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Shift generated Haar spaces on compact
domains in the complex plane

Walter Hengartner & Gerhard Opfer

Abstract. Haar spaces are certain finite dimensional subspaces of C(K ), where K is a
compact set and C(K ) is the Banach space of continuous functions defined on K having values in
C. We characterize thoses Haar spaces which are generated by shifts applied to a single, analytic
function for ' C C. That means, that an arbitrary finite number of shifts generates Haar spaces
by forming linear hulls. We have to distinguish two cases: (a) K # F, ) K = K°. 1t turns
out, that in case (a), an analytic Haar space generator for dimensions one and two is already a
universal Haar space generator for all dimensions. The geometrically simplest case, that in case (b),
K is convex with smooth boundary turns out to be the most difficult case. There is one numerical
example in which the entire function f =1 / I is interpolated in a shift generated Haar space of

dimension four.
Keywords. Complex Haar spaces, complex approximation, shift generated Haar spaces
2000 MSC. 30C15, 30E10, 41A50, 41A52

1 Introduction

Let K be a compact subset of the complex plane C and denote by H(K) the linear space
of all analytic functions on K, i.e., on a neighborhood of K. The famous Runge theorem
[1885] states that each function f € H(K) can be uniformly approximated by rational
functions. It is even possible to do it by rational functions whose poles are only of order
one. The proof is very elementary. Indeed, just take the Riemann sums of the Cauchy
integral which represents f on K. Later, Runge’s theorem was generalized by MERGELYAN
[1952] to functions in the space A(K) := H(K°)NC(K), where K° denotes the interior of
K and C(K) the set of all continuous functions on K endowed with the topology of uniform
convergence. In other words, C(K) is a normed linear space with ||f|| := max,cx | f(2)].
Restrictions with respect to the components of C\ K are necessary. However, if C\ K has
only a finite number of components, the approximation of f € A(K) by rational functions
with simple poles is possible. The proof of MErGELYAN’S theorem is no more constructive.
Therefore, any applied method is of importance which contains results on the existence
and the uniqueness of the ‘best’ approximation of a continuous function. We begin with
the definition of a so-called Haar space. Let h; € C(K),j =1,2,..., N be given functions.
By V:=(h1, hs, ..., hy) we denote the linear hull of the functions h; € C(K') with respect
to C which are enclosed by the brackets ( ). We say, that V' is generated or spanned by
the functions h; € C(K), j = 1,2,...,N. The dimension of V is N if and only if these
functions are linearly independent.

The restriction of Haar spaces to one dimensional cases (either R or C) was investigated by
MAIRHUBER [1956], Curris [1958], SCHOENBERG & YANG [1961], HENDERSEN & UMmMEL [1973].
Examples of Haar spaces can be found in KARLIN & Stuppen [1966], Dunuam [1974]. The
problem of finding real Haar spaces generated by shifts was posed by CHENEY & LiGHT
[2000, p. 76].

Definition 1.1 Haar [1918]. Let K be a compact subset of C and V := (hy, hg, ..., hy)
be an N-dimensional linear subspace of C(K') generated by hy, ho, ..., hy. We call V a
Haar space for K if each function h € V\{0} vanishes at at most N — 1 points of K.



The above stated Haar-condition is equivalent to one of the following two properties, cf.
MEINARDUS [1967, p. 16/17].

1. For any selection of N pairwise distinct points ¢t; € K and any set of /N numbers
n; € C, the interpolation problem

h(tj):ﬂj, j=1,2,...,N,
has a unique solution h € V.

2. Let V := (hy, ho, ..., hy) have dimension N. Then, the (N x N) matrix
M = (h](tk)), j,k:]_,Q,...,N,
is non-singular for any choice of pairwise distinct points t; € K, j =1,2,..., N.

We now define the best approximation of a given f € C(K).

Definition 1.2 Let V be an N-dimensional linear subspace of C(K). A function heVv
is called a best approzimation of a given function f € C(K) if py(f) = ||f —hl| < ||f—hl|
holds for all A € V', where py(f) := infpey || f — h|| is called the minimal distance of f
and V.

The existence of a best approximation of f € C(K) by elements of a finitely dimensional
subspace V' is easy to show. See e.g. MEINARDUS [1967, p. 1]. Haar [1918] and KOLMOGOROFF
[1948] found the following necessary and sufficient conditions for the uniqueness.

Theorem 1.3 Let V be an N-dimensional linear subspace of C(K). Then, for each
f € C(K), there exists a unique best approximation of f in 'V if and only if V is a Haar
space.

Our next definition deals with Haar space generators.

Definition 1.4 1. Let N € N be a fixed natural number. A function G defined on
C\{0} with values in C will be called an N-dimensional Haar space generator for
K, if for each set of N pairwise distinct points sq, S2,...,sy € C\K and for all
z € K, the functions h; defined by h;(z) == G(z —s;), j = 1,2,..., N, span an
N-dimensional Haar space for K.

2. The function G is called a universal Haar space generator for K if G is an N-di-
mensional Haar space generator for K for all N € N.

Example 1.5 Let
eAz+B
G(z) := ot A,BeC. (1)

Then, G € H(C\{0}) and G is a universal Haar space generator for all compact subsets K
of C which contain infinitely many points. Indeed, the function h(z) :== | MG (2 — s
with arbitrary Ay € C can have only N — 1 zeros in C for all N € N.
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Let us collect some elementary properties of Haar space generators.

Lemma 1.6 1. A function G is an N-dimensional Haar space generator for any com-
pact set K C C with at least N points if and only if G is an N-dimensional Haar
space generator for K, where (G; is defined by

Gi(z) :=e*"BG(2), A,BeC.

In particular, G(2) := 2" te4**8 n € N, is an n-dimensional Haar space generator
for any nonempty, compact K C C, but it is never a (j 4+ 1)-dimensional Haar
space generator for K if j > n. However, it is always a one-dimensional Haar space

generator.

2. Let K C C be compact, and define K; := aK + b where a € C\{0},b € C. Then,
G is an N-dimensional Haar space generator for K if and only if G, defined by
G1(z) := G(z/a) is an N-dimensional Haar space generator for K.

3. There is no inclusion property for Haar space generating mappings with respect to
the dimension N: If G is an N-dimensional Haar space generator for K, then it is
not necessarily an (N — 1)- or an (N + 1)-dimensional Haar space generator for K.

4. There is no inclusion property for Haar space generating mappings with respect to
the inclusions of compact sets: If G is an N-dimensional Haar space generator for

K, then it is not necessarily an N-dimensional Haar space generator for K or for K
where K ¢ K C K.

5. The property of being an N-dimensional Haar space generator is not continuous with
respect to the monotone convergence of compact sets: If K, is a sequence of compact
sets, K11 C K, converging to a compact set K, and if G is an N-dimensional Haar
space generator for all K, then G is not necessarily an N-dimensional Haar space
generator for K.

Proof:

1. Indeed, the linear combinations Y p_, uxG(z — ;) and
STMGi(z — ) = e Y e TEG(z — 1) = e D Gz — ty)
k=1 k=1 k=1

vanish simultaneously. It is obvious, that 2” ! is an n-dimensional Haar space
generator.

2. Let z € K and t € C\K. Then, ( :=az+b € K;,7:= at + b € C\K; and we have
Gi1(¢ —71) =Gi(az — at) = G(z — t).

3. Consider the compact set K := {z = z + iy : 2° + 4y*> < 1} and G(z) := 2%. Then,
we have

(a) G is a 1-dimensional Haar space generator for K since G does not vanish on

C\{0}.



(b) G is not a 2-dimensional Haar space generator for K. Indeed, G is a 2-
dimensional Haar space generator for K if and only if G; = 1/2? is a 2-
dimensional Haar space generator for K. Apply Corollary 4.11, p. 13.

(c) G is a 3-dimensional Haar space generator by statement 1 of this lemma.

(d) G is not a 4-dimensional Haar space generator by statement 1 of this lemma.

4. We will see in Corollary 4.11 that G(z) = 1/2? is not a 2-dimensional Haar space
generator for closed ellipses provided that the lengths of the two axes are different.
On the other hand we have shown in HeENGARTNER & OPFER, [2002] that G is a
2-dimensional Haar space generator for the closed unit disk. The inclusions

2
{z:x2+4y2§1}C{Z:$2+y2§1}c{z:x2+yzSl},

imply this part of the lemma, where z := = + iy was used.

5. The last statement of the lemma is established by considering the function G(z) :=
1/2% and the sequence K, := {z : z° + nLHyQ_S 1}, n € N which converges mono-
tonically decreasing to the closed unit disk D := {z : 2] < 1} where G is not a
2-dimensional Haar space generator for K, for all n but a 2-dimensional Haar space

generator for D. O

In the paper cited above by HenGARTNER & OpFer [2002], it was shown that a function
G € H(C\{0}) is an analytic, universal Haar space generator for K = D if and only if
it is of the form (1). Our aim is to show here that this result holds for almost arbitrary
compact sets in C containing infinitely many points. Actually, we conjecture, that this
result holds true for all compact sets K with infinitely many points. In Section 2 we
collect some preliminary results concerning Haar space generators for general compact
sets K C C. In Section 3, we study the case where K\ K° is nonempty. We first prove the
above result in Theorem 3.3. As an interesting consequence, we conclude in Theorem 3.4
that a function G € H(C\{0}) which is a 1- and 2-dimensional Haar space generator for
K, is either a universal Haar space generator for K and hence an N-dimensional Haar
space generator for K for all N € N or G(z) = 2e**B for A, B € C which is not an
N-dimensional Haar space generator whenever N > 3. Such a result does not hold for
K = D. Indeed, G(z) = 2% is an N-dimensional Haar space generator for D if N = 1,2
and 3, but not if N = 4.

In Section 4, we consider the case K = K°. Since K° is necessarily nonempty, K contains
automatically infinitely many points.

Again, we can show the conclusions of Theorem 3.3 and Theorem 3.4 provided that K°
is not a convex domain. The proofs given in these two sections are different. They even
differ from our earlier proofs concerning the closed unit disk. It is interesting to note that
the “nicest” compact sets are the most difficult ones. The remaining problem is to show
that G(z) = 1/2? is not a universal Haar space generator for all convex compact sets. We
can show this for the following cases:

1. K is an ellipse or a disk,

2. 0K has a corner i.e., 0K contains a point ¢ where the opening angle at ¢ seen from
the inside is smaller than 7, where 0K denotes the boundary of K.



2 Results for general compact subsets of the complex
plane

Let K C C be a given, nonempty, compact set. In this section we study properties of
functions G € H(C\{0}) which are 1- and 2-dimensional Haar space generators for K.
Clearly, G is a 1-dimensional Haar space generator for K if and only if all G4 have no
zeros in K, where

Gs(2) =G(z—s), z€e K, s € C\K. (2)

In this article we shall use the following notation.

Definition 2.1 Let f(z1,xo,...,%,) be any function of n > 1 variables. If we consider
f to be a function of the first m < n variables 1, x9, ..., T, keeping the other variables
Tmt1, -, Ty fixed, then we shall write f(z1, %o, ..., T |Tmg1s oy Tn)-

Lemma 2.2 Let K be an arbitrary, nonempty, compact subset of C. Then, G is a 1-di-
mensional Haar space generator for K if and only if G does not vanish on C\{0}.

Proof: (a) Suppose that G(z*) = 0 for some z* # 0. Without loss of generality, we may
assume, by Lemma 1.6(2.), that 0 € K. Define \g := sup{\ > 0: —A\z* € K}, zp := —A\oz*
and to := —(1 + Ag)z*. Then, we have 2y € K, t; € C\K and G(zy — ty) = G(z*) = 0.
Thus, G is not a 1-dimensional Haar space generator.

(b) Let G(z*) # 0 for all 2* # 0. Then, G(z —t) # 0 for all z € K and all t € C\K.
Thus, G is a 1-dimensional Haar space generator. Il

Lemma 2.3 Let G be 1- and 2-dimensional Haar space generators for K. Define Gy, G,
for s # 1t according to (2). Then

G(z —1)
t) == = eK t e C\K 4 3
)= Gh = GETD, 2K, steC\K, o7 ®)
is injective on K, which means that p(z1;s,t) = u(ze; s,t) implies 21 = z,.

Proof: By the fact that G is a 2-dimensional Haar space generator, all non trivial func-

tions in the space
V= (G, Gy), s #t, s,t € C\K

have at most one zero in K. That means, that v € V\{0},i.e. v := aGs+5G, |a|+|3| > 0
has at most one zero in K. Since G is also a 1-dimensional Haar space generator, G; has
no zero in K. Suppose that there is a A # 0 such that

w(z|s, t) == gzgz; = g((j : ?) =A#£0

has several solutions in K for some s and ¢ in C\ K then v(z) = Gt(z) — AGs(z) has several
zeros in K which leads us to a contradiction. O



Lemma 2.4 Let K be an arbitrary, compact subset of C containing the two distinct points
z1 and zo. Let t € C\K and let G € H(C\{0}) be a 1- and 2-dimensional analytic Haar
space generator for K. Let us define

G(Zl - t)

F(t, 21, 2) = m,

Zl,ZQEK, tEC\K (4)

Then, (a) F(t|z1, 22) is univalent in C\K, and (b)

F(t, z1,20) = (t — 21)™H (¢, 21, 22), (5)
for some m € {—1,0,1} and where H(t[21,20) is a nonvanishing analytic function on
C\({z1} U {z}).

Proof: Let s and ¢ be in C\ K, s # t. Define the function x as in (3) and

M(zl;t: 8) — F(t: 21,2’2)
p(z23t,s)  F(s, 21, 22)

v(t, s, z1,29) := (6)
and fix 21,29 € K and s,t € C\K as required.

(a) Suppose F(t|z1,22) = F(s|z1,22),t # s,s € C\K. This is equivalent to v(t, s|z1, 22) =
1orto

= = K K
G—s) Gla—s v waclafn steC\K st

for some A € C\{0}. By Lemma 2.3 this is impossible.

(b) By Lemma 2.2, G(z) # 0 for z # 0 and since G is a 2-dimensional analytic Haar
space generator for K, v(t|s,z1,22) € H(C\({z1} U {22}) and is different from 1 outside
K,t # s. Hence, infinity is not an essential singularity for v(t|s, z1, 2z0). The same holds
for the function F(t|z1, 22), i.e., F'(t|21, 22)/t™ is a nonvanishing and analytic function in a
neighborhood of infinity for some integer m. Next, the property v(t|s, 21, 22) # 1 on C\K
for all s € C\K, s # t, is equivalent to the fact that F'(t|zy, z2) is univalent on C\ K which
implies that m € {—1,0,1}. The analyticity of F(¢|21, 22) on C\ ({21} U{22}) implies that
F(t|z1, 22) has to be of the form stated in relation (5) with m € {0,1, —1} and the lemma
is established. 0

In the next lemma we show that in Lemma 2.4, part (b) we must have m = 0.

Lemma 2.5 Under the conditions of Lemma 2.4 we conclude that F(t|21,z) is analytic
and nonvanishing on C\({z1} U {2}).

Proof: We want to show that m = 0 in relation (5). Choose 0 < r < |2; — 29| and put

1
= o dlog F(t
™ 27 ‘/|t—21|:r 08 ( |21,Z2)’
: /. dlogF(t]zs,2)
M2 =0 0 21, 22)-
? 2T [t—z2|=r g 15 <2

Since F'(t|z1,20) = (t — 21)™H (t|z1, 20) € H(C\({z1} U {22}) and does not vanish there,
we conclude, by the argument principle, that for sufficiently large R:
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1
= — dlog F'(t
m 5 /ItI—R og F(t|z1, 22)

1 1
= o dlog F(t}z1,2) + — [ dlogF(t]z, 2

27T/|tz1:r g F'(t|z1, 22) o1 Ntz g F(t|z1, 22)
= my + mo.

Next, let S := {t : |t — 21| = r}. Then, for fixed z1, 2z, the range F(S, 21, 23) is a closed
analytic curve. We conclude that m, is a finite and constant integer on the interval
0 < 7 < |21 — 22|. The same holds true for my. Finally, the special form F(t|z;,22) =

gg;:g gives m; = —my and hence, m = 0 which implies that F'(¢|21, 29) is analytic at
infinity. U

We have seen that v(t|s, 21, 29) defined in relation (6) satisfies v(t|s, 21, 22) # 1 on C\ K, t #
s, which is equivalent to saying that F'(t|z1, 22) is univalent on C\K. Our next result
shall specify the form of F' for the special case where there is a punctured neighborhood
V(zg) :={t: 0 < |t — 29| <72} of 29 on which v(t[s, 21, 22) # 1, t # s, holds. For example,
this is the case when {2} is an isolated point of K.

3 The case where K\K° is nonempty

The next two lemmata sharpen Lemma 2.4.

Lemma 3.1 Let K be an infinite compact subset of C containing the two distinct points
z1 and zo. Let t € C\K and let G € H(C\{0}) be a 1- and 2-dimensional analytic Haar
space generator for K. Then, F(t|z1, z2) defined in (4) is univalent in C\[K°U{z }U{2}].

Proof: If K = K°, then, Lemma 3.1 is a part of Lemma 2.4. Suppose now that K\K° is
nonempty. Fix z; and zo € K, 21 # zo. We denote by D,.(¢c) :={z€ C: |z—c| <r},r >0,
the open disk of center ¢ and radius r. Let sy and ¢, be two distinct points in C\[K°U{z; }U
{22}], and suppose that F(ty|z1,20) = F(so|z1,22) = A¢. Define D, (sq) and D, (ty) such
that the three sets D, (so) N[K°U{21 }U{22}], D, (to) N[K°U{21 }U{22}] and D, (s0) "D, (o)
are empty. Define Dy := [D,(so) UD,(to)] N K. Since F(t|z1, 22) is an open mapping, there
is a nonempty open disk A := D(Xg) in F(D,(s¢)|z1, 22) N F(D,(ty)|21, z2). Furthermore,
A\F(D1]|z1, z2) is nonempty since F(D;|z1, z2) does not contain any nonempty open set.
Choose A € A\F(D|#,22). Then, there is an s € D, (so)\D; and a t € D,(t)\D; with
F(s|z1,22) = F(t|z1,22) = A. In other words, s and t are two different points in C\K
which by Lemma 2.4, contradicts the hypothesis that G is a 2-dimensional Haar space
generator for F. O

Lemma 3.2 Let K be an arbitrary compact subset of C containing infinitely many points
and suppose that K # K\K°. Let G € H(C\{0}) be a 1- and 2-dimensional Haar space
generator for K. Choose z; € K\K° and zy € K, zo # z1. Then we have

F(t]z1, 20) = (21, 2) (2 =) (7)

for some m € {—1,1} and where ¢(z1,22) # 0 does not depend on t.
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Proof: Since z; € K\K° and 2, # 2, F(t|21, 2) is univalent in a punctured neighborhood
of z; and hence we have for some m € {—1,0,1}

F(t|z1,29) = (21 — t)"c(t|21, 22);  c1(t = 21|21, 292) # 0, (8)

where by Lemma 2.5, ¢1(t|21, 22) € H(C\{z22}. On the other hand, F(t|z1, 20) = 1/F(t|22, 21)
which implies that

Zl—t

F(t|z1,22)=c(t|zl,zg)( )m; ot = 2|21, 29) # 0, (9)

for some m € {0,1,—1} and where c(t|21,22) € H(C). Hence, by Liouville’s theorem,
c(t|z1, z9) is independent of ¢. Finally, if m = 0, then, F'(¢|21, 22) is independent of ¢ and
hence F(t|z1, z2) is not univalent in C\K which contradicts the hypothesis that G is a
2-dimensional Haar space generator. O

Zz—t

Theorem 3.3 Let K be a compact subset of C containing infinitely many points such
that K\K° is nonempty. Then, G € H(C\{0}) is a universal Haar space generator for
K if and only if G is of the form (1); in other words,

eAz—|—B

G(z) := o A, BeC.

Proof: Fix z; € K\K°. Then, relation (7) holds for all zy € K, 29 # 2; and all t € C\K.
Since K is a compact set containing infinitely many points we conclude by the identity
principle that

G(ZQ - t) 21 — t
G(z — t) (z2 —t
admits as a function of z; an analytic continuation onto C which is independent of ¢.
Hence, using (10), differentiation of log c(22, 21) with respect to ¢ yields

e e e e R P i

for all ¢ where A is independent of z,. Fix ¢ € C\K and substitute { = zo — ¢t. The
integration of (11) with respect to ¢ implies either

G() = e+

c(2z2]21) := ) ,m=1lorm=-1 (10)

or ACH
G(C) == a A,BeC.
The first case is excluded by Lemma 1.6(1.) with n = 4 and the theorem is established.

0

The authors have shown (HencarrNer & Oprer [2002]) the following result: Suppose that
G € H(C\{0}) is a 1- to 4-dimensional Haar space generator for the closed unit disk D.
Then, G is a universal Haar space generator for D. As an immediate corollary of our
theory here, we obtain the following result:

Theorem 3.4 Let K be a compact subset of C containing infinitely many points such
that K\K° is nonempty. If a function G € H(C\{0}) is a 1- and 2-dimensional Haar
space generator for K, then, either G is a universal Haar space generator for K or
G(z) = ze"**B for A,B € C.



4 The case where K = K°

Our first lemma shows a geometric property.

Lemma 4.1 Let K = K° be a nonempty, compact subset of C. Then, there are points
pr € OK, numbers B € R,e € (0,5) and px >0, k =1,2,...,n with n > 3 such that

1. the open sectors Zy := {z : |arg[(z — px)e ]| < m/2 —e} {2 : 0 < |z — pi| < pi}
satisfy
Z,CK°, 1<k<n,

2. and the sets Ey := U,ez, % satisfy

J Ex D OD.

k=1

Proof: Let A(g,7) be an open disk of center ¢ and radius 7 and suppose that in
A(qo,27) C K° for some qo € K°. We now move A(q,7) in K° until it hits 0K in
a point p. We call such a point p a touching point on 0K. It can be represented by
p = q + 7e# where ¢ is the center of a disk which touches 0K in p. Therefore, e = ‘g%z
which is not always unique. Denote by T the set of all touching points on 0K. Since KL
is a compact set, 1" contains several points. Next, choose an ¢ € (0,7/2). Then, there is
a p > 0 depending on p and on € such that the open sector

Z(p,e) = {z: |argl(z —p)e™ ]| <m/2 — e} (2 : 0 < [z — p| < p(p,€)}

satisfies
Z(p,e) CK°, peT. (12)

Next, we claim that we may choose € so small that the sets

Z—p
E(p,g) = U |Z— |: pET
2€Z(p,e) p

satisfy
U E(p,e) D oD. (13)
peT
Indeed, if not, there is a point
nedd\ U U E@pe)
0<e<w/2 | peT

from which it follows that K is not bounded in the direction of —7. Therefore, there is
an € € (0,7/2) such that the relations (12) and (13) hold. It remains to show that these
relations hold for a finite subset of T. Let T'=p,,j € J and E; = E(pj,¢),j € J. Then,
each Ej is an open interval on 0> and therefore, the set E; = E(p;,¢€),j € J is a covering
of the compact unit circle by open sets. By Heine-Borel Theorem, 0D is covered by a
finite number of the E;. This proves Lemma 4.1. Il



It should be noted that the above lemma is in general not true if K is not compact. E.g.
if K is a parallel strip, then K is closed but not compact, K = K°, but the lemma is not
valid.

Let K = K° be a nonempty, compact subset of C and let G € H(C\{0}) be a 1- and
2-dimensional Haar space generator for K. Note that K contains a nonempty open set
and therefore, the condition that K contains infinitely many points is satisfied. Let z;
and 2, # 2 be fixed in K. Since the Lemmata 2.2, 2.4, 2.5 hold also for the case K = K°,
we conclude that F(t|z, z9) := ggz;:g, 21,20 € K, t € C\K is analytic in the variable ¢
on C\({z1} U {22}). We derive our result by proving the following lemmata:

Lemma 4.2 Let K = K° be a nonempty, compact subset of C and let G € H(C\{0}) be
a 1- and 2-dimensional Haar space generator for K. Then, G has the form

G(z) = 2™e*® where ¢ € H(C) and m € Z. (14)
Furthermore, we have the representation

F(t,z,2z1) = % =c(z,21) [

Z_t]m. (15)

Zl—t

Proof: Fix s far from K, say, for example, s = 10+ 10 max,cx |z| and let ¢ be an arbitrary
point in K. Choose n € N,e € (0,7/2),081...,0n € R,p1,...,pp in OK and py, ..., py
positive such that the conclusions of Lemma 4.1 hold. Consider again p(zt, s) := g((j:?)
Suppose that the origin is an essential, isolated singularity for G. Then u(zt, s) has an
essential singularity at z = ¢ and is an analytic, nonvanishing function on C\[{t} U {s}].
We want to show that there is a k,1 < k < n, such that the sector Z; (defined in the
previous lemma) contains infinitely many roots of the function u(z|pg, s — ax) — 1 where
ai :=t — px. Note that s — ag is in C\ K. Put p = min{p, : 1 < k < n}. Then we may
choose N € N, N > n + 1, such that each sector

Sj=:{z:|arg(z —t) — 2j7/N| < 3n/N}n{z: |z —t| < p}

lies in one of the sectors Z; + a;. This follows from a classical theorem due to Cantor
which can be stated as follows: Let {Og,}qacs be a covering of a compact set C' by open
sets. Then, there is a 6 > 0 such that two points wy, wy in C' belong to the same open
set O, whenever |w; — wy| < 4. Apply this result to the orthogonal projection of the
S; —t and the Z; — py onto OD. Since, by hypothesis, the origin is an essential, isolated
singularity for G, we conclude that there is an S;; which contains infinitely many roots
of p(z|t,s) — 1 which implies that there is a sector Zj, containing infinitely many roots
{G:}32, of u(z|pk, s — ax) — 1. Next, we move the new t; = pg, a very little to the outside
of K, say to 7 =t; +b. Then, several points 7; = (; + b are stillin K and 0 = s —ag, + b
stays in C\K. In other words, we have u(n;|7,0) = 1 for several n; € K. This contradicts
the univalence of u(z|t,s) on K provided that ¢ and s are not in K. Therefore, G cannot
have an essential singularity and hence, it is of the form (14) and G has either a pole or
a zero of order m,m € N, at the origin. By Lemma 2.4, F'(t|z, z;) is analytic at infinity.
Fix z and z; in K and vary t. Define

2 —t]m G(z—1)

c(t|z, z1) := [ Gt

z—1
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Then, c(t|z,z) is an analytic function without zeros on C. Therefore, by Liouville’s
Theorem, c(t|z,z;) is independent of ¢. Finally (15) holds for all z € K\{z,}. Applying
the identity principle, we conclude that (15) holds everywhere C. O

In the next lemma, we show that ¢ of (14) is a linear function.

Lemma 4.3 Suppose that K = K° is a nonempty, compact subset of C and let G €
H(C\{0}) be a 1- and 2-dimensional Haar space generator for K. Then, G is of the form

eAz—I—B
G(z) = T M€ N. (16)
Proof: Differentiation of
G(z—1 21—t
log ¢(z,21) =log [ﬁ] +m log [h] (17)
=¢(z — 1) — ¢(z1 — 1) (18)
with respect to the variable ¢ implies
(2 —1t) — ¢'(z1 —t) = 0 for all 1. (19)
If we substitute ( = z — ¢ for fixed t € C\K, (19) becomes
#'(¢) = A for all ¢, (20)
thus, A is independent of (. Therefore, we obtain ¢(¢) = A( + B and G is of the form
G(z) = zme**B m € Z. Finally, Lemma 1.6(1.) yields the relation (16). O

Next, we show that (16) does not define a 2-dimensional Haar space generator when
im| > 3.

Lemma 4.4 Let K = K° be a compact, nonempty subset of C. Then G defined by
Az . .
G(z) = eg#, m € Z does not define a 2-dimensional Haar space generator whenever

im| > 3.

Proof: First, observe that for negative m, Lemma 4.4 is a stronger statement than
Lemma 1.6(1.). Moreover, by the same Lemma 1.6(1.), it is enough to prove Lemma 4.4
for the function G(z) := sz We want to show that

G(z—1t) Z—8\m
t,s) = = , s,teC\K, t, 21
elts) = g = (225" steC\K.s# (21)
is not univalent in K. In other words, we want to find ¢ and s in C\K and A € C\{0}
such that the equation

zZ—S

w = E(z|s,t) := =XeXm/m 0 <k <m, (22)

z—1

has a solution z in K for at least two different k£ . Let A : {2z : |z—2*| < r} be a closed disk
in K with the largest possible radius 7 (in a rectangle there are many such disks). Then,
A touches 0K in at least two different points, say p and ¢q. There is a t € C\K and an

11



s € C\K, s # t, such that |t — p| < ¢ and |s — ¢| < &, where & := 0.01 min(|p — s|, |¢ — t|).
The image E(Alt,s) is a disk passing through the points P := £=3; [P| > 100 and
Q= %; |Q| < 0.01. Furthermore, F(A|t, s) does not contain the points w = 0,w =1
and w = oo. Denote by w* the center of the disk E(A|t,s) and choose A = —w*/|w*|.
Since |m| > 3, we conclude that F(Alt, s) contains at least 2 points w; and wy of the set
{)\ e¥m/m (0 < k < m}. Finally, the two solutions we are looking for are z; = E~(w|t, s)

and zo = E~ ! (wylt, 5). O

It remains to eliminate the case m = 2. Referring to Lemma 1.6(1.), it suffices to show
that G(z) := 1/z% is not a universal Haar space generator. If K = K° is not a convex
set, we prove, that G is neither a 2- nor a 3- dimensional Haar space generator. We start
with the following lemma.

Lemma 4.5 Let K be a nonempty, compact subset of C and let K; := aK + b,a €
C\{0},b € C, Then, G(z) := 1/z* is an N-dimensional Haar space generator for K, if
and only if it is an N-dimensional Haar space generator for K.

Proof: Suppose G(z) := 1/2? is an N-dimensional Haar space generator for K. Then
1
Gi(z) == (9)2 =a?= =e?"G(2)

is an N-dimensional Haar space generator for K;. Finally, Lemma 1.6(2.) shows that
G(z) := 1/2? is an N-dimensional Haar space generator for K;. The reverse follows in
the same way. O

In what follows, we are first interested in finding compact sets K for which G(z) = 1/2*
is not a 2-dimensional Haar space generator. Suppose that there exist s € C\K and
t € C\K,s # t, such that Gl—t) — ) or, equivalently, 2= = ++/X has two roots z; and

G(z—3s)
7z in K. Then, we obtain from Z:‘z = —2:‘; the equation
—2st + z1(s+ t)
= 23
“ 22, — (5 + 1) (23)
or, equivalently,
. 22129 — s(21 + 22). (24)

(21 + 22) — 25

Summarizing, we obtain the following lemma.

Lemma 4.6 Let K be a compact subset of C containing the two different points z, and
2y and let t and s be outside K. If relation (23) or relation (24) holds, G(z) := 1/2% is
not a 2-dimensional Haar space generator for K.

As a first application, we obtain:

eAz+B

Lemma 4.7 Let K = K° C C. If K° is not a conver domain, then, G(z) := does

22
not define a 2-dimensional Haar space generator for K.

12



Proof: Since K is not a convex set, there are constants a # 0 and b such that K; = aK+b
contains the point z; = 0 and 2o = 1 and that the open interval (0,1) on the real axis
is outside K. Hence, there is a disk D(%, r),r > 0, which lies outside K. The relation
(24) gives t = 55 which converges to 1/2 as s tends to infinity. Therefore, there is an s
outside K close to infinity, such that ¢ € D(%, r) and hence not in K. By Lemma 4.6, we
conclude that G(z) := 1/2% is not a 2-dimensional Haar space generator for K. O

So far we have shown the following two results:

Theorem 4.8 Let K = K be a compact subset of C which is not the closure of a
nonempty, conver set. Then, G € H(C\{0}) is a universal Haar space generator for K
if and only if G is of the form (1); in other words,

eAz+B

G(z) := — A, BeC.

The result corresponding to Theorem 3.4 is the following.

Theorem 4.9 Let K be as in Theorem 4.8. If a function G € H(C\{0}) is a 1- and
2-dimensional Haar space generator for K, then, either G is a universal Haar space
generator for K or G(z) = ze***B for A B € C which is not an N-dimensional Haar
space generator for K whenever N > 3.

We now concentrate our attention on the case where K is the closure of a bounded convex
domain. So far we have shown that a holomorphic universal Haar space generator G has
to be either of the form (1) or of the form G(z) := e’t#, A, B € C. We shall exclude
the second form for ellipses and compact, convex sets whose boundary contains a corner.
First, we consider again the case N = 2. An immediate consequence of Lemma 4.6 is the

following lemma.

Lemma 4.10 Let K be a compact subset of C containing the two different points z, and
zy. If both points 2522 + 18222 gre not in K, then G(z) := 1/2* is not a 2-dimensional
Haar space generator for K.

Corollary 4.11 The function G(z) := 1/2? is not a 2-dimensional Haar space generator
for ellipses with different lengths of the azes.

Corollary 4.11 does not apply for disks. Indeed, we have the following lemma.

Lemma 4.12 The function G(z) := 1/2? is a 2-dimensional Haar space generator for all
disks with positive radii.

Proof: Indeed, suppose that G(z) := 1/2? is not a 2-dimensional Haar space generator
for the closed unit disk ID. Then, there must be a ¢ agd an s,s # t,outside Danda A € C
such that there are at least two points z; and zo in D with

Z2—8
= =V 25
W= —— VA (25)
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Since w = 0 and w = oo are not in the closure of the image w(ID) we conclude that w(DD)
is a disk which cannot contain v/A and —v/\. Therefore, G is a 2-dimensional Haar space

generator for D. Applying Lemma 4.5 yields the desired result. U

We now consider the case N = 3 i.e., the 3-dimensional }-Iaar space generators. We
z2+B .

have shown in HENGARTNER & OPFER, [2002] that G(z) := %, A,B € Cis not a 3-

dimensional Haar space generator for D and hence not for any closed disk with positive
radius.

In the next application we show that G(z) := 1/z% is not a 3-dimensional Haar space
generator for any nonconvex compact set.

Lemma 4.13 Let K C C be a nonempty, compact set which satisfies K = K°. If K°

. . Az+B . .
is not a conver domain, then G(z) := ¢ does not define a 3-dimensional Haar space

22
generator for K.

Proof: The assumption on the compact set K implies that it contains infinitely many
points. Suppose that K = K0 is not a convex set. Then, there are constants a # 0 and
b such that K; = aK + b contains the point z; = 0 and that the ray {z : Rz > 0,3z =
0} N (C\K}) contains a nonempty bounded component I := (2, 23), 22, 23 € K;. Observe,
that the three different points z1, 29, 23 belong to K;. By Lemma 4.5 it is sufficient to
show that the function G(z) := 1/2? is not a 3-dimensional Haar space generator for K;.
Define for 1 € C the function

L(t, z1, 22, 23, p) := (2 : DQ _ M(Z : DQ’ t¢ K.

We want to prove that the function

L(tlz1 = 0, 20, 23, . = 23/22) = t2{<z31_t)2 B z_z(zgl—t)Q}

is at least three-valent in C\K;. In other words, we shall find three different points
tl,tg,tg in C\Kl and M= 23/22 such that L(tl\zl = O,ZQ,Zg,M = 23/22) = L(tQ‘Zl =
0, 29,23, 4 = 23/20) = L(t3|z1 = 0, 29,23, 4 = 23/22). Since p = z3/zy, it follows that
L(t|zy = 0,29, 23, ) is at least two-valent in any neighborhood of infinity. Moreover,
L(t =00,21 =0, 29, 23, 4 = 23/23) = 1 — 23/29. Next, we solve the equation

L(t[z1 = 0,20, 23, 4 = 23/20) = 1 — 23/ 22, (26)

which yields (by the help of maple) the two solutions ¢ := (z2 +23t /2% — 2023 + 22 ) /3.
Consider the solution with the positive root,

t+ = (22+Z3+\/Z§—2223+Z§)/3.

Then, we obtain for 0 = z; < 2o < 23:

ty > (220 +1/23)/3 =2 and t; < (223 + \/%)/3 = 23
which shows that ¢, € C\K;. Define D(t;) = {z : |z—t;| < p}and D(o0) = {2 : |2| > R},
such that D(c0) N D(ty) = @ and (D(co) UD(¢y)) N Ky = @. Then, there is a point
p # 1—23/25 in the interior of L(D(t)|z = 0, 22, 23, u = 23/22)NL(D(00) |21 = 0, 22, 23, 4 =
z3/25) such that there are at least two different points ¢; and ¢, in D(00) and at least one
point t3 € D(¢,) which are mapped onto p. This proves this lemma. O
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Theorem 4.14 Let K be any compact conver subset of C such that 0K contains a point
q at which the opening angle o as seen from the inside of K° satisfies 0 < a < w. Then,
G € H(C\{0}) is a universal Haar space generator for K if and only if G is of the

form (1); in other words,
eAz—|—B
G(z) := — A, BeC.

Proof: If o = 0, then K is either a point or an interval and the conclusion follows from
Theorem 3.3. Hence, assume that 0 < o < 7. In order to show that G(z) = 1/2z% is not
a 3-dimensional Haar space generator, we want to find an appropriate choice of u,v € C
and ¢, s,u € C\K mutually different such that the polynomial

P(2) = (z —u)?(z — s)* + u(z —u)*(z — t)* + v(z — 5)*(2 — t)* (27)
has at least three zeros in K. First, put

St —w) L ud(s —t)
r= t3(u—s)’ B3(u—s)

This choice of p and v assures us that z = 0 is a double root of P(z). Next, define for
r>0,t=1s=—-1+1iy/r and u = —1 —iy/r. Then, we obtain

P(z) = =2'"(r+4) = 22°(r+4)(r — 1) + 2>(3r> + 15r + 12)

whose roots are

zZ1 = 22:0,
vVt 4+ 9r3 + 2872 4 48r + 64
zz = 1—r— ;
r—+4
V1t 4+ 973 + 2872 4 48r + 64
Z4 = 1—’f'+ .
r+4

Observe, that z3 lies for all » > 0 on the negative real axis. Suppose now that 0K has
at ¢ an opening angle o € (0, ) seen from the inside of K°. Choose /7 > tan(«/2) and
place K in such a way that

1. ¢=0,
2. K lies in the cone 7 — /2 < arg z < 7+ «/2.

Next, apply a dilatation K; := aK,a > 0, such that z3 € K7 and then, a very small
horizontal translation Ky := K; + b,b > 0, such that

1. z=0and z = 23 are in K3,
2. t,s and u are not in Ks.

Finally, apply a small perturbation of m or n such that the double root z = 0 splits into
two different roots lying in K, and the perturbed third root (corresponding to z3) is still
in K,. This shows that G(z) = 1/2? is not a 3-dimensional Haar space generator for Ko
and hence, by Lemma 4.5, not for K. O

All our results can be summarized in the following theorem.
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Theorem 4.15 Let K = K° be a nonempty, compact subset of C and let G € H(C\{0}).
Then, the function G is a universal Haar space generator for K if and only if it is of one
of the forms

() G =S o ) Gl =, ABecC, (28)

z 22

where the latter case can possibly happen only if K is conver, K = K°, K 1is not an ellipse
(including the disk) and the boundary 0K has no corner.

Actually, we conjecture that case (b) will never happen.

Conjectuli4.16 Let K C C be a compact and convex set with the additional property
that K = K°. Then, G € H(C\{0}) is a universal Haar space generator for K if and
only if it is of the form (a) of the previous theorem.

5 A numerical example

Let us treat the problem of interpolating given data (z;, f;) € C*,j = 1,2,...,n in the
space

Vo = (v1,v2,...,0,), where v;(z) := exp(a(z — s;)) . _1 5
with given constant a € C and given shifts s; € C, 7 =1,2,...,n. That means, we want
to find the unique element v € V,, which satisfies
v(z;))=f;, 1 =1,2,...,n. (29)
A typical element v € V,, has the form
v(z) = ex;)(ia)z) p(z), where ¢(z) := ln—ll(z —s;), p € I,_1. (30)
j=

Thus, we need to determine p of (30). Because of (29), this is equivalent to

p(zj) = fiq(z;) exp(—az;) =1m;, j=1,2,...,n. (31)
Now, this is a simple polynomial interpolation problem p(z;) = n;, j = 1,2,...,n. Having
found p, the desired solution is v according to (30).
Let us now choose z; := exp(%ij), j=0,1,...,n—1and f; = f(z;) where f := % is

the inverse of the complex gamma function. The chosen function f is an entire function,
thus, analytic in all of C. We have now some freedom to choose the constant a and the
shifts sy, $2,...,s,, as well as n. Not so long ago, TRereTHEN [2002] posed the question
(among ten) of finding the error of the best cubic polynomial approximation ps to the
given f on the unit disk D, which is equivalent to finding the best approximation on the
unit circle [z| = 1. It turned out, that the desired error, i. e. e := max,|=1 | f(2) — p3(2)|
is e = 0.214... (actually, 10 digits were required), meaning that the best cubic polynomial
approximation ps is not a good approximation to f. We will see here, also with the case
n = 4, that even the interpolating function v gives a much smaller error on the unit circle.
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We selected the shifts according to s; = —3.67, s9 = —3.57, s3 = 3.57, s4 = 3.67 and chose
a = —1.009 (some computer trials were involved) and solved the above interpolation
problem for n = 4. Let v be the solution, then max,—; |(f — v)(2)| = 0.033721. The
mapping |(f —v)(z)| on |z| = 1 can be viewed in Figure 5.1, left side. Interestingly, the
maximal error max|,— |(f — v)(z)| depends sharply on the constant a, to be viewed in
Figure 5.1, right side.

0.5

I I I I
-1 1 -11 -1.05 -1 -0.95 -0.9 -0.85
Absolute value of error of interpolant The dependence of the error on the constant a

Figure 5.1 Absolute error |f —v| of interpolant v (left) and dependence of the maximal
absolute error on the constant a occurring in (30) (right)
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