lemma 7.1], it is easy to obtain:

Lemma 7.6. Let (X,G) be an action of a countable group G on a compact metric
space X with µ ∈M(X) and U,V ∈ CoX with V � U. Then

max
K∈UF

N((StV)F , K) ·mF (V) ≤MF (StU).

Proof. Observe St(VF ) � (StV)F as done in [Mis76, Lemma 3.3]. Let U ∈ UF with

(7.4) max
K∈UF

N((StV)F , K) ≤ max
K∈UF

N(St(VF ), K) = N(St(VF ), U) (denoted by p).
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Using [Mis76, Lemma 3.1], we could select a disjoint family C ⊂ P (VF ) such that
C ∩ U 6= ∅ for each C ∈ C and U ⊂ ∪{st(C,P (VF )) : C ∈ C}. Observing P (VF ) ⊂
VF by the definition, C ⊂ VF (and hence st(C,VF ) ∈ St(VF ) for each C ∈ C) and
U ⊂ ∪{st(C,VF ) : C ∈ C}, which implies p ≤ |C|. Now say U =

T
γ∈F γ

−1Uγ with
Uγ ∈ U for each γ ∈ F , then

st(U,VF ) = ∪

8<:W ∈ VF : W ∩
\
γ∈F

γ−1Uγ 6= ∅

9=;
⊂

\
γ∈F

st(γ−1Uγ, γ
−1V) =

\
γ∈F

γ−1st(Uγ,V)

⊂
\
γ∈F

γ−1st(Uγ,U) (as V � U) ∈ (StU)F (as Uγ ∈ U for all γ ∈ F ).(7.5)

As C ⊂ VF and C ∩ U 6= ∅ for each C ∈ C, ∪C ⊂ st(U,VF ) by the definition. Now
recalling that C ⊂ P (VF ) is a disjoint family and p ≤ |C|, we have

p ·mF (V) ≤ µ(∪C) ≤ µ(st(U,VF )) ≤MF (StU)

by (7.5). Then the conclusion follows from (7.4) and the above estimation. �

The following result generalizes [Mis76, Theorem 7.1] to the case of G being a
general countable discrete infinite amenable group.

Proposition 7.7. Let α be the action (X,G) with G a countable discrete infi-
nite amenable group and µ ∈ M(X,G). Assume that µ is α-homogeneous and
ha(G,X) <∞. Then the action (X,G) is asymptotically h-expansive.

Proof. As µ is α-homogeneous, let D : CoX → CoX and c : CoX → (0,∞) correspond
to µ. Setting U = {X} (and hence StU = {X}) in Lemma 7.6 we obtain

(7.6) N((StV)F , X) ·mF (V) ≤ 1, equivalently, mF (V) ≤ 1

N((StV)F , X)

for each V ∈ CoX . And then once V,W ∈ CoX satisfy W � D(V), N(WF , X)MF (W) ≥
1 and hence combining (7.3) with (7.6) we obtain

(7.7) mF (V) ≥ 1

N(WF , X)c(V)
and MF (W) ≤ c(V)

N((StV)F , X)
.

Now fix any C,D ∈ CoX . We choose V ∈ CoX with StV � C,A ∈ CoX with
StA � D(V) and E ∈ CoX with StE � D by [Mis76, Proposition 3.5]; and then find
G ∈ CoX with G � A, B ∈ CoX with B � A and B � E (and hence StB � D) and
W ∈ CoX with W � D(B). Observing mF (B) > 0 by (7.3) for any F ∈ FG, we have

max
K∈(G)F

N((StB)F , K) ≤ max
K∈AF

N((StB)F , K) (as G � A)
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≤ MF (StA)

mF (B)
(using Lemma 7.6, as B � A)

≤ c(V) · c(B) · N(WF , X)

N((StV)F , X)
(using (7.7)),

as StA � D(V) and W � D(B); and then (recalling that G is a countable discrete
infinite amenable group and observing StV � C and StB � D)

ha(G,D|G) ≤ ha(G,StB|G) ≤ ha(G,W)− ha(G,StV) ≤ ha(G,X)− ha(G,C).

By the arbitrariness of D ∈ CoX , one has

ha,∗(G,X) ≤ ha(G,X|G) ≤ ha(G,X)− ha(G,C),

and then by the arbitrariness of C ∈ CoX and observing ha(G,X) < ∞, we obtain
ha,∗(G,X) = 0. That is, (X,G) is asymptotically h-expansive by Theorem 6.1. �

Now we are ready to prove Theorem 7.1.

Proof of Theorem 7.1. The “only if” part comes from Corollary 3.3.
Now we prove the “if” part. If G is finite, it is trivial to see from the definition

that ha(G,X) < ∞ implies the finiteness of the group X, then the action (X,G)
is expansive and hence asymptotically h-expansive. Now assume that G is infinite.
Let µ ∈ M(X) be the normalized Haar measure of the compact metric group X.
By Proposition 7.5 and Proposition 7.7, we only need to show µ ∈M(X,G), which
is obvious by the assumption, as it is well known that each continuous surjective
homomorphism of the compact metric group X preserves µ. �

It is natural to ask the following question which we haven’t solved currently.

Question 7.8. Does Theorem 7.1 hold when the acting group is sofic?

At the end of this section, we present further discussions about actions of count-
able groups over a compact metrizable abelian group by continuous automorphisms.

Let α be an action of a countable group G acting on a compact metrizable abelian
group X by continuous automorphisms. On one hand, by [CL, Theorem 3.1], the
action (X,G) is expansive if and only if there exist some k ∈ N, some left ZG-
submodule J of (ZG)k, and some A ∈ Mk(ZG) being invertible in Mk(`

1(G)) such

that the left ZG-module cX is isomorphic to (ZG)k/J and the rows of A are contained

in J . On the other hand, suppose thatG is amenable and cX is a finitely presented left
ZG-module, and write cX as (ZG)k/(ZG)nA for some k, n ∈ N and A ∈Mn×k(ZG),
then ha(G,X) < ∞ if and only if the additive map (ZG)k → (ZG)n sending a to
aA∗ is injective [CL, Theorem 4.11], which implies that (X,G) is asymptotically
h-expansive by Theorem 7.1. As a consequence, if G is amenable, then for any non-
zero divisor f in ZG which is not invertible in `1(G), the principal algebraic action



WEAK EXPANSIVENESS FOR ACTIONS OF SOFIC GROUPS 29

αf , the canonical action of G over ÚZG/ZGf , is asymptotically h-expansive but not
expansive. See [CL, §3 and §4] for more details.

8. Appendix

In this appendix, we will give some comments about Proposition 5.1. We assume
again that G is always a countable discrete amenable group.

There are several versions for the well-known Ornstein-Weiss Lemma for amenable
groups. Among them, the following version of it (cf. [LW00, Theorem 6.1], see also
[HYZ11, Lemma 2.4]) may be used mostly in the literature.

Proposition 8.1. Let f : FG → R be a function such that 0 ≤ f(Eg) = f(E) ≤
f(E∪F ) ≤ f(E)+f(F ) for all E,F ∈ FG and g ∈ G. Then for any Følner sequence

{Fn : n ∈ N} of G the sequence
n
f(Fn)
|Fn| : n ∈ N

o
converges and the value of the limit

is independent of the selection of the Følner sequence {Fn : n ∈ N}.

While, as shown by the following remark, it is not clear for us how to define the
topological conditional entropy ha(G,W1|W2) with W1,W2 ∈ CX for actions (X,G)
of countable discrete amenable groups using Proposition 8.1.

Remark 8.2. Let U,W ∈ CX . It is easy to check that the function mU,W : FG → R
satisfies 0 ≤ mU,W(Eg) = mU,W(E) and mU,W(E ∪F ) ≤ mU,W(E) +mU,W(F ) for all
E,F ∈ FG and g ∈ G; whereas, it may happen that mU,W(E) > mU,W(E ∪ F ) for
some E,F ∈ FG even in the case of U ∈ CoX and W ∈ CcX . Thus we could not obtain

directly from Proposition 8.1 the convergence of the sequence
n

1
|Fn|mU,W(Fn) : n ∈ N

o
for a given Følner sequence {Fn : n ∈ N} of G.

In the following we shall present such an example. Let G = Z2 × Z. Then G is a
countable discrete amenable group with unit (0, 0). We consider the compact metric
space X = {a, b}G, where G acts naturally on it. Set

U = {[a](0,0), [b](0,0)} ∈ CoX and W = (1, 0)−1U ∈ CcX

with [i](0,0) = {(xg)g∈G : x(0,0) = i}, i ∈ {a, b}. Let S ∈ FZ and set

E = {(0, s) : s ∈ S} ∈ FG and F = {(1, s) : s ∈ S} = (1, 0) · E ∈ FG.

It is straightforward to check that UF = U(1,0)·E = WE and UE = WF , and then

mU,W(E) = mU,W(F ) = |S| log 2 > 0 = mU,W(E ∪ F ).

In fact, given a Følner sequence {Fn : n ∈ N} of G, in a previous version of the

paper the authors proved convergence of the sequence
n

1
|Fn|mW1,W2(Fn) : n ∈ N

o
only

in the case of W1 ∈ CoX and W2 ∈ CcX using another way different from Proposition
5.1 (at that time the authors were unaware of Proposition 5.1), where the value of the
limit is independent of the selection of a Følner sequence of the group G. Hanfeng Li
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told us that the sequence
n

1
|Fn|mW1,W2(Fn) : n ∈ N

o
converges for all W1,W2 ∈ CX ,

which helped us to find finally Proposition 5.1 in [Gro99b]. Following Gromov’s
idea in [Gro99b], it is not hard to prove Proposition 5.1 using the terminology and
results by Ornstein and Weiss in [OW87] (see also [RW00, WZ92]), which is small
modifications of the proof of Proposition 8.1 presented in [HYZ11].

Acknowledgements

N-P. Chung would like to thank Lewis Bowen for asking and discussing the ques-
tion “When the actions of sofic groups are expansive, do they admit measures of
maximal entropy?” which started this project. The joint work began when N.-P.
Chung visited School of Mathematical Sciences, Fudan University on July, 2012.
Part of the work was carried out while N.-P. Chung attended Arbeitsgemeinschaft
“Limits of Structures” at Oberwolfach on April, 2013.

As indicated in the section of Appendix, both authors thank Hanfeng Li for many
helpful suggestions which resulted in substantial improvements to this paper. The
authors are also grateful to Ben Hayes and Wen Huang for helpful comments.

This research was supported through the programme “Research in Pairs” by the
Mathematisches Forschungsinstitut Oberwolfach in 2013. We are grateful to MFO
for a warm hospitality. N.-P. Chung is also supported by Max Planck Society, and
G. H. Zhang is also supported by FANEDD (201018) and NSFC (11271078).

References
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