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Two canonical VARMA forms: Scalar

component models vis-à-vis the

Echelon form

Abstract: In this paper we study two methodologies which identify and specify canonical form

VARMA models. The two methodologies are: (i) an extension of the scalar component methodol-

ogy which specifies canonical VARMA models by identifying scalar components through canonical

correlations analysis and (ii) the Echelon form methodology which specifies canonical VARMA

models through the estimation of Kronecker indices. We compare the actual forms and the

methodologies on three levels. Firstly we present a theoretical comparison. Secondly, we present

a Monte-Carlo simulation study that compares the performance of the two methodologies in iden-

tifying some pre-specified data generating processes. Lastly we compare the out-of-sample fore-

cast performance of the two forms when models are fitted to real macroeconomic data.

Keywords: Echelon form, Identification, Multivariate time series, Scalar component, VARMA

model.
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1 Introduction

Macroeconomists analyse and forecast aggregate economic activity by studying the dynamics of

economic variables such as GDP growth, unemployment and inflation. Univariate autoregressive

integrated moving average (ARIMA) processes are a useful class of models for capturing and de-

scribing the dynamics of such series. Box and Jenkins (1970) Box and Jenkins (1970) popularised

this useful univariate methodology making it arguably the most well known time series tool.

However, ARIMA modelling is limited by its inability to capture and model important dynamic

inter-relationships between variables of interest.

The direct generalisation of the stationary ARMA model to the multivariate form, leads to the

vector ARMA or VARMA model (see amongst others, Quenouille, 1957; Tunnicliffe-Wilson, 1973;

Tiao and Box, 1981; Tsay, 1989; Tiao, 2001; Athanasopoulos and Vahid, 2007). This generalisa-

tion has been proven to be far from trivial. One of the major issues faced by researchers in the

multivariate time series field of VARMA modelling, relates to the identification of unique repre-

sentations. The issues of identification have been discussed over the years by many researchers

including Hannan (1969, 1970, 1976, 1979), Deistler and Hannan (1981), Hannan and Deistler

(1988) Lütkepohl (1993) and Reinsel (1997). In this paper we study and compare two methodolo-

gies that overcome this issue and achieve unique canonical VARMA representations.

The first methodology is the Athanasopoulos and Vahid (2006) extension to Tiao and Tsay (1989).

This methodology comprises three stages. In the first stage, “scalar component models” (SCMs)

embedded in the VARMA model are identified using a series of tests based on canonical correla-

tions analysis between judiciously chosen sets of variables. In the second stage, a fully identified

structural form is developed through a series of logical deductions and additional canonical cor-

relations tests. Then in the final stage, the identified model is estimated using full information

maximum likelihood (FIML).

The second methodology we consider is the Echelon form methodology which involves specifying

canonical Echelon form models through the estimation of Kronecker indices. Kronecker indices

are simply the maximal row degrees of each individual equation of a VARMA model and are esti-

mated through a series of least squares regressions. Hence, the advocates of this methodology

portray its simplicity as a great attribute. This methodology has been developed by many time

series analysts such as Akaike (1974, 1976), Kailath (1980), Hannan and Kavalieris (1984), Solo

(1986), Hannan and Deistler (1988), Tsay (1991), Lütkepohl (1993), Nsiri and Roy (1992, 1996),

Poskitt (1992), Lütkepohl and Poskitt (1996) among others. However, no investigation has been

2



Two canonical VARMA forms: Scalar component models vis-à-vis the Echelon form

undertaken into the finite sample performance of this methodology when attempting to identify

VARMA models. In this paper we conduct Monte-Carlo experiments and we evaluate the ability of

the Echelon form methodology and the SCM methodology to identify some pre-specified VARMA

data generating processes (DGPs).

Furthermore, to compare the forecasting performance of the VARMA models specified by the two

methodologies we use real data. We compile seventy trivariate sets of monthly macroeconomic

variables, and fit canonical SCM VARMA models and canonical Echelon form VARMA models to

them, using only one portion of the available sample for estimation and holding the rest of the

sample for forecast comparison. Using the estimated models, we forecast these variables 1 to 15

steps into the future throughout the forecast period. We then use several measures of forecast

accuracy to compare the performance of the two forms of VARMA models.

The structure of this paper is as follows. Section 2 outlines the scalar component modelling

methodology for VARMA models. Section 3 presents the methodology we have implemented in

order to identify canonical reverse Echelon form VARMA models. In section 4 we present a theo-

retical comparison of the two forms and also some experimental results. Section 5 describes the

data and the forecast evaluation method and presents the empirical results. Section 6 provides

some conclusions and some directions for future research.

2 A VARMA modelling methodology based on scalar components

The scalar component methodology we employ in this paper is the Athanasopoulos and Vahid

(2006) extension to the Tiao and Tsay (1989) methodology. In this section we present a brief

overview of the methodology. For more details, readers should refer to the above mentioned

papers.

The aim of identifying scalar components is to examine whether there are any simplifying em-

bedded structures underlying a VARMA(p, q) process.

Definition 1 For a given K−dimensional VARMA(p, q) process

yt = Φ1yt−1+ . . .+Φp yt−p +ηt −Θ1ηt−1− . . .−Θqηt−q, (1)

3



Two canonical VARMA forms: Scalar component models vis-à-vis the Echelon form

a non-zero linear combination zt = α′yt , follows an SCM(p1, q1) if α satisfies the following prop-

erties:

α′Φp1
6= 0T where 0≤ p1 ≤ p;

α′Φl = 0T for l = p1+ 1, . . . , p;

α′Θq1
6= 0T where 0≤ q1 ≤ q;

α′Θql
= 0T for l = q1+ 1, . . . , q.

Notice that the scalar random variable zt depends only on lags 1 to p1 of all variables, and lags

1 to q1 of all innovations in the system. Tiao and Tsay (1989) employ a sequence of canonical

correlations tests to discover K such linear combinations.

Denote the squared sample canonical correlations between Ym,t ≡ (y ′t , . . . , y ′t−m) and

Yh,t−1− j ≡ (y ′t−1− j , . . . , y ′t−1− j−h)
′ by bλ1 < bλ2 < . . . < bλK . The test statistic suggested by Tiao

and Tsay (1989) for testing for the null of at least s SCM(pi , qi) against the alternative of fewer

than s scalar components is

C (s) =−
�

n− h− j
�

s
∑

i=1

ln

(

1−
bλi

di

)

as χ2
s×{(h−m)K+s}, (2)

where di is a correction factor that accounts for the fact that the canonical variates in this case

can be moving averages of order j. Specifically,

di = 1+ 2
j
∑

v=1

bρv

�

br ′i Ym,t

�

bρv

�

bg ′i Yh,t−1− j

�

(3)

where bρv (.) is the vth order autocorrelation of its argument and br ′i Ym,t and bg ′i Yh,t−1− j are

the sample canonical variates corresponding to the ith canonical correlation between Ym,t and

Yh,t−1− j .

Suppose we have K linearly independent scalar components characterized by the transformation

matrix A=
�

α1, . . . ,αK
�′

. If we rotate the system in equation (1) by A, we obtain

Ayt =Ψ1yt−1+ . . .+Ψp yt−p + εt −Θ∗1εt−1− . . .−Θ∗qεt−q, (4)

where Ψi = AΦi , εt = Aηt and Θ∗i = AΘiA
−1, in which the right hand side coefficient matrices

have many rows of zeros. However, as the following simple example shows, even if A is known
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there are still situations where the system is not identified.

Example 2 Consider the bivariate VARMA(1,1) system with two scalar components

SCM(1,1) and SCM(0,0), i.e.,







a11 a12

a21 a22






yt =







ψ
(1)
11 ψ

(1)
12

0 0






yt−1+ εt −







θ
(1)
11 θ

(1)
12

0 0






εt−1.

The second row of the system implies that

a21 y1,t−1+ a22 y2,t−1 = ε2,t−1.

y1,t−1, y2,t−1 and ε2,t−1 all appear in the right hand side of the first equation of the system and

therefore their coefficients are not identified. We set θ
(1)
12 = 0 to achieve identification.

In general if there exist two scalar components SCM(pr , qr) and SCM(ps, qs), where pr > ps and

qr > qs, the system will not be identified. In such cases min{pr − ps, qr − qs}, autoregressive or

moving average parameters must be set to zero for the system to be identified. This is referred

to as the “general rule of elimination” (Tiao and Tsay, 1989). The methodology we employ here

requires us to set the moving average parameters to zero in these situations (see Athanasopoulos

and Vahid, 2006, for a more detailed explanation).

Tiao and Tsay (1989) construct a consistent estimator for A using the estimated canonical covari-

ates corresponding to insignificant canonical correlations. Conditional on these estimates, they

estimate the row sparse parameter matrices on the right hand side of equation (1). The lack of

proper attention to efficiency in the estimation of A, which affects the accuracy of the second

stage estimates, was a major criticism of the Tiao and Tsay methodology raised by many eminent

time series analysts (see the discussion by Chatfield, Hannan, Reinsel, Tunnicliffe-Wilson that

followed Tiao and Tsay, 1989).

The Athanasopoulos and Vahid (2006) extension to the Tiao and Tsay (1989) methodology, con-

centrates on establishing necessary and sufficient conditions for the identification of A such that

all parameters of the system can be estimated simultaneously using FIML (Durbin, 1963). We

refer to this system as a canonical SCM representation. These rules are:

1. Each row of A can be multiplied by a constant without changing the structure of the model.

Hence, we are free to normalize one parameter in each row to one. However, as always
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in such situations, there is a danger of choosing a parameter whose true value is zero for

normalization, i.e., a zero parameter might be normalized to one. To safeguard against

this, the procedure adds tests of predictability using subsets of variables. Starting from

the SCM with the smallest order (the SCM with minimum p+ q), exclude one variable, say

the Kth variable, and test whether a SCM of the same order can be found using the K − 1

variables alone. If the test is rejected, the coefficient of the Kth variable is then normalized

to one and the corresponding coefficients in all other SCMs that nest this one are set to

zero. If the test concludes that the SCM can be formed using the first K − 1 variables only,

the coefficient of the Kth variable in this SCM is zero, and should not be normalized to one.

It is worth noting that if the order of this SCM is uniquely minimal, then this extra zero

restriction adds to the restrictions discovered before. Continue testing by omitting variable

K −1 and test whether the SCM could be formed from the first K −2 variables only, and so

on.

2. Any linear combination of a SCM(p1, q1) and a SCM(p2, q2) is a

SCM(max{p1, p2}, max{q1, q2}) . In all cases where there are two embedded scalar

components with weakly nested orders, i.e., p1 ≥ p2 and q1 ≥ q2, arbitrary multiples of

SCM(p2, q2) can be added to the SCM(p1, q1) without changing the structure of the system.

This means that the row of A corresponding to the SCM(p1, q1) is not identified in this case.

To achieve identification, if the parameter in the ith column of the row of A corresponding

to the SCM
�

p2, q2
�

is normalized to one, the parameter in the same position in the row of

A corresponding to SCM(p1, q1) should be restricted to zero.

A brief summary of our complete VARMA methodology is as follows.

Stage I: Identification of the scalar components

This stage follows the Tiao and Tsay (1989) methodology and comprises two steps:

Step 1 : Determining an overall tentative Order

Starting from m = 0, j = 0 and incrementing sequentially one at a time, find all zero sample

canonical correlations between Ym,t and Ym,t−1− j . Organize the results in a two way table. Start-

ing from the upper left corner and considering the diagonals perpendicular to the main diagonal,

search for the first time s+K zero eigenvalues are found, given that there were s zero eigenvalues
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in position (p−1, q−1) (when either p = 1 or q = 1, s = 0). This (p, q) is taken as the overall order

of the system. Note that it is possible to find more than one such (p, q) and therefore more than

one possible overall order. In such cases one should pursue all of these possibilities and choose

between competing models using a model selection criterion. (This procedure produces exactly

the same results as those implied by the “Criterion Table” in Tiao and Tsay (1989).

Step 2 : Identifying orders of SCMs

Conditional on (p, q), test for zero canonical correlations between Ym,t and Ym+(q− j),t−1− j

for m = 0, . . . , p and j = 0, . . . , q. Note that since an SCM(m, j) nests all scalar

components of order (≤ m,≤ j), for every one SCM(p1 < p, q1 < q) there will be

s =min{m− p1+1, j−q1+1, } zero canonical correlations at position (m≥ p1, j ≥ q1). Therefore,

for every increment above s, a new SCM(m, j) is found. This procedure does not necessarily lead

to a unique decision about the embedded SCMs. In all such cases all possibilities should be pur-

sued and the final models can be selected based on a model selection criterion. (The tabulation

of all zero eigenvalues produces the “Root Table” of Tiao and Tsay (1989).

Stage II: Placing identification Restrictions on Matrix A

Apply the identification rules stated above to identify the structure of the transformation matrix

A.

Stage III: Estimation of the Uniquely Identified System

Estimate the parameters of the identified structure using FIML (Durbin, 1963). The canonical

correlations procedure produces good starting values for the parameters, in particular for the

SCMs with no moving average components. Alternatively, lagged innovations can be estimated

from a long VAR and used for obtaining initial estimates for the parameters as in Hannan and

Rissanen (1982). The maximum likelihood procedure provides estimates and estimated standard

errors for all parameters, including the free parameters in A. All usual considerations that ease

the estimation of structural forms are also applicable here, and should definitely be exploited in

estimation.

7



Two canonical VARMA forms: Scalar component models vis-à-vis the Echelon form

3 Canonical Reverse Echelon Form

A K−dimensional VARMA representation, such as

Φ(L)yt =Θ (L)εt , (5)

where Φ(L) = Φ0 − Φ1 L − . . . − Φp Lp and Θ(L) = Θ0 − Θ1 L − . . . − Θq Lq is said to be in

Echelon form if the pair of polynomials, in the lag operators Φ(L) =
�

φrc(L)
�

r,c=1,...,K and

Θ(L) =
�

θrc(L)
�

r,c=1,...,K , [Φ(L) :Θ(L)] , is left coprime and possess the following properties:

1. Φ0 =Θ0 is lower triangular with unit diagonal elements,

2. row r of the polynomial operators [Φ(L) :Θ(L)] is of maximum degree kr ,

3. the operators have the form of

φr r(L) = 1−
kr
∑

j=1

φ
( j)
r r L j for r = 1, . . . , K ,

φrc(L) =−
kr
∑

j=kr−krc+1

φ
( j)
rc L j for r 6= c,

θrc(L) = θ
(0)
rc −

kr
∑

j=1

θ ( j)rc L j with θ (0)rc = φ
(0)
rc for r, c = 1, . . . , K ,

where φ
( j)
rc specifies the element of Φ j in row r and column c, and θ

( j)
rc specifies the element

of Θ j in row r and column c.

The maximum row degrees k = (k1, . . . , kK)′ are called the Kronecker Indices which define the

structure of the system, and

krc =







min(kr + 1, kc) for r ≥ c

min(kr , kc) for r < c
,

for r, c = 1, . . . , K , specifies the number of free parameters in the operator φrc(L) for r 6= c.

The sum of the Kronecker indices m =
∑K

r=1 kr is called the McMillan degree. The maximum

number of freely varying parameters is d(k) = 2mK .

Example 3 Consider a trivariate stable and invertible VARMA process with Kronecker indices,
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k = (k1, k2, k3) = (1,1, 0). The total number of freely varying parameters is d (k) = 2mK =

2× 2× 3= 12. The Echelon form representation of the process is,













1 0 0

0 1 0

φ
(0)
31 φ

(0)
32 1













yt =













φ
(1)
11 φ

(1)
12 0

φ
(1)
21 φ

(1)
22 0

0 0 0













yt−1+Θ0εt −













θ
(1)
11 θ

(1)
12 θ

(1)
13

θ
(1)
21 θ

(1)
22 θ

(1)
23

0 0 0













εt−1. (6)

This example demonstrates how Echelon form imposes zero/one restrictions on the parameters

of the polynomial lag operators Φ(L) and Θ(L) making the VARMA process uniquely identifiable

by guaranteeing that the only (possible) unimodular common operator between the resulting

left coprime coefficient matrices Φ(L) and Θ(L) is ∆(L) = IK (see Hannan and Deistler 1988 or

Lütkepohl 1993 for detailed discussions on left coprime matrices). Note that if all Kronecker

indices are equal, that is k1 = k2 = . . . = kK = k, then all krc = k and Φ0 = Θ0 = IK . This

type of Echelon form representation is a standard VARMA(p, p) model (for further examples of

Kronecker indices and the McMillan degree of VARMA processes refer to Solo 1986, Hannan and

Kavalieris 1984, Hannan and Deistler 1988 and Tsay 1989).

There are two types of restrictions we impose on the right hand side of equation (6). Firstly

the zero restrictions we impose on the third row of the coefficients of both yt−1 and εt−1. These

restrictions are imposed from the identified order of the model specified by the Kronecker indices.

That is, the maximum order of the third row is zero, i.e., k3 = 0.

Secondly, we impose two extra zero restrictions on the first two rows of the coefficients of yt−1,

i.e., φ
(1)
13 = φ

(1)
23 = 0. These restrictions are due to the fact that the pairs of parameters φ

(1)
13 ,θ (1)13,

and φ
(1)
23 ,θ (1)23 cannot be uniquely identified. Recall that in the canonical SCM specification of

VARMA models, the “general rule of elimination” was applied in such cases. In order to be

consistent with the scalar component canonical form specified is Section 2, we can alternatively

impose these zero restrictions on the moving average parameters, i.e., θ
(1)
13 = θ

(1)
23 = 0, and hence

specify the canonical reverse Echelon form proposed by Lutkepohl and Claessen (1997),













1 0 0

0 1 0

φ
(0)
31 φ

(0)
32 1













yt =













φ
(1)
11 φ

(1)
12 φ

(1)
13

φ
(1)
21 φ

(1)
22 φ

(1)
23

0 0 0













yt−1+Θ0εt −













θ
(1)
11 θ

(1)
12 0

θ
(1)
21 θ

(1)
22 0

0 0 0













εt−1. (7)
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This amounts to replacing property 3 by

3′. the operators have the form of

θr r(L) = 1−
kr
∑

j=1

θ ( j)r r L j for r = 1, . . . , K ,

θrc(L) =−
kr
∑

j=kr−krc+1

θ ( j)rc L j for r 6= c,

φrc(L) = φ
(0)
rc −

kr
∑

j=1

φ( j)rc L j with φ(0)rc = θ
(0)
rc for r, c = 1, . . . , K ,

i.e., interchanging the coefficient restrictions on Φ(L) and Θ(L).

Finally, note that the coefficients that appear in (6) and (7) are freely varying in R12. This means

that some of these coefficients can also be zero, provided that the row degrees, i.e., the Kronecker

indices, are maintained. Thus, in (7), at least one of φ
(1)
11 ,φ(1)12 ,φ(1)13 ,θ (1)11 and θ

(1)
12 must be non-

zero. Respectively, at least one of the second row freely varying parameters must be non-zero,

i.e., at least one of φ
(1)
2c for c = 1,2, 3 or θ

(1)
2c for c = 1,2, must be non-zero.

A brief summary of the Echelon form methodology implemented in this paper follows.

Stage I A long order VAR(h) is fitted and the estimated residuals bεt(h) are obtained. These are

used as estimates of the lagged innovations in subsequent stages. As suggested by Lütkepohl

and Poskitt (1996) we take h= ln(T ). The general idea is that h has to be greater than the largest

Kronecker index.

Stage II Using the estimated residuals from Stage I, Echelon form VARMA models of the form

yt = Φ1yt−1+ . . .+Φp yt−p +
�

Φ0− IK
��

bεt(h)− yt
�

+Θ1bεt−1(h) + . . .+Θqbεt−p(h) + εt

are fitted for a range of Kronecker indices and the optimum model based on model selection

criteria, conditional on the selected set of Kronecker indices is selected. There are two issues

that need to be addressed here. These are: (i) which model selection criterion should be used

and (ii) which efficient procedure for searching for the optimal set of Kronecker indices should

be employed.

10
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We employ Poskitt’s (1992) search procedure coupled with the BIC as the model selection cri-

terion. Extensive Monte-Carlo experiments in Athanasopoulos (2005) show that with Poskitt’s

procedure the BIC outperforms the AIC and the HQ, especially for sample sizes of 200 observa-

tions or more. For smaller samples the HQ may also be considered.

Poskitt’s (1992) procedure explores a significant property of Echelon forms. The restrictions of

the r th equation imposed by a set of Kronecker indices k= (k1, . . . , kK) depend on the Kronecker

indices ki ≤ kr . They do not depend on indices greater than kr . Using this property the search

starts from all Kronecker indices being set to zero and increments them. The following example

demonstrates the search procedure.

Example 4 Consider the canonical reverse Echelon form model of equation (7),













1 0 0

0 1 0

φ
(0)
31 φ

(0)
32 1













yt =













φ
(1)
11 φ

(1)
12 φ

(1)
13

φ
(1)
21 φ

(1)
22 φ

(1)
23

0 0 0













yt−1+Θ0εt −













θ
(1)
11 θ

(1)
12 0

θ
(1)
21 θ

(1)
22 0

0 0 0













εt−1. (8)

Poskitt’s search procedure starts from Kronecker indices k = (0, 0,0) and the model selection

criterion, in our case BICr(0, 0,0), is calculated for each row, i.e., r = 1, 2,3. The Kronecker

indices are incremented to k = (1, 1,1), and again the model selection criterion BICr(1,1, 1)

is calculated for r = 1,2, 3. The model selection criteria for each row are compared and for the

DGP we have considered here, we should find that BIC3(0, 0,0)< BIC3(1,1, 1) but BICr(0,0, 0)>

BICr(1, 1,1) for r = 1,2. The Kronecker index for the third row is now fixed to zero and the others

are incremented. Hence the new set of Kronecker indices are k = (2, 2,0). The model selection

criteria are again compared and we should now find that BIC1,2(1, 1,0) < BIC1,2(2,2, 0) and

therefore our optimal Kronecker indices are k= (1, 1,0).

Given that the Echelon form assumes a lower triangular matrix for the contemporaneous relation-

ships in the model (Φ0 =Θ0 are assumed to be lower triangular), the ordering of the variables in

the search procedure is important. Depending on the set k of Kronecker indices considered, the

contemporaneous relations in the model change. Therefore, in the search procedure each time a

different k is considered the design of Φ0 changes. To avoid the difficulty of generalising this in

a programming sense, all contemporaneous relations where included. For example, in the first

row where y1,t is the regressand y2,t and y3,t where included in the regressors and so on.
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Stage III Efficient parameter estimates of the uniquely identified Echelon form VARMA model

with Kronecker indices k are obtained using FIML.

4 Scalar Components vis-à-vis Echelon Form

The following Theorem, due to Tsay (1991), shows the relationship between the two canonical

forms we have presented so far.

Theorem 5 Suppose that yt is a stable and invertible VARMA process such as 5, represented

in canonical Echelon form with Kronecker indices k =
�

k1, . . . , kK
�′

and McMillan degree m =
∑K

r=1 kr <∞. Now suppose that yt is also represented in a canonical SCM representation that

consists of K−SCMs of orders sr = (pr , qr) for r = 1, . . . , K . The set of Kronecker indices k

is equivalent to a set of the SCM orders smax = (smax
1 , . . . , smax

K ) where smax
r = max

�

pr , qr
�

for

r = 1, . . . , K .

Proof. This theorem is based on theorem 5, page 266 in Tsay (1991).

Example 6 Consider the VARMA(1, 1) process,













1 0 0

0 1 0

a31 a32 1













yt =













φ
(1)
11 φ

(1)
12 φ

(1)
13

φ
(1)
21 φ

(1)
22 φ

(1)
23

0 0 0













yt−1+ εt −













θ
(1)
11 θ

(1)
12 0

θ
(1)
21 θ

(1)
22 0

0 0 0













εt−1. (9)

This model is a canonical SCM representation and consists of three SCMs of orders (1,1), (1, 1)

and (0,0). According to theorem (5) the equivalent Echelon form model has Kronecker indices

k = smax = (max(1,1), max(1,1),max(0,0))′ = (1,1, 0). Thus, the equivalent canonical reverse

Echelon form representation is exactly as in equation (9).

Having presented a situation that the canonical SCM and Echelon form representations are ex-

actly identical we now present an example where this is not the case.

Example 7 Consider the VARMA process,













1 0 0

a21 1 0

a31 a32 1













yt =













φ
(1)
11 φ

(1)
12 φ

(1)
13

φ
(1)
21 φ

(1)
22 φ

(1)
23

0 0 0













yt−1+ εt −













θ
(1)
11 θ

(1)
12 0

0 0 0

0 0 0













εt−1. (10)

Again this model is in canonical SCM representation and consists of three SCMs of orders (1,1),
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(1, 0) and (0, 0). Notice now, that for the second SCM, the “autoregressive” order is different

than the “moving average” order i.e., pr 6= qr for r = 2. According to theorem (5), the equivalent

Echelon form model has Kronecker indices,

k = smax = (max (1,1) ,max (1,0) ,max (0, 0))′ = (1,1, 0) .

Thus, the equivalent canonical reverse Echelon form representation is,
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εt−1, (11)

as in equation (9) with θ
(1)
21 = −a21θ

(1)
11 and θ

(1)
22 = −a21θ

(1)
12 . The Echelon form specification does

not impose this restriction, whilst the SCM methodology discovers it and includes it. So now, the

two representations, although related in some way, are not exactly identical.

The above example shows that the SCM methodology discovers some additional restrictions com-

pared to the the Echelon form methodology. Since Hannan’s Theorem (Hannan and Deistler,

1988) proves that the restrictions in the Echelon form are the necessary and sufficient restric-

tions for unique identification of the VARMA models, we can conclude that the extra restrictions

discovered by the SCM methodology are restrictions that are supported by the data over and

above the necessary conditions for identification

Finally, one should note the difference in the specification procedure between the two methodolo-

gies. SCMs are identified by observing the correlation structures within the data via sequential

canonical correlations testing. The Echelon form is specified via evaluating model selection cri-

teria for a number of chosen models. Although we could reverse these where SCMs could be

chosen using model selection criteria, and Echelon forms could be chosen through a sequence of

hypothesis tests, both of these procedures have issues that require the practitioner to make ob-

jective choices about, as it has already been discussed. In what follows, comparisons between the

two modelling procedures are presented. The comparisons are performed both via simulations

and via an extensive empirical forecasting exercise.
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4.1 A Monte Carlo Evaluation

Athanasopoulos (2005) has conducted Monte Carlo experiments and has evaluated the identifi-

cation procedures of the two methodologies. The general conclusion from that study is that both

procedures perform quite well in identifying some pre-specified VARMA DGPs. In this section

we combine those results and we directly compare the performance of the two methodologies.

It should be noted that in combining these results some valuable information about the each

procedure has been lost. The individual results are available from the authors upon request or

alternatively refer to Athanasopoulos (2005). The DGPs considered are presented in Appendix

A. The results are presented in Table 1. The sample sizes considered are N = 100,150, 200 and

400 observations. Due to the long, manual and challenging process of identifying SCMs, only 50

iterations where performed for each process and for each sample size. In contrast we managed

to automate Poskitt’s search procedure for the Echelon form methodology and therefore 1000

iterations where performed for each model and for each sample size.

In comparing these results, extra attention is required as canonical SCMs and Echelon form

models are somewhat, but not exactly equivalent, as shown by Theorem 5.

The first two columns under SCM in each panel in Table 1 show the percentage of times the

SCM methodology correctly specifies the maximal order (M.O.) and the exact order (E.O.) of the

DGP. The two columns in each panel under “Echelon” show these figures for the Echelon form

methodology. However, maximal order and exact order are not the same concept in the two

model forms. The M.O.
�

pSC M , qSC M
�

in the SCM case is the maximum “autoregressive”, pSC M =

max
�

p1, . . . , pK
�

, and “moving average”, qSC M = max
�

q1, . . . qK
�

, orders of all the scalar compo-

nents identified. This corresponds to the order of the identified VARMA(pSC M , qSC M ) model. In

the Echelon form, the maximum order corresponds to the maximum Kronecker index identified,

i.e., max(k1, . . . , kK). This yields a VARMA(pECH , qECH) where pECH = qECH = max(k1, . . . , kK).

Therefore, if the DGP is a VARMA(p, q) with p = q, the maximum orders are exactly equivalent,

however if p 6= q they are not equivalent. The SCM methodology attempts to separately iden-

tify the p and q orders, but the Echelon form attempts to identify the maximum of p and q, i.e.,

max(p, q).

As with the maximum order, the exact order (E.O.) results are not exactly equivalent either. The

exact order being specified correctly by the SCM procedures implies that all “autoregressive” and

“moving average” components of the model under consideration have been correctly specified.

That is, the procedure identified exactly the SCMs specified below each section of the table. In
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contrast, the exact order being specified correctly by the Echelon form methodology means that

the Kronecker indices, i.e., the maximum row degrees kr for r = 1, . . . , K , of the model have been

correctly identified.

To make these results comparable the third column of each panel under SCM, labeled kSC M shows

the percentage of times the scalar component methodology identifies correctly the Kronecker

indices of the model. This is then directly comparable with E.O. of the Echelon form. To clarify

how this information is extracted from the simulation results, we present the following example.

Example 8 Consider the processes of equations (18),
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For the first model the scalar component methodology attempts to identify three scalar compo-

nents of orders SCM(1, 1), SCM(1,0) and SCM(1, 0). The percentage of times the Kronecker

indices are correctly identified by the scalar component procedure is set by the minimum be-

tween the percentage of times the maximum order is correctly identified and the percentage of

times the procedure identifies no SCM(0,0). For example, for N = 200, the maximum order has

been correctly identified 98 percent of the time, i.e., the upper bound for identifying the cor-

rect Kronecker indices by the scalar component methodology is set to 98 percent. Moreover the

SCM process has identified zero SCM(0,0) 100 percent of the time (these figures are extracted

from Table 3.11 in Athanasopoulos 2005). This means that the scalar component methodology

identifies the exact Kronecker indices kSC M = 98 percent of the time. For the model of equation

(17), the SCMs are of orders SCM(1, 1), SCM(1, 1) and SCM(0,0). Looking again at the case

of N = 200, the upper bound for correct identification of the Kronecker indices is set by the

maximum order to 92 percent. The other bound is 94 percent which is the number of times the

process identified one SCM(0,0) (These figures are extracted from Table 3.13 in Athanasopoulos

2005). Therefore, the Kronecker indices have been identified correctly by the scalar component
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methodology kSC M = 92 percent of the time.

The results of Table 1, show that both methodologies perform quite well in identifying both the

maximum order and the exact order of the Kronecker indices. For sample sizes of 200 or more,

for all DGPs (with only a single exception) both methodologies discover the correct Kronecker

indices more than 90 percent of the time. The only exception is for the DGP of equation (16)

where the success rate is 83 percent of the Echelon form methodology.

Table 1: Monte Carlo simulation results for SCM versus Echelon form

PANEL A: DGP of equation (12) PANEL B: DGP of equation (13)

N SCM Echelon

M.O. E.O. kSC M M.O. E.O.

100 - - - - -

150 - - - - -

200 100 96 100 100 100

400 - - - - -

N SCM Echelon

M.O. E.O. kSC M M.O. E.O.

100 96 36 84 88 47

150 96 40 92 90 82

200 94 50 94 90 90

400 98 88 98 90 90

SCMs - (1,0)(1,0)(1,0) SCMs - (0,1)(0,1)(0,1)

PANEL C: DGP of equation (14) PANEL D: DGP of equation (15)

N SCM Echelon

M.O. E.O. kSC M M.O. E.O.

100 94 54 90 100 64

150 92 72 92 100 94

200 94 88 94 100 100

400 94 90 94 100 100

N SCM Echelon

M.O. E.O. kSC M M.O. E.O.

100 88 52 88 97 49

150 94 78 94 99 82

200 96 94 96 100 95

400 100 86 100 100 100

SCMs - (1,1)(0,0)(0,0) SCMs - (1,1)(1,0)(0,0)

PANEL E: DGP of equation (16) PANEL F: DGP of equation (17)

N SCM Echelon

M.O. E.O. kSC M M.O. E.O.

100 68 12 68 94 23

150 76 8 76 95 56

200 92 22 92 96 83

400 96 52 96 92 96

N SCM Echelon

M.O. E.O. kSC M M.O. E.O.

100 88 10 88 95 94

150 94 44 94 97 97

200 92 48 92 98 98

400 94 72 94 99 99

SCMs - (1,1)(0,1)(0,0) SCMs - (1,1)(1,1)(0,0)

PANEL G: DGP of equation (18) PANEL H: DGP of equation (19)

N SCM Echelon

M.O. E.O. kSC M M.O. E.O.

100 96 10 96 93 88

150 92 18 92 94 94

200 98 20 98 97 97

400 94 62 94 97 97

N SCM Echelon

M.O. E.O. kSC M M.O. E.O.

100 80 2 80 86 86

150 94 2 94 91 91

200 96 - 96 93 93

400 98 2 98 97 97

SCMs - (1,1)(1,0)(1,0) SCMs - (1,1)(1,1)(1,1)
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5 Empirical Results

5.1 Data

The data we employ in this paper are 40 monthly macroeconomic time series from March 1959

to December 1998 (i.e., N = 480 observations). These are extracted from the Stock and Watson

(1999) data set (see Appendix B). The series fall within eight general categories of economic

activity: (i) output and real income; (ii) employment and unemployment; (iii) consumption,

manufacturing, retail sales and housing; (iv) real inventories and sales; (v) prices and wages; (vi)

money and credit; (vii) interest rates; (viii) exchange rates, stock prices and volume. The data

are transformed in various ways as indicated in Appendix B. These transformations are exactly

the same as those in Stock and Watson (1999) and Watson (2001). We have selected seventy

trivariate systems which include at least one combination from each of the eight categories. For

example, at least one system from categories (i), (ii) and (iii), one system from (i), (ii) and (iv)

and so on. For each of the seventy data sets we identify and estimate VARMA models both via the

SCM methodology and the Echelon form methodology.

5.2 Forecast Evaluation Method

We have divided the data into two sub-samples: the estimation sample (March 1959 to December

1983 with N1 = 298 observations) and the hold-out sample (January 1984 to December 1998 with

N2 = 180 observations). We estimate each model using the estimation sample, i.e., all models are

estimated using y1 to yN1
. We then use each estimated model to produce a sequence of h-step-

ahead forecasts for h = 1 to 15. That is, with yN1
as the forecast origin, we produce forecasts

for yN1+1 to yN1+15. The forecast origin is then rolled forward one period, i.e., using observation

yN1+1, we produce forecasts for yN1+2 to yN1+16. We repeat this process to the end of the hold-out

sample. Therefore, for each model and each forecast horizon h, we have N2 − h+ 1 forecasts to

use for forecast evaluation purposes.

For each forecast horizon h, we consider two measures of forecasting accuracy. The first is the

determinant of the mean squared forecast error matrix, |MSF E|, and the second is the trace of

the mean squared forecast error matrix, t r(MSF E). Clements and Hendry (1993) show that the

|MSF E| is invariant to elementary operations on the forecasts of different variables at a single

horizon, but not invariant to elementary operations on the forecasts across different horizons.
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The t r(MSF E) is not invariant to either. In this forecast evaluation exercise, both of these mea-

sures are informative in their own right, as no elementary operations take place. The only ap-

parent drawback would be with the t r(MSF E), as the rankings of the models using this measure

would be affected by the different scales across the variables of the system. Therefore, we have

standardized all variables by their estimated standard deviation that is derived from the estima-

tion sample, making the variances of the forecast errors of the three series directly comparable.

This makes the t r(MSF E) a useful measure of forecast accuracy.

In order to evaluate the overall forecasting performance of the models over the seventy data sets,

we calculate two measures. Firstly, we calculate the percentage better (PB) measure which has

been used in forecasting competitions (see Makridakis and Hibon, 2000). This measure is the

percentage of times each model performs best in a set of competing models.

The second measure we compute is the average (over the seventy data sets) of the ratios of the

forecast accuracy measures for each model, relative to the VARMA. The reason that we compute

these ratios, as well as the PB counts, is that it is possible that one class of models is best more

than 50 percent of the time, say 80 percent, but that in all those cases other alternatives are

close to it. However, in the 20 percent of cases that this model is not the best, it may make

huge forecast errors. In such a case, a user who is risk averse would not use this model, as the

preferred option would be a less risky alternative. The average of the relative ratios provides us

with this additional information.

The relative ratios considered are the average of the relative ratios of the determinants of the

mean squared forecast error matrices defined as

RdMSF Eh =
1

M

M
∑

i=1

�

�MSF E(VARMAEchelon)i
�

�

�

�MSF E
�

VARMASC M
�

i

�

�

,

and the average of the relative ratios of the traces of the mean squared forecast error matrices

defined as

RtMSF Eh =
1

M

M
∑

i=1

t r
�

MSF E
�

VARMAEchelon
�

i

�

t r
�

MSF E
�

VARMASC M
�

i

� ,

where h is the forecast horizon, and M is the number of data sets considered.
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5.3 PB Results

The PB counts have been plotted in Figures 1 and 2 (the actual counts for all measures are

presented in Appendix C). In these figures there are two lines, one representing the VARMA

models specified by the scalar component methodology (labeled SCM) and the other representing

the VARMA models specified by the Echelon form methodology (labeled Echelon form). The

marked points on each line depict the percentage of times for which that class of models produces

the best forecast for that horizon between the two classes of models. For example, consider the

7 -step-ahead forecast performance. Figure 1 shows that the scalar component VARMA models

outperform the Echelon form models as approximately 70 percent of the time they produce lower

values of |MSF E|. In general both Figures 1 and 2 show that the scalar component VARMA

models produce the highest PB counts for all h=1 to 15-step-ahead forecast horizons for both

|MSF E| and t r(MSF E).

Forecast horizon (h)

%

2 4 6 8 10 12 14

20
40

60
80

SCM Echelon form

Figure 1: PB counts for |MSF E| for canonical SCM VARMA models versus canonical Echelon

form VARMA models

5.4 Relative Ratios Results

The results for the relative ratios have been tabulated, in Table 2. A first look at both panels

indicates that for all forecast horizons, for both the determinant and the trace of the MSF E, the

relative ratio measures are constantly greater than one. A relative ratio grater than one shows

that for that forecast horizon, the scalar component VARMA models perform better than the

Echelon form VARMA as the base model is the SCM, i.e., the Echelon forms produce a larger error

than the SCMs. For example, in Panel A of Table 2, for h= 4− steps ahead forecast horizon, the

SCMs improve on the forecasting error of the Echelon form models by 3.5 percent. This means

that on average, the SCMs produce approximately a 3 percent lower |MSF E| in comparison to
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Forecast horizon (h)
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Figure 2: PB counts for tr(MSF E) for canonical SCM VARMA models versus canonical Echelon

form VARMA models

the Echelon forms.

Table 2: Average relative ratios for the determinant and the trace of the MSFE matrices for

Echelon form VARMA models over SCM VARMA models

Panel A: RdMSF E of Echelon form over SCMs

Forecast Horizon (h) Av. of Forecast Horizon

1 2 3 4 8 12 15 1-4 1-8 1-12 1-15

Echelon 1.061 1.031 1.030 1.031 1.033 1.034 1.035 1.038 1.036 1.036 1.035

Panel B: RtMSF E of Echelon form over SCMs

Forecast Horizon (h) Av. of Forecast Horizon

1 2 3 4 8 12 15 1-4 1-8 1-12 1-15

Echelon 1.027 1.025 1.027 1.024 1.014 1.01 1.011 1.026 1.022 1.018 1.017

In Section 4 we conclude that a major difference between these two specifications is that the

SCM methodology potentially identifies restrictions over and above the necessary and sufficient

restrictions of the Echelon form. This can make SCMs more parsimonious than Echelon forms

which could be an advantage when it comes to out-of-sample forecasting. This could as well have

been the reason behind the superior performance of the SCMs in the forecast evaluation exer-

cise. In fact the Echelon form methodology presented by its various advocates (see for example

Lütkepohl and Poskitt 1996) includes a 4th step which involves the elimination of any insignificant

coefficients from the model via t -tests or χ2-tests to obtain optimal parsimony on the model.

We do not consider any further reduction of models here because each stage of such reductions

would require a FIML estimation and would be very time-intensive in such an extensive forecast-

ing exercise. The study of other reduction strategies that are more compatible with the procedure

of identification of Kronecker indices and are more amenable to automation, is the subject of our
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current research.

6 Conclusion and Direction for Future Research

This paper provides an in depth comparison of canonical VARMA models specified by scalar com-

ponents to VARMA models specified by the Echelon form methodology. We perform this compar-

ison on a theoretical, experimental and empirical level. At the theoretical level we show that the

canonical Echelon form is somewhat equivalent to the canonical SCM representation, with the

latter depicting greater flexibility as the maximum “autoregressive” order of the VARMA model

does not have to be the same as the order of the “moving average” component. These orders have

to be the same when specifying models via Kronecker indices in the canonical Echelon form. At

the experimental level, we show via Monte-Carlo experiments that both of these procedures work

very well in identifying the Kronecker indices of VARMA models.

Finally at the empirical level, the out-of-sample forecast evaluation between the two forms shows

that the SCMs outperformed the Echelon form models. In the discussion of these forecast results

we have acknowledged that our experimental design may have favored the scalar component

models as there is a sense in which the Echelon form models are over-parameterised and there-

fore need to be further refined. It is of interest to note that our results are consistent with the

principle of parsimony which favours models with fewer parameters as they tend to forecast

more accurately than over-parameterised representations. This highlights the need for further

research on refining the Echelon form VARMA models. During this research we have found that

the advantage of the Echelon form identification process is its simplicity in application, as we

have managed to fully automate this process. This is impossible to do with the scalar component

identification process which we have managed to partly automate but still needs some judgement

from its user. Therefore if we could find refinement processes for the Echelon form models that

we are able to automate, it could lead to bringing VARMA models to the applied econometrician

it as has happened with automatic univariate ARIMA modelling (see Mélard and Pasteels 2000,

and Gómez and Maravall 2001) and multivariate VAR modelling. Thus, a study examining alter-

native methods for refining the Echelon form and the effects of the refinement on the forecasting

performance of VARMA models would be of great interest.
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A Data Generating Processes considered in Section 4.1
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B Data Summary

This appendix lists the time series that are used in this paper. The series have been di-

rectly downloaded from Mark Watson’s web page (http://www.wws.princeton.edu/mwatson/). The

names (mnemonics) given to each series and the brief description following each series name

have been reproduced from Watson (2001). The superscript index on the series name is the

transformation code which corresponds to: (1) the level of the series, (2) the first difference
�

∆yt = yt − yt−1
�

and (3) the first difference of the logarithm, i.e., series transformed to growth

rates
�

100 ∗∆ ln yt
�

. The following abbreviations also appear in the brief data descriptions: SA

= seasonally adjusted; SAAR = seasonally adjusted at an annual rate; NSA = not seasonally

adjusted.

(i) Output and income

1. IP3 Industrial production: total index (1992=100,SA)

2. IPP3 Industrial production: products, total (1992=100,SA)

3. IPF3 Industrial production: final products (1992=100,SA)

4. IPC3 Industrial production: consumer goods (1992=100,SA)

5. IPUT3 Industrial production: utilities (1992=100,SA)

6. PMP1 NAPM production index (percent)

7. GMPYQ3 Personal income (chained) (series #52) (Bil 92$, SAAR)

(ii) Employment and hours

8. LHUR1 Unemployment rate: all workers, 16 years & over (%,SA)

9. LPHRM1 Avg. weekly hrs. of production wkrs.: mfg., manufacturing. (SA)

10. LPMOSA1 Avg. weekly hrs. of production wkrs.: mfg., overtime hrs. (SA)

11. PMEMP1 NAPM employment index (percent)
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(iii) Consumption, manufacturing and retail sales, and housing

12. MSMTQ3 Manufacturing & trade: total (mil of chained $1992 SA)

13. MSMQ3 Manufacturing & trade: manufacturing, total (mil of chained $1992 SA)

14. MSDQ3 Manufacturing & trade: manufacturing, durable goods (mil of chained $92 SA)

15. MSNQ3 Manufacturing & trade: manufacturing, nondurable goods (mil of chd. $92 SA)

16. WTQ3 Merchant wholesalers: total (mil of chained $1992 SA)

17. WTDQ3 Merchant wholesalers: durable goods total (mil of chained $1992 SA)

18. WTNQ3 Merchant wholesalers: nondurable goods total (mil of chained $1992 SA)

19. RTQ3 Retail trade: total (mil of chained $1992 SA)

20. RTNQ3 Retail trade: nondurable goods (mil of chained $1992 SA)

21. CMCQ3 Personal consumption expend - total (bil of chained $1992 SAAR)

(iv) Real inventories and inventory-sales ratios

22. IVMFGQ3 Inventories, business, manufacturing (mil of chained $1992 SA)

23. IVMFDQ3 Inventories, business durables (mil of chained $1992 SA)

24. IVMFNQ3 Inventories, business nondurables (mil of chained $1992 SA)

25. IVSRQ2 Ratio for manufacturing & trade: inventory/sales (chained $1992 SA)

26. IVSRMQ2 Ratio for manufacturing & trade: manufacturing inventory/sales ($87 SA)

27. IVSRWQ2 Ratio for manufacturing & trade: wholesaler; inventory/sales ($87 SA)

28. IVSRRQ2 Ratio for manufacturing & trade: retail trade; inventory/sales ($87 SA)

29. MOCMQ3 New orders (net) - consumer goods & materials ($1992 BCI)

30. MDOQ3 New orders, durable goods industries ($1992 BCI)

(v) Prices and wages

31. PMCP1 NAPM commodity prices index (percent)
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(vi) Money and credit quantity aggregates

32. FM2DQ3 Money supply - M2 in ($1992 BCI)

33. FCLNQ3 Commercial & industrial loans outstanding in ($1992 BCI)

(vii) Interest rates

34. FYGM32 Interest rate: US treasury bills, sec mkt, 3-MO. ( p.a. NSA)

35. FYGM62 Interest rate: US treasury bills, sec mkt, 6-MO. ( p.a. NSA)

36. FYGT12 Interest rate: US treasury const maturities, 1-YR. ( p.a. NSA)

37. FYGT102 Interest rate: US treasury const maturities, 10-YR. ( p.a. NSA)

38. TBSPR1 Term spread FYGT10-FYGT1

(viii) Exchange rates, stock prices and volume

39. FSNCOM3 NYSE common stock prices index: composite (12/31/65=50)

40. FSPCOM3 S&P’s common stock prices index: composite (1941-43=10)

C Percentage Better Counts (Raw Data)

Table 3: PB Counts for of VARMA models specified by the SCM methodology versus VARMA

models specified by the Echelon form methodology

PANEL A: Counts for the |MSF E| for SCM versus Echelon form

Forecast Horizon (h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SCM 67 63 60 60 60 60 66 60 66 64 60 61 61 64 66

Echelon 33a 37 40 40 40 40 34 40 34 36 40 39 39 36 34

PANEL B: Counts for the tr(MSF E) for SCM versus Echelon form

Forecast Horizon (h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SCM 67 63 64 67 67 66 67 63 60 59 60 56 59 59 61

Echelon 33a 37 36 33 33 34 33 37 40 41 40 44 41 41 39
aFigures are rounded to the nearest integer
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