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Abstract

The parameters in duration models are usually estimated by a Quasi Maximum
Likelihood Estimator [QMLE]. This estimator is efficient if the errors are iid and expo-
nentially distributed. Otherwise, it may not be the most efficient. Motivated by this,
a class of estimators has been introduced by Drost and Werker (2004). Their estima-
tor is asymptotically most efficient when the error distribution is unknown. However,
the practical relevance of their method remains to be evaluated. Further, although
some parameters in several common duration models are known to be nonnegative,
this estimator may turn out to be negative. This paper addresses these two issues.
We propose a new semiparametric estimator when there are inequality constraints on
parameters, and a simulation study evaluates the two semiparametric estimators. The
results lead us to conclude the following when the error distribution is unknown: (i) If
there are no inequality constraints on parameters then the Drost-Werker estimator is
better than the QMLE, and (ii) if there are inequality constraints on parameters then
the estimator proposed in this paper is better than the Drost-Werker estimator and
the QMLE. In conclusion, this paper recommends estimators that are better than the
often used QMLE for estimating duration models.

Key Words: Adaptive inference; Conditional duration model; Constrained inference; Effi-

cient semiparametric estimation; Order restricted inference; Semiparametric efficiency bound.

JEL Classification: C41, C14.
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1 Introduction

The availability of intraday tick-by-tick financial data increased substantially during the past

two decades, which in turn has had a phenomenal impact on research in financial market

microstructure. Such high frequency data are usually analyzed using essentially two classes

of models: generalized autoregressive conditional heteroscedasticity [GARCH] models and

duration models. In GARCH type models, the response variable is observed at equally spaced

time points. An example is the hourly Dow-Jones index. By contrast, in duration models,

the duration between two consecutive events, such as financial transactions, is the response

variable. A range of econometric models has been proposed and studied in the literature to

model the data generating process of durations. The class of such models forms an essential

tool for the study of market microstructure (Bauwens and Giot 2001). The objectives of

this paper are to evaluate a recently developed asymptotically efficient method of estimating

duration models when the error distribution is unknown, which is almost always the case in

practice, and to propose an improvement to the foregoing method when there are inequality

constraints on some parameters, for example some parameters may be nonnegative.

To introduce the basics of the duration model, let Xi denote the duration between (i−1)th

and the ith events, Fi denote the information up to time i and ψi = E(Xi | Fi−1), the

expected duration. A duration model is usually expressed as Xi = ψiεi where εi is referred

to as the error term which is usually standardized so that E(εi) = 1. The main objective

of duration analysis is to model ψi as a function of {. . . , Xi−2, Xi−1; . . . , ψi−2, ψi−1}. For

example, a special case of the well-known linear autoregressive conditional duration[ACD]

model of Engle and Russell (1998) is the following ACD(1,1) model:

ψi = α + βXi−1 + γψi−1. (1)

More generally, the model may take the form ψi = g(. . . , Xi−1; . . . , ψi−1; θ) where g is a

given function and θ is an unknown parameter. Further, g may also depend on exogenous
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variables.

For simplicity, let us temporarily assume that the error terms, ε1, . . . , εn, are indepen-

dently and identically distributed with f denoting their common probability density func-

tion[pdf]. If f is known then the model can be estimated by maximum likelihood (for

example, see Bauwens and Giot (2000)). Since f is usually unknown, the quasi maximum

likelihood estimator[QMLE] corresponding to exponential distribution for the error terms,

is the standard choice. However, such a QMLE is not necessarily the most efficient if f

deviates from the exponential distribution and/or the error terms are not independent. This

is important because the time-series nature of {Xi} suggests that the error terms {εi} are

unlikely to be independent and identically distributed with a known density function.

Recently, Drost and Werker (2004) proposed an efficient estimator of θ when the error

distribution is unknown and ε1, . . . , εn may not be independent. Their estimator is semi-

parametrically efficient, in the sense that it reaches the highest asymptotic efficiency bound.

Detailed accounts of this topic are given in Bickel et al. (1993) and Tsiatis (2006). While

the estimator is asymptotically efficient, a detailed evaluation of the practical relevance of

this estimator is not yet available.

Motivated by these considerations, we conducted a large scale simulation study to evalu-

ate the performance of the Drost-Werker estimator[DW-estimator] for several duration mod-

els under a range of scenarios. Our results suggest that the DW-estimator is better than the

usual QMLE overall, except when the true parameter is restricted by inequality constraints,

such as β ≥ 0 and γ ≥ 0 in (1), and their true values are close to a certain boundary of the

parameter space. This is indicated briefly in the next paragraph in the context of the model

(1).

By definition, duration Xi is nonnegative, and hence ψi ≥ 0. Consequently, the param-

eters α, β and γ in (1) must be nonnegative as well. Further, we also have α + β ≤ 1.

However, the DW-estimator does not incorporate such inequality constraints and hence it
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may turn out to be negative even when the true parameter is known to be nonnegative. If

the DW-estimator β̂ of β turns out to be negative, one may be tempted to simply truncate

it and redefine it as β̂ = 0. Such a method of truncating an estimator is crude, particularly

because there is already a well-developed body of statistical theory for incorporating such

inequality constraints. The literature on statistical inference under inequality constraints,

also known as order restrictions, is quite extensive indeed. Some recent relevant references

are El Barmi and Mukerjee (2005), El Barmi et al. (2006), Peddada et al. (2005), Peddada

et al. (2006), Hwang and Peddada (1994) and Silvapulle and Sen (2005). The latter one

provides a comprehensive account on the topic. In this paper, we propose an inequality con-

strained estimator θ̄ of θ. A feature of our constrained estimator is that if the DW-estimator

satisfies the inequality constraints on the parameters, then the two estimators are the same.

Otherwise, the constrained estimator is the point on the boundary of the parameter space

that is ”closest” to θ̂ in some sense. A theoretical result in section 2.2 provides the asymp-

totic distribution of our inequality constrained estimator θ̄ and shows that it is closer to

the true value than the unconstrained DW-estimator θ̂. The simulation results show that if

the true value of the parameter is far from the boundary of the parameter space, θ̂ tends to

be an interior point of the parameter space and consequently there is hardly any difference

between θ̂ and θ̄. On the hand, if the true value is close to the boundary of {θ} then our

proposed constrained estimator θ̄ performs better than the unconstrained DW-estimator θ̂,

as expected.

This paper makes two significant contributions: (i) It provides an extensive evaluation

of the semiparametrically efficient DW-estimator, and (ii) it develops a new semiparametric

estimator when some parameters are known to be non-negative, or more generally when

there are constraints of the form h(θ) ≥ 0 where h is a vector function. The main findings

of this paper may be summarized as follows:
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1. The errors are iid and their common distribution is exponential: The QMLE is equal

to the MLE and hence one would expect that the QMLE would be the best. The

simulation results are consistent with this, but the differences between QMLE and the

semiparametric estimators [SPE] turned out to be generally small.

2. There are no constraints on parameters and the errors are not iid with error distribu-

tion being exponential: Overall, the DW-estimator performed better compared to the

QMLE.

3. There are inequality constraints on parameters: The constrained semiparametric esti-

mator introduced in this paper is better than the unconstrained DW-estimator.

4. There are inequality constraints on parameters and the errors are not iid with error

distribution being exponential: If the true parameter does not lie in a small particular

region of the parameter space, which we shall refer to as A, then our proposed estimator

is better than the QMLE and the DW-estimator. In several published empirical studies

we observed that the estimators were not in the region A. Therefore, overall the

constrained semiparametric estimator θ̄ is better than the unconstrained DW-estimator

and the constrained QMLE.

We conclude that the semiparametric estimator of Drost and Werker (2004) and the

inequality constrained estimator proposed in this paper are better than the QMLE that is

widely used in practice.

The plan of the paper is as follows. Section 2 discusses the methodological aspects. In

subsection 2.1, we recall some known results on efficient semiparametric inference, and in

subsection 2.2 we develop the methodological aspects and propose new inequality constrained

semiparametric estimators. Section 3 provides the results of a simulation study, section 4

provides an empirical example to illustrate the new constrained semiparametric estimator,

and section 5 concludes.
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2 Semiparametric Estimation of Duration Models

As in the previous section, Xi denotes the ith observation of a duration variable X, Fi

denotes the information up to and including the ith observation Xi, ψi = E(Xi | Fi−1) and

εi = Xi/ψi. Fernandes and Grammig (2006) provided a survey of such duration models. A

simple example of each of the five main types that they studied, is given below.

1. Log-ACD Type I Model: log ψi = α + β log Xi−1 + γ log ψi−1

2. Log-ACD Type II Model: log ψi = α + βεi−1 + γ log ψi−1

3. Box-Cox ACD Model: log ψi = α + βευ
i−1 + γ log ψi−1

4. Linear ACD Model: ψi = α + βXi−1 + γψi−1

5. Power ACD Model: ψλ
i = α + βXλ

i−1 + γψλ
i−1

Let θ denote the unknown parameter in the duration model; for example, θ = (α, β, γ)>

for the linear ACD(1,1) model in (1). Within the framework of this paper we do not assume

that the error distribution belongs to any known parametric family. Hence θ does not include

parameters of the error distribution. To ensure that the parameters are identified, we assume

that E(εi | Fi−1) = 1. Usually, the errors are assumed to be independently and identically

distributed [iid] for simplicity. However, the nature of the durations in practice suggests that

this is unlikely to be the case in most practical situations and hence it would be desirable

for the method of inference to be robust against violation of the assumption of iid errors. To

this end, let Hi−1 ⊂ Fi−1 and assume that the conditional distribution of εi given the past

depends only on the information in the set Hi−1. Thus, the smaller information set Hi−1

contains the relevant past variables that are assumed to affect the distribution of εi given

the past. Now, with ψi = E(Xi | Fi−1), the semiparametric[SP] model is defined formally

by

Xi = ψiεi, ψi = g(. . . , Xi−1; . . . , ψi−1; θ), and L(εi | Fi−1) = L(εi | Hi−1) (2)

where g is a known function and L(εi | Fi−1) refers to the distribution of εi given Fi−1.

The special case of independently and identically distributed errors is obtained by setting
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Hi equal to the trivial field {φ, Ω}.
The next subsection provides the essentials on semiparametric inference, and states the

relevant results in a concise form. For convenience, previously known results are discussed

in the next subsection and the new methodological developments are given in subsection 2.2

2.1 Semi-parametric Estimation

Let fi denote the probability density function [pdf] corresponding to L(εi | Hi−1). We shall

assume that fi is smooth, for example, it has continuous first derivative. It follows that the

conditional pdf of Xi given Fi−1 is ψ−1
i fi(x/ψi) and hence the loglikelihood `(θ) is given

by `(θ) =
∑

`i(θ), where `i(θ) = ln{ψ−1
i fi(Xi/ψi)}. If fi were known, then the maximum

likelihood estimator [MLE] of θ would be argmaxθ `(θ) and it would be asymptotically

efficient. In practice, fi is usually unknown. In this setting, the model is semiparametric

and θ can be estimated consistently by a quasi maximum likelihood estimator[QMLE] ob-

tained by choosing the quasi likelihood equal to the loglikelihood when fi is the exponential

distribution with unit mean (see Bauwens and Giot (2001)). Efficient estimation in general

semiparametric models has a specialized but a growing literature. Comprehensive accounts

are given in Bickel et al. (1993) and Tsiatis (2006). The latter book provides the basic tech-

nical arguments and concepts in detail. An important result in this area is that a desirable

estimator of an unknown finite dimensional parameter θ in semiparametric models is the

so called, semiparametrically efficient estimator, which essentially means that the estimator

of θ is efficient in some sense for the model with the density function of errors treated as

unknown nuisance functions. Detailed discussions of such estimators and their relevance for

inference are also given in Newey (1990). In this subsection, we shall state the main relevant

results, without the technical details or proofs.

To introduce the semiparametrically efficient estimator of Drost and Werker (2004), first

let us suppose that the error density function is known. Let ġ(θ) denote (∂/∂θ)g(θ) for

any function g, and let θ̃ denote a n1/2-consistent estimator of θ, for example it could be
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the QMLE introduced earlier. The estimator, {θ̃ + {n−1Σn
i=1

˙̀
i(θ̃) ˙̀

i(θ̃)>}−1n−1Σn
i=1

˙̀
i(θ̃)}, is

called the one-step estimator. It is asymptotically equivalent to the MLE, and is obtained by

applying a Newton-Raphson type iteration once, starting from any n1/2-consistent estimator

(see Bickel et al. (1993)).

Now, let us relax the assumption that the error density function is known. Consequently,

˙̀
i in the foregoing expression for the one-step estimator is also unknown. Results obtained

by Drost and Werker (2004) on semiparametrically efficient estimation suggests to replace

˙̀
i by ˜̀̇∗

i , a ”suitable” estimator of ˙̀∗
i which is given by

˙̀∗
i (θ) =

εi − 1

var{εi|Hi}E

[
∂

∂θ
log(ψi)|Hi

]
−

(
1 + εi

f ′i(εi)

fi(εi)

)[
∂

∂θ
log(ψi)− E

[
∂

∂θ
log(ψi)|Hi

]]
.

This is the semiparametrically efficient score function, which corresponds to the efficient

score function in classical parametric inference with finite dimensional nuisance parameters.

When we say that ˜̀̇∗
i is a ”suitable” estimator of ˙̀∗

i , it essentially means that the difference

between the two converges to zero with respect to integrated mean squared error.

For our computations in the next section, we adopted the following method. First com-

pute the residuals as ε̃i = Xi/ψi(θ̃), (i = 1, . . . , n), and then apply the nearest neigh-

bor method to the residuals for estimating unknown densities of the error terms. For the

local bandwidth at x, choose the standard deviation of the 2k + 1 points near x, where

k = n4/5/
√

2 and the neighborhood is chosen so that k points are on each side of x. The

conditional moments and variances appearing in the foregoing expression for ˙̀∗
i (θ) can be

estimated using Nadaraya-Watson estimator. For example, to estimate E[∂/∂θ log(ψi) | Hi],

we regress (∂/∂θ) log(ψ̃i) on ψ̃i. These steps lead to the following semiparametrically efficient

DW-estimator:

θ̂ = θ̃ +
(
n−1

n∑
i=1

˜̀̇∗
i (θ̃)˜̀̇∗i (θ̃)>

)−1

n−1

n∑
i=1

˜̀̇∗
i (θ̃) (3)

We close this section with three special cases of the set Hi in (2) and the corresponding

expressions for ˜̀̇∗
i (θ̃). The cases Hi equal to {φ, Ω}, σ(εi) and Fi correspond to iid, Markov

and Martingale errors. For these three cases, ˙̀∗
i (θ) is given by the following three expressions
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respectively:

{εi − 1/var(εi)}ψ̇i − {1 + εif
′
i(εi)/fi(εi)}(∂/∂θ)log(ψi)− ψ̇i (4)

εi − 1

var{εi|εi−1}E

[
∂

∂θ
log(ψi)|εi−1

]
−

(
1 + εi

f ′i(εi)

fi(εi)

)[
∂

∂θ
log(ψi)− E

[
∂

∂θ
log(ψi)|εi−1

]]
(5)

{(εi − 1)/var(εi|Hi)}(∂/∂θ) log(ψi) (6)

where ψ̇i = E[(∂/∂θ) log(ψi)|Hi].

The estimator θ̂ in (3) for the foregoing three choices of Hi−1, will be denoted by θ̂iid,

θ̂Mark and θ̂Mart respectively. The estimator θ̂ corresponding to these three cases will be

evaluated in the simulation study discussed later in this paper.

2.2 Estimation subject to inequality constraints

In the linear ACD(1,1) model ψi = α + βXi−1 + γψi−1, the parameters α, β and γ are

nonnegative because ψi ≥ 0 and Xi ≥ 0 for every i. However, their estimators in (3) may

not satisfy such nonnegativity constraints. Therefore, it would be essential to modify the

approach in Drost and Werker (2004) to ensure that such constraints are satisfied. To this

end we adopt results from constrained statistical inference (Silvapulle and Sen (2005)). There

is no unique way to define suitable constrained estimators. We propose the following.

Let Θ denote the parameter space of θ. We shall assume that Θ is convex. Some of the

results presented here would hold even if Θ is not convex, but is Chernoff Regular; discus-

sions on Chernoff Regularity may be found in Geyer (1994), Silvapulle and Sen (2005)) and

Shapiro (2000). However, we will not consider such general shapes for Θ here. For the linear

ACD(1,1) model in (1), we have Θ = {θ : θ = (α, β, γ)>, α ≥ 0, β ≥ 0, γ ≥ 0, β + γ ≤ 1},
which is convex. We make the mild assumption that n1/2(θ̂−θ0)

d→ Z where Z ∼ N(0, V ) for

some positive definite matrix V where θ̂ is the DW-estimator. To motivate the ideas under-

lying the constrained estimator to be introduced, let us temporarily suppose that n1/2(θ̂−θ0)

is distributed exactly as N(0, V ). Therefore, θ̂ is distributed exactly as N(θ0, n
−1V ) and we

may interpret θ̂ as one observation from the population N(θ0, n
−1V ) with θ0 ∈ Θ. The log
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likelihood based on this single observation from N(θ0, n
−1V ) is (−1/2)(θ̂ − θ)>V −1(θ̂ − θ)

and hence the corresponding MLE of θ0 is

θ̄
∗

= arg min
θ∈Θ

(θ̂ − θ)>V −1(θ̂ − θ). (7)

Therefore, θ̄
∗

is the projection of θ̂ onto Θ with respect to the inner product 〈x, y〉V =

x>V −1y. The left panel in Figure 1 illustrates this for the simple case of two-dimensions and

Θ equal to the first quadrant {θ1 ≥ 0, θ2 ≥ 0}.

-θ1

6

θ2

q

p p p p p
p p p p p

p p p
θ̂q

q θ̄∗ θ̂ = θ̄
∗

(a) (b)

- α

6

β

γ
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rθ̂
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D

¡
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¯
¯
¯
¯
¯̄

¯
¯
¯
¯
¯̄

¡
¡

Figure 1: (a) The unconstrained estimator θ̂ and the constrained estimator θ̄
∗

of θ0 subject

to θ ∈ Θ = {(θ1, θ2) : θ1 > 0, θ2 > 0}, when V = (1, 0.5 | 0.5, 1) for two possible values

of θ̂, one in Θ and the other outside Θ in the second quadrant. (b) The unconstrained

estimator θ̂ and the constrained estimator θ̄ subject to θ ∈ Θ = {(α, β, γ) : α ≥ 0, β ≥
0, γ ≥ 0, β +γ ≤ 1} with θ̂ lying outside Θ and θ̄ lying on the face spanned by the rectangle

ABCD of the wedge-shaped Θ.

Now, let us relax the assumption that n1/2(θ̂ − θ0) is distributed exactly as N(0, V )

and assume that the latter is only the limiting distribution and that V is unknown. Then,

motivated by the definition of θ̄
∗
, a natural constrained semiparametric estimator is

θ̄ = arg min
θ∈Θ

(θ̂ − θ)>W−1
n (θ̂ − θ) (8)

where Wn is positive definite. In general, we would choose Wn to be a consistent estimator

of V , the limiting covariance matrix of n1/2(θ̂ − θ0). Even if this were not true, θ̄ would

still be a consistent estimator of θ0 as will be seen later. In general, we would choose

Wn =
(
n−1

∑n
i=1

˜̀̇∗
i (θ̃)˜̀̇∗i (θ̃)>

)−1

. If the true value θ0 is a point on the boundary of the

parameter space, it will be seen that the forgoing constrained estimator θ̄ in (8) is an
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Figure 2: The tangent cone, T , and the approximating cone, A, of Θ at B.

improvement over the DW-estimator for finite samples and asymptotically. On the other

hand, if the true value θ0 is an interior point, then the constrained estimator is better than

the DW-estimator in finite samples, but they are equivalent asymptotically.

Now, to discuss the theoretical results on θ̄, let T (Θ; θ0) denote the tangent cone of Θ

at θ0. For completeness, its definition is stated here:

T (Θ; θ0) = {v : ∃tn ¼ 0, ∃θn ∈ Θ such that θn → θ0 and t−1
n (θn − θ0) → v}.

For more details and references, see Silvapulle and Sen (2005). Intuitively, the tangent

cone T (Θ; θ0) is constructed as follows: First, approximate the boundaries of Θ at θ0 by

tangents, and then approximate Θ by the cone formed by these tangents. This is called the

approximating cone of Θ at θ0. Now, translate the parameter space so that θ0 moves to the

origin, and hence the cone has its vertex at the origin. These are illustrated in Figure 2.

For any x ∈ Rp, a p×p positive definite matrix W and a set C, let ‖x‖W = {x>W−1x}1/2

and ΠW{z | C} = arg minθ∈C ‖z − θ‖W . Thus, ΠW{z | C} denotes the projection of z onto

C with respect to the inner product 〈x, y〉W = x>W−1y. A simple illustration of Π(θ̂ | C),

which is equal to θ̄
∗
, is given in Figure 1 when C is the positive orthant in two dimensions.

Now, we provide a result about the distribution of θ̄.

Proposition 1. Suppose that Θ is convex and that n1/2(θ̂ − θ0)
d→ Z where Z ∼ N(0, V )

for some positive definite matrix V and Wn
p→ W where W and Wn are positive definite.
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Then

n1/2(θ̄ − θ0)
d→ ΠW{Z | T (Θ; θ0)} (9)

where θ̄ is the constrained estimator defined in (8). Further, θ̄ is closer to the true value θ0

than θ̂ in the following sense:

pr{‖θ̄ − θ0‖Wn ≤ ‖θ̂ − θ0‖Wn} = 1, pr(θ̄ = θ̂) → pr(Z ∈ T (Θ; θ0), and

pr{‖θ̄ − θ0‖Wn � ‖θ̂ − θ0‖Wn} → pr(Z 6∈ T (Θ; θ0). (10)

Proof. Main steps only: The technical details of the proof of (9) uses the result that the

parameter space Θ can be approximated by its approximating cone at the true value for the

purposes of deriving the first order asymptotic properties. For example, the projections of

θ̂ onto Θ and onto the approximating cone A(θ0) of Θ at θ0 are asymptotically equivalent:

n1/2(θ̄ − θ†) = op(1) where θ† = ΠWn(θ̂ | A(θ0)). Now treating θ0 as the origin, we have

n1/2(θ† − θ0) = ΠWn{n1/2(θ̂ − θ0) | A(θ0)− θ0} d→ ΠW (Z | T (θ0)),

the last step follows because ΠW (z | T ) is a continuous function of (z,W ).

Now, applying Proposition 3.12.3 on page 114 in Silvapulle and Sen (2005)) for the inner

product defined by 〈x,y〉 = x>W−1
n y, we have that (θ̄ − θ0)

>W−1
n (θ̂ − θ0) ≤ 0. Therefore,

‖θ̂ − θ0‖Wn ≥ ‖θ̄ − θ0‖Wn . Since Wn
p→ W and (θ̂ − θ0) = Op(n

−1/2), we have, by Lemma

4.10.2 on page 216 in Silvapulle and Sen (2005) that n1/2‖θ̂−θ0‖Wn = n1/2‖θ̂−θ0‖W +op(1)

and n1/2‖θ̄ − θ0‖Wn = n1/2‖θ̄ − θ0‖W + op(1). Now, the proof of (10) follows.

In the rest of this subsection, we shall comment on other possible alternatives to the

foregoing approach. The general approach to constructing a constrained estimator exploits

the fact that one needs to use only the local behavior of the objective function in an n−1/2-

neighborhood of the true value θ0. The foregoing θ̄ adopts this approach. It is also possible

to construct other similar estimators. For example, another estimator may be defined as

θ̂(λ0) where θ̂(λ) =
[
θ̃ + λ

(
n−1

∑n
i=1

˜̀̇∗
i (θ̃)˜̀̇∗i (θ̃)>

)−1
n−1

∑n
i=1

˜̀̇∗
i (θ̃)

]
for 0 ≤ λ ≤ 1 and λ0



14

is the maximum value of λ in [0, 1] for which θ̂(λ) lies in Θ. This says that the one-step

iteration in (3) moves from θ̃ in the direction suggested by the DW-estimator but stops

before crossing the boundary of Θ.

Another estimator may be defined as arg maxθ∈Θ q(θ) where

q(θ) = (θ − θ̃)>n−1

n∑
i=1

˜̀̇∗
i (θ̃)− 2−1(θ − θ̃)>

(
n−1

n∑
i=1

˜̀̇∗
i (θ̃)˜̀̇∗i (θ̃)>

)
(θ − θ̃),

which may be seen as a pseudo likelihood with score function n−1
∑n

i=1
˜̀̇∗
i (θ̃) and information

(
n−1

∑n
i=1

˜̀̇∗
i (θ̃)˜̀̇∗i (θ̃)>

)
. Since the unconstrained maximum of q(θ) is the DW-estimator θ̂,

the foregoing estimator arg maxθ∈Θ q(θ) can be seen as a constrained version of the DW-

estimator. This estimator turns out to the same as θ̄ in (8) if the Wn in (8) is equal to
(
n−1

∑n
i=1

˜̀̇∗
i (θ̃)˜̀̇∗i (θ̃)>

)−1

.

Finally, let us note that different choices for Wn in (8) would result in different constrained

estimators that may not be asymptotically equivalent. As an example, let θ̄
(a)

and θ̄
(b)

be

the estimator in (8) with Wn = An and Wn = Bn respectively, where An
p→ A and Bn

p→ B.

Now, it may be shown that n1/2(θ̄
(a)− θ̄

(b)
)

d→ Z∗ where Z∗ = [ΠA{Z | T (Θ; θ0)}−ΠB{Z |
T (Θ; θ0)}] 6= 0 and Z ∼ N(0, V ). Therefore, if A 6= B then Z∗ 6= 0 and hence θ̄

(a)
and θ̄

(b)

are not asymptotically equivalent.

3 Simulation Study

In this section, we report the results of a simulation study conducted to evaluate and compare

the semiparametric estimators, θ̂ and the constrained semiparametric estimator θ̄ with the

standard QMLE for duration models, namely the one that corresponds to f(t) = exp(−t),

t > 0.

Design of the study:

We studied the five duration models introduced at the beginning of section 2. For each
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of these models, the following error distributions were studied:

(a) εi ∼ exp(1), (b) εi ∼ Γ(λ−2
i , λ2

i ) and (c) εi ∼ LN(−2−1log(1 + λ2
i ), log(1 + λ2

i )),

where Γ(a, b) is the Gamma distribution with parameters (a, b), and LN(µ, σ2) is the lognor-

mal distribution. For the gamma and lognormal error distributions in the foregoing settings

(b) and (c), we set λ2
i = 0.1 + 0.9εi−1. The estimation methods that are compared in this

paper do not require the exact form of dependence of λi on other variables. This would en-

able us to evaluate the robustness of the estimators to departures from the usual assumption

that the errors are iid.

Without loss of generality, the unconditional mean of Xi was set equal to 1. All the

computations were programmed in MATLAB, and the optimizations were carried out using

the optimization toolbox in MATLAB.

Number of values of θ0 : (i) Linear ACD models : 15 different values of θ0, with some values

close to the boundary of the parameter space. (ii) Linear Power ACD Model: same as for

the linear ACD model. (iii) Linear ACD Type 1 : 6 values. (iv) Linear ACD Type 2: 7

values. (v) Box-Cox ACD model: 4 values.

Since our main objective is to compare the QMLE with the semiparametric estimators,

we shall report estimates of relative MSE Efficiency which we define as {MSE of QMLE/

MSE of the estimator}.
The results of the simulation study are based on sample size n = 500 and 500 repeated

samples, for the linear ACD and the power ACD models with nonnegative parameters. For

the other models, n = 2000 and 500 repeated samples. With tick-by-tick data, the number

of observations is usually large and hence n = 2000 is quite realistic.

Results:

The simulation was carried out for θ̂iid, θ̂Mark and θ̂Mart defined in (4) - (6). We ob-

served that θ̂Mart performed better. Further, sconce θ̂Mart is based on the least amount of
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Table 1: MSE-efficiency of θ̄ relative to QMLE for the linear ACD model

True value ε ∼ EXP ε ∼ NG ε ∼ LN

α0 β0 γ0 α β γ α β γ α β γ

0.05 0.30 0.65 103 96 97 179 182 182 153 147 151

0.05 0.05 0.90 99 96 95 156 193 162 143 194 149

0.10 0.20 0.70 106 99 101 174 188 173 144 164 148

*0.25 0.05 0.70 58 96 61 78 162 86 65 212 76

0.10 0.15 0.75 109 99 103 169 195 170 148 174 151

0.05 0.10 0.85 102 97 97 238 207 209 181 184 174

0.20 0.20 0.60 104 101 99 149 168 145 127 155 132

*0.20 0.05 0.75 76 95 76 89 170 98 79 215 91

*0.30 0.10 0.60 76 98 78 86 166 89 78 166 85

0.10 0.10 0.80 104 98 98 147 196 151 138 184 143

0.70 0.20 0.10 87 103 90 107 153 103 111 139 114

0.70 0.25 0.05 88 104 94 150 156 147 122 145 127

0.80 0.10 0.10 82 100 83 106 172 98 101 174 97

0.80 0.12 0.08 86 103 87 120 166 110 106 171 103

0.80 0.15 0.05 89 103 91 143 165 131 112 164 110

MSE-efficiency for θi is defined as MSE(QMLE)/MSE(θ̄).

assumptions, we shall present the results for θ̂Mart only in the rest of this section, and write

θ̂ for θ̂Mart. The results for the other estimators are available in a working paper.

The histograms of relative MSE of θ̂ are shown in Figures 3 - 8. Each figure has three

diagrams: the one on left, middle and right correspond to εi being exp(1), Γ(λ−2
i , λ2

i ) and

LN(−2−1log(1 + λ2
i ), log(1 + λ2

i )), respectively.

The errors are iid with common error distribution exp(1):

Recall that the QMLE is equal to the MLE in this case. Since this setting is ideal for

QMLE, we would expect the QMLE to perform at least as well as, if not better than, the

semiparametric estimators [SPE]. The diagram on the left of each of Figures 3 - 8 show

that, as expected, the QMLE performed at least as well as the semiparametric estimator.
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Table 2: MSE-efficiency of θ̄ relative to QMLE for the linear Power ACD model

ε ∼ EXP ε ∼ NG ε ∼ LN

θ0 = (α0, β0, γ0, λ0) α β γ λ α β γ λ α β γ λ

0.05, 0.30, 0.65, 2 121 94 93 91 1197 136 204 142 498 120 165 110

0.05, 0.05, 0.9, 2 72 84 96 69 352 136 176 101 1108 139 216 93

0.1, 0.2, 0.70, 1.5 107 96 96 92 226 149 200 207 165 128 171 119

*0.25, 0.05, 0.70, 1.5 81 86 82 47 83 117 92 53 90 127 98 59

0.1, 0.15,0.75, 2 104 89 95 85 579 132 211 136 221 122 179 105

0.05, 0.1, 0.85, 2 73 90 95 83 893 123 189 123 350 129 167 106

0.20, 0.2, 0.60, 1.5 110 97 98 90 182 144 191 198 127 125 141 120

*0.20, 0.05, 0.75,1.5 89 91 88 56 106 123 115 76 102 146 110 66

*0.3, 0.1, 0.6, 0.5 94 97 95 90 92 123 95 153 82 125 89 92

0.1, 0.1, 0.8, 0.5 115 95 110 85 136 160 140 164 142 150 150 140

0.7, 0.2, 0.1, 0.5 91 99 95 89 107 115 108 136 110 114 113 129

0.7, 0.25, 0.05, 1.5 91 100 96 87 136 111 129 117 111 116 114 99

0.8, 0.1, 0.1, 0.5 91 99 92 90 99 88 93 120 110 119 107 82

0.05, 0.05, 0.9, 0.5 97 92 99 84 158 177 157 123 130 194 142 85

0.8, 0.15, 0.05, 0.5 91 104 92 104 119 97 113 155 113 112 114 101

MSE-efficiency for θi is defined as MSE(QMLE)/MSE(θ̄i).

However, the differences were small in most cases.

Log ACD-Type I (Figure 3):

When ε ∼ exp(1), the QMLE performs at least as well as θ̂, as expected, but the

differences between QMLE and θ̂ are small. When the error distribution is Γ(λ−2
i , λ2

i ) or

LN(−2−1log(1 + λ2
i ), log(1 + λ2

i )), θ̂ perform significantly better than the QMLE. These

results show that for the Log ACD-Type I model, the semiparametric estimator is better

than the QMLE.

Log ACD-Type II (Figure 4):

When ε ∼ exp(1), the MSE-efficiency of θ̂ is less than 100%. The reduction in effi-
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ciency is not negligible, but not very large. When the error distribution is Γ(λ−2
i , λ2

i ) or

LN(−2−1log(1+λ2
i ), log(1+λ2

i )), θ̂ performs significantly better than QMLE. These results

show that for the Log ACD-Type II model, θ̂ is better than QMLE overall.

Box-Cox ACD Model (Figure 5):

When ε ∼ exp(1), the MSE-efficiency of the two semiparametric estimators fell to about

70% for some parameter values. When the error distribution is Γ(λ−2
i , λ2

i ) or LN(−2−1log(1+

λ2
i ), log(1+λ2

i )), θ̂ performs significantly better than QMLE. Overall θ̂ performs better than

QMLE.

Linear ACD and Power ACD Models (Figures 6-9):

In these models, Θ = {(α, β, γ) : α ≥ 0, β ≥ 0, γ ≥ 0, γ + β ≤ 1}. Figures 6 and 7 show

that the constrained estimator θ̄ performed at least well as the unconstrained DW-estimator

θ̂ for all true parameter values and significantly better when the true parameter value is near

the boundary of Θ. The cases for which the relative efficiencies are equal to 100% or slightly

higher, correspond to the case when the parameter value is away from the boundary and lie

deep in the interior of the parameter space. Similarly, relative efficiencies that are higher than

100% correspond to the case when the parameter value is close to the boundary. Therefore,

as expected, the constrained estimator θ̄ is better than the unconstrained estimator θ̂.

If the true value of θ is not in the set A, (for eg., see the rows marked with ’*’ in Tables

1 and 2) where

A = {(α, β, γ) : β and (β/α) are close to zero, and α and γ are not close to zero }

then θ̄ performs better than QMLE. Even if the true parameter lies in the set A QMLE does

not dominate θ̄; Tables 1 and 2 show that, in region A, QMLE is better than θ̄ for (α, γ)

but not for β.

In several empirical studies reported in the literature, for example Engle and Russell

(1998), Engle and Russell (1997), Fernandes and Grammig (2006) and Zhang et al. (2001),
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the estimated value of θ turned out to be away from A. Therefore, it appears that θ̄ performs

better than QMLE in the part of the parameter space that is of practical relevance.

Summary of the results:

For Log ACD Types I and II models, the semiparametric DW-estimator θ̂ performed

better than the QMLE. For the Box-Cox ACD model, θ̂ appears to be a better estimator

overall. For the Linear ACD and Power ACD models, for which α, β and γ must be nonneg-

ative and β + γ ≤ 1, the constrained estimator θ̄ performed better than the unconstrained

DW-estimator θ̂ and also better than the QMLE in the part of the parameter space that

appears to be relevant based on past empirical studies.

4 An empirical example

In this section, we use the IBM transaction data for November 1990, to illustrate the impor-

tance of the constrained estimator θ̄. In this example, we do not plan to model the data in

order to draw substantive conclusions about IBM transactions, and therefore we do not carry

out diagnostics to evaluate goodness of fit. Such issues for these data have been discussed

in other studies, including Engle and Russell (1998). We estimated the parameters in the

linear ACD(2,2) model

ψi = α + β1Xi−1 + β2Xi−2 + γ1ψi−1 + γ2ψi−2, (11)

by QMLE and the semiparametric methods. The parameter space Θ is given by

Θ = {θ : θ = (α, β1, β2, γ1, γ2)
>; α ≥ 0; 0 ≤ β1, β2, γ1, γ2, β1 + β2 + γ1 + γ2 ≤ 1}.

The computed values are given in Table 3, where θ̂Mart, θ̂Mark and θ̂iid are the estimators

corresponding to the three cases in (4)- (6). To compute the QMLE, we maximized the log

likelihood corresponding to the assumption εi ∼ exp(λ). Since the unconstrained QMLE,

given in Table 3, is an interior point of Θ, it is also equal to the QMLE under the constraint

θ ∈ Θ.
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Table 3: Estimates of parameters for the ACD(2,2) model for the IBM transaction data

α β1 β2 γ1 γ2

Unconstrained Estimators

QMLE 0.561 0.098 0.018 0.375 0.492

θ̂MART 0.321 0.108 -0.041 1.005 -0.082

θ̂MARK 0.423 0.108 -0.048 0.984 -0.059

θ̂IID 0.613 0.095 -0.026 0.806 0.103

Constrained Estimators

θ̂MART 0.471 0.099 0.000 0.616 0.270

θ̂MARK 0.609 0.096 0.000 0.547 0.336

θ̂IID 0.668 0.088 0.000 0.568 0.320

Although the unconstrained QMLE satisfies the constraint θ ∈ Θ, the DW-estimator θ̂

corresponding to Martingale, Markov and iid errors, are outside their allowed ranges. This

is an example of the type of settings where a constrained estimator such as θ̄ would be

essential. Since the constrained estimator θ̄ is not asymptotically normal when the true

parameter lies on the boundary of the parameter space, it is not particularly meaningful

to provide standard errors for θ̄. If a measure of variability is desired, a confidence region

can be constructed by inverting an inequality constrained test based on θ̄. This is not a

trivial computational task, but possible to do. In any case, it is important to note that the

constrained estimator is closer to the true value than the unconstrained estimator θ̂.

Note that, based on the semiparametric estimators corresponding to Martingale errors,

the estimate of β2 has now moved from −0.041 to its boundary β2 = 0, the estimate of γ2

moved from −.082 to 0.27 a value that is interior to its allowed range, and the estimate

of γ1 moved from 1.005 to 0.616, a value that is also interior to its allowed range. This

example illustrates that when some or all components of θ̂ lie outside their allowed range,

the constrained estimation method introduced in this paper offers a methodologically sound

way of constructing an efficient estimator of θ.
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5 Conclusion

We studied estimation of parameters in a large class of duration models. Our work is centered

around the semiparametrically efficient estimator of Drost and Werker (2004) for situations

where the error distribution is unknown and the errors themselves may not be independent.

Since such situations are expected to be common in practice, this semiparametric method

of estimation is of significant practical importance.

Using the theoretical results of Drost and Werker (2004) as building blocks, we proposed

a new semiparametric estimator for duration models for cases when some parameters are

known to satisfy inequality constraints, for example nonnegativity constraints as in the

standard linear ACD model of Engle and Russell (1998). We showed that our proposed

constrained estimator is asymptotically better than the unconstrained DW-estimator when

there are inequality constraints on parameters. We carried out a simulation study to compare

our estimator with the DW-estimator and the QMLE.

For the Log ACD Models of types I and II and the Box-Cox ACD models, for which there

are no inequality constraints on parameters, the DW-estimator performed better than the

QMLE overall. For the Linear ACD and Power ACD Models, in which some parameters are

known to be nonnegative, the inequality constrained estimator proposed in this paper per-

formed better than the DW-estimator. Further, in these models, the constrained estimator

θ̄Mart performed better than the QMLE in most cases of empirical interest. An empirical

application involving the ACD(2,2) model illustrates the relevance, importance and the ease

with which θ̄Mart can be used.

In summary, the DW-estimator is better than the QMLE when there are no inequality

constraints, such as nonnegativity constraints. If there are inequality constraints, then the

constrained estimator proposed in this paper is better.
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Figure 3: MSE of θ̂ relative to QMLE for the LACD-1 model.

50 60 70 80 90 100
0

1

2

3

4

5

6

7

Errors ~ exp(1)
50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

Errors ~ Normalized Gamma
80 100 120 140 160 180
0

1

2

3

4

5

6

Errors ~ Log Normal

Figure 4: MSE of θ̂ relative to QMLE for the LACD-2 model.
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Figure 5: MSE of θ̂ relative to QMLE for the BCACD model
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Figure 6: MSE of θ̄ relative to θ̂ for the ACD model.
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Figure 7: MSE of θ̄ relative to θ̂ for the PACD model.
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Figure 8: MSE of θ̄ relative to QMLE for the ACD model
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Figure 9: MSE of θ̄ relative to QMLE for the PACD model




