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Abstract 
 
Statistical process control (SPC) has evolved beyond its classical applications in 

manufacturing to monitoring economic and social phenomena.  This extension requires 

consideration of autocorrelated and possibly non-stationary time series.  Less attention 

has been paid to the possibility that the variance of the process may also change over 

time.  In this paper we use the innovations state space modeling framework to develop 

conditionally heteroscedastic models.  We provide examples to show that the incorrect 

use of homoscedastic models may lead to erroneous decisions about the nature of the 

process.  The framework is extended to include counts data, when we also introduce a 

new type of chart, the P-value chart, to accommodate the changes in distributional form 

from one period to the next. 
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1. Introduction 
 

The seminal work of Shewhart (1931) and many others on control charts focused 

squarely upon manufacturing processes, where production conditions might be expected 

to be stable over time if and when the process was in control.  Typically a small sample 

(e.g. n= 5) was taken and the sample mean plotted on an X  chart. The process was 

deemed to be out of control if the sample mean was more than three standard deviations 

from the underlying mean. The nature of such processes meant that it was often 

reasonable to leave a sufficient interval of time between successive sets of readings to 

ensure that the samples might be viewed as independent from one time period to the next.  

Further, if the process was deemed to be out of control, it was reasonable to assume that 

equipment could be reset so that the process was in control again by the time the next 

sample was taken. Thus, we are led to the standard formulation that the observations are 

independent and identically distributed at a given time and that there is independence 

between time periods. 

 Inevitably, as the popularity of such methods increased, these assumptions often 

became less plausible.  In particular, independence over time seemed an overly strong 

assumption; for example, the process might deteriorate slowly so that a series of related 

but relatively weak signals could occur, but none strong enough to trigger an 

intervention.  The recognition of such possibilities led to a series of ad-hoc rules designed 

to capture such behavior. For example, Version 15 of Minitab gives eight rules, each 
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designed to generate approximately the same probability of a Type I error for an in-

control process. These rules include: 

• 1 point more than 3 standard deviations from center line (the original rule) 

• 2 out of 3 points > 2 standard deviations from center line (same side; the warning 

area) 

• 6 points in a row, all increasing or all decreasing. 

Over time, it became evident that an out of control process could also lead to 

increased variability, without necessarily affecting the mean level, so that charts based 

upon the range of the sample (R-chart) or its standard deviation (S-chart) became 

popular. A variety of extensions and improvements have appeared, see for example 

Montgomery (2004); we focus upon the basic approaches in this paper. 

 The next major change that came about was the explicit introduction by Alwan 

and Roberts (1988) of time series models to describe the underlying nature of the process. 

Once we recognize that the process evolves over time, we can see that the assumptions 

made earlier cease to be valid and that erroneous decisions could be made if the time 

dependence is ignored.  Another way of looking at this approach is to think of the usual 

charts as being unconditional, in that they rely upon the marginal distribution provided 

the series is stationary so that such a distribution exists.  By contrast, the time series 

charts are defined conditionally upon the past values of the series.  We summarize 

developments in this area in section 1.1. 

As the use of control charts has spread beyond manufacturing processes to the 

study of social and economic phenomena, the emphasis has also shifted more to 

monitoring, rather than control. Indeed, intervention to restore “control” may be 
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physically or politically impossible, yet we still wish to know when a process has 

deviated from its expected path, be it an increase in crime rates or a shift in gasoline 

prices. We observe that there are two distinct issues here: a process may be in or out of 

statistical control, and it may meet or fail to meet the goals for which the monitoring is in 

place.  For example, crime rates may be changing in a manner that is statistically 

predictable, but politically unacceptable.  In such circumstances, changes in volatility 

may occur as well as changes in the mean level, which suggests that we should consider 

time series models that reflect movements in the variance as well as the mean. Such 

processes are briefly reviewed in section 1.2. 

When we consider monitoring social and economic processes, it is important to 

recognize that although the tools may be similar, the focus is somewhat different.  In 

monitoring applications, we may be well aware of temporal dependence and of changes 

in the mean and variance over time.  Our purpose is to look for unexpected shifts, and 

policy changes in response may be slow to take effect.  For a discussion in the context of 

transportation indicators, see Ord and Young (2004). 

A further point needs to be made when we consider monitoring social and 

economic processes.  In order to calibrate the charts, we must either assume that the 

process is in statistical control during the calibration period, or that outliers can be 

successfully identified and adjusted.  This outlier modification step must be approached 

with care; typically the parameter estimates may not change dramatically, but the residual 

variance may reduce considerably thereby narrowing the control limits.  If we are overly 

zealous in outlier removal we may induce a “chicken little” affect whereby excessive 

numbers of out-of-control signals are generated in later periods. 
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The paper is structured as follows. In the remainder of this section we describe 

control charts based upon state space models, and the extension to models with changing 

variances.  In section 2 we provide two examples of processes that are time dependent in 

both the mean and the variance, and illustrate how the proposed approach enables 

monitoring of each process in an effective manner. Then, in section 3 we consider the 

same question for data on counts and provide a framework for monitoring these 

processes, again illustrated by an example.  Section 4 presents the conclusions. 

1.1 Control charts based upon exponential smoothing 
  

We may formulate the statistical model underlying simple exponential smoothing 

(SES) using the innovations state space approach (Snyder, 1985; Ord, Koehler & Snyder, 

1997; Hyndman, Koehler, Ord and Snyder, 2008).  Such models may be formulated as 

follows; for purposes of illustration we focus upon the local level model.  We denote the 

process of interest by{ , an unobserved state variable by { and 

a random error term by{

, 1, 2, }ty t = … , 0,1, }tx t = …

, 1, 2, }t tε = … .  For the present, we assume that the errors are 

independent and identically distributed with zero means and common variance 2σ , 

or 2~ (0,t IID )ε σ .  We then define the measurement (or observation) equation and the 

transition (or state) equation respectively as: 

 1

1

t t t

t t

y x
x x t

ε
αε

−

−

= +
= +

 (1) 

The measurement equation describes the variations about the underlying mean level (the 

unobservable state) whereas the transition equation updates the state in light of the latest 

error term; the parameter lies in the range 0 2α≤ < . Eliminating the state variable 

between the two equations reduces to the familiar ARIMA(0,1,1) form: 
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 1 1,  where 1t t t ty y ε θε θ α− −− = − = − . (2) 

Although model (1) leads to (2) in a formal sense and implies that the forecasts are 

generated by simple exponential smoothing (SES), there is an important distinction.  In 

the state space model we often assume that the series starts at time 1t = , known as the 

finite start-up condition.  By contrast, ARIMA modeling typically assumes that the series 

extends back into the infinite past.  This distinction is not a mere formality: ARIMA 

schemes require that (after a suitable degree of differencing) the process is stationary, 

whereas the state space approach does not require such an assumption. In particular, the 

state space model can accommodate 0α = which leads to the model 0t ty x ε= + ; the 

ARIMA model cannot reduce to this form and so requires 0α > .  Further, as we see later 

in the paper, one of the advantages of the state space formulation is that it provides a 

more straightforward way to relax the equal variances assumption.  

The state space models can be extended to include seasonal components, trends 

and higher order lags, just like the ARIMA system.  Indeed, every ARIMA model may be 

represented in state space form and every linear state space model can be reduced to an 

ARIMA scheme; for further discussion see, for example Hyndman et al. (2008, Chapter 

11).  In this paper we restrict attention to the simplest models since these versions often 

suffice for short-term monitoring; the extensions to more complex schemes are 

conceptually straightforward. 

 Alwan and Roberts (1988) showed that the SES model is often an appropriate 

way to check whether the process is in statistical control; in essence, we use a Shewhart 

chart to check the behavior of the residuals.  A separate question is whether the process is 

behaving as desired, or on target. This question can be examined by looking at a plot of 

 6



the (clearly correlated) values of the state variable over time.  If the trends are not to the 

liking of the decision maker, an intervention is required.  In this way, Alwan and Roberts 

clearly separate the issues of statistical control and targeted behavior, which are 

sometimes confused.  In a later paper, Alwan and Roberts (1995) show that the failure to 

allow for time dependence leads to the use of misplaced control limits leading to potential 

errors in decision-making. 

 The basic model defined by equation (1) may be too limited and extensions to a 

broader range of state space models or their ARIMA counterparts are clearly possible. In 

particular, a slightly more general model is given by: 

1

1

t t

t t t

y x
x x

tμ φ ε
φ αε

−

−

= + +
= +

               (3) 

This model corresponds to the ARIMA(1,0,1) model, with autoregressive and moving 

average parameters  and (1 )φ φ α− and constant (1 )μ φ− , reducing to equation (2) when 

1φ = .  One reason for not going too far in the direction of increased complexity is the 

increase in the number of parameters to be estimated, although further extensions are 

sometimes required (e.g. to allow for seasonality). 

 For a general overview of recent developments in monitoring changes in the mean 

and variance, see Stoumbos, Reynolds and Woodall (2003).  In this paper we consider 

only extensions to the Shewhart chart and do not consider cumulative sum (CUSUM) 

charts. Reynolds and Stoumbos (2005) examine conditions under which it may be 

desirable to use exponential smoothing and CUSUM charts in combination.  Extensions 

to the multivariate case have been examined by several authors; see for example Lowry et 

al. (1992) and Pan & Jarrett (2004), but we stay within the univariate framework in this 

paper.   
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1.2 GARCH models 
The focus of this paper is how to monitor processes whose variance changes over 

time. To do so, we must extend the models described in the previous section to 

accommodate such structural movements. The first formulation of this type was the 

ARCH Autoregressive Conditional Heteroscedastic (ARCH) model proposed by Engle 

(1982).  Intuitively speaking, the ARCH models represent the conditional variance in a 

purely autoregressive way, which may be extravagant in terms of the number of 

parameters to be estimated. For this reason, the Generalized ARCH (or GARCH) model 

proposed by Bollerslev (1986) is now generally preferred.  The GARCH version may be 

thought of as an ARMA formulation, although the details are more involved.  As with 

models for the mean, the question of stationarity is important for ARMA models.  Since 

the state space model may assume a finite start-up, stationarity is not necessary.  

The original ARCH and GARCH models formulated changes in the variance directly 

in terms of the variance itself, so that conditions are required on the parameters to ensure 

that the estimated variance remains positive. Nelson (1991) introduced the exponential or 

EGARCH model which considers the logarithm of the variance, thereby avoiding the 

need for such conditions. We will consider both possibilities. Tsay (2005, Chapter 3) 

provides an excellent guide to recent extensions of these models.  It will be evident from 

the ensuing discussion that more complex models are readily incorporated into the 

proposed framework. 

 Our discussion leads to a modification of model (3) to allow the error terms to be 

independent but not identically distributed, with zero means and variance at time  

dependent on previous observations, denoted by

t

1tV − .  The variance might then be updated 

according to a relationship such as either of: 
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 10 11 1 1

20 21 1 2

( )
ln ln ( )

t t t

t t

V u u V u
V u u V u t

ε
ε

−

−

= + +
= + +

. (4) 

The functions are open to choice and the selection may well be application-specific. 

However, reasonable choices are 

(.)iu

2
1 12( )u uε ε=  and 2

2 22( ) ln( )u uε ε= . To avoid 

complications when the error is (close to) zero, we could add a small positive constant in 

the second case,  say, and use the function . The constant 

variance case corresponds to   

3u 2
2 2u ( )=u ln( )t t uε ε + 3

t

2 0.u =

In addition to the variance specification, there are many variations on the basic 

form.  For example, we may include slope and seasonal state equations in the usual way 

(c.f. Hyndman et al., 2008, Chapter 2) or allow the variance to depend upon the state 

variables used to describe the mean. 

 The benefit of the innovations state space approach is that we have considerable 

freedom in the specification of expression (4), yet parameter estimation is still 

straightforward and may be performed by maximum likelihood, by  minimizing the sum 

of squared or absolute errors, or by using any other appropriate objective function. 

2. Monitoring heteroscedastic processes 
 
Following from the discussion in the previous section, we extend model (3) to include a 

variance function: 

1

1
2

0 1 1 2

1

ln ln ln( )
(0, )

t t t

t t t

t t

t t

y x
x x

V u u V u
IN V

μ φ ε
φ αε

ε
ε

−

−

−

−

= + +
= +

= + +
∼

  (5) 

The parameters may be estimated by maximum likelihood using the likelihood function: 
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1
0 0 0 1 2 2

1 11

1( , , , , , , , ) exp
2

n
t

t tt

x v u u u
vv
εμ φ α

π= −−

⎛ ⎞
= ⎜

⎝ ⎠
∏A − ⎟

0

 (6) 

where 0  and x v denote the start-up values for the state variables.  Recall that this 

approach differs from the standard ARIMA version, where it is assumed that the series 

has an infinite past. Thus, the likelihood includes the initial values of the state variables.  

For a detailed discussion of the estimation issues, see Hyndman et al. (2008, Chapter 5). 

We now consider two examples to illustrate the importance of allowing for possibly 

heteroscedastic processes. 

2.1 Running mileage 

The first example uses a time series of the number of miles run per month by a 

middle-aged forecaster over the period January 1981 – March 2007. The series is plotted 

in Figure 1, panel (a). Model (3) was fitted over the period 1/81 to 9/96 (n = 189) and 

yielded the estimates , ˆ 0.61φ = ˆ 1.15α =  and standard error 37.8.  The standardized 

residuals are plotted in Figure 1, panel (b). The Box-Ljung test gave a p-value of 0.643 

for the first 12 lags, so that there is no indication of a seasonal pattern. This model was 

then used to generate one-step-ahead forecasts for the period 6/97 to 3/07, and the one-

step-ahead standardized forecast errors are plotted in Figure 1, panel (c). The eight-month 

hiatus covered when the runner was injured and in most of those months he recorded zero 

mileage; the error was set to zero at 5/97 to restart the series for the one-step-ahead 

predictions.  

It is clear from Figure 1 panel (c) that the runner’s training regime changed post-

injury; the average mileage is lower and the variability in the series is greatly reduced. 
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Because the variance has declined so much, the monitoring process is completely 

ineffective, with virtually all the residuals being within one standard deviation of the 

center line.   

The results for model (5) show interesting differences. The likelihood estimates 

derived from (6) for the first part of the series are: 

. On inspection, we 

observe that the estimates relating to the mean level of the process are very similar to 

those for the constant variance model. By contrast, Figure 2, panel (a) shows the 

standardized one-step-ahead forecasts based upon model 

0 1 2
ˆ ˆ ˆ ˆ ˆ ˆ0.60, 1.20, 0, 0.991,  u 0.0095 and 106u uφ α μ= = = = =�

(5), which presents a more 

reasonable picture than Figure 1 panel (c).  Even so, it appears that the standard 

deviations may still be on the high side.  In practice, the model would be periodically 

recalibrated when used for monitoring, so that adjustments would be incorporated more 

rapidly. When we refit the model over the period 6/97 to 3/07 we obtain the modified plot 

shown in Figure 2, panel (b), which is much more reasonable, although it clearly benefits 

from the wisdom of hindsight in the estimation process. Finally, Figure 2, panel (c) 

shows how the standard deviation of the process has declined over time, roughly by a 

factor of three.  

2.2 Gasoline prices 

 The first example shows reduced volatility, which in general might be the result 

of process improvements (e.g. new laws) or structural changes.  It is important that the 

monitoring system should adjust to such changes so as to avoid missing shifts in the new 

regime.  More common perhaps, are processes whose volatility increases over time.  
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Gasoline prices provide a recent painful example of such a process. We consider a simple 

regression model for which the dependent variable is: 

Y = logarithm of US retail gas prices1 (the average price per gallon, in dollars) 

and the predictor variable (lagged one month) is:  

Z = logarithm of the spot price of a barrel of West Texas Intermediate (WTI) oil as traded 

at Cushing, Oklahoma (in dollars). 

The Cushing spot price is widely used in the industry as a “marker” for pricing a number 

of other crude oil supplies traded in the domestic spot market at Cushing, Oklahoma. The 

data are monthly and cover the period January 1991 to November 2006. 

 We use model (5) as a local level model with 1φ = to reflect the random walk like 

nature of the series and extend the measurement equation to the form: 

0 1 1t t ty x z tβ β ε− −= + + +                (7) 

Different versions of the model were fitted to data for the period January 1991 to 

December 2001; the summary results are given in Table 1.  The improved fit provided by 

the second GARCH model is evident. The GARCH term for this model is a slight variant 

on the earlier model:  

 1ln 0.009 0.987 ln 0.019ln(| | 0.006)t t tV V ε−= + + +  (8) 

Figure 4, panels (a) and (b) show the control charts based upon the constant variance and 

GARCH models respectively. As is to be expected, the general shapes of the two plots 

are similar.  What is very different is the scale of the Y-axis.  The constant variance 

model ranges from roughly +3 to -4 standard deviations with a number of warning 

                                                 
1 These series are available from the US Energy Information Administration website 

http://www.eia.doe.gov. 

 12

http://www.eia.doe.gov/


signals.   By contrast, the GARCH model shows no such signals.  The reason for the 

difference is readily deduced from Figure 3 panel (c), which shows the steady increase in 

the standard deviation over time. The estimated standard deviation from the earlier part of 

the series is only 0.030, whereas the most recent values are roughly twice that.  We may 

conclude that the series has indeed become more volatile, but that the basic model 

continues to describe its general movements. By contrast, as we saw in Figure 3, the 

average price is increasing rapidly.  An effective monitoring scheme must take both the 

plot of levels and the plot of residuals into account, as noted by Alwan and Roberts 

(1988).  In combination the two plots indicate that although price is clearly increasing, 

the process is in (GARCH-adjusted) statistical control.  The impacts of potential policies 

should be evaluated in terms of their ability to affect both the price level and the 

magnitude of the fluctuations. 

3. Monitoring counts 

 When monitoring counts, a natural starting point is the Poisson distribution; see 

recent discussions in Heinen (2003) and Jung, Kukuk and Liesenfeld (2006).  However, it 

is often found that the data are over-dispersed; that is, the variance is greater than the 

mean.  To overcome this difficulty, Harvey and Fernandes (1989) proposed the use of the 

negative binomial distribution (NBD). Harvey and Fernandes (1989) provided an 

updating procedure for parameter estimation justified by Bayesian arguments. However, 

Grunwald, Hazma and Hyndman (1997) showed that a weakness of this model (and 

others) is that the sample paths are degenerate (towards zero); nevertheless this property 

should not be of major concern in our application provided we focus attention upon short-

term monitoring. 
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We opted to preserve the exponential smoothing format for the mean and then 

used a linear updating relationship for the variance, to maintain the similarities with the 

Trigg tracking function given in Cohen, Garman and Gorr (2007). That is, we updated the 

mean and variance using the recurrence relationships: 

 1

2
1 1

(1 )

(1 )
t t

t t

m m

v v

α α

δ δε
1t

t

y− −

− −

= − +

= − +
 (9)  

where and denote the mean and variance, tm tv 1t t ty mε −= −  and ( , )α δ  are the 

smoothing parameters. The corresponding NBD may be written as 

 ( )( ) , 0,1,
( ) !

tk yt
t t t

t

k yP Y y p q y
k y

Γ +
= = =

Γ
…  (10) 

This distribution has mean and variance: /t t tm k q pt=  and 2
t

t t
t

qv k
p

= . 

 

A practical difficulty with this approach is that we may have different 

distributions at each point in time, which makes conventional Shewhart charts ungainly 

and difficult to interpret. Instead, we may plot a chart of the P-values, which can readily 

accommodate changing parameters or even different distributions.  Since interest usually 

attaches to larger than expected counts, we describe only the construction of one-sided 

charts for the upper tail, although the lower-tail and two-tail variants are readily 

constructed along the same lines. 

Suppose that, at time t, we observe the value ty  on the random variable .  If the 

probability mass function of  is

tY

tY ( ) ( )t t t tP Y y Q y= = , we may compute the P-value as: 

  (11) ( ) ( ) ( 1)t t t t t t tp P Y y Q y Q y= ≥ = + + +…
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We then create a chart by plotting the P-values. A critical value for the chart may be 

established in the usual way via the Average Run Length (ARL). That is, if the desired 

ARL is A, the critical value is 1P A−=  when the successive tests are conditionally 

independent. 

 The P-value chart may be easier to interpret than the usual chart for the Poisson 

means (known as the c-chart) when the parameters change over time, although  the 

discrete nature of the probability distribution precludes having equal probabilities for the 

tail areas.  Nevertheless, the observed P-values seem a better framework for decision-

making than the standard charts and this chart has the advantage that quite distinct 

distributions might be used at different time periods if deemed appropriate.  For example, 

if the variance dropped below the mean, we may use the binomial distribution in place of 

the NBD.   

We now illustrate the method using data on the number of murders per year in 

Montgomery County, Maryland, over the period 1985 – 2006.  The data are given in 

Table 2.  Cursory inspection of the data suggests there is little or no trend, so we initially 

fitted a Poisson model with parameter: 

 1(1 )t tm m 1tyα α− −= − + . (12) 

Since we have a short series and we are interested in a pure monitoring scheme, we set 

0.10α = and estimated the initial level of the mean by averaging the first six 

observations, which yielded .  Figure 5 shows the P-value plot for the Poisson 

and Table 3 gives the extreme values.   

0 17.0m =

  Overall, the sample variance is 45.6 whereas the mean is 20, the variance-to-mean 

ratio of 2.28, suggestive of over-dispersion and a need for the NBD.  In view of the short 
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series, we preset 0.05 and 0.10δ α= = and used the mean and variance of the first six 

observations to initialize equations (9), yielding the values 0 17.0m =  and  As for 

the Poisson, Figure 5 shows the P-value plot and Table 3 gives the extreme values.  It is 

readily seen that the NBD is much more selective when identifying extreme events.   

0 38.v =

As noted by Alwan and Roberts (1995), many SPC applications are marred by 

incorrect distributional assumptions. In this case, either the use of fixed parameters or the 

choice of the Poisson could lead to incorrect conclusions. 

 

4. Conclusions  

When we use control charts to monitor social or economic processes, temporal 

dependence is often a given.  Further, both the mean and the variance may evolve over 

time in a recognizable fashion.  The objective is then to model such anticipated changes 

so that unexpected shifts can be identified.  We have used innovations state space models 

to describe such evolving processes and shown that constant variance models may be 

quite inadequate for the monitoring task; by contrast, models that allow for conditional 

heteroscedasticity are much more effective.  Such models enable us to separate out issues 

of statistical control from those of underlying trends, thereby providing a decision maker 

with a clearer view of the underlying process. 

 Counts data provide a particular challenge in this context since changes in the 

parameters produce different distributions above and beyond shifts in the mean and 

variance.  To accommodate such changes, we recommend using P-value charts in place 
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of the charts used when the distributions are identical.  An excessive number of small P-

values may indicate model misspecification. 

 It is also worth noting that the P-value charts may also be used for continuous 

distributions. For the common case of the normal distribution, this chart and that based 

upon z-scores provide equivalent information, since the distributions can vary only 

through the mean and variance.  However when the distribution is non-normal and may 

even be changing form over time, the P-value chart offers a flexible way of making 

comparisons over time.  Further since P is uniformly distributed when the process is in 

control, a CUSUM chart could be constructed treating as chi-square with 
1

2 ln(1
K

j
j

P
=

− −∑ )

2K degrees of freedom.  

The paper focuses upon extensions to Shewhart charts for monitoring univariate 

time series.  Extensions to multivariate series are issues for future research. A systematic 

analysis of the performance of this approach also needs to be considered, using data 

coded for exceptions, as in Cohen, Garman and Gorr (2008).
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Table 1: Parameter estimates for models fitted to the U.S. Gasoline Price data, 1/81 
– 12/01. The AIC values are measured relative to AIC = 0 for the basic model, which 
is the homoscedastic version containing the local level and the lagged regression 
term. 
 

Model  α β1 AIC
Basic 1.61 0.112 0.0 

Basic + GARCH(U3=0) 1.48 0.100 -29.9

Basic + GARCH with U3 1.49 0.145 -34.0
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Table 2: Number of murders per year in Montgomery County, Maryland 

 
YEAR Murder 

1985 12 
1986 8 
1987 17 
1988 19 
1989 21 
1990 25 
1991 26 
1992 21 
1993 30 
1994 34 
1995 21 
1996 13 
1997 23 
1998 13 
1999 13 
2000 12 
2001 19 
2002 32 
2003 23 
2004 18 
2005 21 
2006 19 

 
 
Table 3: Extreme entries of the P-values chart for the annual data on murders in 
Montgomery County, Maryland  
 
YEAR Poisson NBD 
1993 0.0014 0.037 
1994 8.7E-05 0.021 
2002 0.00038 0.031 
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Figure 1: Plots of (a) Monthly mileage, 1/81 – 3/07; (b) standardized residuals for 
AR(1) model fitted over 1/81 – 9/96; (c) standardized one-step-ahead forecasts from 
same model for 6/97 – 3/07. The limits on the standardized charts are set at ±2.5 
standard deviations. 
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Figure 2: Plots of (a) standardized one-step-ahead forecast errors for the GARCH 
model for monthly mileage model for the period 6/97 – 3/07; (b) forecast errors for 
the same period after recalibrating the model; (c) standard deviations from the 
original model for the period 1/81 – 3/07. The limits on the forecast errors charts are 
set at ±2.5 standard deviations. 
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Figure 3: Plots for the log (gas price) [solid line] and log (spot price/10) [dotted line] 
series over the period 8/90 – 11/06.  The spot price is scaled simply to place both 
series on the same diagram.  
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(a) Standardized residuals for the constant variance model 
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(b) Standardized residuals for the GARCH model 
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(c) Standard deviations for the GARCH model 
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Figure 4: Plots for the log (gas price) series over the period 1/02 – 11/06. The limits 
on the standardized residuals charts are set at ±2.5 standard deviations. 
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Figure 5: P-value chart for the annual murders series, based upon the Poisson (Poi) 
and negative binomial (NBD) distributions. 
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