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Abstract

Microarray technology allows for the monitoring of thousands of gene expressions
in various biological conditions, but most of these genes are irrelevant for classifying
these conditions. Feature selection is consequently needed to help reduce the dimen-
sion of the variable space. We start from the application of the stochastic algorithm
”Optimal Feature Weighting” (OFW) for selecting features in various classification
problems. This method does not depend on the classification method. Gadat and
Younes (2007) who established the theoretical part of the model, applied SVM in
the framework of binary pattern recognition data sets. The application with CART
was performed in Lê Cao et al. (2007) who made a comparative study with other
binary wrapper methods in the context of microarray data and emphasized on the
biological interpretation.
In this study, we focus on the multiclass problem that wrapper methods rarely han-
dle. From a computational point of view, one of the main difficulties comes from the
commonly unbalanced classes situation when dealing with microarray data. From a
theoretical point of view, very few methods have been developped to minimize any
classification criterion, compared to the 2-class situation (e.g SVM, l0SVM, RFE...).
In this paper, we first develop the OFW approach to handle multiclass problems
using CART and one-vs-one SVM as classifiers. We then compare our results with
those obtained with other multiclass selection algorithm (Random Forests and the
filter method F-test), on four public microarray data sets. We assess the statistical
relevancy of the results by measuring and comparing their performances . The aim
of this study is to heuristically evaluate which method would be the best to select
genes distinguishing minority classes. Application and biological interpretation are
then given in the case of a real world microarray data set.
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Introduction

When dealing with microarray data, one of the most important issues to
improve the classification task is to perform feature selection. Thousands of
genes can be measured on a single array, most of which are irrelevant or unin-
formative for discriminative methods and dimensionality thus must be reduced
without losing information.
In this context, our objective was to look for predictors (the genes) that would
classify the observed cases (the microarrays) into their known classes. The se-
lection of these discriminative variables can be performed in two ways: either
explicitly (filter methods) or implicitly (wrapper methods). The filter methods
measure the usefulness of a feature by ordering it with statistical tests such
as t- or F-tests. These gene-by-gene approaches are robust against overfitting
and computationally fast. However, they disregard the interactions between
the features and may fail to find the ”useful” set of variables: they usually se-
lect variables with redundant information. On the other hand, the aim of the
wrapper methods is to measure the usefulness of a subset of features in the set
of variables. However, when dealing with a large number of variables as it will
be the case here, it is computationally impossible to do an exhaustive search
among all subsets of features and these methods are proned to overfit. One
solution to benefit from the wrapper approach is to perform a search using
stochastic approximations that still cover a large portion of the feature space
to avoid local minima. The ”Optimal Feature Weighting” algorithm (OFW)
proposed by Gadat and Younes (2007) allows the selection of an optimal dis-
criminative subset of variables. This meta algorithm can be applied indepen-
dently with any classifier. Classifiers such as Support Vector Machines (SVM,
Vapnik (2000)) and Classification And Regression Trees (CART, Breiman et
al. (1984)) were passed up to this stochastic meta-algorithm in Lê Cao et al.
(2007)) for 2-class microarray problems. The aim was to make a comparative
study of OFW+SVM/CART with other wrapper methods (Recursive Fea-
ture Elimination, Guyon et al. (2002), l0 norm SVM, Weston et al. (2003),
Random Forests, Breiman (2001)) and the filter method t-test on public mi-
croarray data sets. The relevancy of the results was assessed statistically by
measuring the performance of each gene selection, and with a biological ex-
pertise in the context of the biological experiment. The results showed that
the selections made with OFW were statistically competitive and biologically
relevant, even in the case of complex data sets.
From this point, we investigate this stochastic algorithm with multiclass mi-
croarray data sets. Multiclass problems are often considered as an extension of
2-class problems. However this extension is not always straightforward as the
data sets are often characterized by unbalanced classes with a small number
of observations in at least one of the classes. Furthermore, this ”rare” class is
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often the one of interest for the biologists who would like to diagnose a dis-
ease for example. Nevertheless, most algorithms do not perform well for such
problems as they aim to minimize the overall error rate instead of focusing on
the minority class. Moreover, the classification accuracy appears to degrade
very quickly as the number of classes increases. Several methods have been
proposed in the recent years. Chen et al. (2004) proposed balanced or weighted
random forests, McCarthy et al. (2005) compared sampling methods and cost
sensitive learning with however no clear winner in the results. In the context
of multiclass microarray data, Li et al. (2004) applied various classifiers with
various feature selection methods and conclude that the accuracy is highly
dependent on the choice of the classifier, rather than the choice of the selec-
tion method, although this would be more natural. Chen et al. (2003) applied
four filter methods with low correlation between selected genes, Yeung and
Bumgarner (2003) applied uncorrelated or error-weighted Shrunken Centroid.
In this study we compare two ways of handling multiclass data: with or with-
out an internal weighting procedure in OFW. We do not intend to optimize
the size of the gene subset. We rather focus on the assessment criteria to mea-
sure the performance of the different methods on the first selected genes.
Biological interpretation that is one of the main key to evaluate the relevancy
of the biological results will not be given in this paper when analysing the four
public data sets, but the reader can refer to Lê Cao et al. (2007) that gives
some clues on the biological interpretation importance.
We apply the multicategory classifier CART and the one-vs-one SVM ap-
proach with OFW on four public microarray data sets. Numerical compar-
isons are drawn with Random Forests, known to perform efficiently on such
data sets, and one filter method (F-tests), by computing the e.632+ bootstrap
error from Efron and Tibshirani (1997) for each feature selection method, by
computing the stability of the results (Jaccard Index) and by comparing the
different gene lists. Then, the weighted and no weighted approaches are com-
pared in OFW+CART and OFW+SVM with the same tools.
Finally, application and biological analysis are performed on a real world data
set.
The first section introduces the theoretical adaptation of the OFW model to
the multiclass framework. In next section we consider the computational as-
pects of the application of CART and SVM in OFW and describe the different
tools to assess the performance of the results. Application on the public data
sets and on a practical data set follow. The paper ends with further elements
of discussion.
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1 The model

We introduce our model of feature selection in the framework of multiclass
analysis. As we focus here on microarray data, we will mostly refer to ”genes”
instead of ”variables”.

1.1 Measure of the classification efficiency

Let G be a large set of genes numbered from 1 to N that describes a signal
I to belonging to one of the classes {C1, . . . , Ck, . . . , CK}, k = 1, .., K. A clas-
sification algorithm A will be chosen according to the problem type (2-class,
multiclass), as OFW does not depend on the classification procedure A.
Let us define a positive weight parameter P on each of the genes in G. After
a normalization step, P can be considered as a discrete probability on the N
genes. The goal is to learn a probability that fits the efficiency of each gene
for the classification of I in {C1, . . . , CK}, so that important weights are given
to genes with high discriminative power and lower weights to those that have
a poorest influence on the classification task. Denote p any small integer com-
pared to N , a gene subset of size p has to be extracted from G using P. We
then define how to measure the goodness of P for the set of genes G and the
classes {C1, . . . , CK} (i.e the objective function).

Definition 1 Given a probability P on G and ǫ(ω) the measure of classifica-
tion efficiency with any p-uple ω ∈ Gp, the energy of the system at point P is
the mean classification performance where ω is drawn with respect to P⊗p in
Gp

E(P) = EP[ǫ] =
∑

ω⊂Gp

P(w)ǫ(w) (1)

Remark 1 Remark here that genes selected with respect to P in (1) are drawn
with replacement although it looks more reasonable to use subsets of genes
without replacement. This mainly comes from the mathematical derivations to
optimize E that will be described below.

Note that the energy E depends on the way we measure the classification effi-
ciency on ω, that we denote ǫ(ω). Given any standard classification algorithm
A, ǫ(ω) will actually be the error rate of A computed on the training set using
the set of extracted features ω. The more P enables us to hold good genes g
for classification (important weight on g and ǫ(ω) small each time ω contains
this gene g), the less E . Minimizing E with respect to P will thus permit to
exhibit the most weighted and consequently the most highly discriminative
genes. Hence, a natural importance ranking will be read on the weight P⋆

minimizing E .
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1.2 Stochastic optimization method

The energy E can be minimized with a stochastic version of the standard
gradient descent technique. More details about the theoretical derivations can
be found in Gadat and Younes (2007).
The function E has to be minimized up to the constraints defined by a discrete
probability measure on G. Thus, the more natural way to optimize (1) is to
use a gradient descent of E projected to the set of constraints. The set of
constraints S is the simplex of probability map on G. We also denote by
ΠS the Affine projection of any point of RN on the simplex S. This natural
projection ΠS of any point x can be computed in a finite number of steps as
mentioned in Gadat and Younes (2007). Using this former projection ΠS , the
Euclidean gradient of E is

∀g ∈ G ∇E(P)(g) =
∑

ω∈Gp

C(ω, g)P(ω)

P(g)
ǫ(ω) (2)

where C(ω, g) is the number of occurrences of g in ω. The iterative procedure
to update P is then given by

Pt+dt = Pt −∇Ptdt (3)

The main clue is that the Euclidian gradient expression (2) can be seen as an
expectation as stated in the next proposition.

Proposition 1 For any P probability map on G and if ∇S denotes the gradient
of E with respect to constraints S, ∇SE is given by

∀g ∈ G ∇SE(P)(g) = ΠS

(

Eω

[

C(ω, g)

P(g)
ǫ(ω)

])

.

This last expression is numerically untractable since it requires the computa-
tion of ǫ over all possible p-uple of G. To deal with such gradient, a computable
Robbins-Monro algorithm can be used, which gets similar asymptotic behavior
as (3) (see for instance Gadat and Younes (2007), Kushner and Clark (1978)).
With this stochastic method, the updated formula of Pn becomes:

Pn+1 = ΠS

[

Pn − αn

C(ωn, .)ǫ(ωn)

Pn(.)

]

(4)

where ωn is any set of p genes sampled with respect to Pn. Note that the last
expression is always defined since when Pn(g) = 0 as we cannot draw this gene
in ωn and the integer C(ωn, g) vanishes. The next theorem precisely describes
the asymptotic behavior of (4).
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Theorem 1 Defining the discretisation time τk =
∑k

i=0 αi and its associated
dual reversion I(t) = sup{k | τk ≤ t}, then the interpolated process P k(t) =
PI(τk+t) is an asymptotic pseudo-trajectory of the ordinary differential equation
(3) provided that the sequence of steps (αi) satisfies the two conditions:

∑

i

αi = ∞ and ∃ ν > 0
∑

i

α1+ν
i < ∞.

This last result insures that the stochastic algorithm computing Pn is asymp-
totically equivalent to the real gradient descent (3). Several derivations of this
theoretical point can be found in Gadat and Younes (2007). In our experi-
ments, we have decided to use a step sequence αi = A/(B + i) for calibrated
constants A and B.

1.3 Detailed algorithm.

We detail the application of the algorithm in the case of a given classifier A:

Let G = (δ1 . . . δ|G|), µ ∈ N∗ and η the stopping criterion.
• For iteration n = 0 define P0 as the uniform distribution on G
• While |P(n+µ) − Pn|∞ > η:
· extract ωn from Gp with respect to Pn,p = P⊗p

n

· construct Aωn
and compute ǫ(ωn)

· compute the drift vector dn = C(ωn, ·)ǫ(ωn)/Pn(·)
· update Pn+1 = ΠS [Pn − αndn]
· n = n + 1

2 Application of OFW and performance evaluation

We discuss here the applications in the field of multiclass problems. The
application of OFW+CART and the comparisons of OFW+CART/SVM in
the binary case can be found in Lê Cao et al. (2007).

2.1 CART and SVM multiclass applied to OFW

CART

OFW is applied with the multiclass classifier CART (Classification And
Regression Trees Breiman et al. (1984)) that is well adequate for multiclass
problems. CART is constructed via a recursive partitioning routine. It builds
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a classification rule to predict the class label of the microarrays based on the
feature information following the Gini criterion. To avoid overfitting, trees are
then generally pruned using a cross validation procedure. In our special case,
the trees were not pruned and a node was declared terminal when all the
observations landing in this node belonged to the same class.
Note that CART is unstable by nature: a slight change in the features can lead
to a very different construction of the tree. Following the example of Breiman
(1996), the trees were aggregated (bagging) to overcome this instability. As in
Breiman, the trees were unpruned, but there is no overfitting, thanks to the
aggregation technique.
To compute the efficiency criterion ǫ at iteration n we launched B trees on
B bootstrap samples on different ωb

n drawn with respect to Pn, where b =
1, . . . , B. We then defined ǫ as the mean classification error rate on the out-
of-bag samples. The detailed bagging version of OFW+CART is described in
2.3.
Computations were first run on a cluster using the R 1 packages Rmpi and
rpart. An R package is currently being implemented (written in C for faster
computation).

SVM Multiclass

We applied OFW with the one-vs-one SVM approach that is implemented
in the e1071 R package. Other SVM multiclass approaches could have been
applied, such as the one-vs-all approach, the approach proposed by Duan and
Keerthi (2005), by Lee and Lee (2002) or by Joachims (1999). Unlike CART,
SVM is very stable and ǫ was hence computed on only one bootstrap sample
(B = 1).

2.2 Different computations of the gradient

In contrary to Gadat and Younes (2007), we made some slight modifica-
tions of the gradient descent to improve the speed of the algorithm with
OFW+CART. We propose an averaged time version of the initial OFW as
follows:

Dn =

n
∑

i=1

αid̄i

n
∑

i=1

αi

with d̄i =
B
∑

b=1

C(ωb
i , .)ǫ(ω

b
i )

Pi(.)
,

where b is the bootstrap sample on which each CART tree is constructed and
αi = A/(B + i) is the step sequenced refered in section 1.2.

1 The Comprehensive R Archive Network, http://cran.r-project.org/
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This enables the stochastic algorithm to better approximate the mean drift (2)
than in the standard case. With CART, the approximation of ∇E is actually
much more difficult than in the SVM case since the variance of the stochastic
algorithm seems higher using CART classifier. This averaging step is hence
crucial for the algorithm.

2.3 Detailed OFW+CART algorithm

Here is the detailed version of OFW+CART with bagging.

Let G = (δ1 . . . δ|G|), µ ∈ N
∗ and η the stopping criterion. A is the

unpruned classifier CART.
• For iteration n = 0 define P0 as the uniform distribution on G
• While |P(n+µ) − Pn|∞ > η:
· For b = 1..B

extract ωb
n from Gp with respect to Pn,p = P

⊗p
n

draw a bootstrap sample bsamp and construct A
bsamp

ωb
n

compute ǫ(ωb
n) on the out-of-bag sample b̄samp

· compute the averaged drift vector Dn as in 2.2
· update Pn+1 = ΠS [Pn − αndn]
· n = n + 1

2.4 Weighting procedure

An efficient way to take into account the unbalanced characteristics of the
data set is to weight the internal error rate ǫ(ω) according to the number
samples of each class in the learning set. This would penalize a classification
error made on the minority class and hence put more weight on the variables
that help classify this class instead of the majority class.
Let n the total number of cases and mk, k = 1..K the number of cases in
class k. We define the (normalized) weight of each observation in class k by
wk = 1

mk×K
.

Then for each out-of-bag test observation (the sample not drawn in the boot-
strap sample), we note misk the number of misclassified observations from
class k and the weighted internal error rate is defined as:

ǫ(ω) =
K
∑

k=1

misk × wk

instead of
∑K

k
misk

n
in the no weighting case. This weighting procedure also

stands for the evaluation step, see following section 2.5.
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2.5 Performance measurement

Comparison of the prediction performance

Error rates of all methods on each data set were computed with the e.632+
bootstrap error estimate from Efron and Tibshirani (1997) that is adequate
for small sample sizes data sets. Each algorithm will be learned on a bootstrap
sample to avoid any overfitting during the gene selection evaluation (Ambroise
and McLachlan (2002)). However, note that this performance evaluation does
not dictate the optimal number of genes to select. e.632+ only allows to com-
pare the performances of the different selection methods.

Stability

One can define the feature stability as the level of agreement between the
set of selected genes chosen in each boostrap sample with the set of selected
genes using the full training set. The Jaccard index (Yeung and Bumgarner
(2003)) then computed lies between 0 (low level of agreement) and 1 (high
level of agreement) and will be used to compare the stability of four all ranking
methods.

Definition 2 Let S(∆) be the set of the ∆ selected genes from the entire
training set and S(nb, ∆) the set of selected genes from the nb bootstrap sample.
The number of true positives (TP) is the number of selected genes that were
chosen in both S(∆) and S(nb, ∆):

TP = |S(∆) ∩ S(nb, ∆)|.

Similarly, we define the false positives (FP) the number of selected genes that
were chosen in S(nb, ∆) but not in S(∆):

FP = |S(nb, ∆) \S(∆) |,

and the number of false negatives (FN) the number of genes that were selected
in S(∆) but not in S(nb, ∆):

FN = |S(∆) \S(nb,∆) |.

The Jaccard index J(nb, ∆) is defined as TP/(TP + FP + FN) and is high
and close to 1 when there are many true positives and few false positives and
false negatives. We then compute the averaged Jaccard index J∆ over all nb
samples for ∆ varying between 1 selected gene and ∆max selected genes.

We expect therefore to rank stability of each feature selection procedure with
this Jaccard index.
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2.6 Ranking methods

Multicategory ranking methods are still rare in the context of classification,
especially in microarray data context. A comparative study is performed with
the well-known Random Forests (RF, Breiman (2001)). The three wrapper
methods (OFW+CART, OFW+SVM and RF) were also compared to the F-
test filter method, that is still widely used for selecting genes in the context
of microarrays.
Although Random Forests can also be performed with a weighting approach
such as Balanced Random Forests (BRF) or Weighted Random Forests (WRF)
from Chen et al. (2004), we chose to compare all these methods with no
weighting procedure.

3 Results and discussion on public data sets

A short description of the four public data sets is first given. We then com-
pare the results obtained with OFW+CART, OFW+SVM, RF and F-test
with no weighting procedure, and the F-test selection was evaluated with a
one-vs-one linear SVM.
We finally focus on OFW and compare the weighted vs. non-weighted proce-
dure and give some elements of discussion.

3.1 Multiclass data sets

We present the results obtained on four public multiclass data sets.

(1) Lymphoma (Alizadeh et al., 2000) compares 3 classes of cells (42, 9 and
11 observations per class) with 4026 gene expressions.

(2) The 3-class Leukemia version (Golub et al. (1999)) with 7129 genes com-
pares the lymphocytes B and T in ALL (Acute Lymphoblastic Leukemia,
38 and 9 observations) and the AML class (Acute Myeloid Leukemia, 25
observations). The classes AML-B and AML-T are biologically very sim-
ilar.

(3) The Small Round Blue-Cell Tumor Data of childhood (SRBCT, Khan et
al. (2001)) includes 4 different types of tumours with 23, 20, 12 and 8
microarrays per class and 2308 genes.

(4) The Brain data set compares 5 embryonal tumours (Pomeroy et al. (2002))
with 5597 gene expression. Classes 1, 2 and 3 count 10 microarrays each,
the remaining classes 4 and 8.
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The Brain and the Leukemia data sets were pre-filtered with a very large F-
test p-value (0.1 and 0.2, leaving 1963 and 3000 genes). These data sets are
succintly described in Table 1.
All these data sets were chosen for their unbalanced characteristics as the
minority class represents for each data set a small percentage of the total
number of observations (see Table 1). The Brain data set is characterized by
a very small number of samples (42) with one class that is extremely under
represented compared to the other classes. The data sets are assumed to be
correctly normalized.

3.2 Comparison of the ranking methods with no weighting procedure

Performance comparison

Figures 1 (a) (b) (c) and (d) display the e.632+ error rates obtained on
Lymphoma, Leukemia, SRBCT and Brain with respect to the number of se-
lected genes with the different ranking methods.
The classification complexity of the data sets is easy to identify as Lymphoma
(a) and SRBCT (c) display an evaluated error rate less than 7% for a selec-
tion of 10 genes, whereas for Leukemia (b) and Brain (d), the error rates vary
between 25 to 35 % for a selection of 10 genes. Note that this high error rate
was not due to the prefiltering process in these data sets.
OFW is generally among the best performers, and the error rates of OFW+
CART and OFW+SVM are often very close.
RF achieves good results on Leukemia and SRBCT, whereas on Lymphoma
and Brain, the performance of the RF selection is the worst. RF might not
succeed in selecting genes with information relevant enough, especially in Lym-
phoma, where all classes are easy to classify with too many informative vari-
ables.
On the contrary, the F-test achieves good results on Lymphoma and Brain.
This filter method orders genes that are differentially expressed (significant)
for at least one of the classes. If genes are differentially expressed for more than
one class (or for all classes), the selected genes will be all informative enough
and the performance will be good. With Leukemia, the F-test performs the
worst. This data set is more difficult to classify as the 2 classes ALLB and
ALLT are very similar (Golub et al. (1999)). The difficulty is reinforced as
ALLB is the majoritary class while ALLT is the minority one in this 3-class
problem. The F-test thus first ordered significant genes that discriminated the
easiest class (ALLB), to the detriment of the other classes.
In any case, these results show that one cannot draw general conclusions on
the best method to apply. However, on these data sets, OFW+CART and
OFW+SVM who performed among the best and seemed to select discrimina-
tive genes, could select candidates to answer the biological study.
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Remark on the performance assessement with e.632+ bootstrap error rate

The e.632+ error rate was chosen as it is the most adequate to compute the
performance of the different methods on small sample data sets (Ambroise
and McLachlan (2002)). However we did observe some weaknesses and the
interpretation of the results should be done with caution. One would expect
the error rate to increase when the number of evaluated variables becomes
too big (as more noise enters the selection). This was not the case for any
method using the SVM classifier and RF. When more variables entered the
selection, the error rate tended to stabilize to a minimum error rate. With
this kind of data set, the SVM classifier seems hence to base its classification
on the only good variables in the selection. It is the same with RF, which
construction is mostly based on the important (discriminative) variables. We
did not observe this tendency with OFW+CART, as during the evaluation
step, each aggegated tree is constructed on a small variable subset from the
selection.
The evaluation error rate should hence be used solely to compare the ranking
methods between each others, and not to give an accurate classification error
rate of a given variable selection.

Stability

Computation of the Jaccard index with respect to the number of selected
genes are displayed on Figures 2 (a) (b) (c) and (d). Maximum stability is
obtained on easy data sets (Lymphoma (a) and SRBCT (c)) with a Jaccard
index reaching 0.45 and 0.6. The F-test is undoubtly the most stable method
on complex data sets (Leukemia (b) and Brain (d)) whereas RF is the most
stable on the easy data sets. OFW+SVM and OFW+CART are the less stable.
The good stability results of the filter method is easy to explain as the F-test
selects redundant information usually only on the majority class, whereas the
other methods select genes with relevant information on all classes. As the
gene selection might be strongly dependent on the observations drawn in the
bootstrap sample, especially if one of the classes is minoritary, the methods
focusing on the minoritary classes will consequently be less stable.
OFW+SVM and OFW+CART are stochastic methods and are hence less
stable for all data sets. When the number of classes becomes large (Brain
and SRBCT), the stability results seem largely affected. A compromise needs
hence to be taken between information (on all classes) and stability.

Insight in the different selections

Tables 2 and 3 provide more insight of the different 50 gene lists selected
with all methods on each data set. For example in Table 2 for the Lymphoma
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data set (upper triangle), OFW+SVM and OFW+CART selected 12 common
genes among the 50 selected.
The most striking point is the very few number of shared genes between all
methods, that highlights the characteristics of each ranking method. Gener-
ally, as they are constructed with the same classifier, RF and OFW+CART
share a fair amount of genes (22 and 18 on Lymphoma and Leukemia, Table 2).
Table 2 also shows that RF selected more significant genes (i.e differentially
expressed with F-test) than OFW+CART/SVM (30 and 11 on Lymphoma
and Leukemia). In Table 3, where the number of classes is bigger than 3 (SR-
BCT, Brain), the 3 methods RF, OFW+CART and OFW+SVM generally
share more genes together than with the F-test. This highlights the poor rel-
evancy of a selection made with an F-test in this context.
On all data sets except SRBCT, OFW+CART and OFW+SVM shared very
few genes. This can be explained as the construction of these two classifiers is
completely different: CART searches in the feature space the best variable and
the best split to divide each node in the tree while SVM looks for the opti-
mal hyperplane between two classes. As for SRBCT where all methods except
F-test seem to share numerous genes, it can be explained as they seemed to
perform equally with the same relevant genes (see Fig. 1 (c)).
Note that the same tendency was observed if we reduced the size of the selec-
tion (e.g from 50 to 10): the top selected genes were not necessarily the same
from one selection to another.

3.3 Comparisons of the weighted and non-weighted procedures of OFW

The aim of this section is to compare the weighted and non-weighted ver-
sions of OFW only, as the other ranking methods do not share the same
weighting procedure (especially WRF/BRF for RF, Chen et al. (2004)), the
F-test having no weighting procedure).

Performance comparison

In order to compare the internal weighting procedure in OFW+CART or
SVM, we computed the e.632+ error rate for both approaches: weighted
(wOFW) or non-weighted (OFW). We remind that the weighted procedure
implies an internal weighted error rate in the gradient.
For the e.632+ computations, the learning of the nb bootstrap samples of
wOFW or OFW for each classifier was performed. Then, during the testing
phase, both types of learning were evaluated with a weighted e.632+. This was
necessary in order to compare the improvement of the performance with the
weighting approach. A non-weighting approach in e.632+ would indeed favour
the majority class to the detriment of the minority class and would still give
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a (wrongly) low error rate.
On Figures 3 (a) (b) (c) and (d) the weighted e.632+ error rate of OFW
and wOFW are displayed, with the application of either CART or SVM for
the four data sets.
There is often a strong difference between the performances of OFW+CART
and wOFW+CART, showing that CART seems affected by unbalanced classes,
whereas there is no difference between the two variants of OFW+SVM. The
one-vs-one SVM approach seems hence extremely well adequate for unbal-
anced classes. wOFW+CART seems to improve the error rate compared to
OFW+CART on the easy data set Lymphoma. And for SRBCT, all methods
perform similarly.
These graphs show that the weighting procedure in OFW+SVM seems not
necessary in the multiclass case as the one-vs-one SVM aims to classify each
class, even minoritary. On the contrary, for OFW+CART, the weighting pro-
cedure might be needed as by construction, CART tends to favour the ma-
joritary classes.

Stability

The comparisons of the Jaccard index for both versions of the algorithm is
displayed on Figures 4. wOFW+SVM seems to improve the stability of the
results of the 3-class data sets Lymphoma and Leukemia. When the number
of classes is larger, the non-weighted versions are the most stable.
These Jaccard indexes are very low as the proportion of the minoritary ob-
servations is often diminished during the bootstrap sampling and the selected
variables discriminating the minority classes must stronlgy depend on each
bootstrap sample.

Comparisons of the lists (weighted vs. non-weighted)

We compared the lists given by the weighted vs. the non-weighted proce-
dures in OFW+CART or SVM in Table 4. There is a difference in the gene
selections between the weighted and non-weighted version of OFW. For ex-
ample on Lymphoma, OFW+SVM and wOFW+SVM shared 13 genes out of
the 50 selected. This is surprising as section 3.3 showed that there was not a
strong difference in the performance of both methods (Fig. 3 (a)). However,
with SRBCT, where all performances of the four tested version were similar
(Fig. 3 (c)), the number of shared genes was quite close and high compared
to the other data sets (from 24 to 31 in Table 4).
This table shows that the less the number of genes that are shared between
OFW and wOFW, the better the improvement of the selection in terms of rele-
vancy might be (as wOFW aims to favour minoritary classes). For example the
selections of wOFW+SVM in Lymphoma might be more informative than the
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OFW+SVM selection, the same stands for wOFW+CART vs. OFW+CART
in Leukemia and Brain.

4 Application on a real world microarray data set

4.1 The pig folliculogenesis data set

This experiment was designed to compare different sizes of healthy follicles
granulosa cells during the last stages of antral phase. Large (L), Medium-
sized (M) and Small (S) follicles from three different sows per size category
were used. After extraction, the RNA isolated from these cells was used to
hybridise 42 microarrays that includes duplicates, resulting in 20 Large, 14
Medium-sized and 8 Small follicle cases (GEO accession number: GSE5798).
After a normalizing and a filtrering steps, the expression of 1564 clones remain
on each microarray.
The main characteristic of this dataset is the obvious difference between the
Large follicles and the others. This is due to the biological properties of the
data mainly including the appearance of LH receptors between the Medium
and Large follicles (Figure 5). Medium-sized and Small follicles are still in the
growth process whereas the Large follicles are completely differentiated to pro-
duce steroid hormones. Moreover, during the measurements that assign each
follicle its class, the diameters of the Small and the Medium-sized follicles are
very similar (1-2mm and 3 mm) whereas the Large ones cannot be mistaken
(5-6mm). Another factor to consider is the vast majority of regulated cDNAs
(clones) overexpressed in the Large follicles and hence the minority of regu-
lated cDNAs (refered to as genes instead of clones) that are overexpressed in
the Small ones.
We are clearly here in the practical case where classes are unbalanced, and
where the number of original samples is extremely small, as some of the mi-
croarray experiments were duplicated.

4.2 Results and biological interpretation

The analysis of this data set with Random Forests and F-test was performed
in Bonnet et al. (2007) and gave biologically relevant results. We focus here
on the application of OFW+CART/SVM and their weighted variants.
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Application of OFW

When the number of original samples is extremely small, the e.632+ boot-
strap error rate must be considered with caution and should not be the only
argument to favour a gene selection from a feature selection method rather
than an other. Fig. 6 displays the weighted e.632+ error rate for all approaches.
Both OFW+SVM and wOFW+SVM seem to give the best performance.
However, our experience show that the most biologically relevant results do
not always give the best statistical performance (Lê Cao et al. (2007)). This
is why biological interpretation is a crucial step when analysing microarray
data.

Interpretation of the results

In these four gene lists we identified genes GSTA1 and Cyp19A3 known to
be overexpressed during follicular development (Keira et al. (1994), Slomczyn-
ska et al. (2003)) and nexin, ACTA2, ATF7, UBC, that were not selected by
F-test and Random Forest in the previous analysis.
Figure 7 displays the boxplots of the 9 top genes selected either with OFW+CART
or OFW+SVM for each class (L, M or S). They show that while a minority
of selected genes are overexpressed in the S class with OFW+CART (left), a
majority of them are overexpressed in the S class in the OFW+SVM selection
(right). This tendency can be generalised for a larger list of genes. It seems
here that the construction of the one-vs-one SVM tends to favour mostly genes
discriminating the minoritary class S rather than the majoritary class L, as L
seems too easy to classify.
When applying wOFW+CART and wOFW+SVM, this tendency is still ob-
served, with more genes overexpressed in S for the wOFW+CART selection
(not shown).
The biological analysis shows that most of the overexpressed genes in the
S class code for ribosomic proteins that may be associated with a decrease
of proliferation during follicular growth from Small to Medium follicles. The
wOFW+SVM selection seems hence to give a better discrimination between
S and M classes. However, we also identify in this selection a great number of
unknown genes that will need further investigation. The wOFW+CART selec-
tion seemed not appropriate here since two negative controls were selected and
the OFW+SVM selection missed the known discriminative gene CYP11A3.
This section shows that depending on the experimental design, as well as the
accurate biological questions, the statistician might not answer the study’s
aim if the conclusions are only drawn from the statistical results.
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5 General remarks

5.1 Computation time.

The experiments were performed in R with a 1.6 GHz 960 Mo RAM AMD
Turion 64 X2 PC for OFW+SVM (implementation in R) and OFW+CART
(implementation in C in a R package). The learning time of OFW mostly de-
pends on the initial number of variables in the feature space and the step of
the stochastic scheme, as well as the size p of ω and the number of trees ag-
gregated for OFW+CART. For Brain (Lymphoma) that contains 1963 (4026)
genes, the learning took about 1 (1.5) hour for OFW+SVM for 200 000 iter-
ations. Note that this algorithm would be much faster if it was implemented
in C. It took 1 (3.5) hour for OFW+CART for 5000 iterations.

5.2 General remarks

This paper shows that microarray data sets have various levels of difficulty
and are quite unpredictable if there is not a solid biological knowledge back-
ground of the data set. The analysis on public data set shows that there is no
data set that seems to behave like the other. Without biological expertise, it
is extremely difficult to assess the biological relevancy of the results.
Simulating a set of data would not help giving more insight in the applied
methodologies, as simulating a data set like microarray is an extremely com-
plex work.
The performance assessment of the methods could be computed, but had
sometimes serious limits, due to the evaluation method and the applied algo-
rithms or the small number of samples. This study shows that the evaluation
part has to be taken with caution by the user in search of the ”best” method.
Furthermore, although there seemed to be no improvement of the perfor-
mance of the method when applying wOFW+SVM, the resulting gene se-
lection seemed to contain more information on the minoritary class. Our eval-
uation performance method might hence not be adequate in this context,
especially for OFW+CART where a ’double bootstrap sampling’ is performed
during evaluation. We also believe that the performance of wOFW+CART
can be improved by including weights in the construction of the tree.
Both multicategory classifiers CART and one-vs-one SVM applied with OFW
seem to perform better than the other tested methods. Regarding the per-
formances, choosing between these two methods seems difficult. If the user
is interested in biological relevancy of the gene selection, then OFW+CART
might be the best as the construction of CART really fits this requirement
(finding genes with differential expression in different classes at each node of
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the tree). However if the interest mostly lies in the classification task and find-
ing predictive genes, then OFW+SVM might be the best. By construction, it
searches the best hyperplane between two of the classes. In contrary to CART,
SVM optimizes a cost criterion based on the classification performance.

6 Conclusion

Starting from Lê Cao et al. (2007) that provided interesting results for bi-
nary problems, we extended the application of OFW+CART and OFW+SVM
one-vs-one for multiclass microarray problems. These data sets are known to
be difficult because of their high dimensionality with a small sample size and
at least one of the classes that is under represented. For most classifiers, this
often results in a good overall classification accuracy even though the minority
classes are misclassified.
We first compared OFW+CART and OFW+SVM with two other methods,
Random Forests and the still widely used F-test in gene selection. All methods
were performed with no weighting procedure. Our results showed that our two
methods gave good results in terms of error rate estimation and that the filter
method F-test might not be appropriate for multiclass datasets. The stability
of the results tended to be better in OFW+SVM than CART.
We then compared the weighted version of wOFW+CART or SVM. There
seemed to be no difference in the performance evaluation between the weighted
and the non-weighted version of OFW+SVM, that performed the best. The
performances of the two versions of OFW+CART differed largely, due to the
extensive use of bootstrap samples during the learning step. The relevancy of
the selected genes with wOFW should however be improved as they aim to
discriminate the minoritary classes. An intensive study should now be per-
formed on the public data sets.
Application and biological interpretation on a real world data set show that
the wOFW+SVM selection might give relevant results that are complemen-
tary with a previous analysis.

Availability

OFW is being implemented in an R package and can be available upon
request to the corresponding author.
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Table 1
Summary of the four data sets.

Lymphoma Leukemia SRBCT Brain

# genes 4026 3000 (pf 1) 2308 1963 (pf 1)

# classes 3 3 4 5

# obs. 62 72 63 42

# obs. per class 42/9/11 38/9/25 23/20/12/8 10/10/10/4/8

% obs. per class 68/14.5/17.5 53/12.5/34.5 36.5/32/19/12.5 24/24/24/9/19

% obs. per
class if bal-
anced

33.33 33.33 25 20

1pre-filtered with a very large F-test p-value (0.1 and 0.2)
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Fig. 1. Error e.632+bootstrap of several algorithms with respect to the number of
genes on Lymphoma ( a), Leukemia (b), SRBCT (c) and Brain (d).
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Fig. 2. Jaccard index of OFW+SVM, OFW+CART, RF and F-test with respect to
the number of genes on Lymphoma (a), Leukemia (b), SRBCT (c) and Brain (d).
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Table 2
Number of genes shared by several feature selection algorithms on Leukemia or
Lymphoma for a selection of 50 genes.

`
`

`
`

`
`

`
`

`
`

`
`

`̀
Leukemia

Lymphoma
OFW+SVM OFW+CART RF F-test

OFW+SVM # 12 11 12

OFW+CART 7 # 22 24

RF 17 18 # 30

F-test 3 6 11 #
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Table 3
Number of genes shared by several feature selection algorithms on Brain or SRBCT
for a selection of 50 genes.

X
X

X
X

X
X

X
X

X
X

X

Brain
SRBCT

OFW+SVM OFW+CART RF F-test

OFW+SVM # 25 31 11

OFW+CART 8 # 29 15

RF 12 22 # 9

F-test 7 2 2 #
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Fig. 3. Weighted e.632+ bootstrap error of OFW+CART and OFW+SVM with
both procedures weighted and non weighted with respect to the number of genes
on Lymphoma (a), Leukemia (b), SRBCT (c) and Brain (d).
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Fig. 4. Comparison of the Jaccard index with the weighted and non-weighted ver-
sions of OFW+SVM and OFW+CART on Lymphoma (a), Leukemia (b), SRBCT
(c) and Brain (d).
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Table 4
Number of genes shared by the weighted and non-weighted versions of OFW+SVM
or OFW+CART for each data set (selection of 50 genes).

Lymphoma Leukemia SRBCT Brain

OFW+SVM ∩ OFW+CART 12 7 29 8

wOFW+SVM ∩ wOFW+CART 16 5 24 4

OFW+SVM ∩ wOFW+SVM 13 13 31 18

OFW+CART ∩ wOFW+CART 27 11 25 13
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Fig. 5. The three follicle classes: Small, Medium-sized and Large.
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Fig. 6. Weighted e.632+ bootstrap error of OFW+CART and OFW+SVM with
both procedures weighted and non weighted with respect to the number of genes
on the follicle data set.
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Fig. 7. Boxplots of the 9 top genes selection with OFW+CART (left) or with
OFW+SVM (right) on the follicle growth data set. Boxplots are displayed for each
class (L, M and S).
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