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ABSTRACT 
The finite sample performance of the Wald, GMM and Likelihood Ratio (LR) tests of 

multivariate asset pricing tests have been investigated in several studies on the US 

financial markets. This paper extends this analysis in two important ways. Firstly, 

considering the fact that the Wald test is not invariant to alternative non-linear 

formulation of the null hypothesis the paper investigates whether alternative forms of 

the Wald and GMM tests result in considerable difference in size and power. 

Secondly, the paper extends the analysis to the emerging market data. Emerging 

markets provide an interesting practical laboratory to test asset pricing models. The 

characteristics of emerging markets are different from the well developed markets of 

US, Japan and Europe. It is found that the asymptotic Wald and GMM tests based on 

Chi-Square critical values result in considerable size distortions. The bootstrap tests 

yield the correct sizes. Multiplicative from of bootstrap GMM test appears to 

outperform the LR test when the returns deviate from normality and when the 

deviations from the asset pricing model are smaller. Application of the bootstrap tests 

to the data from the Karachi Stock Exchange strongly supports the zero-beta CAPM. 

However the low power of the multivariate tests warrants a careful interpretation of 

the results. 
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I. INTRODUCTION 
 

Asset pricing models and their empirical tests constitute a major component of the 

finance literature. Univariate testing of the Capital Asset Pricing Model (CAPM) 

introduced by Fama and MacBeth (1973) employed a two-stage test procedure. This 

two-step procedure has been criticized on two concerns. Firstly the cross section tests 

involve estimated regressors and therefore are subject to errors-in-variable bias. 

Secondly asset pricing tests in particular and econometric methods in general that 

involve estimation or testing in stages are shown to lack efficiency and therefore are 

less powerful. Affleck-Graves and Bradfield (1993) conclude through simulations that 

frequent rejection of CAPM tests or equivalently non-rejection of hypothesis that 

there is no positive linear relationship between beta and returns is due to the low 

power of the univariate tests associated with smaller sample sizes.  According to 

Shanken (1996) the statistical properties of multi-stage tests are difficult to assess.  

 

Gibbons (1982) developed a multivariate test of the Black’s (1972) zero-beta CAPM. 

In this test the zero-beta CAPM restrictions are directly imposed on the system of 

multivariate market model equations with each equation corresponding to an asset. 

The test results in a Likelihood Ratio statistic which is asymptotically Chi-Square 

distributed. This test does not involve estimated betas as the regressors so the errors-

in-variable problem is not of any concern. The test also makes better use of available 

cross equation information. The multivariate test of Gibbons, Ross and Shaken (1989) 

is perhaps the most widely used test of the Sharpe-Lintner form of the CAPM. This 

test provides an exact F-test in the multivariate testing framework.  It is valid in small 

samples if an appropriate risk-free rate of is available. These multivariate tests have 

been widely used in US and other developed markets data. Both of these multivariate 
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asset pricing tests assume that the returns and the residuals are normally distributed 

and are cross sectionally dependent but serially uncorrelated and homoskedastic.  

 

Typically a general asset pricing model should satisfactorily describe empirical data 

under varied market conditions. Unfortunately the multivariate asset pricing studies 

have not been performed for emerging markets. Emerging markets provide an 

interesting practical laboratory to test asset pricing models. Several studies have 

suggested that the characteristics of emerging markets are different from the well 

developed markets of the US, Japan and Europe. For example, Harvey (1995) found 

that (i) emerging markets have a higher level of volatility and price changes than 

developed markets, (ii) a majority of the emerging markets had non-normal returns 

and (iii) the returns are more predictable than the developed markets. Consequently 

any multivariate asset pricing test applied to emerging market data need to be robust 

to these distributional characteristics. Greene (2003, p-110) points out that amongst 

the three asymptotic tests namely the Wald, LR and LM, only the Wald test is 

asymptotically valid under non-normality. Its computation requires unconstrained 

parameters estimates for which OLS (or SUR in system context) can be readily 

applied. The Wald test assumes the return to be identically and independently 

distributed (iid). The GMM based version of the test allows the test to be conducted 

with weaker distributional assumptions.  Application of asset pricing tests in emerging 

markets possesses another difficulty.  Due to frictions in the money market there are 

restrictions in unlimited lending and borrowing and so an appropriate risk free-rate is 

difficult to secure for the emerging capital markets. Fortunately, the Black-CAPM 

does not require specifying a risk-free rate. This CAPM version is therefore a 

potential financial model for these markets. Consequently we focus on application and 
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comparison of the performance of several multivariate tests of Black’s zero-beta 

CAPM in the emerging market context.  

The finite sample performance of Wald and LR tests of zero-beta CAPM have been 

investigated in several studies on US markets. The results usually favour the LR test. 

The Wald test is not invariant to alternative non-linear formulation of the null 

hypothesis1. Therefore it is  of interest to study whether a given non-linear form of the 

Wald test results in considerably different results in finite sample size and power 

performance of the Black-CAPM especially in comparison to the LR test. Previous 

studies have not considered this aspect.  To be more specific, the null hypothesis that 

the zero-beta CAPM holds is expressed as 

 N.,..,1i,)1(:H ii0 =−= βγα                              (1) 

Here γ  represents the zero-beta rate, iα and iβ  are respectively the intercept and 

slope of ith asset in the system of market model equations.  

We consider two alternative formulations of this hypothesis:  

1N.,..,1i,0
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                                    (2)  

and  

 1N.,..,1i,0)1()1(g i1i1iii2 −==−−−= ++ βαβα                 (3) 

The first formulation which we referred to as ratio type is employed by Chou (2000) 

using the US data and Chou and Lin (2002) for OECD countries data for the Black-

CAPM tests. Bealieu et al. (2004) argue that such a formulation suffers from an 

identification problem due to discontinuity as beta approaches one. As many 

                                                 
1 This was first demonstrated by Gregory and Veall (1985) via a simulation analysis.  

They  show that the Wald test resulting from two formulations of the same hypothesis e.g. 

0/1: 2101 =− ββH  and 01: 2102 =−ββH   are numerically not identical in finite samples. 
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portfolios betas tend towards one [See Blume (1975)], the sampling distribution of the 

test statistic with this form may behave poorly in the right tail. Therefore the 

associated test developed from such a formulation converges poorly to the asymptotic 

Chi-Square distribution. A formulation similar to that in (2) which we refer to as a 

multiplicative formulation is considered in Amsler and Schmidt (1985).  

This paper addresses the issue of invariance property of the Wald test by considering 

the non-linear formulations of the Wald and GMM tests and compares them with the 

LR test. We show that asymptotic Wald and GMM tests result in serious size 

distortions while the LR test gives more accurate sizes when the returns are allowed to 

follow certain parametric distribution. For the case when the residuals are non-

parametrically resampled from the observed data the performance of the LR test is 

equally poor. The bootstrap tests rectify the size distortions and render the Wald and 

GMM tests at par with the LR test. Comparing the alternative formulations of the 

GMM test it is found that when there are smaller deviations from the asset pricing 

model the multiplicative form of the GMM test outperform the LR and other tests. As 

the deviations from the asset pricing tests increase the ability of the LR tests to detect 

the difference increase rapidly compared to the other tests.  

The tests are applied to the monthly portfolio returns from the Karachi Stock 

Exchange2 which is the largest of the three stock markets in Pakistan. Khawaja and 

Mian (2005) remarks this market has the typical features of an emerging market. In 

addition investigating this market might be interesting for investors as for 2002 the 

market was declared the best performing market in the World in terms of the percent 

                                                 
2 The Karachi Stock Exchange is the largest of the three stock markets in Pakistan. In mid April, 2006 the market 

capitalization was a US$ 57 billion which is 46 percent of Pakistan’s GDP for the Fiscal Year 2005-06. (Ref: 

Pakistan Economic Survey 2005-06) 
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increase in the local market index. See Iqbal and Brooks (2007) for implications of 

portfolio allocation in this market. 

The plan of the paper is as follows. Section II discusses the formulation of the Wald, 

GMM and LR tests of the Black’s CAPM. This section also describes the bootstrap 

tests.  Section III describes the data used in the study and provides some specification 

tests on the market model residuals. Section IV briefly discusses the result of the 

empirical tests. In section V the empirical size and power of the tests are evaluated 

using Monte Carlo simulation experiments. Section VI provides conclusion.  

 

II. MULTIVARIATE TESTS OF THE ZERO-BETA CAPM 

A. The Wald test  

We assume that the return generating process is the familiar market model: 

T...,,1t,rR tmtt =++= εβα                                 (4)                 

Here /
tNt2t1t ]r...rr[R =  is the  1×N  vector of raw returns on N portfolios, tε is the 

1×N vector of disturbances,α and β  are  1×N vector of the intercept and slope 

parameters respectively. The zero-beta CAPM specifies the following cross sectional 

relation: 

))r(E(I)R(E mtNt γβγ −=−                          (5)                 

Here γ  is the parameter representing returns on the zero-beta portfolio.  

Applying the expectation on (4) yields  

N.,..,1i,)r(E)1()R(E mtt =+−= ββγ                        (6) 

Comparing (5) and (6) the joint restrictions on the parameter imposed by the zero-beta 

CAPM are expressed in the following hypothesis. 
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N.,..,1i,)1(:H ii0 =−= βγα                    (7) 

This is essentially a non-linear constraint on the system of market model equations 

and the iterative estimation and an LR test for the hypothesis is provided in Gibbons 

(1982). Chou (2000) developed a Wald test that permits the model to be estimated 

entirely in terms of alpha and betas by expressing the null hypothesis as: 
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This is equivalent to 1−N  joint hypotheses 
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Denote /
1N1 ]g....g[)(g −=θ ,where /

NN11 ]...[ βαβαθ =  

The hypothesis to be tested is  

0)(g:H0 =θ  

Note that the under normality and iid assumption on the error term the OLS   estimate 

θ̂  is asymptotically normally distributed.  

θ̂ ~ ))X'X(,0(N 1−⊗Σ  

Here X is the 2T ×  design matrix with a column of 1’s and a column containing return 

of the market portfolio. If the normality assumption is violated then under the iid 

assumption the limiting distribution of )ˆ(θg can still be approximated by a normal 

distribution. Thus the Wald test for the zero-beta CAPM can be formulated as 
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Here the partial derivatives /
g
θ∂
∂  are evaluated at the OLS estimates from the 

unrestricted system. 

Keeping in view the concern of Bealieu et al. (2004) regarding this form of the Wald 

test we consider an alternative formulation of the zero-beta CAPM hypothesis with a 

multiplicative form for the non-linear restriction 

1N.,..,1i),1()1(g i1i1iii −=−−−= ++ βαβα               (12) 

In this case the matrix of the partial derivatives is as 

follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−−−
−−−−

=
∂

∂

−− 1N1NNN

2233

1122

/

)1()1(0...000
...........
...........
...........
0...0)1()1(00
0...000)1()1(

g

αβαβ

αβαβ
αβαβ

θ

                     (13) 

                 

The Wald test can be formulated similar to previous case and is given by (11) with  

ig  and /
g
θ∂
∂  replaced by (12) and (13) respectively. The test statistic is distributed 

asymptotically as a Chi-Square distribution with N-1 degrees of freedom.   

B. The GMM Test 

Although the Wald tests are justified under non-normality they still require the 

assumption of iid disturbances. It is widely reported especially for emerging markets 

that the residuals may be serially correlated. For example, Harvey (1995) reports 

such evidence for a group of emerging markets that the returns show greater 

predicability in these markets than the developed markets. Evidence of serial 
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correlation is also reported in Tables 1 and 2 for our portfolio returns calculated from 

the Karachi Stock Exchange data.  

One approach to deal with the non-spherical residuals is to employ an estimated 

robust covariance matrix in the Wald statistics and proceed with the test 

)ˆ(ggV̂g)ˆ(gW

1/
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Here tV  is the HAC covariance matrix of the parameter estimates. This test is 

asymptotically distributed as Chi-Square, for details see Ray et al. (1998). We can 

show that the same Wald statistics can be derived using the Hansen’s (1982) 

Generalized Method of Moments. The GMM tests do not require strong distributional 

assumption regarding normality, heteroskedasticity and serial independence of the 

residuals. With N assets and T time series observation on each asset the moment 

conditions vector can be defined as: 
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Now we have 2N moment conditions and 2N parameters to be estimated therefore the 

multivariate system of 2N equations is exactly identified. Here /
mtt ]r1[x =   

/
tNt2t1t ]...[)( εεεθε =  and mtiiitit rR βαε −−=  
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The GMM3 estimate of the parameter minimizes the quadratic form of the sample 

moment restriction vector 

)(hW)(hminargˆ
TT

/
TGMM θθθ =                                                  (16) 

Here WT is a positive definite weighting matrix whose elements can be functions of 

parameters and data. Hansen (1982) shows that the optimal weighting matrix is  

1
TT )]}(hT[VarAsy{SW 1 −== − θ                                                (17) 

The asymptotic covariance matrix of the GMM estimator is  

1]DSD[V 1/ −−=                                              (18) 

Where )](h
'

[limPD T θ
θ∂
∂

= . In practice ‘S ’ and ‘ D ’ are unknown but the 

asymptotic results are valid for some consistent estimator ‘ TS ’ and ‘ TD ’. For the 

exactly identified case Mackinlay and Richardson (1991) show that the portfolio 

efficiency can be tested by first estimating the unrestricted system and then computing 

the test statistics of the efficiency hypothesis which involve these unrestricted 

estimates. Moreover in this case the GMM estimator is independent of the weighting 

matrix and is the same as the OLS estimator; however the covariance matrix must be 

adjusted to allow for heteroskedasticity and serial correlation. The GMM estimates 

are asymptotically normally distributed  

)V,0(N~)ˆ(T θθ −  

Here V is as defined above. Any non-linear function g( )θ̂ of the parameter is also 

asymptotically normal 

])g(V)g(,0[N~)]ˆ(g)(g[T /
// θθ

θθ
∂

∂

∂

∂
−  

                                                 
3 The just identified system therefore leads to a simple method of moment estimator rather than a 

generalized method of moment estimator. We continue to use the term ‘GMM’ following use of the 

term in literature in this case.  
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Therefore the GMM based Wald test for the can be formulated as  
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Note that GMM procedure arrives at the same Wald test that was developed without 

resorting to the GMM framework. In this case  

1]DSD[V T
1

T
/
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−−=                                                              (20) 

We estimate these matrices as follows 

XXIxxI
T
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/
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‘ TS ’ is estimated by Newey-West (1987) HAC covariance matrix, for details see Ray 

et al (1998).  
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Here ttt xe ⊗=η  so that /
tt

/
tt

/
tt xx⊗= εεηη .   ∑ −vt

/
t)T/1( ηη and  

∑ − t
/

vt)T/1( ηη  are auto covariance matrices of lag v. Here ‘p’ is the lag length 

beyond which we are willing to assume that the correlations between tη  and vt−η  are 

essentially zero. We use the Newey-West fixed bandwidth ])
100
T(4int[p 9/2= , 

where int[ ] denotes  the integer part of the number. Mackinlay and Richardson 

(1991) and Chou (2000) employed the White (1980) covariance matrix as ‘ TS ’ which 

corresponds to p=0 in our case. Thus these authors assume that the disturbances are 

heteroscedastic but serially independent. The return predicability evidence from the 

emerging markets calls for a robust covariance matrix such as the Newey-West 

(1987) covariance matrix.  
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C. The LR Test 

Gibbons (1982) employed the LR test 

1N
2d|)ˆ|log|*ˆ|(logTLR −⎯→⎯−= χΣΣ                                     (23) 

Where *Σ̂ and Σ̂ are the restricted and unrestricted covariance matrices of the 

estimates respectively. The test is derived under the assumption that the returns 

follow a multivariate normal distribution. Following Gibbons, this test has been 

widey applied in the multivariate asset pricing studies including Jobson and Korkie 

(1982), Chou (2000) and Amsler and Schmidt (1985) among others. 

D. The Bootstrap Tests of the Zero-Beta CAPM 

As discussed in the subsequent analysis, the asymptotic tests especially the Wald and 

GMM tests of the Black-CAPM have serious size distortions which impede their 

validity in empirical applications. In this case the residual bootstrap provides an 

alternative mean of obtaining more reliable p-values of the tests. It is well established 

that if the test statistic is asymptotically pivotal i.e. the null distribution does not rely 

on unknown parameters, then the error in size of the bootstrap test is only of the order 

)n(O 2/j−
compared to the error of the asymptotic test which is of the order 

][O 2/)1j(n +−
 for some integer 1j ≥ 4. See for example Davidson and MacKinnon 

(1999). The bootstrap p-values are obtained as follows:  

1. The unrestricted system of market model is estimated by the seemingly unrelated 

regression. The residuals { tε } are obtained and the five test statistics are computed. 

The system is also estimated subject to the zero-beta CAPM restrictions and the 

                                                 
4 The tests considered in our investigation are all asymptotically pivotal and are asymptotically Chi- 

Square (N-1). 
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restricted parameters are estimated. The test statistic for the zero-beta CAPM say Wn 

is calculated. 

2. The following steps are repeated 5000 times. 

 a. A block bootstrap sample { *tε } is drawn from { tε }. The block length 

chosen is same as the lag length ‘ p ‘  in the HAC covariance matrix. Then the 

resampled returns are obtained as  *rmˆ)ˆ1(ˆ*R ttt εββγ ++−=  

 b. The test statistics say Wn * is computed.  

3. The bootstrap p-values are computed as the percentage of times Wn * is greater 

than Wn. 

 

III. DATA AND THE DIAGNOSIS OF THE MARKET MODEL 

RESIDUALS 

A. The Data 
 The data for this study comprise portfolios formed from a sample of stocks listed on 

the Karachi Stock Exchange (KSE) and are obtained from the DataStream database. 

The sample period spans nearly 13 ½ years from October 1992 to March 2006.  The 

data consist of monthly closing prices of 101 stocks and the Karachi Stock Exchange 

100 index (KSE-100). The criteria for stocks selection was based on the availability of 

time series data on continuously listed stocks for which the prices have been adjusted 

for dividend, stock split, merger and other corporate actions. The KSE-100 is a market 

capitalization weighted index. It comprises top companies from each sector of KSE in 

terms of their market capitalization. The rest of the companies are picked on the basis 

of market capitalization without considering their sectors. We consider the KSE-100 

as a proxy for the market portfolio. The 101 stocks in the sample account for 
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approximately eighty per cent of the market in terms of capitalization. Market 

capitalization data is not routinely available for all firms in the database. However the 

financial daily, the Business Recorder5 report information on firms over the recent 

past6. The market capitalization of all selected stocks is collect at the beginning of 

July 1999 which roughly corresponds to the middle of the sample period considered in 

the study. We use monthly data and compute the raw returns assuming continuous 

compounding. To investigate robustness of the empirical results we consider 

portfolios based on three different formation schemes namely size, beta and industry.7 

Forming portfolios serves two important purposes. Firstly they provide an effective 

way of handling the curse of dimensionality of the multivariate systems. With large 

number of parameters working with individual stocks may result in highly imprecise 

estimates. Secondly forming portfolios with respect to size, beta and industry provides 

a means of controlling the confounding effects of these characteristics and thus 

enables unambiguous interpretation of results.  

We construct seventeen equally weighted size and beta portfolios. This number was 

considered keeping in view the desire to include at least five stocks in each portfolio 

and to avoid over aggregation by forming too few portfolios. First the stocks are 

ranked on market capitalization in ascending order. The first portfolio consists of the 

first five stocks while the rest comprise of six stocks each. The beta portfolios are 

based on ranking of the stocks on the beta estimated via the market model. Portfolio 

return is calculated as the equally weighted average return of the stocks in the 

portfolio. For industry portfolios the stocks are classified into sixteen major industrial 
                                                 
5 www.businessrecorder.com.pk 
6 Due to the lack of sufficient data on capitalization and relatively short sample period the portfolio re-

balancing is not performed. 
7 Some studies, such as Groenewold and Fraser (2001), report that the conclusion of an analysis may be 

different and even conflicting when different portfolios are employed.  
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sectors. The sector sizes range from two stocks in the transport sector and thirteen 

stocks in the communication sector8. These sectors serve as natural portfolios.  

B. Residual diagnostic tests  

All residual diagnostics and the asset pricing tests are performed for two distinct sub-

periods: October 1992 to June 1999, July 1999 to March 2006 and the whole period-

October 1992 to March 2006. The objective here is to examine the stability of the risk 

return relationship in the two sub-periods. This is important as the volatile political 

and macroeconomic scenario in emerging markets might make the return distribution 

non-stationary and unstable. Each sub-period consists of 81 monthly observations that 

correspond to 6 ¾ year of monthly data.   

Table 1 reports the Mardia (1970) test of multivariate normality of the residuals of the 

unrestricted market model for the size, beta and industry portfolios. This test is based 

on multivariate equivalents of skewness and kurtosis measures. The results are 

reported for the test based on skewness and kurtosis measures separately. Both 

skewness and kurtosis based statistics are significant indicating and overwhelming 

rejection of multivariate normality of the residuals. The tests are significant for all 

cases with size, industry and beta portfolios. Table 2 reports the Hosking (1980) 

multivariate portmanteau test of no autocorrelation for up to lag 3 in the market model 

residuals. This test is a multivariate generalization of the univariate test9 of Box and 

                                                 
8 The industry sectors employed are Auto and allied, Chemicals, Commercial Banks, Food products, 

Industrial Engineering, Insurance, Oil and Gas, Investment banks and other financial companies, Paper 

and board, Pharmacy, Power and utility, Synthetic and Rayon, Textile, Textile Spinning and Weaving, 

Transport and communication and Other /Miscellaneous firms that include tobacco, metal and building 

material companies.  
9 The univariate JB tests for normality and the LB test of autocorrelation are also 

performed which indicate that normality and serial independence is rejected for many 

individual portfolios regressions. The results are not reported to save space. 
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Pierce (1970). The results provide evidence of predictability in the residuals for beta 

and industry portfolios and for the whole sample period for the size portfolios. The 

residual correlation is however not found for both sample periods with the size 

portfolios. 

IV. THE RESULTS OF EMPIRICAL ANALYSIS 

Table 3 presents the results of testing the zero-beta CAPM via the five tests. The tests 

are reported for the three sets of portfolios and for the two sub-periods: October 

1992-June 1999, July 1999-March 2006 and for the whole period. As the asymptotic 

tests results in considerable size distortions only the bootstrap p-value are reported. 

All five tests provide strong evidence in support of the Black’s zero-beta CAPM. 

Except for one case of the GMM test with multiplicative formulation with industry 

portfolios in the first sample period all the bootstrap test results in p-values above 

0.910. The tests are also robust across different sets of portfolios. The Wald tests with 

the two non-linear formulations results in numerically smaller values of the test 

statistics compared to the LR test which in turn is smaller in value to the GMM tests. 

Comparison of numerical values of the tests with the two alternative non-linear 

formulations results in a mixed conclusion but the alternative formulations do not 

appear to alter the decision to strongly support the financial model. Thus it appears 

that when the data provide strong support for the asset pricing model as in the present 

case, forming the test hypothesis in alternative ways is unlikely to change the 

conclusion drawn from empirical data regarding the test outcome.  

 

 

                                                 
10 Chou and Lin (2002) also report the p-values of GMM and Wald tests in excess of  0.90 for the zero-

beta test on the OECD data. 



 17

V. SIMULATION EXPERIMENT 

To investigate how well the LR test and the Wald and GMM tests with the two 

formulations of the zero-beta CAPM perform under various distributional 

specification and to examine their finite sample behaviour we investigate their size 

and power for the case of size sorted portfolios. Assuming that the null hypothesis is 

true we evaluate the rejection probabilities that estimate the percent of time of the null 

hypothesis is rejected in the simulation experiment and compare them with the 

nominal significance levels. The larger differences between the nominal and empirical 

rejection rates would indicate that the tests have larger size distortions thereby making 

the tests statistically unreliable. For power comparison we have chosen the alternative 

form similar to that employed by Gibbons (1982) i.e. 

)1,c(N)1(:H1 +−= βγα                                                  (24) 

 We chose c = 1 to 3 with an increment of 0.5. That is a normally distributed 

component is added to intercept vector. According to Gibbons (1982) this type of 

alternative is compatible with a variety of asset pricing models that are competitors of 

the CAPM such as the Merton (1973) inter-temporal model with one state variable. 

This alternative will test the sensitivity of the zero-beta CAPM tests if the average 

returns are systematically over estimated relative to that predicted by the zero-beta 

CAPM.  

We first consider the case when the returns are generated by bootstrapping the error 

terms from the residuals of the market model. As table 2 indicates that the residuals 

may be serially correlated we performed block bootstrap with block length that is 

equal to the lag length of the HAC covariance matrix11. This choice of block length is 

consistent with Inoue and Shintani (2006). In this way the finite sample performance 
                                                 
11 A sensitivity analysis indicates that   increasing the block length does not alter the conclusion 
significantly. 
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of the tests are investigated when the tests encounter real data. Next we evaluate the 

size and power of the tests under the assumption that the residuals and returns follow 

an iid normal distribution. To examine the behaviour of the tests when the returns 

have higher kurtosis and heavier tails relative to normal distribution we also 

considered the case of errors following a t-distribution with 5 degrees of freedom. To 

investigate the performance of the tests when the returns data have skewness   we 

considered a mixture normal distribution as an alternative model of the residuals.  

Finally we examine the non-iid distributed data by specifying an autoregressive model 

of order one for the errors.  The sample sizes considered are T = 60 and 162. The first 

sample size of five years monthly data is considered in most US studies of 

multivariate asset pricing tests. The second sample size corresponds to entire available 

sample period which correspond to 13.5 years monthly data.  

To generate residual vector from a multivariate normal distribution with zero mean 

and covariance matrixΣ   we set 

,tt zL=ε                                        (25) 

Here L is the Cholesky factor of Σ (i.e. LL'=Σ ) and tz  is an 1×N vector of standard 

normal random numbers. The residuals from the t-distribution were generated by 

setting  

,t2
v

t zL
)v/(

1

χ
ε =                                                 (26) 

Where 2
vχ  denotes a Chi-Square random variate with v degrees of freedom. We set v 

= 5 to introduce leptokurtosis relative to the normal distribution. We simulated the 

residual from a mixture normal distribution by setting 

 ),(N)p1(),0(pNt ΣτηΣε −+=                                     (27)                               
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Following Chou (2000) we set the parameter as p=0.7 and τ =5. The negative 

skewness12 in the returns was introduced by setting  η  as the vector of the standard 

deviation of the observed market model residuals. To ensure zero mean of the 

disturbances we subtracted  η)p1( −  from the generated residuals. To introduce a 

non-iid distribution for the returns we generated the residuals from a AR (1) model by 

setting  

t1tt eA += −εε                                          (28)           

The parameters in the diagonal matrix A and the covariance matrix of the residual 

vector were estimated from the observed data on the market model residuals. As 

discussed subsequently the Wald and GMM tests with asymptotic Chi-Square critical 

values result in quite erratic test sizes. The correct sizes were therefore obtained using 

a computationally intensive bootstrap procedure.  The size simulation was carried out 

as follows:  

(1) The null hypothesis is incorporated in the market model and returns are generated 

from the following equation: 

*rmˆ)ˆ1(ˆ*R ttt εββγ ++−=                                                            (29)            

The parameters  βγ ,  and Σ  are estimated from the observed data in the respective 

sample. The data on the residuals are drawn from one of the alternative distribution. 

The observed market portfolio returns is employed in the simulations. The parameters 

of restricted and unrestricted system of market model are estimated and the test 

statistic say Wn is computed. 

(2) We obtain B = 200 bootstrap runs by resampling the returns from equation (29) 

again but this time using the parameter estimates from step (1).  For each bootstrap 

                                                 
12 Nine  out of 17 observed residuals from the market model regressions have negative skewness. 

Therefore we have chosen to introduce negative skewness in the returns. 
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the systems is estimated and the test statistics say Wn* is computed. Bootstrap critical 

value correspond to a nominal level of ‘a’ as (1-a)th quantile of the bootstrap 

distribution formed from the 200  Wn * values are obtained.  

(3) The above two steps are repeated 5000 times. The size of asymptotic tests is 

computed as the empirical rejection probability that Wn exceeds the Chi-Square (N-1) 

critical values in these 5000 simulations. We compute the size of bootstrap tests as 

empirical rejection probability that Wn exceeds quantile of the bootstrap distribution.  

For power simulations the following two step procedure is employed.  

(1) The returns from the following equation is generated 

*rmˆ)1,c(N)ˆ1(ˆ*R ttt εββγ +++−=                                                (30)                           

We estimate βγ ,  and Σ  from the observed data in the respective sample. The data 

on the residuals are drawn from one of the alternative distribution. The parameters of 

restricted and unrestricted system of market model are estimated and the test statistic 

say Wn is computed. 

(2) The step (1) is repeated 5000 times for each c from 1 to 3 in the increment of 0.5. 

The power of the tests is computed as the empirical rejection probability that the 

computed test exceed the bootstrap critical values obtained in the size simulations. As 

there are some size distortions even at bootstrap critical values we evaluate only the 

size corrected power. Our simulations design for size and power evaluation resembles 

Hall and Horowitz (1996) although we employ a larger number of simulations (5000 

instead of 1000) and number of bootstraps (200 instead of 100).  

Table 4 presents the rejection probabilities of the five tests of the zero-beta CAPM at 

the critical values obtained from asymptotic Chi-Square distribution. Except for the 

case of bootstrap residuals the sizes of the LR test are closer to the nominal values 

compared to the Wald and GMM tests. Similarly except for the first case of bootstrap 
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distribution both non-linear formulations of the Wald tests results in severe under-

rejection.  In general no form of the Wald test can be preferred over the other. One the 

other hand both formulations of the GMM tests over-reject. Increase in sample size 

from 60 to 162 make the size distortion nearly half but to eliminate the size distortions 

completely would require much larger sample sizes which are difficult to secure 

especially for emerging markets. Overall it can be concluded that the LR test results in 

smaller size distortions for iid data. This result is also found to be quite robust to 

distributional deviation from normality either in the form of higher skewness or 

excess kurtosis. It appears that when the asymptotic tests face real data (the first case 

in panel 1) no one of them performs satisfactorily. 

As the asymptotic test give quite severe size distortions it is worthwhile to consider 

the tests with bootstrap critical values. The rejection probabilities of the bootstrap 

tests are presented in Table 5. The first and very obvious observation from the 

bootstrap tests is their closer approximation to the nominal sizes.  Except for a few 

cases the error in approximation of the test sizes to the nominal sizes is within 1 % for 

all the five tests. For example the average percent approximation error for the Wald 

test with ratio and multiplicative formulation is 0.33, 0.15, 0.31 percent and 0.25, 

0.14, 0.42 percent respectively with nominal size of 1%, 5% and 10 %. Generally 

drawing any conclusion regarding the relative merits of the size of the two 

formulations is difficult. The two formulations of both the Wald and the GMM tests 

compare quite favourably with the LR test when the size is evaluated at bootstrap 

critical values.  It is concluded that the asymptotic LR test dominate the other tests 

especially with the iid data but this generalization to bootstrap tests is not extended. In 

fact bootstrapping the Wald and GMM tests have rendered these tests at par with the 

LR test despite their poor asymptotic performance.  
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As the asymptotic tests result in quite erratic test sizes we investigate the power only 

at the bootstrap critical values. Figure 1 present the empirical rejection probabilities of 

the five tests of the zero-beta CAPM at bootstrap critical values obtained from the size 

simulations with sample size of 60. The power is computed using the first five years 

market return data and using the parameter estimates over this period. The LR test 

clearly dominates the other in the cases of Normal, Mixture Normal and 

Autoregressive errors. For other two cases GMM test with multiplicative formulation 

perform better when the test is subject to a smaller deviations from the null 

hypothesis. At relatively larger deviations LR test dominates the other ones.  This 

result appears to be robust to various type of non-normalities introduced in the 

simulation experiment as far as the return data remain identically distributed. Also as 

the distance from the null hypothesis increases the gain in power is more rapid for the 

LR test. The power of the Wald and GMM tests remain low at the conventional 

sample size consisting of 5 years monthly data. The power of the Wald and GMM 

tests do not exceed 0.40 in any of the cases. Figure 2 presents the power when sample 

size increases to 162 which corresponds to all available sample data. The LR test 

generally dominates the other tests especially when the returns are subject to larger 

deviations from the asset pricing model. At relatively smaller deviations the GMM 

test with multiplicative formulation performs better than the LR tests in cases that 

represent deviations from non-normality such as the excess kurtosis captured by 

Student T errors, higher deviation from skewness represented by a Mixture Normal 

distribution and the case when errors are generated from the real data by 

bootstrapping. For the normal case the multiplicative form of Wald and GMM test 

appear to perform better than the ratio formulations.  Figure 1 and 2 reveal that power 

of the Wald and GMM tests appear to increase less rapidly compared to the LR tests 
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as the deviations from the null hypothesis increase. In practice it is difficult to 

determine the extent of departure from the null hypothesis but it is clear that when the 

distance between the null and alternative models is smaller it will be extremely 

difficult for the both asymptotic and the bootstrap tests to detect the difference. 

Consequently the acceptance of the asset pricing model pose a question of whether the 

data actually support the model or the results merely reflect the low power of the tests 

under considerations. This comment applies to the results of empirical tests reported 

in table 3 for the data from the Karachi Stock market. It is nevertheless expected that 

bootstrap LR and GMM tests with larger sample sizes will detect the economically 

and statistically significant differences between the null and alternative models.  Thus 

even the bootstrap based version of these tests requires a careful consideration in 

practical applications of multivariate asst pricing with finite samples especially in 

emerging markets. 

 

VI. CONCLUSION 

The paper examines the finite sample performance of five multivariate tests of the 

zero-beta CAPM. The empirical performance of the tests is examined on an emerging 

market data. It is well established that return characteristics of the emerging markets 

differ from that of the developed markets. Moreover we account for the fact that 

money markets in the emerging markets are not perfect so that a reliable risk-free rate 

is difficult to obtain. The tests considered are Gibbons (1982) LR test and two non-

linear formulations of the Wald and an associated GMM test. The formulation of the 

Wald statistic of the Black-CAPM restriction employed in earlier research [for 

example, Chou (2000) and Lee et al. (1997)] might be associated with identification 

problems when the parameters of the model (beta of the portfolios) approach one. The 
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paper therefore investigated an alternative formulation of the Wald test and the 

associated GMM test of the asset pricing model. A Monte Carlo simulation 

experiment demonstrates that the size distortions of asysmptic tests are considerably 

higher especially for the Wald and GMM tests. However bootstrap tests rectify the 

size distortions and render the Wald and GMM tests at par with the LR test. 

Comparing the alternative formulations of the GMM test it is found that when there 

are smaller deviations from the asset pricing model the multiplicative form of the 

GMM test outperform the LR and other tests. As the deviations from the asset pricing 

tests increase the ability of the LR tests to detect the difference increase rapidly 

compared to the other tests.  While the asymptotic LR test for iid data results in 

correct sizes the Wald and GMM test require computational intensive resampling 

procedures to recover the correct rejection probabilities. In larger samples the GMM 

test with the multiplicative formulation generally results in higher power compared to 

the test with a ratio type formulation. The tests results are based on monthly portfolio 

data from an emerging market-the Karachi Stock Exchange. The tests strongly 

support the zero-beta CAPM. However the finite sample properties of the multivariate 

tests found in the study indicates that non-rejection might be caused by the low power 

of the tests.  
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Table 1: Test of multivariate normality of Market Model residuals 
 

Size Portfolios Beta Portfolios Industry Portfolios Sample Period 
Skewness Kurtosis 

 
Skewness 

 
Kurtosis 

 
Skewness 

 
Kurtosis 

 
Oct 92 – Jun 99 95.04 

(0.000) 
351.05 
(0.000) 

81.79 
(0.002) 

345.46 
(0.000) 

78.62 
(0.000) 

307.80 
(0.000) 

Jul  97 – Mar  06 89.89 
(0.000) 

344.71 
(0.000) 

84.106 
(0.000) 

346.28 
(0.000) 

75.73 
(0.000) 

308.19 
(0.000) 

Oct  92 – Mar  06 55.30 
(0.000) 

372.47 
(0.000) 

51.07 
(0.000) 

377.44 
(0.000) 

47.67 
(0.000) 

337.32 
(0.000) 

 
 
This table reports the tests of multivariate normality of the residuals of the 
unrestricted market model. P-values are given in the parenthesis. The Mardia (1970) 
test of multivariate normality is based on the multivariate skewness and kurtosis 
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Table 2: Test of serial independence of unrestricted Market Model residuals 
 

Size Portfolios Beta Portfolios Industry Portfolios Sample Period 
Lag1 Lag2 Lag3 Lag1 Lag2 Lag3 Lag1 Lag2 Lag3 

Oct 92 – Jun 99 314.92 
(0.141)

626.20 
(0.080) 

899.47 
(0.215)

322.50 
(0.085)

628.34 
(0.072)

920.50 
(0.101)

322.84 
(0.002) 

594.57 
(0.006)

878.34 
(0.003) 

Jul  97 – Mar 06 312.27 
(0.165)

603.84 
(0.221) 

928.18 
(0.073)

339.95 
(0.020)

637.04 
(0.044)

935.06 
(0.053)

286.30 
(0.093) 

560.00 
(0.069)

815.88 
(0.112) 

Oct  92 – Mar 06 346.26 
(0.011)

633.12 
(0.055) 

922.88 
(0.091)

363.82 
(0.001)

656.21 
(0.013)

943.21 
(0.036)

333.35 
(0.000) 

580.95 
(0.018)

855.10 
(0.015) 

This table reports the tests of serial independence of the residuals of the unrestricted 
market model. P-values are given in the parenthesis. The Hosking (1980) multivariate 
portmanteau test is a multivariate generalization of the univariate portmanteau test of 
Box and Pierce (1970). The test statistic at lag length s is  

)(1)( 1
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where srrs UU
T

C −−′=
1 , iU − is the NT × residual matrix lagged i periods. The test is 

performed for s = 1 2, 3. The initial missing values are filled with zero. 
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Table 3: The test of Black-CAPM 
 

This table presents the values of the five test statistics resulting from the test of the 
Black CAPM. Bootstrap p-values based on 5000 simulations are given in parenthesis.  
 
Note: The Wald and GMM tests are adjusted by multiplying (T-N-1)/T and LRT test 
statistics is adjusted by (T-1.5-N/2)/T to improve their small sample performances. 
See Gibbons, Ross and Shanken (1989) and Jobson and Korkie (1982) for detail.  
 

Portfolio 
Method 

Wald1 Wald 2 
 

GMM 1 GMM 2 LR 

 
Panel 1: Oct 92 – Jun 99 

 
Size 6.381 

(0.978) 
6.504 

(0.981) 
12.394 
(0.983) 

15.689 
(0.941) 

7.445 
(0.996) 

Beta 4.885 
(0.989)     

5.029 
(0.989) 

5.897 
(0.997) 

5.815 
(0.998) 

6.0238 
(0.994) 

Industry 10.175 
(0.944) 

10.113 
(0.973) 

15.687 
(0.992) 

19.012 
( 0.896) 

12.295 
(0.983) 

 
Panel 2: Jul  97 – Mar 06 

 
Size 9.500 

(0.944) 
8.891 

(0.974) 
13.134 
(0.983) 

11.033 
(0.994) 

10.482 
 (0.995) 

Beta 10.642 
( 0.985) 

10.648 
(0.976) 

17.085 
(0.981) 

19.638 
(0.943) 

14.551 
(0.987) 

Industry 12.583 
(0.978) 

8.757 
(0.992) 

24.350 
(0.996) 

16.613 
(0.995) 

14.403 
(0.994) 

 
Panel 3: Oct  92 – Mar 06 

 
Size 8.593 

( 0.982) 
9.748 

(0.976) 
15.271 
(0.962) 

13.205 
( 0.982) 

11.709 
(0.977) 

Beta 9.775 
(0.959) 

9.9759 
( 0.956) 

15.147 
(0.959) 

12.091 
( 0.984) 

11.893 
(0.966) 

Industry 11.391 
(0.960) 

8.762 
(0.985) 

17.768 
(0.999) 

10.833 
( 0.998) 

13.927 
( 0.974) 
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Table 4: Size of the Black-CAPM tests with Asymptotic Chi Square Critical Values  
 
This table provides the empirical rejection probabilities of five tests of Black-CAPM model each evaluated with five alternative distribution 
specifications of the residuals. The result for a nominal size of ‘a’ % correspond to number of times the test statistic exceeds the (1-a) % quantile 
of Chi Square Distribution with N-1 degrees of freedom divided by the number of simulation i.e.5000. The market portfolio from observed data 
is employed in these experiments. 
 

Wald 1 Wald 2 GMM 1 GMM 2 LR  
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

Panel  1 : Bootstrap  Distribution 
T =60 0.023 0.057 0.099 0.010 0.042 0.074 0.500 0.648 0.730 0.475 0.649 0.728 0.259 0.416 0.522
T=162 0.045 0.138 0.230 0.031 0.135 0.220 0.448 0.648 0.751 0.408 0.614 0.726 0.159 0.364 0.507
Panel 2: Normal Distribution 
T =60 0.001 0.001 0.002 0.000 0.001 0.004 0.143 0.249 0.326 0.147 0.260 0.347 0.012 0.052 0.109
T=162 0.002 0.012 0.032 0.002 0.015 0.036 0.056 0.147 0.220 0.056 0.146 0.231 0.008 0.046 0.096
Panel 3. Student t Distribution with 5 degrees of freedom 
T =60 0.001 0.001 0.001 0.000 0.000 0.001 0.120 0.216 0.293 0.116 0.218 0.293 0.010 0.055 0.099
T=162 0.002 0.005 0.016 0.000 0.005 0.013 0.043 0.115 0.181 0.038 0.116 0.186 0.009 0.049 0.097
Panel 4. Mixture Normal Distribution  
T =60 0.002 0.002 0.002 0.000 0.000 0.000 0.093 0.183 0.248 0.106 0.211 0.286 0.010 0.056 0.106
T=162 0.001 0.004 0.012 0.001 0.007 0.014 0.031 0.096 0.161 0.035 0.101 0.160 0.012 0.048 0.098
Panel 5 : AR(1) 
T =60 0.000 0.001 0.003 0.000 0.000 0.001 0.141 0.254 0.333 0.144 0.265 0.349 0.011 0.048 0.096
T=162 0.003 0.012 0.027 0.001 0.011 0.030 0.054 0.130 0.206 0.052 0.141 0.213 0.010 0.042 0.083

 
 
 
 
 



 28 

 
Table 5: Size of the Black-CAPM tests with Bootstrap Critical Values 

 
This table provides the empirical rejection probabilities of five tests of Black-CAPM model each evaluated with five alternative distribution 
specifications of the residuals. The result for a nominal size of ‘a’ % correspond to number of times the test statistic exceeds the (1-a) % quantile 
of the bootstrap distribution constructed from bootstrapping the test statistics 200 times. The rejection probabilities are based on 5000 
simulations. The market portfolio from observed data is employed in these experiments. 
 
 

Wald 1 Wald 2 GMM 1 GMM 2 LR  
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

Panel 1:  Bootstrap  Distribution 
T =60 0.020 0.063 0.119 0.011 0.051 0.096 0.014 0.052 0.099 0.014 0.053 0.106 0.016 0.059 0.110
T=162 0.013 0.048 0.096 0.013 0.049 0.103 0.014 0.059 0.110 0.017 0.059 0.109 0.012 0.051 0.102
Panel 2: Normal Distribution 
T =60 0.010 0.046 0.097 0.012 0.046 0.090 0.017 0.055 0.097 0.029 0.076 0.124 0.013 0.054 0.104
T=162 0.015 0.054 0.099 0.018 0.057 0.106 0.012 0.055 0.106 0.012 0.050 0.096 0.011 0.049 0.098
Panel 3: Student t Distribution with 10 degrees of freedom 
T =60 0.008 0.038 0.080 0.019 0.037 0.078 0.016 0.053 0.099 0.012 0.050 0.094 0.016 0.058 0.103
T=162 0.014 0.050 0.098 0.013 0.051 0.100 0.015 0.058 0.105 0.014 0.046 0.088 0.013 0.053 0.101
Panel 4: Mixture Normal Distribution  
T =60 0.010 0.036 0.078 0.008 0.042 0.085 0.011 0.045 0.087 0.010 0.042 0.087 0.013 0.057 0.106
T=162 0.016 0.052 0.108 0.016 0.053 0.106 0.013 0.050 0.104 0.016 0.056 0.103 0.015 0.054 0.109
Panel 5: AR(1) 
T =60 0.012 0.049 0.101 0.011 0.051 0.100 0.013 0.053 0.099 0.013 0.045 0.085 0.016 0.055 0.105
T=162 0.014 0.049 0.093 0.015 0.049 0.096 0.013 0.054 0.102 0.013 0.051 0.099 0.018 0.055 0.102
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Student T (5) Errors
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Mixture Normal Errors
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Fig 1: The size corrected power of the bootstrap tests of the zero-beta CAPM   under errors generated 
from alternative distribution at T=60 (at 5% nominal level).          
Note: The size corrections are done by employing critical values from size simulations. The rejection 
probabilities are computed from 5000 simulations. Here ‘c’ measures the deviation from the null 
hypothesis. The sample size is T=60. This corresponds to 5 years monthly data.
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Bootstrap Errors
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Mixture Normal Errors
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Fig 2: The size corrected power of the bootstrap tests of the zero-beta -CAPM   under errors 
generated from alternative distribution at T =162 (at 5% nominal level). 
Note: The size corrections are done by employing critical values from size simulations. The 
rejection probabilities are computed from 5000 simulations. Here ‘c’ measures the 
deviation from the null hypothesis. The sample size is T =162. This corresponds to 13.5 
years monthly data.
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