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Abstract. This paper has a focus on non-stationary time series formed from
small non-negative integer values which may contain many zeros and may be
over-dispersed. It describes a study undertaken to compare various suitable
adaptations of the simple exponential smoothing method of forecasting on
a database of demand series for slow moving car parts. The methods consid-
ered include simple exponential smoothing with Poisson measurements, a finite
sample version of simple exponential smoothing with negative binomial mea-
surements, and the Croston method of forecasting. In the case of the Croston
method, a maximum likelihood approach to estimating key quantities, such as
the smoothing parameter, is proposed for the first time. The results from the
study indicate that the Croston method does not forecast, on average, as well
as the other two methods. It is also confirmed that a common fixed smooth-
ing constant across all the car parts works better than maximum likelihood
approaches.

1. Introduction

Simple exponential smoothing, in its original form (Brown, 1963), was designed
for forecasting demand of fast moving inventories. Given that businesses often also
have slow moving inventories, the traditional recommendation was to forgo the
use of exponential smoothing in such cases and use a Poisson distribution with a
mean that is estimated with a simple sample average. The Poisson distribution,
however, only really applies to the case of equi-dispersed demand series where the
variance and mean are equal. Demand series for slow moving items are typically
over-dispersed in the sense that the variance is greater than the mean.

Over-dispersion can be achieved with a Poisson distribution by allowing its mean,
designated by λ, to be a random variable. The Poisson distribution then represents
the distribution of demand conditional on a particular value of λ. When λ has
a gamma distribution, the negative binomial distribution (Greenwood and Yule,
1920) is obtained as the corresponding marginal (unconditional) distribution of de-
mand. This suggests that the Poisson distribution should be supplanted by the
negative-binomial distribution for representing the demand of slow moving inven-
tories (Taylor, 1961). Alternatively, it means that the Poisson distribution can be
retained in models of demand provided it is treated as a conditional distribution
supplemented with a mixing distribution like the gamma distribution.

The negative binomial approach, and indeed the earlier Poisson approach, were
based on the assumption that means and variances are constant over time. The
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implied stationarity of the demand series, however, is inconsistent with the fact
that most such series are non-stationary. Moreover, these approaches rely on an
assumption of inter-temporal independence, something that is at odds with the
autocorrelation that is commonly present in demand series. Adaptations are needed
if the non-stationarity and autocorrelation are to be accommodated.

Autocorrelation and over-dispersion have been introduced with Poisson measure-
ments by allowing the mean λ to change randomly over time according to some sort
of autoregressive process (Chan and Ledolter, 1995; Heinen, 2003; Jung, Kuluk and
Leisenfield, 2006; Snyder, Martin, Gould and Feigen, 2007). An alternative has been
to allow the mean to follow a kind of moving-average process (Davis, Dunsmuir and
Streett, 2003). The stationarity assumption that accompanies these approaches is
at odds with the non-stationary character of most demand series. In this paper,
therefore, approaches which allow for autocorrelation and over-dispersion and which
are based on unit root processes, are considered. The first approach is an adapta-
tion of simple exponential smoothing (Chatfield, Koehler, Ord and Snyder, 2001;
Ord, Koehler and Snyder, 1997) where the traditional Gaussian distribution is re-
placed by a Poisson distribution. The second is a discounted least squares approach
(Brown, 1963; Gilchrist, 1967) with negative binomial measurements (Harvey and
Fernandes, 1989). The third is the traditional Croston (1972) method for fore-
casting slow moving inventories where, for the first time, a logically sound model
underlying this method is proposed. These three approaches are introduced in Sec-
tion 2, and their forecasting performance is compared in an empirical study on car
parts data in Section 3.

2. Models for Non-Stationary Count Time Series

2.1. Local Poisson Model. The Gaussian innovations local level model (Chat-
field, 2001; Ord et. al. 1997) underpins simple exponential smoothing. In this
section we introduce a variation of this model that is better suited to low count
data. The usual Gaussian distribution of demand yt in typical period t is replaced
by the Poisson mass function

(2.1) p(yt|λt−1) =
λyt

t−1

yt!
exp(−λt−1).

The mean λt−1 of this distribution, called the local level, changes over time accord-
ing to the smoothing equation

(2.2) λt = δλt−1 + αyt.

The parameters δ and α are constrained to be non-negative and to satisfy the
constraint δ + α = 1. The only source of randomness is the Poisson distribution
itself: the model has only one source of randomness. Nevertheless, the associated
time series is over-dispersed because the local level λt is now a random rather than
a fixed quantity.

Simple exponential smoothing is used to calculate the local levels, so λt corre-
sponds to the exponentially weighted moving average

(2.3) λt = δtλ0 + α

t∑

j=0

δjyt−j .

Since λt−1 is governed by the lagged version of 2.3, it must be a fixed quantity
when y1, y2, . . . , yt−1, λ0, α are fixed. This implies that yt|y1, y2, . . . , yt−1, λ0, α is
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governed by the Poisson distribution 2.1. The likelihood function is based on the
joint distribution p(y1, y2, . . . , yn|λ0, α). It is found from the products of the one-
step ahead prediction distributions p(yt|y1, y2, . . . , yt−1, λ0, α) for t = 1, 2, . . . , n
and is given by

(2.4) L (λ0, α|y1, y2, . . . , yn) =
n∏

t=1

λyt

t−1

yt!
exp(−λt−1)

The seed level λ0 and the smoothing parameter α are selected to maximize this
Poisson likelihood. Point predictions are obtained by extrapolating the final level
λn. Prediction distributions must be simulated because analytical expressions for
them are not currently known.

2.2. Local Negative Binomial Distribution. The Harvey and Fernandes(1989)
approach, when reduced to its bare essentials, uses a discounted moving average
(Brown, 1963; Gilchrist, 1967) instead of an exponentially weighted average and
a negative binomial distribution instead of a Poisson distribution. A discounted
average is a measure of central tendency that minimizes the discounted sum of
squared errors. It derives from two quantities at and bt which are calculated with
the recurrence relationships

at = δat−1 + yt(2.5)
bt = δbt−1 + 1.(2.6)

seeded with a0 = 0 and b0 = 0. The parameter δ is included to provide a discounting
effect. The one-step ahead prediction is given by

(2.7) ŷt|t−1 = at−1/bt−1.

It may be established that ŷt|t−1 =
∑t−1

j=1 δj−1yt−j∑t−1
j=1 δj−1 . This indicates that the one-step

ahead prediction is an average. Moreover, older observations are given less weight
in its calculation than more recent observations. It converges in large samples to
an exponentially weighted average, so the approach may be considered a slight
variation of simple exponential smoothing.

A one-step ahead prediction distribution always has a mean corresponding to
the one-step ahead prediction. In the case of the negative binomial distribution

(2.8) p(yt|y1, . . . , yt−1, δ) =
Γ(δat−1 + yt)
Γ(δat−1)yt!

(
δbt−1

1 + δbt−1

)δat−1
(

1
1 + δbt−1

)yt

.

the mean is given by 2.7. The likelihood function is formed from the product of
these one-step ahead prediction distributions. However, there is one qualification.
The initial values of at and bt are zero until the period following that period in
which the first non-zero value of yt is observed. The one-step ahead prediction
distributions are all degenerate, in the sense that they equal zero, over this run-in
period. So the product is formed from the prediction distributions for the periods
following the period containing the first non-zero observation.

2.3. Croston Method. A popular method for forecasting the demand of slow
moving time series was developed by Croston (1972). It accounts for the time gap
between periods with positive demands as well as the positive demands themselves.
The time gap for period t is designated by τt. If there is a non-zero demand in
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period t, then τt is the number of periods that have elapsed since the period with
the previous non-zero demand; otherwise it is arbitrary.

Simple exponential smoothing is applied to both the positive demands and the
time gaps. More specifically, there are two exponentially weighted averages desig-
nated by q̄t for the non-zero demands and τ̄t for the time gaps in typical period
t. Both averages effectively rely on the same smoothing parameter α. There is,
however, a slight twist. We use a time dependent smoothing parameter αt which
equals α in those periods with a non-zero demand and equals zero otherwise. A
corresponding time dependent discount factor δt = 1− αt applies.

It is assumed that seed values for the averages, designated by q̄0 and τ̄0, have
been specified. The method, as applied in typical period t, can be stated as:

q̄t = δtq̄t−1 + αtyt

τ̄t = δtτ̄t−1 + αtτt

An exception occurs in the period with the first non-zero demand, because here the
first time gap is still unknown. In this particular period, the second equation is
replaced by the simple equation τ̄t = τ̄t−1. The point predictions of future demands
all equal the ratio q̄n/τ̄n.

On the basis of experience, Croston recommends that the smoothing parameter
α should take a value between 0.1 and 0.2. Little is said about the choice of seed
values for the exponentially weighted averages. In an attempt to eliminate the
ambiguity surrounding this choice of seed values and the smoothing parameter, we
now set out to explore the stochastic foundations of his approach in a quest for
maximum likelihood estimates.

Croston attempted to identify the stochastic foundations, but it turned out to
be flawed (Snyder, 2002). He suggested in his Appendix B, that the probability π
of a positive demand in a period is constant over time. The consequent station-
arity of the time gaps is, however, inconsistent with the use of simple exponential
exponential smoothing.

In order to identify the correct statistical foundations, we assert that the em-
pirical distributions of the positive demands are typically right skewed. To allow
for this possibility, we assume that the positive quantities are governed locally by
a Poisson distribution, but as they cannot take the value 0, its domain is shifted
by one to the right. The mass function of this distribution in typical period t is
represented by ptj = (q̄t−1−1)j−1

(j−1)! exp(−q̄t−1 + 1) where j is the value of the positive
demand.

Local Bernoulli distributions govern whether there are positive or zero demands.
The Bernoulli probability in typical period t is designated by πt: it represents the
probability of a positive demand. It is related to the exponentially weighted average
of the time gaps by the simple formula πt = 1/τ̄t−1.

The probability of demand in period t is given by

(2.9) Pr {yt = j} =
{

(1− πt) ifj = 0
πtptj ifj > 0

The likelihood function is the product of these mass functions for periods t1, t1 +
1, . . . , n. Maximum likelihood estimates of the seed averages q̄t1−1, τ̄t1−1 and the
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Figure 1. Time series generated from Poisson local level model:
`0 = 2; α = 0.5.

smoothing parameter α are sought. For numerical stability this is done by maxi-
mizing the log-likelihood.

2.4. Convergence problem. The local level model in Section 2.1 has a fixed point
of λt = 0. This fixed point is an attractor: there is a finite probability that λt drops
to zero. The problem with this particular fixed point is that all subsequent series
values are forced to be zero. Figure 1 illustrates this phenomena with some data
generated by a local Poisson model from Section 2.1 where λ0 = 2 and α = 0.5.
One must be aware of this problem when using the model to simulate prediction
distributions. A detailed explanation of this phenomenon is provided by Grunwald,
Hamza and Hyndman (1997).

The other methods also suffer from this problem. In the Croston method, it
takes a slightly different form: the simulated gaps and positive quantities both
eventually converge to one rather than zero. The important message here is that
care must be taken when simulating prediction distributions. Longer-run prediction
distributions may be problematic.

3. Empirical Study

Forecasts from the three methods were compared on 2674 demand series for parts
supplied by a US auto manufacturer. The series, representing the monthly sales
for slow moving parts, cover a period of 51 months from January 1998 to March
2002. The 2509 series without missing values have an average gap between positive
demands of 2.9 months and an average positive demand of 2. Eighty-nine percent
of the series were over-dispersed. The dispersion ratio, averaged across all series,
was 2.3.
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Figure 2. Time profile of demands averaged across series:
CARPARTS database.

The time profile of aggregate demand for all the car parts is shown in Figure 2.
It indicates that there is a tendency for demands to decline as the age of a part
increases. Demands appear to be non-stationary.

Although a downward trend is discernable in the aggregate data, such trends will
clearly not always operate at the individual parts level. It is important to allow for
other possible trajectory shapes which may only be observed at the individual part
level. One possibility, ignoring the zero demands, is a gradual increase to some peak
and then a slow decline. Because such patterns are not known in advance, there
is a need for an approach that adapts to whatever pattern that emerges as a part
ages. Given the uncertainty over the trajectory, it is best to treat the underlying
level as a random variable and assume that its evolution over time is governed by
a stochastic process.

To minimize computational problems that arise with series with a small number
of positive values, the database was further culled to eliminate those series which:

• possessed less than 10 positive monthly demands;
• had no positive demand in the first 15 and final 15 months.

There were 1046 series left after this additional cull.
Six approaches to forecasting were compared in the study. The simplest, desig-

nated by ZERO, was to set all the predictions to the value zero, on the grounds
that the empirical distributions of many series have a mode of zero. The second
was based on a global Poisson distribution (PSNG) where it is optimal to use a
simple average of observed demands. This assumes that there is no structural
change in the market for a product. The others were the methods described in the
previous section that allow for random changes in the underlying level: the local
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Poisson distribution (PSNL); the local negative binomial distribution (NEGB); and
the Croston method (CROST).

The maximum likelihood (ML) versions of these approaches were considered.
The folk law of exponential smoothing (Brown, 1959); Croston, 1972) suggests that
especially with small samples, it is best to use fixed values of α or, equivalently,
fixed values of the discount factor δ, across an entire range of products, so this
possibility was also considered. In those cases of a fixed parameter which rely
on seed levels, the latter continued to be estimated by maximizing the likelihood
function. In other words, a partial maximum likelihood approach was used in these
cases.

Estimation was undertaken with the first 45 observations of each series. Fore-
casting performances were compared over periods 46-51 using the mean absolute
scalar error statistic (Hyndman and Koehler, 2006), defined as

(3.1) MASE =
1
h

h∑

j=1

|yn+j − ŷn+j|n|
MAE

where

(3.2) MAE =
1

n− 1

n∑
t=2

|yt − yt−1|.

where n is the fitting sample size, h is the forecast horizon, and ŷn+j|n is the
prediction of yn+j made at the end of period n. The means, medians and standard
deviations of the MASEs calculated across the 1046 series are given in Table 1. The
approaches are ordered by the median.

Model Parameter Mean Median Stdev
ZERO 0.42 0.30 0.47
PSNL 0.300 0.63 0.55 0.42
PSNL 0.200 0.64 0.56 0.38
NEGB 0.800 0.64 0.56 0.38
NEGB ML 0.65 0.59 0.40
CROST 0.300 0.65 0.60 0.40
CROST 0.200 0.65 0.61 0.39
PSNL ML 0.68 0.64 0.36
CROST 0.100 0.68 0.65 0.38
CROST ML 0.68 0.67 0.40
CROST 0.000 0.70 0.70 0.39
PSNG 0.82 0.75 0.31

Table 1. MASE for each method applied to car parts time series.

The zero method had the best performance in terms of the median MASE. How-
ever, a very high standard deviation of the MASE indicates that its performance
lacked consistency. Moreover, such a method is unlikely to work as well on time
series with fewer zeros.

Intriguingly, the traditional global Poisson distribution had the worst perfor-
mance. The associated simple average, which places an equal weight on all the
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observations (including the zeros), has little value for the type of count data repre-
sented by car parts demands. It does not allow the mean to change over time; nor
does it allow for autocorrelation.

Of the maximum likelihood methods (ML), the local negative binomial distri-
bution was best. This was followed by the local Poisson distribution. Surprisingly,
the Croston method had the worst performance.

The folk law about the use of fixed parameter values was also confirmed. Global
fixed value approaches did better than their maximum likelihood counterparts.
The results of the local Poisson and the local negative binomial distributions were
reversed, but the Croston method continued to have the worst performance.

A deeper analysis of the results indicates that the local Poisson model may or may
not be better than the local negative binomial model at the individual series level.
The NEGB 0.8 method was better than PSNL 0.2 method for 56 percent of the
series and they tied for 28 percent of the series. However, the maximum difference
in the MASE between these two models was only 0.15, so both approaches are very
similar with regard to point predictions.

In a further attempt to separate the PSNL and NEGB methods, 90 percent
prediction intervals were simulated for periods 46-51. In both cases about 95 percent
of withheld series values were found to lie within these prediction intervals. This
result was obtained whether or not the smoothing parameter (discount factor) was
optimized. In these circumstances, the NEGB approach appears to have little
advantage over PSNL approach on this particular data set. The prediction intervals
are a little too wide, a result of having integer counts. Curiously, it was found that
91 percent of all the future observations across all time series lie in the closed
interval [0,1].

4. Conclusions

Three approaches to predicting demands for slow moving inventories have been
compared in this paper. In essence, they consisted of various adaptations of simple
exponential smoothing to accommodate count data with many zero observations.
Emphasis was placed on providing stochastic versions of these methods to enable es-
timation of pertinent parameters using maximum likelihood methods and to enable
the simulation of prediction distributions.

The methods were applied to a database of demand series for parts from an
auto manufacturer. It was found that predictions based on simple averages did not
work well and that considerable benefits accompanied a move to methods based in
some way on exponential smoothing. Little separated the exponential smoothing
methods from Poisson and negative binomial measurements. However, the study
did raise serious questions about the practical value of the Croston method. It
also indicated that there may be little reward from the use of maximum likeli-
hood methods, something that confirms the folk-law of practitioners of business
forecasting.

In general it was observed in the study that reductions in the median MASE
corresponded to increases in its standard deviation. This suggests that a multi-
model approach might work better than any single model approach by selecting
the model that best fits the individual structures of the time series. However, it
is not clear how this can be done. Sample quantities, in practice, are often too
small to withhold data for a prediction validation approach. And the models are
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based on different probability distributions, something that precludes the use of
an information criterion approach. We have here an issue that warrants further
investigation.
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