
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Costratification in terms of coherent states

by

Erik Fuchs

Preprint no.: 53 2014





Costratification in terms of coherent states

Erik Fuchs

Institute for Theoretical Physics, University of Leipzig, Germany∗

Abstract

Following the Hamiltonian approach on a finite spatial lattice, I construct a quantum gauge

phase space with singularities and its quantum counterpart by the tool of Kähler quantization.

Since the reduced phase space is a stratified Kähler space it is possible to construct a corre-

sponding costratification on the quantum level which consists of a family of Hilbert subspaces

corresponding to the strata in the classical phase space stratification. By means of Hall coher-

ent states a new method for constructing a generating set of the costratified Hilbert space will

be given, where each Hilbert subspace of the costratification corresponds to a certain subfamily

of coherent states. Although the construction is applicable to all existing strata, it will be done

explicitly for the case of point and toral stratum. For the simplest non abelian toy model with

structure group SU(2) and at least two spatial plaquettes, these are the only occurring non

generic strata.
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I. INTRODUCTION

To study quantum gauge theories in the framework of Hamiltonian lattice gauge the-

ory, there are effectively two approaches. The first would be to quantize the unreduced

system and to reduce the symmetries on the quantum level while the second would be to

reduce first and to quantize the reduced system. The classical reduced phase space is in

general a stratified symplectic space (see e.g. [1], appendix B), i.e it is not a smooth sym-

plectic manifold, but it is a union of symplectic pieces, called strata. In the framework

of Hamiltonian lattice gauge theory with structure group SU(3) (i.e. quantum chromo-

dynamics) and canonical quantization, the first approach was studied for example in [2]

and [3], where the field algebra and the algebra of observables and its representations

were investigated. It turns out, that the field algebra of pure Yang-Mills theory is a

tensor product of certain crossed product C∗-algebras, which admits a unique (up to

isomorphism) irreducible representation (generalized Schrödinger representation) on the

Hilbert space H of L2 functions on the product of copies of the gauge group K. To im-

plement the singularities, one uses the Segal-Bargman transform for compact Lie groups

as developed by Hall (see [4]), which yields a unitary isomorphism from H to the Hilbert

space H̃ of holomorphic square integrable functions on the corresponding product of

copies of the complecification of K. Within this approach, the notion of a Hilbert space

costratification was developed in [5]. This structure assigns to each classical phase space

stratum a Hilbert subspace of H̃. Together they constitute a partially ordered family

such that the associated projection operators reverse the classical partial ordering. This

structure seems to be the appropriate counterpart to the classical stratification.

The Hamiltonian approach to lattice gauge theory on a finite spatial lattice leads to

a finite dimensional phase space T ∗(K × . . . × K) consisting of finitely many copies of

the structure group K, where the symmetry, i.e. the gauge transformations, is given

by the lift of the diagonal conjugation on K × . . . × K. The stratification structure of
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this Hamiltonian system with symmetry was investigated for example in [6, 7]. Since

this phase space also possesses a compatible complex structure, it is Kähler and the

costratification procedure can be applied. This was done in [8] for the structure group

K = SU(2) and with one copy of K. In [9], the structure of the observable algebra was

studied in this context. The costratified Hilbert space structure was explicitly constructed

by means of representation functions of irreducible representations of the semi simple Lie

group SU(2). This can be also understood via a holomorphic version of the Peter-Weyl

theorem (see [10]). But by using the methods of [8] for the more copy case, one would have

to solve a lot of difficulties at first. For example the algebra of the direct generalization

of the complete orthonormal system of the reduced Hilbert space to the more copy

case is far more complicated as in the one copy case. Also the stratification becomes

more complicated (even in the SU(2) case). For at least two copies the so called toral

stratum occurs, with orbit type given by the maximal torus of SU(2). For this continuous

stratum the explicit construction of the corresponding Hilbert subspace would need a

complete description of the stratum via invariant relations and the knowledge of structure

coefficients of the algebra of the representation functions spanning the symmetry reduced

Hilbert space. These problems could be avoided by the more geometric approach of

coherent states.

This paper is a step towards generalizing the construction given in [8] to finitely many

copies of a simply connected compact Lie group, by using so called Hall coherent states

(see [4]). These states are already arising from the explicit construction done in [8] and

represent maximal localized states on the occurring point strata. Using these states

it is possible to give a description of the Hilbert subspaces corresponding to the point

strata and of the tunneling probability between these Hilbert subspaces. By averaging

these states over the diagonal conjugation it turns out that every Hilbert subspace of

the costratification structure is given by the closure of the span of a certain subfamily

of these averaged states. For the toral stratum of the diagonal conjugation action this
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subfamily will be explicitly described by means of a complexified maximal toral subgroup

of K.

The paper is organized as follows. In Section 2 the model will be introduced with a

brief description of the Kähler structure and the Kähler quantized Hilbert space with the

definition of the costratification structure. Section 3 contains a description of the point

stratum in the finitely many copy case and introduces the Hall coherent states as the

corresponding one dimensional costratified Hilbert spaces. Finally in Section 4 a method

to describe the costratified Hilbert spaces of all occurring strata will be developed in

terms of generalised coherent states. This construction will be made more explicit in the

case of the toral stratum.

II. STRATIFICATION AND COSTRATIFICATION

A. Classical picture

We are starting with a hamiltonian gauge model with a compact simply connected

gauge group K (e.g. SU(2)). The time is separated from space and space is discretized

by a finite cubic lattice with nodes Λ0, links Λ1 and plaquette Λ2. The gauge fields are

represented via parallel transport by the set KΛ1
:= {f : Λ1 → K} and the set of gauge

transformations is given by KΛ0
:= {t : Λ0 → K}. The action of the transformations on

the gauge fields is given in the following way. Let fi,j represent the value of a gauge

field f ∈ KΛ1
on a link connecting the nodes i, j ∈ Λ0 and let ti, tj be the values of the

gauge transformation on those nodes. Then the action can be written as (fi,j, ti, tj) 7→

(tifi,jt
−1
j ).

By the choice of a maximal connected subset of the lattice, called tree, we can reduce

the freedom of our gauge fields to the off tree links. Every gauge field can be represented

by a single element k ∈ K acting on the gauge fields by diagonal conjugation. Let N be
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the number of off tree links and (k1, . . . , kN) ∈ KN represent a gauge field on the off tree

links, then the action is given by ((k1, . . . , kN), k)→ (kk1k
−1, . . . , kkNk

−1).

This describes the configuration space of the gauge model. The phase space action is

obtained by lifting the K-action to the cotangent bundle of KN , which is diffeomorphic

to KN × kN by left translation. The K-action ψ : K× (KN × kN)→ KN × kN is given by

ψ(k, (k1, . . . , kN), (X1, . . . , XN)) = ((kk1k
−1, . . . , kkNk

−1), (AdkX1, . . . ,AdkXN)) (1)

and the corresponding momentum mapping J : KN × kN → kN is

J((k1, . . . , kN), (X1, . . . , XN)) =
N∑
i=1

(Adki Xi −Xi) . (2)

The canonical symplectic form ω = −dθ on KN × kN is given by the potential 1-form

θ(k,X)(L
′
kV,W ) = 〈X, V 〉 k ∈ KN , X, V,W ∈ kN . (3)

In (3) 〈·, ·〉 denotes a positive definite invariant inner product on kN , e.g. the negative

Killing form, and L′k is the left translation on T (KN). The resulting tuple (KN ×

kN , ω, K, ψ, J) is a Hamiltonian K-manifold, which is the classical Hamiltonian gauge

model. To reduce the existing symmetry there is the tool of singular symplectic reduction.

The resulting space J−1(0)/K = ∪(H),i P(H),i is a stratified space, i.e. a disjoint union of

symplectic pieces P(H),i, where i enumerates the connected pieces and (H) denotes the

orbit type of its elements defined as follows:

Definition 1. Let ψ : K ×M → M be a smooth proper action of the Lie group K on

the manifold M . Let Om = {n ∈M |∃ k ∈ K : n = ψ(k,m)} be the orbit of m and Gm

denote its isotropy group. If Gm is conjugate to the closed subgroup H ⊂ K then we say

Om is of orbit type (H).

Remark 2. For the action (1) there are always at least three strata corresponding to

the orbit types (K), (T ) and (Z(K)). T is a maximal torus of K and Z(K) denotes the
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center of K.

Those strata are called bottom or point stratum, toral stratum and top stratum respec-

tively. If K = SU(2) those are the only existing strata.

B. Quantum picture

At first we will recall that the phase space of a compact connected group K has an

natural complex structure compatible with its canonical symplectic structure. For that

purpose we mention the polar decomposition

KN × kN → (KN)C (k,X) 7→ k exp(iY ), (4)

yielding a diffeomorphism of the cotangent bundle T ∗KN ∼= KN × kN to the complexi-

fication of the Lie group KN , written as (KN)C. In the case of K = SU(2) the above

diffeomorphism maps to SL(2,C)N . Via this diffeomorphism the cotangent bundle be-

comes an analytic manifold. Additionally the canonical symplectic structure of T ∗KN is

compatible with the induced complex structure and we obtain a Kähler manifold, whose

Kähler potential turns out to be

κ(k exp(iX)) = |X|2 = 〈X,X〉 . (5)

For reference see e.g. [11]. By the bi-invariance of the diffeomorphism (4) the K-action

ψ on KN × kN is transported to a diagonal K-action (also called ψ) on (KN)
C

So we have a Kähler structure on the unreduced phase space and it is possible to use

the tool of half-form Kähler quantization on T ∗KN ∼= (KN)
C
. For reference see e.g. [12].

The result is the Hilbert space HL2 (G, µ~) of holomorphic functions on G = (KN)
C
,

which are square integrable with respect to the scalar product

〈ψ1, ψ2〉 =
1

vol(KN)

∫
G

ψ1ψ2µ~. (6)
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The measure µ~ is given as

µ~ = e−κ/~ηε,

where ε is the symplectic volume form on G, κ is the Kähler potential as above and η is

a K-bi-invariant function on G given by

η(k exp(iX)) =

√
det

(
sin ad(X)

ad(X)

)
.

The function η is known as the half-form correction. By the form of the measure µ~ it

is easily seen, that the measure and hence the scalar product (6) is invariant under left

and right translation by K.

So we have got the unreduced Hilbert space of our lattice gauge model. Reduction after

quantization yields HL2 (G, µ~)
K , the subspace of HL2 (G, µ~) of K-invariant functions

with respect to diagonal conjugation.

Now we see the lack of structure in terms of reduction after quantization. The previous

stratified structure given by the orbit type decomposition in the classical case does not

seem to be present in the quantum case. But in the case of a Kähler structure it was

shown in [5] that there is a stratified structure on HL2 (G, µ~)
K coinciding with the

notion of quantization after reduction. This structure is the costratified Hilbert space

on a stratified space. In our context the following definition of the costratified Hilbert

space is sufficient.

Definition 3. Let P(H),i be the connected components in the orbit type decomposition

relative to G (see e.g. [1] appendix B for definition and properties). Then we call

V(H),i :=
{
f ∈ HL2 (G, µ~)

K | f |P(H),i
= 0
}

(7)

the vanishing space of P(H),i. The orthogonal complements of V(H),i in HL2 (G, µ~)
K will

be denoted by H(H),i. The collection of these Hilbert subspaces is called the costratified
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Hilbert space structure, assigning to each stratum P(H),i of the classical level a Hilbert

subspace H(H),i.

By the above definition it is easily seen, that the Hilbert space corresponding to the

top stratum coincides with the hole Hilbert space HL2 (G, µ~)
K .

C. Remarks on the Hilbert space HL2 (G,µ~)

In [4] the Segal-Bargman transform was generalized for compact Lie groups K. Hall

proved, that there exists an unitary isomorphism between L2(K, dx) and HL2(G, ν~),

where G = KC, dx denotes the Haar measure on K and ν~ is a K-bi-invariant measure

on G derived by its heat kernel. To make this statement clear we will give a few necessary

definitions.

Definition 4. Let ∆K and ∆G be the Casimir operators on K and G. The corresponding

heat equations are:

0 =

(
∆K −

1

2

∂

∂t

)
u u ∈ C2(K)

0 =

(
∆G −

1

4

∂

∂t

)
v v ∈ C2(G).

The fundamental solutions of these equations will be labeled by ρt and σt and called heat

kernels on K or G respectively. Also we will denote the analytic continuation of ρt to G

as ρt. Now we can define the heat kernel measure νt on G by:

νt :=

∫
K

σt(x
−1g)dx

By theorem 2 of [4] the following has to hold.
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Theorem 5. The map Ct : L2(K, dx)→ HL2(G, νt) given by

Ct(f)(g) :=

∫
K

f(x)ρt(x
−1g)dx, f ∈ L2(K, dx), d ∈ G

is a unitary isomorphism of Hilbert spaces.

Let Cλ(K) denote the space of complex representation functions of the irreducible

representation (Tλ, Vλ) with highest weight λ. These functions can be represented by

fλ,A(x) = tr(Tλ(x)A). where A ∈ End(Vλ). The well known Peter-Weyl-Theorem states:

L2(K, dx) ∼= ⊕̂λ∈K̂Cλ(K).

The right side is the completion of the direct orthogonal sum of the function spaces

Cλ(K). An important step in the proof of theorem 2 of [4] was the following property of

Ct:

Ct(fλ,A)(g) = e−ελt/2 tr(Tλ(g)A),

where ελ is minus the eigenvalue of the Casimir operator ∆K with respect to the eigen-

vector fλ,A, given by ελ = |λ+ ρ|2 − |ρ|2 (ρ denotes the Weyl vector, which is half the

sum over the positive roots of K.). Tλ(g) denotes the analytic continuation of Tλ to G.

Hence we can conclude by theorem 5 and the Peter-Weyl-Theorem, that the Hilbertspace

HL2(G, νt) decomposes as following:

HL2(G, νt) ∼= ⊕̂λ∈ĜCλ(G), (8)

where the right side summation is over all finite dimensional irreducible holomorphic

represenations of G.

A connection between the HilbertspacesHL2 (G, µ~) andHL2(G, νt) was analysed in [11].

Theorem 2.5 in [11] states, that the heat kernel measure νt and the half-form corrected

measure µ~ are related by a constant factor, i.e.:

ν~ = c~µ~, c~ := (π~)− dimK/2e−|ρ|
2~.
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These facts can be summarised in the following theorem:

Theorem 6 (Holomorphic Peter-Weyl-Theorem). The Hilbert space HL2 (G, µ~) decom-

poses into the direct sum:

HL2 (G, µ~) ∼= ⊕̂λ∈ĜCλ(G). (9)

The sum ranges over the finite dimensional irreducible representations Ĝ of G, which are

identified by its highest weights λ. The summand Cλ(G) is the space of all representation

functions of a finite dimensional irreducible representation Tλ : G→ End(Vλ), generated

by functions of the form v(Tλ(·)w), v ∈ V ∗λ , w ∈ Vλ.

Furthermore there is a unitary isomorphism between L2(K, dx) and HL2 (G, µ~), induced

by the map

Cλ(G) 3 φC 7→ C
1
2
~,λφ ∈ Cλ(K). (10)

φ is the restriction of φC to K ⊂ G, Cλ(K) denotes the space of representation functions

of Tλ restricted to K and the factor C~,λ is given by

C~,λ = (~π)dimG/2e~|λ+ρ|2 (11)

Also the map

EndVλ 3 A 7→
√

dimVλ tr (Tλ(·)A) ∈ Cλ(G) (12)

is an isomorphism of the G×G-representations EndVλ and Cλ(G).

A detailed proof of theorem 6 can be found in [10].

III. THE POINT STRATA

Since K is compact and simply connected it is also semi simple. Hence its center

is discrete and finite. The point strata consists of all elements g = (g1, . . . , gN) ∈ G
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which fulfill hglh
−1 = gl, l = 1, . . . , N, ∀h ∈ K. Since the polar decomposition (4) is an

diffeomorphism we obtain for each factor gl = kl exp(iXl):

hklh
−1 = kl AdhXl = Xl ∀h ∈ K.

So kl has to be in Z(K) and Xl has to be in Z(k) which is zero since K is semi simple.

Hence each point stratum P(K),i is a discrete point g ∈ KN ⊂ G and its components

are in the center of K. So the vanishing spaces V(K),i simply consist of the invariant

functions vanishing on single points on G and the corresponding Hilbert subspaces are

of a simple form:

Theorem 7. Let P(K),i ⊂ G be given by an element g ∈ G. Then the corresponding

Hilbert subspace H(K),g of the costratified Hilbert space has dimension one. Let ρt denote

the heat kernel on KN analytically continued to G. Then the function vg(x) := ρ2~(g
−1x)

spans H(K),g

At first, we will construct the Hilbert subspace Hg := V⊥g , g ∈ G, with

Vg := {f ∈ H|f(g) = 0} . (13)

The first step is, to define a simple but important projector.

Definition 8. Let H = HL2 (G, µ~), f ∈ H and g ∈ G, then we define the linear map

Pg : H → H by

Pg(f) = f − f(g)1G (14)

and call it the vanishing projection.

Pg obviously projects H to Vg. That it is bounded follows from the fact that the

functions f ∈ H are holomorphic.

Lemma 9. The vanishing projection Pg is bounded and therefore continuous.
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Proof. By the definition of Pg and the triangle inequality we obtain ||Pgf || ≤ ||f || +

|f(g)| · ||1KC ||. By the analyticity of f we will estimate the value of f at g by an upper

value given by a multiple of its Hilbert space norm which will prove the lemma by the

above inequality.

Let κ : G ⊃ U → V ⊂ Cn be an analytic chart with g ∈ U . We will denote the local

representative of f as f̃ := f ◦ κ−1 and the local representative of g as zg := κ(g).

f̃ : V → C is an analytic function on an open subset V ⊂ Cn. The pull back of

the measure µ~ on H will be denoted as µ̃~dz
′ := (κ−1)∗µ~ where dz′ is the Lebesgue

measure on Cn ∼= R2n and µ̃~ : V → R+. Let R > 0 be the radius of a polydisc

Dn
R(zg) :=

{
z = (z1, . . . , zn) ∈ V

∣∣ ∣∣zig − zi∣∣ < R, 1 ≤ i ≤ n
}

such that Dn
R(zg) ⊂ V .

f̃(zg) =

(
1

πR2

)n ∫
DnR(zg)

f̃(z′)dz′

By this relation we obtain:

|f(g)| =
∣∣∣f̃(zg)

∣∣∣ ≤ ( 1

πR2

)n ∫
DnR

∣∣∣f̃(z′)
∣∣∣ dz′

Hölder

≤
(

1

πR2

)n
·
(
πR2

)n
2

(∫
DnR(zg)

∣∣∣f̃(z′)
∣∣∣2 dz′) 1

2

≤
(

1

πR2

)n
2
(

inf
DnR

µ̃~

)− 1
2

︸ ︷︷ ︸
=cR,t

(∫
DnR(zg)

∣∣∣f̃(z′)
∣∣∣2 µ̃~(z

′)dz′

) 1
2

≤cR,t
(∫

U

|f(x)|2 µ~(x)

) 1
2

(Dn
R(zg) ⊂ V = κ(U))

≤ cR,t ||f ||

So we have got the wanted estimate and the proof is complete.

Corollary 10. The dimension of Hg is one. Furthermore let {vn} be a complete or-

thonormal system on H, then v ∈ Hg ⇔ 〈Pgvn, v〉 = 0 ∀ vn holds true.
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Proof. Since Pg is a projection, we can decompose H into the direct sum H = PgH ⊕

(id−Pg)H = Vg ⊕ kerPg. kerPg is a closed subspace of H consisting of the constant

functions on G and therefore its dimension is one. Also H = Vg ⊕ Hg holds, since

Hg = V⊥g . So the dimension of Hg has to be one.

{vn} is a complete orthonormal system on H. By continuity of Pg the span of the vectors

Pgvn is dense in Vg and hence 〈Pgvn, v〉 = 0 ⇔ v ∈ H.

Remark 11. By the definition of Pg one sees that it can be restricted to a projection

operator PK
g : HK → HK with HK = HL2 (G, µ~)

K projecting on V(K),g. Hence the

statement of corollary 10 can be applied to Hg and dimHg = 1 has to hold, too.

To construct the vector spanning Hg we need a complete orthogonal system on H =

HL2 (G, µ~). By the holomorphic Peter-Weyl theorem 6 the following vectors form a

complete orthogonal system on H.

Definition 12. Let Ĝ be the set of isomorphism classes of finite dimensional irreducible

representations Tλ : G → End(Vλ) of G with highest weights λ and dλ = dimVλ. Let

Cλ
ij ∈ End(Vλ), i, j = 1, . . . , dλ be the standard basis of End(Vλ) with respect to a chosen

orthonormal basis on Vλ. Then we define the complete orthogonal system

vλij(g) :=
√
dλ tr

(
Tλ(g)Cλ

ij

)
g ∈ G. (15)

By the isomorphism induced by (10) the norm
∣∣∣∣vλij∣∣∣∣ can be calculated via Schur-Weyl

orthogonality on L2(KN , dx):∣∣∣∣vλij∣∣∣∣2 = C~,λ (C~,λ given by (11)) (16)

By corollary 10 we can construct the vg ∈ H, which spans Hg by evaluating the

defining relations
〈
Pgv

λ
ij, vg

〉
= 0 on an arbitrary vector wg =

∑
λ∈Ĝ

∑dλ
i,j=1 a

ij
λ (g)vλij:

0 =
〈
Pgv

δ
lm, wg

〉
=

〈
vδkl − vδkl(g) · 1G,

∑
λ∈Ĝ

dλ∑
i,j=1

aijλ (g)vλij

〉
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=
∣∣∣∣vδkl∣∣∣∣2 aklδ (g)− vδkl(g) · a11

λ0
(g)
∣∣∣∣vλ011

∣∣∣∣2 (
1G = vλ011

)
⇒ aklδ (g) ∝ vδkl(g)∣∣∣∣vδkl∣∣∣∣2 ∀ δ ∈ Ĝ, 1 ≤ k, l ≤ dδ

Hence the vector

wg :=
∑
λ∈Ĝ

dλ∑
i,j=1

vλij(g)∣∣∣∣vλij∣∣∣∣2vλij (17)

spans Hg = V⊥g for arbitrary g ∈ G.

Proposition 13. The vectors wg of the form (17) are square integrable and holomorphic

on G and hence elements of H = HL2(G, dµt).

Proof. At first we will check the L2 property. Since the vλij are orthogonal it is sufficient

to show that the following series converges absolutely:

∑
λ

∑
ij

∣∣vλij(g)
∣∣2∣∣∣∣vλij∣∣∣∣2 (18)

For that purpose we have to find an upper bound of the absolute value of vλij(g) with fixed

g ∈ G, decreasing fast enough with the highest weights of the representations Tλ. The Lie

group G is the complexification of the simple connected, compact group KN , hence it is

diffeomorph to KN × kN via the polar decomposition (k,X) 7→ k exp(iX). Furthermore

a Cartan subalgebra (CSA) h of G can be chosen to be of the form h = hR + ihR, where

hR is a maximal abelian subalgebra of kN . By lemma III.5.15 of [13] the Lie subalgebra

hR is a CSA of kN and kN can be decomposed in its conjugates, i.e:

kN =
⋃

y∈KN

Ady hR.

So for all X ∈ kN exist elements y ∈ KN and Y ∈ hR such that X = Ady Y . Hence every

element g ∈ G can be written as:

g = k exp(iX) = k exp(iAdy Y ) = ky exp(iY )y−1
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= k1 exp(iY )k2 k1, k2 ∈ K, Y ∈ hR.

Since KN is compact, the restriction of Tλ to KN acts on the representation space Vλ

unitarily with respect to a chosen scalar product 〈·, ·〉λ. So the corresponding operator

norm of ||Tλ(k)||λ equals one for all k ∈ KN and we get:

||Tλ(g)||λ = ||Tλ(k1 exp(iY )k2)||λ = ||Tλ(k1) exp(iT ′λ(Y ))Tλ(k2)||λ = ||exp(iT ′λ(Y ))||λ

By the unitarity of Tλ(k) on Vλ for all k ∈ KN the derivation T ′λ(Y ) is anti hermitian

and hence diagonalizable. For every Y ∈ hR the operator norm of exp(iTλ(Y )) equals

the absolute value of the largest eigenvalue of this operator, which is the exponential of

the largest absolute value of an eigenvalue of T ′λ(Y ). But all eigenvalues of T ′λ(Y ) are of

the form ν(Y ), where ν is a weight of T ′λ. There is an upper bound for this, given by:

|ν(Y )| ≤ C |λ| ||Y || Y ∈ hR, C > 0.

||Y || can be chosen to be the norm of Y induced by minus the Killing form on h and |λ|

is the norm of the highest weight λ ∈ h∗ given by minus the dual of the Killing form.

Hence we can write:

||Tλ(g)||λ ≤ exp(C |λ| ||Y ||).

Now we will calculate the estimate, for that purpose let
{
eλl
}dλ
l=1

be the orthonormal basis

in Vλ used to define the operators Cλ
ij:∣∣vλij(g)

∣∣
√
dλ

=
∣∣tr (Tλ(g)Cλ

ij

)∣∣ =

∣∣∣∣∣
dλ∑
l=1

〈
eλl , Tλ(g)Cλ

ije
λ
l

〉
λ

∣∣∣∣∣ ≤
dλ∑
l=1

∣∣〈eλl , Tλ(g)Cλ
ije

λ
l

〉∣∣
≤

dλ∑
l=1

∣∣∣∣eλl ∣∣∣∣λ ∣∣∣∣Tλ(g)Cλ
ije

λ
l

∣∣∣∣
λ

=
∣∣∣∣Tλ(g)eλi

∣∣∣∣
λ
≤ exp (C |λ| ||Y ||) (19)

Thus by using the norm of the vλij given by (16) and the above estimate, the following

series is an upper bound to the series (18):

(~π)− dimKN/2
∑
λ

d3
λ · exp

(
−(~ |λ+ ρ|2 − 2C ||Y || |λ|)

)
(20)
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Weyl’s dimension formula states, that the dimension of Vλ increases only polynomially

by the norm of λ and hence (20) converges.

Since the Y ∈ hR in formula (19) is adjoint to X ∈ k in the polar decomposition,

G 3 g = k exp(iX) and the Killing form is invariant under the adjoint representation, its

norm has to be bounded, if g is an element of a compact subset U ⊂ G. So let us consider

the series of wg(x), where we set x = k′ exp(iY ′) ∈ U and ||Y ′|| ≤ a ∈ R+ and g ∈ G as

above. Then we obtain as upper bounds of the absolute values of the summands in the

series of wg(x) for all x ∈ U :

(~π)dimKN

d3
λ · exp

(
−
(
~ |λ+ ρ|2 − 2C (||Y ||+ a) |λ|

))
,

which tends to zero for all x ∈ U while |λ| is increasing. So the series defining wg

converges locally uniformly and hence is holomorphic.

Proof of Theorem 7. Let {eλl }
dλ
l=1 be an orthonormal basis in Vλ with respect to a KN -

invariant scalar product 〈·, ·〉λ as above. Then the vector wg takes the form:

wg(x) =
∑
λ

C−1
~,λ

dλ∑
ij=1

dλtr (Tλ(g)Cij) tr (Tλ(x)Cij)

=
∑
λ

C−1
~,λdλ

dλ∑
i=1

〈
Tλ(g)eλi , Tλ(x)eλi

〉
λ

g∈KN

=
∑
λ

dλC
−1
~,λ · χλ

(
g−1x

)
= (~π)− dimG/2e−~|ρ|

2∑
λ

dλe
−~ελχλ

(
g−1x

)
,

where ελ = |λ+ ρ|2 − |ρ|2 is minus the eigenvalue of the Casimir operator ∆KN cor-

responding to the highest weight λ (as in subsection II C) and χλ(x) = tr(Tλ(x)) is

the character of the representation Tλ. In [14] the heat kernel of the heat equation

16



( ∂
∂t
− 1

2
∆KN )f = 0 was derived in terms of the characters:

ρt(x) =
∑
λ∈K̂N

dλe
−ελt/2χλ(x). (21)

And hence wg(x) = (~π)− dimG/2e−~|ρ|
2

ρ2~(g
−1x) for all g ∈ KN . By the correlation

wg(ψ(h, x)) = wψ(h−1,g)(x), (22)

the wg are invariant by ψ for all g ∈ Z(KN). Hence the wg are elements of HL2 (G, µ~)
K

and are especially orthogonal to the vanishing space V(K),g ⊂ Vg. Since the dimension of

H(K),g is one we have:

H(K),g = C · wg = C · ρ2~(g
−1·) {g} = P(K),i. (23)

Remark 14. An important physical quantity which we can already compute is the tun-

neling probability between the point strata H(K),g. For pure physical states ψ1, ψ2 which

are normalized vectors of H this quantity is given by the formula Pψ1,ψ2 = |〈ψ1, ψ2〉|2.

Since the summands in (21) are orthogonal it is sufficient to know the following scalar

products: 〈
χλ(g

−1·), χλ(h−1·)
〉

=
C~,λ

dλ
χλ(gh

−1).

The above holds true, because g, h ∈ KN . Consequently the scalar product of two vectors

ρ2~(g
−1·) and ρ2~(h

−1·) is given by:〈
ρ2~(g

−1·), ρ2~(h
−1·)

〉
= e2|ρ|2~

∑
λ∈K̂N

dλC
−1
~,λχλ(gh

−1)

and there norm is: ∣∣∣∣ρ2~(g
−1·)

∣∣∣∣2 = e2|ρ|2~
∑
λ∈K̂N

d2
λC
−1
~,λ.

17



We can see, that the norm of the coherent states concentrating on an element g ∈ KN

is independent of this element. The tunneling probability Pg,h between the two point

strata {g} and {h} equals:

Pg,h =

∣∣∣∣∣
∑

λ∈K̂N dλC
−1
~,λχλ(gh

−1)∑
λ∈K̂N d

2
λC
−1
~,λ

∣∣∣∣∣
2

IV. THE TORAL STRATUM

An essential part to construct a generating system of vectors in the toral stratum case

will be the following statement.

Proposition 15. Let {Vα}α∈A be a family of Hilbert subspaces of the Hilbert space H.

Then the following holds true:

span {V ⊥α }α∈A = (∩α∈AVα)⊥ (24)

Proof. See e.g. [15].

By the above proposition, it is possible to determine the toral stratum Hilbert space

H(T ) in terms of generalized coherent states.

Definition 16. Let f ∈ H = HL2 (G, µ~),g ∈ G and ψ : K × G → G the diagonal

conjugation. Then we define the linear map PD : H → H by:

(PDf)(g) =

∫
K

f(ψ(h, g))dh (dh . . .Haar measure on K). (25)

We will call PD invariance projector.
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Theorem 17. Let wg ∈ H be as in (17) and PT denote the toral stratum in the orbit

type decomposition of G with respect to the K-action ψ. Then the following holds true:

span {PDwg}g∈PT = H(T ), (26)

i.e. the family {PDwg}g∈PT generates a dense subspace in H(T ).

Remark 18. In the point stratum case, the strata were single points in KN ⊂ G with

isotropy group K. Hence the wg were invariant functions spanning H(K),g respectively,

by relation (22). This is not true for the elements of PT ⊂ G, since the isotropy group

has to be smaller than K. So we need a tool to restrict our functions to the subspace of

invariant functions, which is the projector PD in our case.

Lemma 19. Let VPT := {f ∈ H| f(g) = 0 ∀ g ∈ PT} and HPT := V⊥PT . Furthermore let

Vg be as in (13) with Hg = V⊥g . Then

span {Hg}g∈PT = HPT (27)

Proof. Obviously VPT = ∩g∈PTVg holds true. Hence (27) is just (24), where the subspace

family is given by {Vg}g∈PT .

Proposition 20. The operator PD is well defined on H, i.e. it is bounded and maps holo-

morphic functions on holomorphic functions on G. Also PD is an orthogonal projector

on the Hilbert subspace HK.

Proof. i) The norm of an element PDf , f ∈ H has the following form:

||PDf ||2 = 〈PDf, PDf〉 =

∫
G

µ~(g)

∫
K

dhf(ψ(h, g)

∫
K

dh′f(ψ(h′, g)) (28)

By the theorem of Tonelli the above integral exists and the integration order can

be changed iff the following iterated integral is well defined:∫
K×K

dhdh′
∫
G

µ~(g)
∣∣∣f(ψ(h, g))f(ψ(h′, g))

∣∣∣
19



Hölder

≤
∫
K×K

dhdh′
(∫

G

µ~(g)
∣∣∣f(ψ(h, g))

∣∣∣2 ∫
G

µ~(g) |f(ψ(h′, g))|2
) 1

2

=

∫
K×K

dhdh′ ||f ||2 = ||f ||2

So the iterated integral is bounded and maps to R. Therefore it has to be well

defined. So we can change the order of integration in (28). This will lead to the

calculation already made and we obtain:

||PDf || ≤ ||f || (29)

ii) Analyticity of PDf : At first we define fh(g) := (f ◦ ψ) (h, g). Let U ⊂ G be

compact with non empty interior U̇ , then there is a constant cU ∈ R+ such that

|fh(g)| < cU on K × U , since K × U is compact and fh is continuous in both

arguments. Let κ : U ⊂ W → V ⊂ R2n = Cn be a holomorphic chart on G

and f̃(h, z) := fh(κ
−1(z)) the local representative of f . The z = x + iy are the

holomorphic coordinates. Let Dn
r (z0) =

{
z ∈ Cn

∣∣ |zi − zi0| < r
}

= D1
r(z

1
0)× . . .×

D1
r(z

1
0) with z0 ∈ W . Fix an r > 0 such that Dn

r (z0) ⊂ W . Then for all z ∈ Dn
r
2
(z0)

the following consequence of the Cauchy integral formula holds true:(
∂

∂zk
f̃

)
(h, z) =

1

(2πi)n

∫
∂D1

r
2

(z1)×...×∂D1
r
2

(zn)

f̃(h, ξ)

(ξk − zk) ·
∏n

l=1(ξl − zl)
dnξ

⇒
∣∣∣∣ ∂∂xi f̃(h, z)

∣∣∣∣ =

∣∣∣∣ ∂∂yi f̃(h, z)

∣∣∣∣ ≤ 2 ·
∣∣∣∣ ∂∂zi f̃(h, z)

∣∣∣∣
≤ 2

(2π)n

∫
∂D1

r
2

(z1)×...×∂D1
r
2

(zn)

∣∣∣f̃(h, ξ)
∣∣∣

(r/2)n+1
dnξ ≤ 4

r
cU

By a standard result of analysis concerning differentiability of parameter dependent

integrals the above inequality states, that the function
∫
K
dhf̃(h,x+iy) is differen-

tiable on R and we can change the order of differentiation and integration. So it re-
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mains to show the differentiability on C. This can be done by proving that the func-

tion PDf fulfills the Cauchy-Riemann equations, i.e. dp(JX) = idp(X), p ∈ C1(G)

where J is the complex structure onG andX ∈ X(G). Since we have already proven

that we can change integration and differentiation in the real sense, we obtain:

d(PDf)(JX)− id(PDf)(X) =

∫
K

dh dfh(JX)− idfh(X) = 0

since fh is holomorphic.

iii) PD maps into HK , i.e. ψ∗hPDf = PDf :

(ψ∗hPDf) (g) = (PDf)(ψh(g)) =

∫
K

(f ◦ ψh′) (ψh(g))dh′

=

∫
K

f(ψh′h(g))dh′ =

∫
K

f(ψh′(g))dh′ = (PDf)(g)

iv) PD is a projection onto HK , i.e. PD|HK = idHK : Let us consider a f ∈ HK i.e.

(f ◦ ψ)(h, g) = f(g) ∀h ∈ K, g ∈ G:

(PDf)(g) =

∫
K

f(ψ(h, g))dh =

∫
K

f(g)dh = f(g) (since dh is normalized on K)

v) At last we have to show, that PD is self adjoint on H. By it’s boundedness it is

sufficient to prove that PD is symmetric. This will be a consequence of the fact,

that the unimodular function of the Haar measure on a compact Lie group K is

constant one. This is equivalent to the already known fact, that the Haar measure

on K is also right invariant. We have the characterization of the Haar measure as

the unique left invariant measure µ on K with normalization µ(K) = 1. Let us

define another measure on K by µ̃(H) = µ(H−1) for all Borel sets H. Obviously

we have got µ̃(K) = 1 and by the right invariance of µ we obtain:

µ̃(gH) = µ(H−1g−1) = µ(H−1) = µ̃(H) ∀ g ∈ G.
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So µ̃ is left invariant on K and normalized to one. Hence it has to be the Haar

measure µ. So the Haar measure on the compact Lie group K is invariant under

inversion.

Now we can calculate the symmetry of PD:

〈PDf, q〉 =

∫
G

µ~(g)

∫
K

dhf (ψ(h, g)) · q(g) =

∫
K

dh

∫
G

µ~(g)f(g) · q(ψ(h−1, g))

=

∫
G

µ~(g)f(g)

∫
K

dh q(ψ(h, g)) = 〈f, PDq〉 ∀f, q ∈ H

Proof of Theorem 17. Since the family {wg}g∈PT is dense in HPT by lemma 19, it is

sufficient to prove PDHPT = H(T ). For that purpose we use that V(T ) = VPT ∩ HK by

definition. Hence V(T ) ⊂ PDVPT has to hold. By the invariance of P(T ) under ψ we can

conclude that PDVPT ⊂ V(T ) is true and we obtain:

PDVPT = V(T ). (30)

Since PD is an orthogonal projection the following holds:

〈q, PDf〉 = 〈PDq, f〉 q, f ∈ H

If we set q ∈ HPT , then the left side is zero for all f ∈ V(T ) and hence PDq ∈ H(T ) by the

right side. So we have got PDHPT ⊂ H(T ).

Also if we set q ∈ H(T ), then the left side is zero for all f ∈ VPD by (30) and hence we

obtain PDq ∈ HPD by the right side, which leads to PDH(T ) ⊂ HPD . By the projection

property of PD this is equivalent to H(T ) ⊂ HPD and we conclude H(T ) = PDH(T ) ⊂

PDHPD , which completes the proof.

Remark 21. By the relation (22) we can reformulate the integral PDwg:

(PDwg)(x) =

∫
K

dhwg(ψ(h, x)) =

∫
K

dhwψ(h−1,g)(x) =

∫
K

dhwψ(h,g)(x) g, x ∈ PT
(31)
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Equation (31) states, that PDwg = PDwg′ if g and g′ are in the same orbit of the diagonal

conjugation. Since the isotropy groups of all elements in PT are conjugate to the maximal

torus T , there has to be a g ∈ PT ⊂ G in every orbit of ψ, which is stabilized by T . By the

polar decomposition (4) we obtain for t ∈ T, tD := (t, . . . , t) ∈ TN , g = k exp(iX), k =

(k1, . . . , kN) ∈ KN , X = (X1, . . . , XN) ∈ kN :

k exp(iX)
!

= ψ(t, k exp(iX)) = ψt(k) exp(iAdtD X) ∀t ∈ T

⇔ tklt
−1 = kl and AdtXl = Xl ∀ l = 1, . . . , N, t ∈ T

⇔ tkl = klt and adY Xl = 0 ∀ l = 1, . . . , N, Y ∈ t

Consequently kl ∈ T and Xl ∈ t have to hold true for all l by the maximality of T and

its Lie algebra t and hence g ∈ (TC)N is true. This leads to:

Theorem 22. Let H(T ) be the Hilbert subspace of the costratified Hilbert space cor-

responding to the toral stratum PT . Let t := (t1, . . . , tN) ∈
(
TC
)N

Then the vectors

{PDwt}t∈(TC)N are an over-complete set spanning H(T ).

Remark 23. The construction of the generating set in theorem 17 is valid for all ψ-

invariant subsets of G by simply substituting the stratum PT in relation 26 by this set.

So the theorem 17 can be generalized to the case of an arbitrary stratum P(S),i by stating

H(S),i = span {PDwg}g∈P(S),i
,

for every orbit type (S), especially for the orbit type (Z(KN)) whose corresponding

Hilbert subspace is HL2 (G, µ~)
K itself.

V. OUTLOOK

The choice of a minimal generating set for the Hilbert subspace H(T ) is still an open

question, since the symmetry of the diagonal conjugation on the set of vectors PDwg

23



is not fully reduced by theorem 22. Also the problem of non orthogonality of coherent

states remains in this description.

Another step will be, to examine the Hamiltonian of the SU(n)-gauge model on this

Hilbert space and its costratification structure, to determine its eigenspaces and eigen-

values and study the dynamical relation between the eigenspaces and the strata as done

in [8] for the case N = 1.
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Birkäuser Verlag, 1997.

[2] J Kijowski and G Rudolph. Charge superselection sectors for qcd on the lattice. Journal

of mathematical physics, 46(3):032303, 2005.

[3] PD Jarvis, J Kijowski, and G Rudolph. On the structure of the observable algebra of qcd

on the lattice. Journal of Physics A: Mathematical and General, 38(23):5359, 2005.

[4] Brian Charles Hall. The Segal-Bargmann ”coherent state” transform for compact Lie

groups. Journal of functional analysis, 122(1):103–151, 1994.

[5] Johannes Huebschmann. Kähler quantization and reduction. Journal fur die reine und

angewandte Mathematik (Crelles Journal), 2006(591):75–109, 2006.
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