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Abstract

We use simple methods from harmonic maps to investigate singulari-
ties of period mappings at infinity. More precisely, we derive a harmonic
map version of Schmid’s nilpotent orbit theorem.
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1 Constructions, Results, and Consequences

Let A*(C A) be the punctured disk {z € C|0 < |z| < 1} with the Poincaré

metric
dz Ndz

|2[*(log |2])*”

G/K a symmetric space of noncompact type, here, G is a semisimple Lie
group and K the corresponding maximal compact subgroup. Suppose that
p: m(A*) — G is a unipotent representation, i.e. its images are unipotent
elements in G, and u : H — G/K a p-equivariant harmonic map with finite
energy. Here, H is the upper half plane which is considered as the universal
covering space of A* under the map w = eV=12. The purpose of this note is,
by using techniques from harmonic maps, to consider the singularities of u at
the infinity of H (or equivalently, near the puncture of A*).

Vasi

A prototype of the above problem is the degeneration of the period map-
ping [12, 3]. Let G/H be a period domain (more generally a homogeneous
complex manifold, where H is the centralizer of a circle subgroup of G; special
examples are bounded symmetric domains, [4]); it can be considered as a fi-
bre space over a symmetric space G/K of noncompact type with the compact
fiber K/H,p: G/H — G /K, where K is the maximal compact subgroup of G
containing H. We remark that the G/K is not in general a complex manifold,
unless it is a bounded symmetric domain. Then, locally, a period mapping
is a p-equivariant map ® from the universal covering space H of A* into the
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homogeneous complex manifold G/H for a certain unipotent representation
p:mi(A*) — G, where @ is

1) holomorphic and

2) horizontal with respect to p: G/H — G/K.

In general, the period mapping is singular at the puncture. This singular-
ity was analyzed in depth in the fundamental paper of Wilfried Schmid [12].
The period mapping defined above arises naturally from a Variation of Hodge
Structure defined over the rational number field Q up to a finite lifting.

An observation of Lu (cf. [10], Theorem 1.1) shows that p, restricted
to a horizontal slice of G/H, is pluriharmonic. So, this, together with the
horizontality of ®, implies that the composition p o ® is harmonic. On the
other hand, ® is of finite energy on A* (or a fundamental domain), and so
the composition p o ® is also of finite energy. This can be seen by using two
different arguments. One is to observe the asymptotic behavior (cf. e.g. [14])
of the Gauss-Manin connection (or the differential of ®): %N (here N is
a nilpotent element in the corresponding Lie algebra, see also the discussion
below), which has finite L2 norm under the Poincaré metric, and so ® has finite
energy; obviously, this argument is based on Schmid’s theory [12]. The other?,
due to Lu and Sun, is that by computing the curvature of the Hodge metric one
can get the finiteness of volume of holomorphic subvarieties under the Hodge
metric, in particular ® has finite energy (for details, cf. [11], Theorem 5.2 and
its proof). This argument depends on the Schwarz lemma and is independent
of Schmid’s theory.

Return to the above equivariant harmonic maps situation. Without loss
of generality, we can restrict ourself to the case of G = SL(n,C) or one of its
semisimple subgroups. Let v be a generator of m1(A*). By the assumption,
log p(7y) is nilpotent, denoted by N. Then, by the Jacobson-Morozov’s theorem
(cf. e.g.[12]), we can obtain a semisimple element Y so that {IV,Y} can be
extended to an sly-triple {N, N~,Y}. Moreover, such an sly-triple is unique
up to conjugation in G [9].

Now, we can construct a canonical p-equivariant mapping from the univer-
sal covering H of (A*) into the symmetric space SL(n,C)/SU(n) as follows.
Let P, be the set of positive definite Hermitian symmetric matrices of order
n with determinant 1. SL(n,C) acts transitively on P,, by

goH =:gHg', H € P,,g € SL(n,C).

Obviously, the action has the isotropy subgroup SU(n) at the identity I,,.
Thus, P,, can be identified with the symmetric space of noncompact type
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SL(n,C)/SU(n). In particular, under the invariant metric on P, the geodesic-
s through the identity I,, are of the form exp(tA), t € R, where A is a Her-
mitian symmetric matrix. Write z = reV=1; (—logr,6) can be considered as
the coordinate of H. Now, we can set

1 1
ho(z) = expl(5-ON) o exp( log | og )Y, 1)
which is a p-equivariant map from H into the symmetric space SL(n,C)/SU (n).

Geometrically, such a construction gives an equivariant geodesic embed-
ding of the upper half plane into the symmetric space SL(n,C)/SU(n); based
on this, we can consider this map as a canonical one. So, as a map from H
into SL(n,C)/SU(n), ho is harmonic. In the sequel, for sake of convenience,
we also consider a p-equivariant map from H as a p-equivariant map from the
punctured disk. An easy computation also shows that it is of finite energy (on
a fundamental domain w.r.t. the representation p).

In this note, we want to prove the following

Theorem. Suppose h : A* — SL(n,C)/SU(n) is a p-equivariant harmonic
map with finite energy. Then, h has the same asymptotic behavior as hy near
the puncture of A*; more precisely, under the invariant metric of Pn, the
distance function between h and hqg is uniformly bounded on A*.

Remark. The theorem can be considered as the version for harmonic maps
of Schmid’s nilpotent orbit theorem.

The reprensentation p induces an n-dimensional flat complex vector bundle
over A* by considering p as a representation on C", denoted by L,. Then, the
map ho (and h) can be considered as a metric on L,—harmonic metric (cf.
e.g.[13]), which is a natural generalization of the Hodge metric on a variation
of Hodge strucutre. We shall now analyze the asymptotic behavior of hy (and
h) as a metric on L,. The main issue is the r-direction, since the #-direction
is compact (equivariant).

Without loss of generality, we may assume here that the representation
is irreducible. This means that the Jordan normal form of N has only one
Jordan block. Let {N, N~,Y} be the corresponding slo-triple. The semisimple
element Y can actually be described as follows. Canonically, C™ has a filtration

0CW_(nety CW_(y_3y C++- C W3 C Wy =C", (2)

with the properties that N(W;) C W;_o, Y preserves each W;, and all the
quotients W;/W;_o are 1-dimensional. Then the (induced) action of Y on



W;/Wi_o is multiplication by i. Actually, one can also choose a basis

{e—(n—1)7 6—(n—3)) ctt,6n—3, en—l}

of C", which is compatible with the above filtration (i.e., Ne; = e;j_2 and
{ej}i<i generate W;) and satisfy Ye; = ie;. exp((3 log|logr|)Y), under the
above basis, can then be written as

—(n—1)

|logr| ™ 2 0 0
0 | log r| = 0 0
: : : : : (3)
n—3
0 0 <o logr| Tz 0
0 0 0 ]logr|n771

On the other hand, by using the invariant metric of P,,, a simple compu-
tation also shows that the energy of hg is finite, namely,

E(hg) = /A* |h61dh0|2 x1 < C/O |log r|~%r~tdr < cc.

From the above argument, we can now see the asymptotic behavior of the
norms near the puncture of flat sections of L, under the metric by (and hence
h). For p € A*, the fiber (L,), canonically has a weight filtration {W;}F_, (k
is the weight of N) arising from N and satisfying N (W;) C W;_o; this filtration
is moreover invariant w.r.t. the flat connection D of L, and hence determines
a filtration of L, by some local subsystems, denoted by W, —k <1 < k. We
remark that {W;}*__, can be decomposed into the direct sum of some sub-
filtrations, each of which corresponds to a unique Jordan block of N and is of
the form as in (2), if the number of the Jordan blocks of N is > 1. By the
construction of hg and (3), a flat section v of Wy, if not lying in W;_1, has
the following norm estimate? under ho (and hence h)

lol* ~ [1og ', (4)

on any ray from the puncture of A*. This is just Schmid’s norm estimate for
Hodge metrics [12].

The basic idea of this note was already utilized in our joint paper [7], where
we discussed the cohomologies of harmonic bundles over noncompact curves;
so, this note can also be considered as an appendix of [7].

2Here, we use the notation ~ to mean ”is within a bounded multiple of”.



2 Proof of Theorem

The proof of the theorem utilizes some simple and well-known facts about
harmonic maps, see e.g. [5] as a reference. From the point of view of geometric
analysis, the key point is that the target space G/K as a symmetric space of
noncompact type has non-positive sectional curvature. Let A¥(C A*) be the
punctured disk with the radius % By minimizing the energy among all p-
equivariant maps with prescribed values on the boundary of A*\ A¥ given by
the values of A on that boundary, we obtain a p-equivariant harmonic map h;
on A*\ A¥ with

hiloa = holaa,
hilaa, = hlaa,,

E(hi, A"\ A} < E(h,A*\ AN +C < E(h,A")+C < +c0, (5)

where C' is some nonnegative constant independent of i. (That C need not be
0 stems from the fact that on 0A, we impose the boundary values of hy and
not those of h.) On the other hand, by a standard computation, the function

(distp,, (hi, b))
is subharmonic on A* \ A¥. So, by the maximum principle, we have

distyp, (hi, h)[anar < r%ixdistgun(h, ho). (6)

Thus, (5) and (6) together with standard estimates imply that h; (possibly
after selecting a subsequence) converges uniformly on (any compact subset of)

A* to some harmonic limit & that satisfies

hloa = holaa, (7)
E(h,A*) < 4oo0. (8)

Altogether, we get a p-equivariant harmonic map h : A* — SL(n,C)/SU(n)
with

1) E(h, A¥) < oo, (9)
2) distp, (h, h) < max distyp, (h, hp),on A* (10)
3) hloa = holaa. (11)

By 2), h and h have the same asymptotic behavior near the puncture.
We now want to show that actually A = hg on A*, and hence the theorem is
obtained.

Consider the square of the distance function between h and hg

(disty, (A, ho))?,



which is defined on A* and subharmonic because of the nonpositive sectional
curvature of G/K. Furthermore, (disty, (h, hg))? is of finite energy. Actually,
the energy finiteness of & and hg, by Cheng’s gradient estimate for harmonic
maps, implies that they have bounded energy density under the Poincaré

metric
dz Ndz

VB log o]

Consequently, distgan(ﬁ, ho) < Clog|logr|, for some constant C'. This, togeth-
er with the energy finiteness of h and hg, implies that (disty, (h, ho))? is of
finite energy. The theorem now follows from the following elementary lemma;
for completeness, we reduce it to a standard result.

Lemma 1. Let A* be the punctured disk with the Poincaré metric. Then
any finite energy non-negative subharmonic function w that vanishes on the
exterior boundary vanishes identically in A*.

Proof. Because of the conformal invariance of the Dirichlet integral in the 2-
dimensional case, neither the finiteness of the energy nor the subharmonicity
depend on the metrics on the punctured disk (as long as it is conformally
equivalent to the hyperbolic one). So, instead of the complete hyperbolic
metric, we may as well use the incomplete Euclidean one on A*. Consider the
following sequence of harmonic functions

U harmonic function on A*\ A,
uiloa = wloa =0, (12)
Uilon; = wloa,-

The maximum principle implies uw; > w on A*\ A¥ and
Bl AT\ A7) < Bluw; A"\ AY) < B(w).

The standard elliptic estimates then implies that u; converges uniformly on
(any compact subset of) A* to a harmonic function w, which satisfies u > w,
ulpa = 0, and E(u) < E(w). Then, u = 0, and hence w = 0, follows from
the standard removibility of isolated singularities of finite energy harmonic
functions, see e.g. Corollary 11.2.2. in [6], and the maximum principle. O
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