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Abstract

Error indicators for static problems can be applied to eigenvalue problems too. If these
error indicators are weighted, it is possible to approximate a predetermined part of the
spectrum very well. This concept leads to an adaptive algorithm which is tested at
two examples with non smooth eigenfunctions, where the non smoothness is caused by
re-entrant corners of the domain.
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1 Introduction

The approximation quality of the finite element solution for boundary eigenvalue prob-
lems depends on the triangulation of the domain. If the solution of the problem is
uniformly smooth on the whole domain, an uniform triangulation will be normally a
good choice for a useful approximation. If the smoothness of the solution differs from
one part of the domain to an other, coarse and fine triangulation has to change on these
parts to get a satisfying result. In this case adaptive algorithms which fit the triangula-
tion locally dependend on an elementwise error estimator can be used with advantage.
For boundary eigenvalue problems, however, adaptive algorithms are not standard in
usual program packages.

Following an idea from Babuska and Rheinboldt [2], it turns out that error estimators
for static problems are applicable to eigenvalue problems too. In this paper an ele-
mentwise error indicator is developed which by adjusting parameters results in a very
high approximation quality for a by the user predetermined part of the spectrum. The
efficiency of the resulting adaptive algorithm (cf [7]) is demonstrated at two examples.
These examples belong to a class of problems described in the following in which the
smoothness of some eigenfunctions is disturbed by re-entrant corners.

We consider the boundary eigenvalue problem in its variational form:

Find v € H(Q2) with v # 0 and A € IR such that

a(u,v) = Ab(u,v) Vve H(Q), (1)
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with the following symmetric bilinear forms on H () x H(f)
a(u,v) = / (Vu)" &V + quu d(z,y) ,
Q
buw) = [ puvdzy)
Q

and the Sobolev space H(Q2) = Hj(2) for the Dirichlet problem respectively
H(Q) = H'(Q) for the Neumann problem.

For the bounded domain Q C IR? the boundary is denoted by I' := 9. We suppose
that I' is a polygonal or Lipschitz boundary for instance. Let the matrix k = (kj;); j=12
be symmetric and positive definite on Q with k;; € CH(Q) N C(Q). For the functions

q,p € C(Q) the properties p(z,y) > 0 and ¢(z,y) > 0 are required additionally.

For the coefficient-functions k, g and p the requirements of continuity and differentia-
bility are often too strong. They can be replaced by weaker ones based on integrability.
In any case for the bilinear forms a and b the following is demanded

la(u,v)| < Cilfulliallvlhe,
Ib(u,v)| < Collulloallv]lon Vu.ve H(Q) and (2)
aw,w) > Cyllulltg Vue H(®),

with positive constants C7,Cy and Cs. Thus by a(u,v) and b(u,v) inner products are
defined with corresponding norms

lulla :== Va(u,u) and [Jully = /b(u,u).

Under these assumptions (1) possesses (cf Babuska und Osborn [1]) the following in-
creasing sequence of eigenvalues

D<A <A< );...
with corresponding || - ||, orthonormalized eigenfunctions
Uy, U2, U3, ... ,

which are dense in Lo(£2).

2 Error estimation

As finite element space V}, we choose the space of all continuous functions that are linear
on each triangle which in the case of the Dirichlet problem is defined as follows

Vi, ={veC(Q)]|vlr =0andv|,; linear V1 € T} .



Thereby the set T'= {1y, 72, -+ , Ty} of triangles 7; partitions the domain
Q:T1U7'2"'U7'm

with boundary I'. We notice that V}, C H(2). In the case of the Neumann problem the
boundary condition v|p = 0 vanishes.

By A, and uy € Vj, we denote the finite element approximations of the eigenvalue A and
the corresponding eigenfunction wu, thus

a(up,v) = Mb(up,v) Yv eV, C H(Q)

is valid. Now we interpret u, as finite element solution of a static problem with right
hand side

f(w) == Apb(up, v)

whose exact solution w solves the following equation

a(w,v) = f(v) Yve H(Q). (3)
Theorem
For the bilinear forms a(-,-) and b(+,-) we assume that (2) is valid. Then it holds
An— A
2 < -l )
Proof

From equation (3) we get for all v € H(Q2)
a(up,v) = alup,v) — a(w,v) + A\pb(up, v) . (5)
Subtracting (1) from (5), we have for all v € H(2)

a(up, —u,v) = alup, —w,v) + Apb(up, v) — Ab(u, v)
= a(up —w,v) + (A — N)b(up, v) + Ab(up, — u,v) . (6)
If we choose v = u in (6), we obtain by remembering u;, —u € H({2) and (1)
a(up, —w,u) + (A, — A)b(up,u) = 0.
Using the inequality of Cauchy-Schwarz, we get the following estimation
= M [bGns)] = JaCun —w,)] < [fen = wllalullo

and with that by reason of ||u||, = v/a(u,u) = A\2\/b(u, u)

Ap— A b(u, u)
< - —wl|, 7
Y ‘ — >\1/2|b(uh,u)|||uh U}|| ( )
Since the eigenfunction u has been supposed to be || - ||, orthonormalized and because

of the convergence of the finite element solution u, — u, the quotient on the right hand
side of (7) is bounded by a positive constant C' which proves (4). O
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3 Error indicator

Important for the practicability of an adaptive algorithm is the time spent on the com-
putation of the local error estimator. In this chapter we are going to develope a suitable
error indicator for one fixed eigenvalue with corresponding eigenfunction.

As it is necessary for inequality (4), the error will be determined elementwise in the
energy norm

= wll2 = ale,e) = Y arlee),

T€T

where a, is the restriction of the bilinearform «a to triangle 7 € T
From (3) we obtain the error equation
ale,v) = a(up,v) — Apb(up,v) Yove H(Q). (8)

In this article we only treat the case of bilinearforms a with diagonal shaped coefficient
matrix k (cf (1) ), i e, ky := ki1, ko := koo and k12 = 0 = kg, and refer to an idea of
Bank and Weiser [4] for the calculation of error estimators for statical problems which
is also discussed by Goering, Roos and Tobiska in [5].

For further treatment the right hand side of (8) is rewritten with respect to the trian-
gulation

a(up,v) = / k1 upovy + ko up vy + quipv d(z,y)
Q

= Z kl Up, Vg + k? Up,yVy + qupv d(l’, y)

TeT T
= =Y [ ((krtng)e + (kaung)y — qua) v d(z. y) 9)
TeT v T
+ Z/ (k1un,ang + koupyny) v ds .
T€T or

The second inequality of (9) is only valid if the triangulation represents the boundary
exactly as it is the case for e.g. polygonal boundaries. Otherwise we get an additional
error here and in the following arguementation. In the case of constant coefficients and
linear shape functions at triangle 7 the terms (kyup, ;). and (kaup,y), in (9) are equal to
zZero.

Now we will rewrite the boundary integrals of (9). With Ey we denote the set of all
edges and with F; C Fj the set of all inner edges. For each edge ¢ € FE; we define a
normal direction n¢. In the case of an edge which lies on the boundary, this will be the
usual outward normal. Otherwise the choice is arbitrary.

Let € be an inner edge of two adjacent triangles (see Figure 3.1) and let 7 denote the

triangle for which n¢ is the outward normal. The other triangle is named rout,



3.1 Neumann boundary condition )

out

Figure 3.1 triangles 71 and 70U with edge ¢

We define the jumps of the partial derivatives of u; across e

(wne)* = up’ —ul,
() = ufly — .

Note the products (up,q) n5 and (up,y, ) n;, are independent of the direction n® = (ng, n;).
With this notation the boundary integrals on the right hand side of (9) can be formulated
in the following way

a(up,v) = — Z/ ((k1ung)z + (kouny)y — qup) vd(z, y) (10)

T€T

/(kluhznm—l—kguhyny Yvds — Z/kl Up,z) NG + ko (Uny)ny) vds.

ecFq

3.1 Neumann boundary condition

In this subsection we choose H()) := H'(f2) and specialize the preceding results. To
guarantee the properties (2), we consider the bilinear form a in its shifted form with
c>0:

a(up,v) = / k1 upovy + ko up vy + qupv + cpupv d(x,y). (11)
Q

From (8) in connection with (10) we obtain for all v € H(£2)

a(e,v) = (¢ — An)b(up,v Z/ (k1una)z + (kauny)y — qua) vd(z,y) (12)
TeTvmT
/(kluhxnx+k2uhyny vds — Z/kl (Une) g + ka(un,y)ny) vds.
r e€Eq

We notice that the shift ¢ in the error equation (12) vanishes by subtraction, i e, the
factor ¢ — A\, coincides with the negative eigenvalue approximation of the unshifted
problem since A, is the eigenvalue approximation of the shifted problem.
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If we restrict equation (12) to each triangle, we obtain the error equation for each
element. Instead of solving this equation in H'(7), we solve it only approximately in
the vector space PY(7) of quadratic polynomials which vanish on the three nodes of 7.

To be more precisely, we seek the error approximation € which satisfies the following
equation for all v € PY(7)

a;(&v) = /((q + (c = An)p)un — ((kruna)s + (kouny)y)) vd(z,y) (13)
1
-+ / (kyup ng + kguh,yn;) vds — 3 / (k1 (upz)ng + k;g(uh,y)en;) vds
ornr or\ornr
= f-(v).

The jump of the partial derivatives across an inner edge is divided by two and each half
is appointed to the corresponding triangles. Thus we hope to approximate the actual
error e of each element 7 very well. Since the error is not calculated exactly, this method
leads us only to an error indicator but not to an error estimator.

3.2 Dirichlet boundary condition

For the Dirichlet problem we chosse H(Q2) := H}(1).

With the same notation as before, we get (12) with two differences, first no shift is
performed, i e, ¢ = 0, and second the boundary integral across I vanishes. This is due
to the fact that v satisfies the Dirichlet condition.

This leads us to the error equation

a(e7 U) - _/\hb(ulu U) - Z ((kluh,:r)r + (k2uh,y)y - quh) v d(.ﬂ?, y)
TeT VT
=3 [ (1 (un) 0 + ka(uny)n) v ds. (14)
e€E, V€

Restricting equation (14) to each triangle 7 yields the error equation for each element
again which is solved for all v € P(7)

a-(€,v) = /((q — A p)un — ((k1una)z + (kauny)y)) v d(z,y) (15)
—% / (ke utn o)1, + p(atn ) v ds
or\ornr
= f:(v).

An extension to a boundary condition of mixed Dirichlet and Neumann typ can be
performed accordingly.



3.3 Computation of the error indicator 7

3.3 Computation of the error indicator

For triangle 7 the nodes are denoted by P;, j = 1,2,3. Since the basis functions v; €
PJ(7) satisty the conditions v;(P;) = 0, the linear space PY(7) is only of dimension
three,ie, i =1,2,3.

We suppose that the error approximation € possesses the following representation on 7

3
e = E OéjUj .
Jj=1

Then € can be calculated by error equation (13) respectively (15) as the solution of the
following positive definite 3 x 3 system of linear equations

ZaT(vj,vi)aj = fr(v;), 1=1,2,3.

Jj=1

If we choose v; as the usual quadratic basis functions with value one at a midpoint of
an edge and zero at all other nodes, the coefficients a,(v;,v;) are those of one block of
the usual element stiffness matrix.

After computing the error approximation €, the error indicator 7, for triangle 7 is
calculated by

3
2= 068 = Y ai(v).
=1

4 Adaptive concept

With that we have worked out a base for an adaptive algorithm. If for all triangles 7
the error indicators are computed, we are able to determine by the size of each indicator
in which part of the triangulation the approximation is bad. That triangles with the
largest indicators will be refined in the next mesh.

With the construction up to now we are able to improve one single eigenvalue approxi-
mation with corresponding eigenfunction adaptively. If we want to approximate a given
number of eigenvalues, numbered by 7 = 1,--- ,n, in a predetermined part of the spec-
trum especially well, we have to use the information of all eigenvalue approximations
from the actual mesh. For this reason we try to improve the by @; weighted sum of
relative errors with respect to the eigenvalue approximation:

n 2

>

=1

Anj = Aj
>\.

J

with  ©; > 0. (16)
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If we add j as index to the developed formulas, we get from (16) in connection with (4)

n 2

P @ = i Ciwj llun; — willz = i Cio; (Z a-r(ejﬂej)>
J=1 ! J=1 j=1 rer
a weighted error indicator
P > wt (19
j=1

So the user is able to improve the error term (16) adaptively by a special choice of
the weights from (18). By that choice we can give the wanted eigenvalues priority
In particular the weight w; is chosen larger than zero only if there exists a prior
interest in the improvement of eigenvalue A;. If there are no special knowledges about
the eigenvalue approximation properties, we recommend to fix the weights in question
uniformly equal to one. The adaptive improvement of one single eigenvalue is realized
in this concept by choosing all weights equal to zero except the corresponding weight.

We propose the following algorithm 4.1 to mark out triangles for refinement by the
weighted error indicator (18).

1. choose v = 0.95 and 0 and compute M.y := Maxmn,
let i = 0 (refinement counter for triangles)
3. loop about all triangles 7
a) if triangle 7 is unmarked yet and 7, > ¥ Tax,
then mark out triangle 7 and let 7 :=17+ 1
b) if i > § or i > number of triangles go to 5.
end of loop
4. let v:=~—0.05 and go to 3.
5. generate a new mesh

Figure 4.1

This algorithm marks out all triangles for refinement by the control parameter v step by
step, starting with that which possess the largest error indicator 7,. By the maximum
number of triangles ¢ to be refined per step, it is possible to control the growth of the
mesh size.



5 Adaptive algorithm

The developed adaptive concept in Figure 4.1 describes step 3 of the adaptive algoritm
(see Figure 5.1).

0. compile start information, e.g.
mesh Tp, let 1 =0

A v

1. compute system matrices

Ai and Bz

{

2. solve eigenvalue problem

Y
stop ? I =| output
yes
no

3. calculate local error
indicators 7, for all 7 € T; and
mark out all triangles for refinement
by algorithm 4.1

b

‘ 4. generate new mesh 7}, ‘

Y

| i=i+1 |

Figure 5.1 adaptive algorithm

Triangles are refined in step 4 in accordance with the rules of the software package
PLTMG from Bank [3].

6 Examples

Both examples belong to the following class of eigenvalue problems

/quvx+uyvyd(x,y) = )\/qud(x,y) Vve H(Q). (19)
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6.1 Vibration of a membrane

6 EXAMPLES

For the vibration of a plane membrane we consider the section of a circle € (see Figure
6.1) with inner angle w = 57/3 and radius R = 1. The eigenfunctions u of the Dirichlet
problem satisfy equation (19) with H(Q) = H;(Q).

Figure 6.1 section of a circle

1

0.8

0.6

0.4F

0.2f

0

~0.2F

Ny

-0.6}

-08}

-1 I I I ! 1 I I I )
-1 -08 -06 -04 -02 0 02 04 06 08 1

Figure 6.2
starting triangulation T}

In [6] all eigenvalues with corresponding eigenfunctions are calculated exactly. It turns
out that some eigenfunctions possess a singularity at the re-entrant corner, in particular
we have uy,ug &€ CH(Q) N Co(Q) (see Figure 6.3 and 6.5). In this case we can use the

adaptive algorithm with advantage.

1777
747/

277
2747

2%
s
MR
i
iy

——==Z22
———
==
==
==

I
I

Figure 6.3 u; for A\; = 10.775105

0.8

0.6

04F

0.2

-1 I I I I I I )
-1 -08 -06 -04 -02 0 02 04 06 08 1

Figure 6.4

mesh Ty for uq,

(dimension = 1645) with 6 = 100,
WelghtS w1 = 1, Wi£1 = 0
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0.8

06

04F

02

1 1 }1 *O‘B *0.‘6 *0.‘4 -0.2 0 02 04 0.6 0.8 1
Figure 6.5 wug for \¢ = 41.368167 Figure 6.6
mesh Ty for ug,
(dimension = 1649) with § = 100,
weights wg = 1, w;z; = 0

The Figures 6.4 and 6.6 illustrate that the adaptive algorithm refines the mesh strongly
at a re-entrant corner, i e, the part of the domain with absence of smoothness. For
smooth eigenfunctions as u; the algorithm generates a mesh which is refined uniformly
(see Figure 6.8), where the increase is controled by the parameter 0.

0.8

0.6

04F

0.2

L 1 I I I I I I )
1 -1 -1 -08 -06 -04 -02 0 02 04 06 08 1

Figure 6.7 wu; for \; = 50.531635 Figure 6.8
mesh Ty for ur,
(dimension = 1818) with § = 100,
WelghtS Wy = 1, Wil = 0
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6.2 Longitudinal section of a car

The computation of acoustical eigenfrequencies with corresponding waves for the inte-
rior of a car (see Figure 6.9) with acoustical stiff walls leads us to a Neumann problem
(cf Schwarz [8]). This is described by (19) with H(Q) = H'(Q). Since we have the Neu-
mann condition on the complete boundary, the smallest eigenvalue with corresponding
eigenfunction is well known, i e, A\; = 0 and u; = const. The resulting theoretical and
numerical problems can be removed by the discussed spectral shift (see (11)). We do
not pay attention to this eigenpair in the following because it is well known and not
interesting for the adaptive algorithm.

Figure 6.9 region € for the Figure 6.10 starting triangulation Tj
longitudinal section of a car

o o
() o 15 20 25 30 o 5 o 15 20 25 30

Figure 6.11 Figure 6.12

mesh T% for uo, mesh T7 for us,
(dimension = 2203) with § = 150, (dimension = 2162) with § = 150,
weights wy = 1, w;z0 = 0 weights wz = 1, w;jz3 =0

AN ATHOOOKAKAS

() 5 10 5 20 25 30

Figure 6.13
mesh 77 (dimension = 2155) with § = 150,
weights wy = w3 = 1, wjz93 =0
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There are re-entrant corners in this example too which are responsible for lacking
smoothness of some eigenfunctions. Thus we can use the adaptive algorithm here with
advantage.

We have given preference to only one eigenvalue at the adapative algorithm in Figures
6.11 and 6.12. This leads to strong refinements at the re-entrant corners with distinct
accentuation. Figure 6.13 shows the comparable mesh, where both eigenvalues have the
same weights. With regard to the number of triangles we see a superposition of the
characterics from both preceding Figures.

Because the exact eigenvalues are unknown, we have calculated eigenvalue approxima-
tions A with the PDE Toolbox from MATLAB. These reference values are shown in Table
6.14. Thereby the starting mesh has been refined uniformly by 32768 linear triangles
with a resulting dimension of 16769 for the system of linear equations.

A = 0 X6 0.1367 | Ay 0.3454 | Ag 0.5583

Ay = 0.01263| Ay = 0.1423 | A\, = 0.3735| A7 = 0.615

A3 = 0.04449 | A = 0.1998 | A1z = 0.3848 | \ig = 0.6834

Ay = 0.05627 | Ag = 0.2703 | Ay = 0.3953 | Ay = 0.731

A5 0.1159 | Ao 0.2902 | A5 0.4656 | Ao 0.7658
Table 6.14 eigenvalue approximations for the longitudinal section of a car

The main idea of the developed adaptive algorithm is to use a given number of triangles
most efficiently. For this reason the size and the place of the used triangles should be
determined suitably so that the wanted eigenvalues are approximated very well. Both
of the following Tables 6.15 and 6.16 confirm this effect for the used algorithm.

wo=1| wy3=1| wy=1| ws=1| wg=1| wy=1| wg=1
ro | 3.26—6]25e—5]3.0e—5]22e—5]2.0e—5|1.5e—5|5.0e—5
r3|1.8e—5|4.5e—6|1.8e—5|4.5e—5|1.7e—5|1.1le—5| 7.6e — 5
ry|122e—5]11.3e—5|50e—6|3.0e—5|1.0e—5|22e—5|3.9e—5
rs | 1.8e—5|1.8e—5|1.7e—5|5b2e—6|1.6e—5|2.1e—5|1.6e —5
r¢ | 1.8e—5|21le—5|12e—5|34e—5|6.6e—6|1.8e—5|4.2¢e—5
ry | 4.4e—512.0e—5]39e—5(83e—5]|28—5|70e—6|1.2e—5
rg | 2.6e—5|3.0e—5|3.1le—5|1.7e—5|2.6e—5|2.8¢—5|6.5e —6

Table 6.15 relative error r; for A; at mesh Ty for 6 = 150

The strategy of choosing only one weight different from zero results in a very good
approximation of the corresponding eigenvalue as we can pick off Table 6.15. The other
eigenvalues are approximated evidently worser.
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strategy Pa| 04| M5 | Os

l.lwy =1 1.7410.73 | 1.36 | 0.59
2. lwz =1 1.69 | 0.50 | 1.22 | 0.32
3. lwg=1 1.80 1 0.59 | 1.40 | 0.50
4. lws =1 2.1911.26 | 1.86 | 1.33
5. lwg =1 1.74 1 0.65 | 1.32 | 0.46
6. | wr=1 1.690.34 | 1.24 | 0.27
7. lwg=1 2.1510.97]1.90| 1.01
8. lwy=w3z=1 1.5110.44 | 1.15 | 0.38
9. |wy3=wy =1 1.5110.42|1.15]0.38
10. |wy=ws =1 1.5110.58 | 1.22 | 0.53
1. |ws=wg =1 1.58 | 0.66 | 1.15 | 0.47
12. |wg=wr =1 1.38 1 0.20 | 1.14 | 0.19
13 |wr=wg=1 1.46 1 0.19 | 1.16 | 0.16
M. |wy=w3=ws,=1 145|042 |1.12]0.41
5. |wg=ws=ws; =1 1391042 | 1.13 | 0.40
16. |wy=ws =wg =1 |1.500.57 | 1.11 [ 0.42
17 |ws=wg=w; =1 |1.350.22 | 1.07 | 0.19
18 |wg=wr=wg=1 143 0.17| 1.08 | 0.13
19. |wg=+-+=ws=1]1.391043|1.08 | 0.41
20. |wg="--=wg=11]1.39]0.42]1.08|0.35
2. |wy=---=w;=11]1.35]0.27]1.05|0.21
22. |ws=---=wg=11]1.33]0.25]1.05|0.19
23. |wg=---=wg=11]1.3810.43]1.08|0.39
24, |wg=---=w;=11]1.35]0.26]1.04|0.21
25, |wyg=---=wg=11]1.35]0.30]1.07]0.20
26. |wo="---=w;=11]1.3410.27]1.02]0.24
27 |wg="---=wg=11]1.35]0.28 | 1.04 | 0.21
28. |wp=---=wg=11]1.35]0.32]1.02]0.23

Table 6.16
mean values p; of the error percentages for Ao, -+, Ag

with deviation o; for the meshes T;, ¢ = 4,5 and different weights

If the lower part of the spectrum, e.g. the eigenvalues Ao, --- , Ag, should be approxi-
mated very well, we have to adjust the matching weights of the local error indicator (18).
Table 6.16 presents different strategies. Different strategies yielded different dimensions
of the eigenvalue problems that had to be solved. At mesh T, the mean value of these
dimensions was equal to 489 with small deviation due to the parameter o = 50. At Ty
we got the mean value 632 for the dimension. The values p; and o; in Table 6.16 have
been calculated by linear interpolation of the 4. and 5. mesh with evaluation at the
mean values 489 and 632 of the dimension to get a better comparison. Therefore we
obtain from these values only a qualitative statement.

The strategies from row one to seven in Table 6.16, where only one weight is different
from zero, lead to a comparatively large mean value of error percentages, according to
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the result of Table 6.15. By taking more weights, p; can be decreased. Finally, u; has
nearly the smallest value if we use for all eigenvalues the same weight (see row 28). The
deviations show a similar tendency.

As strategy for a uniform approximation of a fixed by the user predetermined number
of eigenvalues from the lower part of the spectrum, we recommend the same weights in
the local error indicator (18) for the eigenvalues in question. This strategy should be
used if there is no further information about the behaviour of the approximation of the
eigenvalues. If it turns out during the calculation that the behaviour of approximation
differs from one to another eigenvalue, we are able to influence this behaviour by the
weights.

7 Conclusion

We describe in this article how static error indicators can be applied to eigenvalue
problems. FError indicators for each triangle and each eigenvalue are the result of this
investigation. They can be condensed for a given number of eigenvalues to over-all local
error indicators by using weights. The triangulations of the resulting adaptive algorithm
are adjusted step by step by a suitable choice of the weights so that we have a strong
refinement at the problem zones which are caused by e.g. re-entrant corners. This
algorithm fits size and place of the triangles that are at the users disposal so that the
predetermined part of the spectrum can be approximated better than other parts. Thus
it is also possible to overcome a principle of the finite element method by which the
eigenvalues are approximated worse with their increasing size if uniform triangulations
are used.
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