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The tourism forecasting
competition

Abstract:

We evaluate the performance of various methods for forecasting tourism demand. The data used

include 366 monthly series, 427 quarterly series and 518 yearly series, all supplied to us by tourism

bodies or by academics who had used them in previous tourism forecasting studies. The forecasting

methods implemented in the competition are univariate and multivariate time series approaches, and

econometric models. This forecasting competition differs from previous competitions in several ways:

(i) we concentrate only on tourism demand data; (ii) we include approaches with explanatory variables;

(iii) we evaluate the forecast interval coverage as well as point forecast accuracy; (iv) we observe the

effect of temporal aggregation on forecasting accuracy; and (v) we consider the mean absolute scaled

error as an alternative forecasting accuracy measure.

Keywords: Tourism forecasting, ARIMA, exponential smoothing, time varying parameter model, dynamic

regression, autoregressive distributed lag model, vector autoregressions.



The tourism forecasting competition

1 Introduction

Over the past four decades, tourism has developed into one of the most rapidly growing global industries.

The World Tourism Organization (2008) reports that international tourist arrivals world-wide grew at a

rate of 6% in 2007, reaching nearly 900 million, compared to 800 million two years earlier. Both academic

interest and the tourism literature have grown, parallel to this growth in the industry, producing many

articles that model and forecast tourism flows between various countries. These articles vary immensely

in scope, modelling and forecasting techniques, and data types, lengths and frequencies. The three major

literature review articles that attempt to summarise these are Witt and Witt (1995), Li et al. (2005) and

Song and Li (2008). Despite the authors’ best efforts, the diversity of the studies has not led to a consensus

about the relative forecasting performance of commonly used methods when they are applied to tourism

data. In this paper we apply forecasting methods to a very broad collection of series within the field of

tourism. This allows us to draw conclusions for methods within this field, and also to contribute some

general observations and conclusions relevant to the broader field of forecasting.

Since the last of the M series of forecasting competitions was published (the M3 competition, see

Makridakis and Hibon, 2000), there have been no more major contributions to this line of research. In

this paper we take on the challenge of creating a forecasting competition that overcomes some of the

limitations highlighted by the commentators of the M3 competition (see Ord, 2001). For example, in

the M3 competition, 3003 series from various business and economic sectors were used. This was larger

than the number of series used in any previous study. However, the question of whether “bigger means

better” was raised by several commentators. Suggestions were made calling for mini-competitions along

the lines suggested by Fildes and Ord (2004), who proposed the use of a more homogeneous set of series.

In an effort to use a homogeneous set of series which are representative of some population, we use 366

monthly, 427 quarterly and 518 yearly series, all from the field of tourism. We present the data in Section

4. From such a set of series we intend to draw some general inferences on the modelling and forecasting

of tourism demand. We will also examine whether the results from previous competitions carry over to

this well-defined set of series.

According to the M3 competition results, one of the most accurate forecasting methods was Forecast

Pro (see Goodrich, 2000). This method was arguably the most accurate for seasonal data and was

second only to the Theta method (Assimakopoulos and Nikolopoulos, 2000) for non-seasonal data. The

overall disappointing performance of ARIMA-based methods led the authors to conclude that statistically

sophisticated methods do not necessarily produce more accurate forecasts than simpler ones. Like some

of those who commented on the M3, we challenge this conclusion in the context of forecasting tourism

demand. We evaluate forecasts from both Forecast Pro and the Theta method, as well as forecasts

from two newly proposed fully automated forecasting algorithms, one which identifies and estimates
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ARIMA models and another which identifies and estimates state space models that underly exponential

smoothing methods. We present these methods in Section 2 and evaluate their forecasting performance in

Section 5.1.

One of the issues we address is the effect of temporal aggregation on forecast accuracy. In Section 5.2,

the monthly series are aggregated to be quarterly, and the quarterly series are aggregated to be yearly.

Therefore, we can directly compare the accuracy of the forecasts made before and after aggregation.

The importance of producing statements of uncertainty when forecasting has long been undervalued in the

empirical forecasting literature. There is a gap in the literature between the methodological developments

in density forecasting (see, for example, Tay and Wallis, 2002; West, 2006) and the applied forecasting

papers that do not produce statements of uncertainty to accompany their point forecasts. For instance, a

significant limitation of all forecasting competitions to date has been the lack of assessment of whether the

forecasting methods can produce reliable forecast intervals. This is highlighted in the commentaries on the

M3 competition (see Armstrong, 2001; Goodrich, 2001; Koehler, 2001; Tashman, 2001). Not observing

the uncertainty associated with a point forecast can lead to a false sense of accuracy. Economic planning

based on forecast intervals can be very different to that based on mean or median forecasts. In Section

5.3 we attempt to fill this gap in the literature by also evaluating the forecast coverage probabilities of the

forecasting methods.

Using models with exogenous variables for policy analysis and forecasting is common in both the tourism

literature and the tourism industry. These are usually labeled as “causal” approaches, and take on various

functional forms (see Song and Witt, 2000, for a detailed exposition on their use within the tourism

literature). A major challenge in forecasting with this type of model is that once a satisfactory relationship

has been specified, the user needs to produce forecasts of the exogenous variables to be able to forecast

the variable of interest. For the first time in a large forecasting competition, we consider the forecasting

performance of such models. There are 98 quarterly and 128 yearly cases for which we have available the

explanatory variables that are typically used in the literature.

An alternative approach is to treat all of the variables as endogenous (Sims, 1980). This leads us to also

consider multivariate models in our forecasting competition, as was suggested by Granger (2001) and

Ord (2001). We present the econometric approaches and the methodologies we implement in Section 3.

The forecast performance of these models is evaluated in Section 5.4.

1.1 Literature review, rules and objectives

As we mentioned in the introduction, attempting to draw general conclusions from the existing tourism

literature through survey articles is very difficult. Papers vary in scope, data frequencies, modelling

4



The tourism forecasting competition

frameworks and estimation techniques, forecast evaluation rules (ex-post versus ex-ante for causal

models), and forecast horizons, and also in results and conclusions. In this section we establish various

rules that will be followed in order to achieve a degree of uniformity and fairness across the application

and evaluation of the forecasting methods. We also set some objectives and list the questions we ask in

this research.

Outline of rules:

• We aim to apply general modelling frameworks with objective and clearly stated decision rules.

• We aim to replicate, and hence evaluate, some of the typical modelling procedures both within and

outside the tourism literature.

• All out-of-sample values are used only for evaluating the forecasts generated by the competing

methods, never in the modelling stages.

• No intervention is applied to the pure time series methods in terms of one-off events causing possible

structural breaks. However, all such exogenous information is included in the causal approaches.

• All models are estimated once only, and only one set of forecasts is produced for each series.

• All forecasts of exogenous variables are ex-ante unless otherwise specified.

We should note that all forecasts from the causal approaches were generated by authors Song and Wu,

while all forecasts from the time series methods were produced by authors Athanasopoulos and Hyndman.

(See the acknowledgement in Section 7 for the Theta method forecasts.)

Summary of objectives:

• The rapid increase in the capacity of computers to store information has generated an abundance of

data across all types of industries. For example, Athanasopoulos et al. (2009) generated forecasts

for 117 tourism demand series (and that only includes Australian domestic tourism), disaggregated

only by selected geographical areas. In total, Tourism Australia generates forecasts for thousands of

series every quarter when considering inbound, outbound and domestic travel, as well as numerous

levels of disaggregation such as geographical regions, purpose of travel and so on. Hence, accurate

automatic forecasting procedures have become a necessity in order to take advantage of such a

plethora of information. We evaluate the performance of three fully automated algorithms (with no

intervention).

• ARIMA models have not proven as accurate as other forecasting methods, whether the model

identification is automated or implemented manually (refer to Fildes and Ord, 2004, and references

therein). In fact, Armstrong (2006) lists these as “tested areas with little gain in accuracy”. We

re-evaluate the forecasting performance of ARIMA models using a recently proposed algorithm that

has shown promising performance in smaller scale evaluations.
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• Fildes and Ord (2004) and Armstrong (2006) highlight the dominance of the damped trend method

in previous forecasting competitions. We evaluate what is gained or lost by considering aggregate

model selection procedures instead of implementing specific methods, considering forecasts from

both the Theta method and the damped trend method.

• One of the findings of Witt and Witt (1995) is that, for annual data, the Naïve method seems to

produce the most accurate forecasts (especially for one year ahead). We revisit this result and also

examine whether we can aid the performance of forecasting methods by using higher frequency

data.

• Previous studies have found the forecast intervals obtained to be too narrow; hence, the actual

values fall outside the empirical forecast intervals more often than they should (see for example

Makridakis and Winkler, 1989; Chatfield, 2001; Hyndman et al., 2002). Makridakis et al. (1987)

conclude that the lower the frequency of the data, the more the coverage probability of the forecast

intervals is over-estimated. We re-examine this conclusion by evaluating the forecast interval

coverages for the three automated forecasting algorithms for monthly, quarterly and yearly data.

• Allen and Fildes (2001) (who collated the results from Fildes 1985 and Armstrong 1985) found

that models with exogenous variables forecast better than extrapolating methods when ex-post

forecasts are used for the regressors. A surprising result from their study is that the forecasting

performance of causal models seems to improve when using ex-ante, rather than ex-post, forecasts.

In the tourism literature, Song et al. (2003a) found that econometric models perform better than

the no-change, ARIMA and VAR models, using ex-post forecasts. In contrast, Witt and Witt (1995)

concluded that causal models are outperformed by the no-change model, regardless of whether

ex-ante or ex-post forecasts are used. We evaluate the performance of models with explanatory

variables, as implemented in the tourism literature, in a forecasting competition setting in which all

out-of-sample values are ex-ante forecasts. We then revisit this result with ex-post forecasts for the

regressors in order to evaluate the best possible result from using causal models in a scenario-based

forecasting framework.

• Despite strong warnings about its limitations (see Hyndman and Koehler, 2006), the MAPE remains

the most commonly used forecast error measure among both academics and practitioners (see Fildes

and Goodwin, 2007), and the tourism forecasting literature is no exception (see Li et al., 2005;

Song and Li, 2008). Here we investigate in detail the forecasting results based on the MAPE and

the effect that some of its limitations may have on the results. We also consider the MASE (mean

absolute scaled error), which was proposed by Hyndman and Koehler (2006) in order to overcome

some of the limitations of the MAPE.
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2 Pure time series approaches

In this section we present the details of the three fully automated forecasting procedures and the two

method-specific procedures that we have implemented in this paper.

2.1 ARIMA forecasting

A non-seasonal ARIMA(p, d, q) process is given by

φ(B)(1− Bd)yt = c+ θ(B)εt ,

where {εt} is a white noise process with mean zero and variance σ2, B is the backshift operator, and φ(z)

and θ (z) are polynomials of orders p and q respectively. To ensure causality and invertibility, it is assumed

that φ(z) and θ(z) have no roots for |z| < 1 (Brockwell and Davis, 1991). If c 6= 0, there is an implied

polynomial of order d in the forecast function.

The seasonal ARIMA(p, d, q)(P, D,Q)m process is given by

Φ(Bm)φ(B)(1− Bm)D(1− B)d yt = c+Θ(Bm)θ(B)εt ,

where Φ(z) and Θ(z) are polynomials of orders P and Q respectively, each containing no roots inside the

unit circle. If c 6= 0, there is an implied polynomial of order d + D in the forecast function (Box et al.,

2008, pp. 381–382).

The main task in automatic ARIMA forecasting is selecting an appropriate model order, that is, the values

of p, q, P, Q, D and d. We use the automatic model selection algorithm that was proposed by Hyndman

and Khandakar (2008), which is summarised below.

Diebold and Kilian (2000) find strong evidence that unit root pretesting for selecting the level of differenc-

ing d improves the forecasting accuracy. For non-seasonal data (we treat yearly data as non-seasonal) we

consider ARIMA(p, d, q) models, where d is selected based on successive KPSS unit-root tests (Kwiatkowski

et al., 1992). That is, we test the data for a unit root; if the null hypothesis of no unit root is rejected (at

the 5% significance level), we test the differenced data for a unit root; and so on. We stop this procedure

the first time we fail to reject the null hypothesis.

For seasonal data we consider ARIMA(p, d, q)(P, D,Q)m models, where m is the seasonal frequency. Unlike

Hyndman and Khandakar (2008), we set D = 1 for all seasonal data (we treat all monthly and quarterly

data as seasonal), as we find that their suggested seasonal unit root test does not help in selecting the

appropriate order of differencing (Osborn et al., 1999, reached a similar conclusion for seasonal unit root
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testing). We then choose d by applying successive KPSS unit root tests to the seasonally differenced data.

Once the value of d has been selected, we proceed to select the values of p, q, P and Q by minimizing the

AIC. We allow c 6= 0 for models where d + D < 2.

Once d and D are known, we select the orders p, q, P and Q via Akaike’s Information Criterion:

AIC=−2 log(L) + 2(p+ q+ P +Q+ k),

where k = 2 if c 6= 0 and 1 otherwise (the other parameter being σ2), and L is the maximized likelihood

of the model fitted to the differenced data (1− Bm)D(1− B)d yt . The likelihood of the full model for yt is

not actually defined, and so the values of the AIC for different levels of differencing are not comparable.

There are a large number of potential ARIMA models—too many to allow us to estimate every possible

combination of p, q, P and Q. Instead, we need a way to efficiently traverse the space of models in order

to arrive at the model with the lowest AIC value. Hyndman and Khandakar (2008) proposed the following

step-wise algorithm.

Step 1: Try four possible models to start with:

• ARIMA(2, d, 2) if m= 1 and ARIMA(2, d, 2)(1, D, 1) if m> 1.

• ARIMA(0, d, 0) if m= 1 and ARIMA(0, d, 0)(0, D, 0) if m> 1.

• ARIMA(1, d, 0) if m= 1 and ARIMA(1, d, 0)(1, D, 0) if m> 1.

• ARIMA(0, d, 1) if m= 1 and ARIMA(0, d, 1)(0, D, 1) if m> 1.

If d + D ≤ 1, these models are fitted with c 6= 0. Otherwise, set c = 0. Of these four models,

select the one with the smallest AIC value. This is called the “current” model, and is denoted by

ARIMA(p, d, q) if m= 1 or ARIMA(p, d, q)(P, D,Q)m if m> 1.

Step 2: Consider up to thirteen variations on the current model:

• where one of p, q, P and Q is allowed to vary from the current model by ±1;

• where p and q both vary from the current model by ±1;

• where P and Q both vary from the current model by ±1;

• where the constant c is included if the current model has c = 0 or excluded if the current

model has c 6= 0.

Whenever a model with a lower AIC is found, it becomes the new “current” model and the procedure

is repeated. This process finishes when we cannot find a model close to the current model with a

lower AIC.
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There are several constraints on the fitted models in order to avoid problems with convergence or near

unit roots (see Hyndman and Khandakar, 2008, for details). The algorithm is guaranteed to return a

valid model because the model space is finite and at least one of the starting models will be accepted (the

model with no AR or MA parameters). The selected model is then used to produce forecasts and forecast

intervals.

2.2 Innovations state space models for exponential smoothing

Ord et al. (1997), Hyndman et al. (2002) and Hyndman et al. (2005) (amongst others) have developed

a statistical framework for the exponential smoothing methods presented in Table 1. The statistical

framework incorporates stochastic models, likelihood calculations, forecast intervals and procedures

for model selection. We employ this framework for building innovations state space models. The

aforementioned papers have shown that these models generate optimal forecasts for all exponential

smoothing methods (including non-linear methods).

The classification of the exponential smoothing methods in Table 1 originated with Pegels (1969) and was

expanded by Gardner (1985), Hyndman et al. (2002) and Taylor (2003). Each of the fifteen methods listed

has a trend and a seasonal component. Hence, cell (N,N) describes the simple exponential smoothing

method, cell (A,N) Holt’s linear method, cell (A,A) Holt-Winters’ additive method, and so on.

Table 1: Classification of exponential smoothing methods.

Seasonal component
N A M

Trend component (None) (Additive) (Multiplicative)
N (None) N,N N,A N,M
A (Additive) A,N A,A A,M
Ad (Additive damped) Ad,N Ad,A Ad,M
M (Multiplicative) M,N M,A M,M
Md (Multiplicative damped) Md,N Md,A Md,M

For each method, there are two possible state space models: one corresponding to a model with additive

errors and the other to a model with multiplicative errors. Table 2 presents the fifteen models with additive

errors and their forecast functions. The multiplicative error models can be obtained by replacing εt with

µtεt (for further details see Hyndman et al., 2008). We select models by minimising the AIC amongst all

models (both additive and multiplicative). We then compute forecast intervals from the selected models

using analytic formulae (Hyndman et al., 2008, Chapter 6), or by simulation if the analytic formulae are

not available.
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Table 2: State space equations for each additive error model in the classification. Multiplicative error models
are obtained by replacing εt with µtεt . In each case, `t denotes the level of the series at time
t, bt denotes the slope at time t, st denotes the seasonal component of the series at time t, and
m denotes the number of seasons in a year; α,β ,γ and φ are constants with 0 < α,γ,φ < 1
and 0 < β < α; ŷt+h|t denotes the h-step-ahead forecast based on all of the data up to time t;
φh = φ+φ2+ · · ·+φh; ŷt+h|t denotes a forecast of yt+h based on all the data up to time t; and
h+m =

�

(h− 1) mod m
�

+ 1.

Trend Seasonal component
component N A M

(none) (additive) (multiplicative)

N µt = `t−1 µt = `t−1 + st−m µt = `t−1st−m

(none) `t = `t−1 +αεt `t = `t−1 +αεt `t = `t−1 +αεt/st−m

st = st−m + γεt st = st−m + γεt/`t−1

ŷt+h|t = `t ŷt+h|t = `t + st−m+h+m
ŷt+h|t = `tst−m+h+m

µt = `t−1 + bt−1 µt = `t−1 + bt−1 + st−m µt = (`t−1 + bt−1)st−m

A `t = `t−1 + bt−1 +αεt `t = `t−1 + bt−1 +αεt `t = `t−1 + bt−1 +αεt/st−m

(additive) bt = bt−1 + βεt bt = bt−1 + βεt bt = bt−1 + βεt/st−m

st = st−m + γεt st = st−m + γεt/(`t−1 + bt−1)
ŷt+h|t = `t + hbt ŷt+h|t = `t + hbt + st−m+h+m

ŷt+h|t = (`t + hbt)st−m+h+m

µt = `t−1 +φbt−1 µt = `t−1 +φbt−1 + st−m µt = (`t−1 +φbt−1)st−m

Ad `t = `t−1 +φbt−1 +αεt `t = `t−1 +φbt−1 +αεt `t = `t−1 +φbt−1 +αεt/st−m

(additive bt = φbt−1 + βεt bt = φbt−1 + βεt bt = φbt−1 + βεt/st−m

damped) st = st−m + γεt st = st−m + γεt/(`t−1 +φbt−1)
ŷt+h|t = `t +φh bt ŷt+h|t = `t +φh bt + st−m+h+m

ŷt+h|t = (`t +φh bt)st−m+h+m

µt = `t−1 bt−1 µt = `t−1 bt−1 + st−m µt = `t−1 bt−1st−m

M `t = `t−1 bt−1 +αεt `t = `t−1 bt−1 +αεt `t = `t−1 bt−1 +αεt/st−m

(multiplicative) bt = bt−1 + βεt/`t−1 bt = bt−1 + βεt/`t−1 bt = bt−1 + βεt/(st−m`t−1)
st = st−m + γεt st = st−m + γεt/(`t−1 bt−1)

ŷt+h|t = `t bh
t ŷt+h|t = `t bh

t + st−m+h+m
ŷt+h|t = `t bh

t st−m+h+m

µt = `t−1 bφt−1 µt = `t−1 bφt−1 + st−m µt = `t−1 bφt−1st−m

Md `t = `t−1 bφt−1 +αεt `t = `t−1 bφt−1 +αεt `t = `t−1 bφt−1 +αεt/st−m

(multiplicative bt = bφt−1 + βεt/`t−1 bt = bφt−1 + βεt/`t−1 bt = bφt−1 + βεt/(st−m`t−1)
damped) st = st−m + γεt st = st−m + γεt/(`t−1 bt−1)

ŷt+h|t = `t bφh
t ŷt+h|t = `t bφh

t + st−m+h+m
ŷt+h|t = `t bφh

t st−m+h+m

We label this method ETS in the tables that follow. The three letters are an abbreviation of

“ExponenTial Smoothing”, and also specify the three components of the stochastic model: Error, Trend

and Seasonality. For example, an ETS(A,A,A) is a Holt-Winters’ additive method with an additive error

component.

2.3 Forecast Pro

Forecasts from several commercial software packages were considered in the M3 competition. Forecast Pro

was arguably the most accurate commercial package, as well as having the most consistent performance
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across all data. In this paper we evaluate forecasts from the Forecast Pro Extended Edition, Version 4. The

forecasting method choice is set to “expert selection”. The software evaluates the forecasting performance

of several methods and selects amongst them. Given the nature of the data we consider in this paper,

the methods considered by the Forecast Pro algorithm were exponential smoothing, ARIMA models and

simple moving averages.

Although the finer details of the model identification, estimation and selection are not revealed, Goodrich

(2000) presents some details. Exponential smoothing methods are fitted by minimising the in-sample sum

of squared errors. The final method is selected by minimising the BIC, supplemented by some logical rules.

With ARIMA models, a general-to-specific approach is followed. First a non-parsimonious state space

model is estimated, and is used in turn to obtain approximate parameter estimates for a large number of

potential ARIMA models. The final model is selected by the BIC (again supplemented by some logical

rules), and then re-estimated using unconditional least squares.

This method is labeled ForePro in the tables that follow. For further details, refer to Goodrich (2000) or to

www.forecastpro.com.

2.4 Theta method

One method that performed extremely well in the M3 competition (Makridakis and Hibon, 2000) was the

Theta method (Assimakopoulos and Nikolopoulos, 2000), which was further analysed and described by

Hyndman and Billah (2003). For a given value of θ , a time series yt is transformed to x t,θ (dubbed a

“theta line”) through

x t,θ = aθ + bθ (t − 1) + θ yt , t = 1, . . . , n.

Estimates of aθ and bθ are obtained by minimising
∑n

t=1[yt − x t,θ ]2. As in the M3 competition, forecasts

are obtained by averaging two theta lines using θ = 0 (which gives a regression time trend) and θ = 2. The

theta line for θ = 2 has been extrapolated using simple exponential smoothing for which the smoothing

parameter has been chosen by minimising the in-sample one-step-ahead mean squared error, with the

starting value for the initial level set equal to y1.

Hyndman and Billah (2003) show that in this case the forecasts obtained by the Theta method are

equivalent to those generated by simple exponential smoothing with an added trend and a constant,

where the slope of the trend is half that of a fitted trend line through the original time series yt .

All monthly and quarterly data are first seasonally adjusted by extracting a seasonal component using

classical multiplicative decomposition. The seasonal component is then added to the forecasts generated

11
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by the Theta method. The method is implemented using Delphi 7.0 for Windows XP. The forecasting

software is TIFIS CM3, which is a non-commercial Forecasting Support System.

2.5 Damped trend

As was highlighted in the introduction, the damped trend method has been singled out from previous

forecasting competitions as performing very well. In this paper we estimate the additive damped trend

model ETS(A,Ad ,A) for monthly and quarterly data and ETS(A,Ad ,N) for yearly data, as presented in

Table 2.

2.6 Naïve approaches

We produce forecasts from two naïve approaches which form natural benchmarks. For yearly data,

we use ŷt+h|t = yt . Hence, all forecasts are equal to the most recent observation. This method is

labeled Naïve in the tables that follow. For monthly and quarterly data, we use ŷt+h|t = yt−m+hm
, where

hm = [(h− 1) mod m] + 1, with m = 4 for quarterly data and m = 12 for monthly data. Hence, all

forecasts for seasonal data are equal to the most recent observation of the corresponding season. This

method is labeled SNaïve, standing for “Seasonal Naïve”, in the tables that follow.

3 Models with explanatory variables

The general tourism demand function in the tourism modelling and forecasting literature (e.g., Song and

Witt, 2000) takes the form:

y i
t = f (g i

t , pi
t , pis

t , dummy variables,εt), (1)

where y i
t is the demand variable measured by tourist arrivals from origin country i to (or expenditure in)

the destination country; g i
t is the income level of origin country i in real terms; pi

t represents the relative

cost of living in the destination country for tourists from origin country i, measured as the relative CPI of

the destination country to that of the origin country in constant prices, adjusted by the relevant exchange

rates; pis
t represents tourism prices in substitute destinations, and is measured by a weighted average

price index of a set of alternative destinations to the destination country. For a detailed exposition on the

price variables, refer to Wong et al. (2007) for a case study with Hong Kong as the destination country.

The dummy variables include seasonal dummies and one-off events such as terrorist attacks, epidemics,

or other events that relate to particular regions, and εt is a random error term.
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The models we consider are special cases of

yt = β0+
k
∑

j=1

p j
∑

i=0

β j,i x j,t−i +
p
∑

i=1

φi yt−i + εt , (2)

where yt is the tourism demand variable (now dropping the superscripts i and s for brevity); x j,t are

the exogenous variables included in our model for j = 1, . . . , k; p is the maximum number of lags of the

regressand and p j the maximum number of lags of the regressors; and εt is the error process, which is

assumed to be white noise.

3.1 Autoregressive distributed lag model (ADLM)

In the initial specification of the general ADLM given by equation (2), all possible variables are included.

For quarterly data, p j = p = 4, and for annual data, p j = p = 1. This unrestricted specification of the

ADLM is an error correction model which has been considered in many previous tourism studies (see

Song and Witt, 2003, for further details). In the tables that follow, this specification is labeled as ADLM.

The model is refined by implementing the dynamic econometric modelling technique known as the

general-to-specific approach (as advocated by Hendry, 1986). The least significant regressor (i.e., the

one with the largest p-value) is deleted from the model, then the simplified model is re-estimated. This

process is repeated until the coefficients of all of the remaining regressors are statistically significant

at the 5% significance level (one-tailed). The final model should be simple in structure and display no

autocorrelation or heteroscedasticity, and preferably no non-normality either. In the tables that follow,

this specification is labeled as ADLMR.

Setting p = p j = 0, equation (2) gives a static regression specification which has been considered in many

previous tourism forecasting studies (refer to the literature reviews by Li et al., 2005; Song and Li, 2008).

We label this specification as SR in the tables that follow. As alternatives to this static specification, we

also consider a static regression fitted to the differenced data, which we label ∆SR. In addition, for the

quarterly data we consider a static regression fitted to the seasonally differenced data, which we label as

∆mSR.

In our attempt to be as objective and general as possible within a static regression framework, one might

argue that we are missing features of the data that could be captured and exploited through a more

rigorous modelling framework, resulting in more accurate forecasts. In an effort to achieve this, we have

also implemented the following regression framework, which we label DR (Dynamic Regression) in the

tables that follow.
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Starting from a static regression in each case, we examine whether any unexploited dynamics remain

by observing the estimated autocorrelation and partial autocorrelation functions of the residuals. We

first account for unit roots and seasonal unit roots by taking first and/or seasonal differences of all of the

variables, guided by the magnitude of the first order and seasonal autocorrelations. Then, any dynamics

left over in the residuals are modelled via ARMA specifications, guided by the autocorrelation and partial

autocorrelation functions. If the choice between AR and MA components becomes arbitrary (as either one

or a combination of them completely captures all dynamics), then this choice is made by minimising the

AIC.

3.2 Time varying parameter (TVP) model

The TVP model is used in order to allow the coefficient of the explanatory variables to change over time.

This method is more adaptable when the assumption of constant coefficients is not valid, and structural

changes in econometric models need tackling. The TVP approach uses a recursive estimation process in

which the most recent information is weighted more heavily than the information obtained in the distant

past. With the restriction p = 0 being imposed on the coefficients in equation (2), the TVP model can be

expressed in state space form as:

yt = β
′
txt + εt (3)

βt =Φβt−1+ωt , (4)

where xt is a (k + 1)-dimensional vector of the explanatory variables (including a column of ones

for the intercept); βt is a (k + 1)-dimensional vector of parameters and is known as the state vector;

εt ∼ NID(0,σ2
ε) refers to the temporary disturbance; and ωt ∼ NID(0,Σω) is the permanent disturbance.

The coefficient matrix Φ is initially assumed to be known.

Equation (3) is called the measurement or system equation, while equation (4) is known as the transition

or state equation, which is used to simulate the way in which the parameters in the system equation

evolve over time. If Φ is an identity matrix, the transition equation becomes a random walk process:

βt = βt−1+ωt . (5)

In most cases, the random walk process is adequate for capturing the parameter changes in various

economic models (see, for example, Bohara and Sauer, 1992; Kim, 1993; Greenslade and Hall, 1996;

Song and Witt, 2000). We adopt this approach for both quarterly and annual data. For quarterly data,

seasonal dummies are also included to capture the seasonal component in the data. Equations (3) and (4)
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are estimated using the Kalman filter (for details of the estimation procedure, see Harvey, 1989). In the

tables that follow, we label this specification as TVP.

In order to forecast tourism demand using frameworks that incorporate exogenous variables, we must

first produce forecasts for each of the exogenous variables. As is typical in the tourism literature (see Song

et al., 2003b; Song and Wong, 2003), we forecast these using exponential smoothing methods. For the

quarterly data, we apply Holt-Winters’ additive method. For the yearly data, we have either aggregated

the quarterly forecasts (where possible) or we apply Holt’s linear method.

3.3 Vector autoregressive (VAR) model

In contrast to the previous modelling frameworks, we now treat all of the variables in equation (1) as

endogenous:






yt

xt






=Φ0+Φ1







yt−1

xt−1






+ · · ·+Φp







yt−p

xt−p






+ εt , (6)

where εt ∼ NID(0,Σε). This framework was first suggested by Sims (1980), and has been the main

workhorse in multivariate economic modelling and forecasting ever since. It is also popular in the tourism

literature (see Witt et al., 2003; Song and Witt, 2006). A great advantage of this approach in terms of the

effort required for forecasting is that the system generates forecasts for all of the variables. Hence, we do

not need to generate forecasts separately for the x variables.

We consider three sets of forecasts from the following general approaches.

1. VAR models for all variables in levels. We choose the lag length of the model by minimising the AIC.

We label these as VAR(AIC) in the tables that follow. The maximum lag lengths we consider are 4

for quarterly data and 2 for annual data. We also consider the largest of these models: VAR(4) for

quarterly data and VAR(2) for annual data. This ensures that at least for quarterly data, the VAR

models contain up to and including the seasonal lag.

2. Reduced VAR models for the growth rates of all variables. We first calculate the growth rates of all

variables by considering the first differences of the natural logarithms. The growth rate of variable

zt is calculated as 100 ln(zt/zt−1). For quarterly data, we select the lag length by minimising the

AIC with a maximum lag order of 4. For yearly data we set the lag length to 1, due to the short

samples. All insignificant coefficients (at the 5% significance level) are then restricted to zero. We

impose the restrictions one at a time by eliminating the parameter with the lowest t-statistic at each

step. The restricted VARs are estimated using the seemingly unrelated regression estimation method

(Zellner, 1963), as not all equations include the same regressors. Athanasopoulos and Vahid (2008)

15



The tourism forecasting competition

found this type of VAR model to be successful in forecasting macroeconomic variables. We label

them as ∆VARR(AIC) in the tables that follow.

4 Data and forecast error measures

The data we use include 366 monthly series, 427 quarterly series and 518 yearly series. They were

supplied by both tourism bodies (such as Tourism Australia, the Hong Kong Tourism Board and Tourism

New Zealand) and various academics, who had used them in previous tourism forecasting studies (please

refer to Section 7 for acknowledgements and details of the data sources and availability). Descriptive

statistics for the data are shown in Table 3.

Table 3: Descriptive statistics of the data

Monthly Quarterly Yearly
Total no. of series 366 427 518

mean length 298 99 24
median length 330 110 27

min length 91 30 11
max length 333 130 47

No. of series 74 125 112
(No. of observations) (≤ 200) (≤ 100) (≤ 20)

18 302 375
(201–300) (> 100) (21–30)

264 31
(>300) (>30)

A subset of these series was used for evaluating the forecasting performance of methods that use

explanatory variables. There were 93 quarterly series and 128 yearly series for which we had explanatory

variables available.

For each series we split the data into a test sample and a hold-out sample which was hidden from all of the

co-authors. For each monthly series, the hold-out sample consisted of the 24 most recent observations; for

quarterly data, it was the last 8 observations; and for yearly data it consisted of the final 4 observations.

Each method was implemented (or trained) on the test sample, and forecasts were produced for the

whole of the hold-out sample for each series. The forecasts were then compared to the actual withheld

observations.

For each forecast horizon h, we first consider the percentage better (PB) measure (as in Makridakis and

Hibon, 2000). The PB shows the percentage of times that each method produces more accurate forecasts

than SNaïve for monthly and quarterly data, and than Naïve for yearly data.
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We also consider three alternative forecast error measures: the mean absolute percentage error measure

(MAPE)

MAPEh =
1

S

S
∑

s=1

�

�

�

�
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y s
h− ŷ s

h

y s
h
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,

and two scaled error measures suggested by Hyndman and Koehler (2006): the mean absolute scaled

error (MASE)

MASEh =
1

S

S
∑

s=1

ASEs
h,

and the median absolute scaled error (MdASE)

MdASEh =median(ASEs
h),

where S is the number of series and

ASEs
h =
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y s
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5 Results

5.1 Time series forecasting results

The tables that follow present the PB, MAPE, MASE and MdASE results. The columns labeled

‘Average 1 − h’ show the average forecast error measure over the forecast horizons 1 to h. The last

column of each table, labeled ‘Average rank,’ shows the average ranking for each forecasting method over

all forecast horizons in the hold-out sample.

To assist in evaluating the forecasting performance of the methods, we consider three aspects of the

results: (i) the average rankings of the methods over all forecast horizons, i.e., the last column in each

table; (ii) the rankings of the methods for the average error measures over the subsets 1−−h considered

in each case; and (iii) the performance of the methods for h= 1 step ahead. These aspects are considered

in no particular order of importance, and lead us to some general conclusions.

Monthly data

The results for monthly data are presented in Table 4, and are summarized as follows:

• Forecast Pro, ARIMA and ETS consistently forecast more accurately than SNaïve.
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• When considering the MAPE, Forecast Pro produces the most accurate forecasts, but when consider-

ing the MASE, the ARIMA methodology is more accurate.

• The Theta method and the Damped trend method seem to be inferior to the other methods for

forecasting monthly data.

• However, the Damped trend method is much more accurate than the Theta method and SNaïve for

one-step-ahead forecasting.

Quarterly data

A summary of the results for quarterly data presented in Table 5:

• Forecast Pro and ARIMA consistently forecast better than SNaïve.

• The Damped trend method forecasts quarterly data extremely well. It is consistently in the top two

methods, regardless of the forecast error measure used.

• When it is applied to quarterly data, the Theta method is still generally outperformed by SNaïve.

• SNaïve seems to produce forecasts which are more accurate than those of any of the other methods

for the seasonal horizons (i.e., h = 4 and h = 8). Even when considering the MdASE, SNaïve

forecasts more accurately than ETS and ARIMA (though only marginally).

Yearly data

A summary of the results for yearly data which are presented in Table 6:

• The Theta method is the only method that is competitive to Naïve. When considering the MASE, it

forecasts more accurately than Naïve.
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Table 4: Forecast accuracy measures for monthly data

Method Forecast horizon (h) Average Average
1 2 3 6 12 18 24 1–3 1–12 1–24 rank

PB relative to SNaïve

ARIMA 61.48 63.11 58.20 55.46 53.01 53.01 58.20 60.93 57.10 56.96 2.00
ForePro 57.92 62.30 59.02 53.28 52.73 52.19 55.46 59.74 56.17 56.01 2.33
ETS 53.55 59.02 58.74 56.28 53.28 50.27 51.09 57.10 54.94 54.63 3.00
Theta 49.18 53.83 49.45 52.19 51.64 54.92 55.46 50.82 51.68 53.19 3.67
Damped 58.20 61.20 55.46 48.09 50.27 43.99 54.10 58.29 52.80 53.20 3.79

MAPE

ForePro 16.75 16.22 17.17 17.32 20.54 17.11 23.27 16.71 18.38 19.91 1.46
ETS 17.86 17.30 18.30 20.89 20.44 19.74 23.65 17.82 19.67 21.15 2.92
ARIMA 17.38 17.65 18.45 19.13 21.09 18.02 24.29 17.83 19.37 21.13 3.17
Theta 19.29 20.11 20.30 20.20 21.02 18.50 22.51 19.90 21.02 22.11 4.21
SNaïve 19.89 21.56 20.64 20.94 21.09 19.97 22.30 20.70 21.38 22.56 4.54
Damped 17.90 19.03 22.25 26.53 20.70 24.19 22.35 19.73 22.30 23.47 4.71

MASE

ARIMA 1.00 1.16 1.28 1.29 1.07 1.68 1.45 1.15 1.21 1.38 1.67
ForePro 1.02 1.17 1.25 1.30 1.12 1.69 1.54 1.14 1.22 1.40 2.25
ETS 1.19 1.26 1.32 1.40 1.14 1.88 1.61 1.26 1.30 1.49 3.75
SNaïve 1.23 1.43 1.40 1.47 1.09 1.78 1.48 1.35 1.37 1.54 4.33
Theta 1.35 1.50 1.71 1.43 1.15 1.73 1.48 1.52 1.42 1.55 4.33
Damped 1.08 1.36 1.67 1.71 1.08 2.19 1.47 1.37 1.47 1.66 4.67

MdASE

ARIMA 0.78 0.89 1.02 1.01 0.77 1.13 1.09 0.90 0.90 1.02 2.71
ForePro 0.82 0.86 0.83 0.95 0.85 1.14 1.12 0.84 0.89 1.01 2.88
ETS 0.89 0.87 0.91 0.96 0.82 1.23 1.19 0.89 0.91 1.03 3.13
Theta 0.95 0.94 1.01 0.93 0.85 1.12 1.17 0.97 0.96 1.06 3.50
Damped 0.78 0.93 0.98 1.19 0.81 1.51 1.08 0.90 0.98 1.11 4.00
SNaïve 1.01 1.18 1.05 1.05 0.85 1.21 1.13 1.08 1.02 1.14 4.79
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Table 5: Forecast accuracy measures for quarterly data

Method Forecast horizon (h) Average Average
1 2 3 4 6 8 1–4 1–8 rank

PB relative to SNaïve

Damped 62.06 60.66 54.80 52.69 67.68 54.57 57.55 58.02 1.50
ForePro 62.76 55.74 52.69 52.22 60.42 52.69 55.85 55.91 2.75
ARIMA 62.30 58.08 52.22 49.18 57.38 52.46 55.44 56.15 2.75
Theta 53.40 51.52 49.65 48.48 59.72 54.33 50.76 53.45 3.88
ETS 60.89 52.46 53.40 47.78 57.38 50.82 53.63 53.81 4.00

MAPE

ForePro 11.78 12.38 13.99 14.21 15.05 22.90 13.09 15.72 2.63
Damped 11.91 11.68 14.85 14.21 13.83 22.28 13.16 15.56 3.13
ETS 11.73 12.59 13.70 14.78 15.88 24.01 13.20 16.05 3.25
SNaïve 13.95 14.79 14.41 13.61 18.02 21.15 14.19 16.46 3.75
Theta 13.89 13.90 14.47 15.07 15.24 21.71 14.33 16.15 3.88
ARIMA 12.81 12.72 14.67 14.79 16.13 22.21 13.75 16.23 4.38

MASE

ARIMA 1.10 1.30 1.18 1.24 1.80 1.80 1.21 1.47 2.63
Damped 1.11 1.18 1.21 1.23 1.60 1.81 1.18 1.43 2.63
ForePro 1.13 1.29 1.16 1.22 1.79 1.86 1.20 1.48 2.88
SNaïve 1.34 1.45 1.22 1.18 2.08 1.79 1.30 1.59 4.00
Theta 1.47 1.43 1.22 1.28 1.74 1.79 1.35 1.56 4.13
ETS 1.19 1.36 1.17 1.30 1.96 1.99 1.26 1.58 4.75

MdASE

Damped 0.92 0.93 0.90 0.89 1.12 1.45 0.91 1.08 2.75
Theta 1.04 0.99 0.88 0.92 1.26 1.34 0.96 1.11 2.88
ARIMA 0.87 1.01 0.86 0.93 1.31 1.45 0.92 1.11 3.00
ForePro 0.83 1.00 0.85 0.91 1.39 1.52 0.90 1.14 3.63
ETS 0.90 1.01 0.81 0.94 1.34 1.50 0.92 1.14 4.25
SNaïve 1.15 1.08 0.90 0.92 1.57 1.39 1.01 1.21 4.50
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Table 6: Forecast accuracy measures for yearly data

Method Forecast horizon (h) Average Average
1 2 3 4 1–2 1–4 rank

PB relative to Naïve

ForePro 63.71 70.85 72.20 71.24 51.16 54.49 1.00
ARIMA 53.86 62.55 65.06 64.48 58.20 61.49 2.50
Theta 50.58 60.62 70.85 71.04 67.28 69.50 2.50
ETS 47.30 55.02 58.11 57.53 55.60 63.27 4.50
Damped 44.40 54.83 59.46 60.42 49.61 54.78 4.50

MAPE

Naïve 21.47 20.80 24.12 28.05 21.14 23.61 1.50
Theta 23.06 21.17 22.94 26.61 22.12 23.45 1.50
ForePro 23.71 22.49 27.28 31.96 23.10 26.36 3.25
ETS 23.57 23.26 28.56 35.35 23.41 27.68 4.50
ARIMA 25.06 25.32 28.06 33.69 25.19 28.03 5.00
Damped 24.71 24.41 29.43 34.05 24.56 28.15 5.25

MASE

Theta 1.32 1.96 2.63 3.20 1.64 2.28 1.00
Naïve 1.32 2.08 2.95 3.64 1.70 2.50 2.00
ForePro 1.49 2.18 3.10 3.85 1.83 2.65 3.50
ARIMA 1.56 2.20 3.05 3.70 1.88 2.63 4.00
ETS 1.50 2.22 3.13 4.01 1.86 2.71 5.00
Damped 1.55 2.29 3.23 3.92 1.92 2.75 5.50

MdASE

ForePro 1.06 1.49 2.28 2.88 1.28 1.93 1.50
Theta 1.10 1.56 2.21 2.69 1.33 1.89 1.75
ETS 1.09 1.62 2.29 3.01 1.35 2.00 3.75
Damped 1.13 1.61 2.34 2.91 1.37 2.00 3.75
ARIMA 1.14 1.70 2.35 2.92 1.42 2.02 5.25
Naïve 1.10 1.62 2.43 3.16 1.36 2.08 5.00
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5.2 Does temporal aggregation improve the forecast accuracy?

The analysis so far has shown that Forecast Pro, ETS and ARIMA produce the most accurate forecasts for

seasonal data. On average these methods produce more accurate forecasts than SNaïve. However, for

yearly data none of the three methods forecast more accurately than Naïve in our evaluatoin.

In this section we investigate whether temporally aggregating the forecasts generated from these methods

for higher frequency data, can produce more accurate forecasts for yearly data. We use all 366 monthly

series and forecast h = 1 and h = 2 years ahead. The results from this investigation are presented in

Table 7.

Table 7: Comparing forecast errors from forecasting yearly data directly and temporally aggregating the
forecasts produced for monthly and quarterly data

ETS ARIMA ForePro
h= 1 h= 2 h= 1 h= 2 h= 1 h= 2

MAPE

Yearly 11.79 16.49 10.99 14.59 11.44 15.36
Quarterly to Yearly 10.32 14.32 9.94 13.98 9.95 14.48
Monthly to Yearly 10.29 14.29 9.93 13.96 9.92 14.46
Yearly from Naïve 10.70 15.01 10.70 15.01 10.70 15.01

MASE

Yearly 1.50 2.25 1.43 2.01 1.49 2.15
Quarterly to Yearly 1.37 2.09 1.28 1.89 1.29 2.05
Monthly to Yearly 1.36 2.08 1.28 1.89 1.29 2.04
Yearly from Naïve 1.43 2.17 1.43 2.17 1.43 2.17

MdASE

Yearly 1.21 1.85 1.16 1.72 1.30 1.87
Quarterly to Yearly 1.09 1.72 1.06 1.65 1.11 1.78
Monthly to Yearly 1.08 1.71 1.05 1.63 1.11 1.78
Yearly from Naïve 1.27 1.93 1.27 1.93 1.27 1.93

The rows labeled ‘Yearly’ in Table 7 show the forecast error measures for h= 1 and h= 2 when forecasting

the yearly data directly using each of the three methods. The rows labeled ‘Monthly to Yearly’ and

‘Quarterly to Yearly’ show the forecast error measures when forecasting the yearly data; however, the

forecasts now come from aggregating the forecasts generated for the monthly and quarterly series,

respectively. These results show that, in all cases, the aggregated forecasts (whether they are produced

from the monthly data or the quarterly data) are more accurate than the forecasts produced from the

yearly data directly. The rows labeled ‘Yearly from Naïve’ show the Naïve forecast errors from forecasting

the yearly data directly. In each case, the aggregated forecast error measures are smaller than the Naïve

ones.
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5.3 Forecast interval coverage

Producing estimates of uncertainty is an important aspect of forecasting which is often ignored in academic

empirical applications, and is even more neglected in business practice. In this section we evaluate the

performance of forecasting methods in producing forecast intervals that provide coverages which are close

to the nominal rates. Tables 8, 9 and 10 show the percentage of times that the nominal 95% and 80%

forecast intervals contain the true observations for monthly, quarterly and yearly data respectively.

As was discussed in Section 1.1, forecasting methods often tend to overestimate the coverage probabilities

of the forecast intervals they generate. This is the case with the forecast intervals produced by the ARIMA

methodology for all frequencies. However, a significant new finding here is that Forecast Pro and ETS

produce coverage probabilities that are very close to the nominal rates for monthly and quarterly data.

In fact, these methods slightly underestimate the coverage probabilities for the nominal 80% forecast

intervals. As Makridakis et al. (1987) found, as we move to lower frequency data there is an increase in

the tendency of methods to overestimate coverage probabilities. This is the case with all methods here.

Table 8: Forecast interval coverage for monthly data

Nominal Forecast horizon (h) Average
coverage 1 2 3 4 5 6 9 12 15 18 24 1–12 1–24

Forecast Pro
95% 95 95 93 91 90 94 94 94 93 92 92 93 93
80% 85 83 82 84 80 82 84 84 84 84 85 83 83

ETS
95% 95 93 92 93 92 93 94 95 95 94 95 94 94
80% 83 82 84 86 83 84 87 86 84 85 84 85 85

ARIMA
95% 89 85 83 87 78 85 87 89 83 83 84 86 85
80% 77 70 66 72 62 69 73 74 67 69 67 71 70

Table 9: Forecast interval coverage for quarterly data

Nominal Forecast horizon (h) Average
coverage 1 2 3 4 5 6 7 8 1–4 1–8

Forecast Pro
95% 94 95 94 94 93 91 92 90 94 93
80% 84 85 87 84 83 83 78 77 85 83

ETS
95% 94 97 96 95 95 93 92 92 95 94
80% 86 87 87 85 84 87 84 81 86 85

ARIMA
95% 82 82 86 83 82 78 82 78 83 82
80% 66 66 74 67 67 63 67 63 68 67
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Table 10: Forecast interval coverage for yearly data

Nominal Forecast horizon (h) Average
coverage 1 2 3 4 1–4

ForePro
95% 85 82 76 74 79
80% 71 68 62 57 65

ETS
95% 85 80 76 75 79
80% 69 68 63 62 66

ARIMA
95% 72 71 67 65 69
80% 55 53 49 47 51

Theta
95% 78 73 68 64 71
80% 61 57 51 50 55

Koehler (2001) stated that it would be interesting to see whether it is possible to find statistically based

forecast intervals for the Theta method. These were subsequently derived by Hyndman and Billah (2003).

We have applied that result and produced forecast intervals from the Theta method for the annual data

(as there is no seasonal component in the model), which are presented in the last two rows of Table 10.

As with the other methods, the forecast intervals produced by the Theta method are badly undersized.

We should note that there are alternative methods for constructing prediction intervals for each of the

forecasting methods. We leave such comparisons for a separate study.

5.4 Forecast evaluation results: cases with explanatory variables

Quarterly data

Table 11 shows the PB results, and Tables 12–14 show the MAPE, MASE and MdASE results respectively.

Some general observations from the analysis of these results are as follows.

• The pure time series approaches are consistently the most accurate. The best ranked of these

approaches are Damped, Forecast Pro, ARIMA and ETS.

• Of the frameworks that use explanatory variables, the TVP, DR and ∆VARR(AIC) perform best.

• For all forecast horizons h= 1 to 8, and for all forecast error measures, one of the pure time series

approaches is always the most accurate.
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• For h= 4, not many methods can forecast more accurately than SNaïve.

• The most inaccurate forecasts are those generated by the frameworks that do not perform any

differencing. This sends a warning to forecasters who use quarterly variables in levels.

Yearly data

Table 15 shows the PB results, and Tables 16–18 show the MAPE, MASE and MdASE results respectively.

Some general observations from the analysis of these results are as follows.

• No method can forecast more accurately than Naïve when considering the MAPE.

• The pure time series approaches are consistently more accurate than the methods with explanatory

variables.

• For the models with explanatory variables, TVP generates the most accurate forecasts.

• The three methods that compete with Naïve are Theta, TVP and Forecast Pro.

• As was the case with the quarterly data, the results send a clear message to practitioners who model

these types of variables in levels, as they are consistently the most inaccurate.

Table 11: PB values for the quarterly cases with explanatory variables

Method Forecast horizon (h) Average Average
1 2 4 6 8 1–4 1–8 rank

Damped 64.52 67.74 53.76 73.12 58.06 60.22 61.29 1.88
ForePro 67.74 51.61 48.39 52.69 47.31 55.91 55.91 3.13
ARIMA 64.52 51.61 46.24 50.54 52.69 55.65 54.84 4.00
ETS 69.89 53.76 39.78 51.61 48.39 53.76 53.36 4.88
Theta 55.91 52.69 40.86 56.99 48.39 47.85 50.81 5.75
∆VARR(AIC) 65.59 45.16 41.94 51.61 43.01 51.88 51.75 6.00
TVP 53.76 46.24 44.09 55.91 47.31 46.51 50.00 6.63
∆mSR 49.46 50.54 54.84 48.39 51.61 52.15 51.08 6.75
DR 62.37 46.24 43.01 45.16 49.46 47.04 47.72 7.63
∆SR 54.84 40.86 50.54 49.46 45.16 46.77 46.51 9.25
VAR(AIC) 56.99 45.16 35.48 35.48 40.86 44.35 43.15 10.38
VAR(4) 56.99 41.94 30.11 34.41 37.63 41.40 40.73 11.38
ADLM 56.99 38.71 25.81 37.63 32.26 39.52 39.11 12.25
ADLMR 47.31 40.86 34.41 39.78 35.48 39.52 40.19 12.25
SR 40.86 33.33 25.81 32.26 35.48 30.38 32.80 14.63
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Table 12: MAPE values for the quarterly cases with explanatory variables

Method Forecast horizon (h) Average Average
1 2 4 6 8 1–4 1–8 rank

Damped 11.10 8.33 9.83 11.79 29.21 9.67 11.90 3.63
ETS 9.58 10.00 10.71 15.31 32.65 10.13 11.81 4.38
ForePro 11.42 10.62 9.85 14.99 30.00 10.32 12.72 5.13
Theta 12.03 10.75 10.78 14.15 26.52 11.28 12.14 5.25
SNaïve 13.83 11.78 8.96 16.14 27.47 11.10 12.62 5.38
TVP 10.35 12.12 9.89 15.37 27.65 11.38 12.58 5.63
DR 10.23 10.55 12.24 17.96 26.31 11.46 13.25 6.50
∆VARR(AIC) 10.94 11.14 11.25 17.08 38.12 10.91 12.47 7.63
ARIMA 14.25 11.26 11.21 16.62 27.08 11.77 14.13 8.13
∆SR 10.94 12.46 10.63 17.31 32.73 12.20 13.62 8.38
∆mSR 14.90 12.95 9.19 20.76 38.06 12.04 14.08 10.00
VAR(AIC) 10.79 12.25 17.11 22.03 35.40 14.21 17.41 11.25
ADLMR 12.54 14.29 15.83 21.53 33.40 14.56 16.65 11.75
VAR(4) 11.43 13.21 17.62 23.68 37.00 14.59 17.90 13.25
ADLM 11.92 14.06 17.87 22.92 38.70 15.15 18.09 13.75
SR 25.18 27.03 29.67 35.11 48.56 28.13 30.56 16.00

Table 13: MASE values for the quarterly cases with explanatory variables

Method Forecast horizon (h) Average Average
1 2 4 6 8 1–4 1–8 rank

Damped 0.85 0.99 1.01 1.48 1.65 0.99 1.28 2.25
ForePro 0.82 1.27 0.94 1.84 1.68 1.03 1.34 2.38
ARIMA 0.86 1.35 1.01 1.97 1.66 1.09 1.40 4.50
ETS 0.86 1.22 1.08 1.92 1.94 1.08 1.45 5.25
Theta 1.27 1.33 1.03 1.76 1.62 1.28 1.48 5.50
SNaïve 1.22 1.39 0.92 2.06 1.69 1.18 1.51 6.38
TVP 1.18 1.48 1.00 1.90 1.75 1.30 1.53 6.75
∆VARR(AIC) 0.94 1.34 1.11 2.08 2.21 1.13 1.56 7.25
DR 0.99 1.31 1.19 2.31 2.13 1.24 1.69 8.38
∆mSR 1.33 1.60 0.97 2.59 2.02 1.29 1.76 9.50
∆SR 1.23 1.48 1.09 2.13 2.26 1.36 1.75 10.00
VAR(AIC) 1.10 1.52 1.61 2.70 2.89 1.52 2.12 11.88
VAR(4) 1.04 1.64 1.64 2.93 2.98 1.52 2.19 12.75
ADLMR 1.31 1.75 1.74 2.83 2.97 1.65 2.20 13.25
ADLM 1.11 1.74 1.74 2.97 3.05 1.61 2.23 14.00
SR 3.30 3.39 3.27 4.66 4.64 3.29 3.94 16.00
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Table 14: MdASE values for the quarterly cases with explanatory variables

Method Forecast horizon (h) Average Average
1 2 4 6 8 1–4 1–8 rank

Damped 0.61 0.74 0.69 0.96 1.22 0.71 0.88 2.50
ARIMA 0.61 1.02 0.66 1.49 1.30 0.77 1.04 4.25
ForePro 0.62 1.02 0.64 1.63 1.40 0.76 1.03 4.75
ETS 0.60 0.98 0.74 1.54 1.33 0.83 1.08 5.38
TVP 0.73 0.94 0.70 1.31 1.54 0.83 1.07 5.63
∆VARR(AIC) 0.65 1.04 0.76 1.62 1.58 0.78 1.07 6.25
Theta 0.67 1.14 0.84 1.41 1.34 0.95 1.09 7.00
DR 0.69 0.90 0.79 1.54 1.30 0.86 1.17 7.13
SNaïve 0.92 0.97 0.75 1.66 1.45 0.87 1.16 7.75
∆mSR 1.01 1.24 0.68 1.86 1.14 0.95 1.25 8.75
∆SR 0.81 0.99 0.78 1.52 1.61 0.97 1.25 9.38
VAR(AIC) 0.72 1.14 1.22 1.88 1.88 1.06 1.45 11.63
ADLMR 0.83 1.24 1.03 1.93 1.76 1.14 1.41 12.38
VAR(4) 0.78 1.36 1.23 2.12 1.88 1.13 1.57 13.25
ADLM 0.76 1.16 1.28 2.17 1.95 1.19 1.60 13.75
SR 1.42 2.32 1.57 2.20 2.51 1.89 2.09 16.00

Table 15: PB values for the yearly cases with explanatory variables

Method Forecast horizon (h) Average Average
1 2 3 4 1–2 1–4

ForePro 75.97 77.52 81.40 80.62 76.74 78.88 1.00
ARIMA 58.91 59.69 65.89 62.79 59.30 61.82 2.50
Theta 45.74 55.81 69.77 69.77 50.78 60.27 3.00
∆VARR(AIC) 51.94 51.94 60.47 61.24 51.94 56.40 3.75
Damped 42.64 45.74 53.49 57.36 44.19 49.81 6.00
ETS 42.64 46.51 52.71 56.59 44.57 49.61 6.50
TVP 43.41 42.64 53.49 54.26 43.02 48.45 6.75
DR 44.19 43.41 45.74 48.06 43.80 45.35 8.25
ADLM 42.64 42.64 46.51 46.51 42.64 44.57 9.00
∆SR 49.61 41.86 42.64 43.41 45.74 44.38 9.75
ADLMR 41.09 40.31 50.39 49.61 40.70 45.35 10.00
SR 27.91 34.11 45.74 50.39 31.01 39.53 11.50
VAR(AIC) 37.21 41.09 37.98 44.96 39.15 40.31 12.00
VAR(2) 32.56 37.21 34.88 38.76 34.88 35.85 13.50
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Table 16: MAPE values for the yearly cases with explanatory variables

Method Forecast horizon (h) Average Average
1 2 3 4 1–2 1–4

Naïve 49.13 32.65 27.93 32.97 40.89 35.67 1.50
ForePro 51.94 33.23 28.61 33.74 42.58 36.88 3.25
Theta 54.22 35.16 27.82 33.05 44.69 37.56 3.50
TVP 51.27 36.16 30.86 38.34 43.71 39.16 5.00
ETS 51.60 34.45 35.01 41.31 43.03 40.59 5.25
Damped 54.59 36.52 32.17 37.39 45.55 40.16 6.50
∆SR 49.11 35.80 35.67 42.84 42.45 40.86 6.50
DR 53.11 35.39 35.02 41.70 44.25 41.31 7.00
∆VARR(AIC) 55.97 35.31 36.20 40.72 45.64 42.05 7.75
ARIMA 55.45 45.03 33.88 44.49 50.24 44.71 9.75
ADLMR 63.47 42.70 36.71 43.22 53.09 46.52 10.75
ADLM 64.72 40.18 39.18 45.64 52.45 47.43 11.50
VAR(AIC) 65.23 43.48 47.29 54.47 54.35 52.62 12.75
VAR(2) 72.59 47.73 50.73 58.29 60.16 57.33 14.25
SR 99.77 76.70 49.41 64.07 88.23 72.49 14.75

Table 17: MASE values for the yearly cases with explanatory variables

Method Forecast horizon (h) Average Average
1 2 3 4 1–2 1–4

Theta 0.63 0.80 0.90 1.17 0.72 0.88 1.50
Naïve 0.60 0.82 1.01 1.32 0.71 0.94 2.25
TVP 0.59 0.84 1.01 1.35 0.72 0.95 3.00
ForePro 0.64 0.83 1.01 1.32 0.74 0.95 3.50
Damped 0.68 0.88 1.06 1.35 0.78 0.99 5.50
ARIMA 0.69 0.92 1.06 1.34 0.80 1.00 5.75
ETS 0.70 0.94 1.14 1.46 0.82 1.06 7.75
∆VARR(AIC) 0.73 0.98 1.13 1.46 0.85 1.07 8.25
ADLMR 0.79 0.98 1.12 1.46 0.88 1.09 9.00
∆SR 0.66 1.01 1.22 1.62 0.84 1.13 9.75
DR 0.74 0.99 1.19 1.56 0.86 1.12 10.00
ADLM 0.87 1.01 1.25 1.68 0.94 1.20 11.75
VAR(AIC) 0.92 1.15 1.44 1.83 1.03 1.33 13.50
SR 1.10 1.23 1.39 1.79 1.17 1.38 13.75
VAR(2) 1.01 1.29 1.57 2.01 1.15 1.47 14.75
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Table 18: MdASE values for the yearly cases with explanatory variables

Method Forecast horizon (h) Average Average
1 2 3 4 1–2 1–4

Theta 0.46 0.41 0.72 0.94 0.44 0.63 2.25
ForePro 0.42 0.49 0.76 0.91 0.46 0.65 2.75
TVP 0.42 0.62 0.72 0.94 0.52 0.68 3.50
Naïve 0.41 0.53 0.75 1.02 0.47 0.68 4.25
ARIMA 0.48 0.60 0.78 0.98 0.54 0.71 5.50
Damped 0.48 0.52 0.84 1.00 0.50 0.71 6.00
ADLMR 0.63 0.68 0.73 0.92 0.65 0.74 6.25
ADLM 0.67 0.66 0.79 0.98 0.67 0.77 8.00
ETS 0.50 0.69 0.98 1.20 0.60 0.84 9.25
∆VARR(AIC) 0.53 0.75 0.85 1.12 0.64 0.81 9.25
∆SR 0.49 0.78 1.00 1.41 0.63 0.92 11.25
DR 0.54 0.77 1.02 1.37 0.66 0.93 11.50
VAR(AIC) 0.63 0.75 1.04 1.24 0.69 0.92 11.75
SR 0.98 0.93 1.03 1.38 0.95 1.08 14.00
VAR(2) 0.71 0.90 1.13 1.58 0.80 1.08 14.50

5.5 Ex-ante versus ex-post forecasting for models with exogenous variables

The results from the models that include exogenous variables indicate that these models cannot forecast as

accurately as pure time series approaches. In this section we perform ex-post forecasting for these models,

i.e., we use the observed out-of-sample values for the exogenous variables. This eliminates any uncertainty

related to the forecasting of the exogenous variables. Comparing the ex-post forecasts with the ex-ante

forecasts allows us to evaluate whether the forecasting performance of these models improves enough for

it to be deemed reasonable to use models with exogenous variables for scenario-based forecasting.

In Table 19 we present the percentage improvements in forecast accuracy generated by the use of ex-

post rather than ex-ante forecasting for models that use explanatory variables. Here, we only present

the results for the three approaches we consider to be the most accurate based on the ex-ante results.

In general, we find the same puzzling result as Allen and Fildes (2001), namely that these methods

become even less accurate when actual out-of-sample values are used for the exogenous variables. There

are only two exceptions: for quarterly data, when h = 1 for TVP and ∆SR for both MAPE and MASE.

However, the improvement in these models for h = 1 does not change their rankings against the pure

time series approaches. We should note that the methods that we have not presented here do not show

any improvement when performing ex-post forecasting.
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Table 19: Percentage improvements of ex-post over ex-ante forecasting

Method Forecast horizon (h)
1 2 3 4 Average 1 2 3 4 Average

MAPE MASE

Quarterly data

TVP 5.24 −2.89 −19.51 −17.75 −9.07 5.08 −3.18 −19.76 −5.12 −6.44
DR −4.24 −10.42 −22.54 −15.54 −13.94 −5.23 −8.77 −19.58 −9.35 −11.44
∆SR 3.76 −2.63 −10.79 −19.38 −7.39 3.60 −4.36 −12.77 −5.50 −5.30

Yearly data

TVP −15.73 −46.56 −63.45 −77.44 −47.36 −18.20 −33.95 −43.26 −46.74 −38.50
DR −20.66 −51.58 −59.09 −74.85 −50.03 −23.10 −36.95 −44.82 −48.51 −41.20
∆SR −19.07 −47.83 −50.33 −57.71 −41.61 −23.00 −38.35 −44.54 −45.11 −39.81

5.6 Further warnings about the MAPE

The MAPE is clearly the most commonly used forecast accuracy measure in the forecasting literature.

Hyndman and Koehler (2006) provide some warnings regarding this measure and highlight the conditions

under which it is unsuitable and should not be used. The MAPE is defined only when all of the actual

values being forecast are non-zero. In the M3-competition (Makridakis and Hibon, 2000), excessively

large or undefined MAPEs were avoided by using positive data only. Also, the MAPE (and all other

measures based on percentage errors) assumes a meaningful zero. Both of these conditions hold with the

tourism data we use here, and there is no reason for us to think that the MAPE is unsuitable.

However, the MAPEs for the pure time series methods applied to the yearly data (Table 6) are less than

half the size of the MAPEs obtained for those cases where explanatory variables are used (Table 16). This

is due to nine series that contain low values and are amongst the cases with explanatory variables. These

cases produced very large percentage errors, which caused the distribution of the MAPEs to be highly

positively skewed. For example, the one-step-ahead forecast errors from the ETS models have a MAPE for

all yearly series of 23.6%, whereas it is 51.6% for the cases with explanatory variables. When these nine

series are excluded, the MAPEs are 16.3% and 23.5% respectively. Furthermore, when recalculating the

MAPEs for the yearly series, excluding these nine cases, we find that the rankings of the methods change.

In particular, the Theta method forecasts more accurately than Naïve, which makes the rankings of the

methods identical to the rankings given by the MASE.

Consequently, even though the MAPE can formally be applied here, we caution against its use due to the

numerical instability that results whenever some series contain small values.
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6 Conclusion

We have designed a forecasting competition that uses data from the field of tourism only. The forecast

methods we consider are three fully automated time series algorithms (Forecast Pro, ARIMA and exponen-

tial smoothing based algorithms), two method-specific approaches (the Theta method and the damped

trend), and five general frameworks that incorporate explanatory variables (static and dynamic regression,

autoregressive distributed lag models, time varying parameter models and vector autoregressions). We

conclude that pure time series approaches forecast tourism demand data more accurately than methods

that use explanatory variables. The forecasting performance of the models that use explanatory variables

deteriorates when ex-post forecasting is performed instead of ex-ante forecasting.

This has immediate practical consequences, as models with explanatory variables are commonly used in

both the tourism literature and the tourism industry (especially for scenario-based forecasting). At the

very least, the forecasting performance of these models should be evaluated against that of pure time

series alternatives. The most consistent performance of any of the methods that use explanatory variables

came from the TVP model.

Of the pure time series forecasting approaches, we find that Forecast Pro, ARIMA and ETS forecast

more accurately than the seasonal Naïve approach for seasonal data (both monthly and quarterly). It is

interesting that this is the first time in the empirical forecasting literature that an ARIMA based algorithm

has produced forecasts as accurate as, or more accurate than, those of its competitors. For both of these

seasonal frequencies, Forecast Pro and ETS produce forecast coverage probabilities which are satisfactorily

close to the nominal rates. For yearly data, the Theta method is the only method that is competitive to

Naïve. Aggregating monthly or quarterly forecasts from one of Forecast Pro, ARIMA or ETS to give yearly

forecasts also produced more accurate forecasts than Naïve.

Finally, we find that the mean absolute percentage error distribution becomes highly positively skewed,

due to a handful of small scaled series. Hence, we verify and endorse statements from previous researchers

that the mean absolute scaled error should replace the mean absolute percentage error as the standard

measure of forecast accuracy.
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