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Exponential Smoothing and the

Akaike Information Criterion

Abstract: Using an innovations state space approach, it has been found that the Akaike

information criterion (AIC) works slightly better, on average, than prediction validation on

withheld data, for choosing between the various common methods of exponential smoothing

for forecasting. There is, however, a puzzle. Should the count of the seed states be incorpo-

rated into the penalty term in the AIC formula? We examine arguments for and against this

practice in an attempt to find an acceptable resolution of this question.

Keywords: exponential smoothing, forecasting, Akaike information criterion, innovations

state space approach.



Exponential Smoothing and the Akaike Information Criterion

Introduction

It has been argued (Hyndman et al. 2008) that the exponential smoothing methods of fore-

casting should be complemented by probabilistic assumptions encapsulated in corresponding

linear innovations state space models to enable the derivation of prediction distributions and

the use of the principle of maximum likelihood for parameter estimation. Normally a Gaus-

sian distribution is assumed, in which case the maximum likelihood approach is equivalent

to the traditional sum of squared errors minimization approach (Holt 1957, 2004) for linear

versions of exponential smoothing. The advantage of the likelihood approach, in contrast to

the least squares approach, is that it can be extended to other distributions, including the

Poisson distribution for count time series (Martin et al. 2008).

A modeling approach to exponential smoothing also admits the possibility of the use of the

Akaike information criterion (AIC) for model selection. The Akaike information criterion

(Akaike 1974) is defined as

AIC=−2 logL∗+ 2p (1)

where L∗ is the maximized value of the likelihood function and p is the number of free param-

eters. L∗ is an estimator because the unknown true parameter values have been replaced by

their maximum likelihood estimates. It can be proven that the asymptotic bias of the estimator

of the log-likelihood is p. The AIC is a bias corrected estimate of the log-likelihood scaled by

the factor −2. The optimized likelihood alone is a measure of fit which unduly favors models

with larger numbers of parameters. The bias factor 2p penalizes models on the basis of their

parameter count and so encourages the choice of simpler models. This bias factor is called the

penalty. Note that because of the sign reversal, the aim is to select the model with the lowest

AIC.

The AIC has been studied and used with exponential smoothing in three studies.

1. Hyndman et al. (2002) used it with 24 linear and non-linear variations of exponential

smoothing to create an automated approach to forecasting. The approach was applied

to the time series from the M3 competition (Makridakis & Hibon 2000). It proved to be

quite effective compared to the competing approaches, being ranked fourth overall and

best for the seasonal time series.

2. Billah et al. (2006) compared a range of approaches, including the AIC, for choosing
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between common versions of exponential smoothing. The AIC worked better than other

information criteria and even had a slight edge over prediction validation where the

mean absolute percentage error (MAPE) is calculated from forecasts against withheld

data.

3. Hyndman et al. (2008, Chapter 7) describes a similar study to Billah et al. (2006) with

one variation to the way the penalty is calculated.

These three studies used inconsistent interpretations of the penalty term. In Hyndman et al.

(2002), p was interpreted literally and set equal to the number of free parameters; in Billah

et al. (2006), because exponential smoothing can only be applied if the seed states are treated

as fixed and unknown quantities, p was set equal to the number of free seed states; and in

Hyndman et al. (2008, Chapter 7) p was set equal to the sum of the number of free param-

eters and the number of free seed states. The aim of this paper is to thoroughly examine

this confusing situation and determine once and for all the appropriate penalty for use with

exponential smoothing.

1 Linear Innovations State Space Models

The issue addressed in this paper will be considered only in the context of the linear innova-

tions state space model (Hyndman et al. 2008). Non-linear variations are ignored, although

the conclusions of this paper are also applicable to them. All random quantities associated

with the state space model are normally distributed. Random variables are denoted with a

tilde to distinguish them from fixed quantities. Vectors and matrices are represented by bold

characters.

The linear innovations state space model for a time series { ỹt} is

ỹt = w′x̃t−1+ ε̃t (2)

x̃t = F x̃t−1+ gε̃t (3)

ε̃t ∼ NID(0,σ2) (4)

where w is a fixed k-vector, x̃t is a random k-vector of states, F is a fixed k × k transition

matrix, ε̃t is a random variable called the innovation, and g is a fixed k-vector. Normally some
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or all of w,F and g are dependent on a p-vector of parameters θ.

Example 1. Damped trend exponential smoothing was first introduced by Gardner & McKenzie

(1985). A model underpinning a slight variation of their method is

ỹt = ˜̀
t−1+ b̃t−1+ ε̃t (5)

˜̀
t = ˜̀

t−1+ b̃t−1+αε̃t (6)

b̃t = φ b̃t−1+ βε̃t . (7)

This model contains random state variables: the local level ˜̀
t and the local drift b̃t . It also con-

tains parameters: the damping factor φ, the smoothing parameters α and β , and the innovations

variance σ2. These equations can be written in matrix form as
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This confirms that the damped trend model conforms to the structure of the state space model (2)

to (4).

The linear state space model has a structure reminiscent of a linear regression. The transition

equation (3) can be back-solved to period 0. Given that it is linear, the state x̃t is a linear

function of the seed state vector x̃0 and the innovations ε̃t , ε̃t−1, . . . ε̃1 from the intervening

periods. The typical series value ỹt depends linearly on the state vector xt−1 and so can also

be resolved into a linear function of the seed state vector x̃0 and the innovations ε̃t , ε̃t−1, . . . ε̃1.

The random n-vector ỹ formed from ỹ1, ỹ2, . . . , ỹn is related to x̃0 and the innovations by an

equation of the form

ỹ =Ax̃+Lε̃ (8)

where x̃ is the seed state vector x̃0, A is a fixed k × k matrix, L is a unit lower triangular

matrix and ε̃ is a random n-vector formed from the innovations ε̃1, ε̃2, . . . , ε̃n. The innovations

vector has a mean of 0 and a variance matrix σ2In. The matrices A and L depend on the

parameters of the state space model.
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Equation (8) is reminiscent of a regression where the vector of regression coefficients x̃ is not

fixed but random. The distribution of ỹ derives from the distributions of x̃ and ε̃, its mean

and variance being given by E(ỹ) =AE(x̃) and V(ỹ) =AV(x̃)A′ +σ2I . A problem is that

x̃ may have only a partially defined probability distribution.

Assuming that the process has operated from the infinite past, x̃ can be resolved into a lin-

ear function of the past innovations ε̃0, ε̃−1, . . .. Provided that the coefficients in this linear

relationship are absolutely summable, x̃ has a proper probability distribution. For example,

the local drift in Equation (7) in the damped trend model can be written as b̃0 =
∑∞

j=0φ
j ε̃− j .

Provided the damping parameter satisfies the condition 1< φ < 1, b̃0 is normally distributed

with a mean of 0 and a variance σ2/(1−φ2). However, when φ = 1, the variance of x̃ is

undefined despite the fact that the resulting model makes sense and in fact underpins the Holt

method of trend corrected exponential smoothing.

The moments of the density p(y) of a time series can be derived from the moments of x̃ and

ε̃ provided that the distribution of x̃ is known. Since most business and economic time series

contain a unit root (Nelson & Plosser 1982), at least one of the states associated with a series

has to be non-stationary, so in most applications the distribution of x̃ is not completely known.

There are typically two resolutions of this problem.

1. Assume that the offending states have an infinite variance (Ansley & Kohn 1985) and

use a suitably adapted variant of the Kalman filter such as a fast Givens filter (Snyder &

Saligari 1996). It can be established that the effect of this, when there are k unit roots,

is to base the analysis on the conditional distribution p(yk+1, . . . , yn|y1, . . . , yk).

2. Condition the offending seed vector on a fixed but unknown value x and effectively

treat its elements as additional parameters.

Ignoring the technical details of the arguments, the main message to take away is that unit

roots make it necessary to condition on something, one possibility being to condition on an

initial run of series values, another being to condition on seed states with infinite variances.
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2 Exponential Smoothing Approach

In both cases stationary states can be the cause of difficulties. The damped drift has a finite

variance provided the damping factor does not equal 1. As soon as φ = 1, a second unit root

emerges, the consequence being that the variance of the drift becomes infinite. An analysis

based on the conditional distribution p(y2, . . . , yn|y1) must suddenly switch to an analysis

based on the conditional distribution p(y2, . . . , yn|y1, y2) in the case of the first option. It is

this basic discontinuity problem that makes one question whether it really makes sense to

incorporate information about the process from periods prior to the sample period into the

likelihood function. It is for this reason Hyndman et al. (2008) recommend ignoring ‘prior’

information by treating all seed states as fixed but unknown parameters, or in mathematical

terms set x̃0 = x where x is a fixed but unknown vector. The likelihood function is then

formed from the distribution p(y1, . . . , yn|x) and is maximized with respect to both the pa-

rameters and the seed states. Another advantage is that the relatively complex fast Givens

filter can be replaced by exponential smoothing to generate the errors needed for evaluat-

ing the likelihood function. More specifically, the most general linear form of exponential

smoothing relies on an application of the equations:

εt = yt −w′xt−1 (9)

xt = Fxt−1+ gεt (10)

This results in a one-to-one transformation between the original series and the innovations. In

other words, the innovations are an alternative way of summarizing all pertinent information

about the original series. The distribution of the series can be rewritten in terms of the

innovations as p(y1, . . . , yn|x) = p(ε1, . . . ,εn). The reason for undertaking this transformation

is that the independence of the innovations allows us to rewrite the distribution of the series

as a product of univariate distributions as follows:

p(y1, . . . , yn|x) = p(ε1) . . . , p(εn). (11)

The likelihood function can then be written in terms of the innovations as

L(x,θ) = (2πσ2)−n/2 exp

 

−
1

2σ2

n
∑

t=1

ε2
t

!

. (12)
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The primary function of an exponential smoothing algorithm is to calculate the errors neces-

sary for the evaluation of this likelihood function.

3 The AIC Penalty

The AIC appears to be a good criterion for model selection (Hyndman et al. 2008, Chapter

7). In this study the penalty was determined from both the free parameters and the free seed

states. The question remains whether it is legitimate to treat the seed states as parameters.

We now examine the arguments both ways.

3.1 Arguments against including the seed state count

1. The seed states are random quantities and should be integrated out of the likelihood

function. It is an inappropriate tactic to condition on fixed and unknown values of

them.

2. When certain stability conditions akin to the invertibility conditions for Box-Jenkins

models are satisfied, the prediction distributions effectively become independent of

the seed states and so a model’s capacity to predict should not be gauged with a cri-

terion that depends on their count. For example, the unknown future series value

ỹn+1 for a time series governed by a local level state space model that underpins

simple exponential smoothing is related the seed level ˜̀
0 by the equation ỹn+1 =

δn˜̀
0 + α

∑n−1
j=0 δ

j yn− j + ε̃t+1 where α is the smoothing parameter and δ = 1− α. Its

mean, the point prediction, is the usual exponentially weighted average of past series

values and the seed level when −1 < δ < 1. The actual series value, which remains

to be observed, deviates from the mean by the innovation ε̃n+1. The seed state is dis-

counted by the factor δn. Its effect on this future series value is negligible for moderate

sample sizes.

3.2 Arguments for including the seed state count

1. When applying exponential smoothing, the seed states are treated as fixed quantities

and Equation (8) becomes a conventional generalized regression. It is then necessary

to fall into step with theory of the AIC for regression analysis and include them in the
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count.

2. As the number of states increase, so does the complexity of a model. In the case of

monthly time series, it may be necessary to have twelve states to represent a seasonal

cycle, as is the case in the model underpinning the Winters method. However, a more

parsimonious possibility is a model with only two seasons (low and high), that is inher-

ently simpler than the usual twelve state version. If the seed states count is not included,

both models would employ the same penalty 1 and the model with 12 seasons would

always be favored.

4 Confutations

We examine each of the above arguments in turn.

4.1 Random seed states...

By construction most states are random, but does this mean they should not be counted in the

penalty? Consider, for example, the local level model:

ỹt = ˜̀
t−1+ ε̃t (13)

˜̀
t = ˜̀

t−1+αε̃t (14)

This model, which provides the statistical foundations for simple exponential smoothing, has

the two parameters α and σ2. If the seed level is ignored because of its randomness, the

penalty for the AIC is 4. If it is counted, then the penalty is 6.

If the seed states are to be treated as random variables, it is not then possible to use exponen-

tial smoothing: the associated recursions must be started with fixed seed states. If random

seed states are to be retained it is necessary to resort to a Kalman filter to generate the errors

necessary for likelihood evaluation. The existence of non-stationary states muddies the wa-

ters because the associated seed states then have infinite variances and their distributions are

degenerate. The Kalman filter does not work in this context so it is necessary to resort to an al-

gorithm such as the fast Givens filter (Snyder & Saligari 1996) where the associated formulae

1The seed seasonal effects are restricted to sum to 0. If there are twelve seasons, there are only eleven free seed
seasonal effects; if there are two seasons, there is only one free seasonal effect.
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have well defined limiting forms in the presence of the seed states with infinite variances. By

ignoring the randomness of the seed states and conditioning on fixed but unknown values of

them, it is possible to apply exponential smoothing in place of the more complex fast Givens

filter, and hence greatly simplify the estimation process. There is a price paid for this tactic, it

being the loss of efficiency of the maximum likelihood estimators because information about

the process prior to the sample period is ignored. However, this price cannot be particularly

high if we are primarily interested in forecasting, because prediction distributions are effec-

tively unaffected by the seed states in moderate to large samples provided the invertibility

conditions, needed for the discounting of old data, are satisfied.

4.2 Long run independence of the seed state

We have just indicated that provided the invertibility condition is satisfied by the parameters,

in moderate samples, the seed state has very little impact on the prediction distribution. It

suggests that maybe our conclusion in the previous sub-section is wrong: maybe the seed state

count should be excluded from the penalty?

4.3 Consistency with the AIC for regression

The state space models here are linear in the states but non-linear in the parameters. It is

possible to do a first-order linear Taylor’s expansion of the non-linear components of the model

around the maximum likelihood values of the parameters to eventually emerge with a model

of the form (8) where ỹ is now a transformation of the original series and x̃ contains both the

seed states and the parameters. This approximate model is a linear regression provided we

replace the random elements of x̃ by fixed but unknown values as is done with exponential

smoothing. It has been established that the penalty of the AIC for a regression model should

be based on the number of regression coefficients (length of x̃) and the variance. Since the

vector x̃ is constructed from both the seed states and the parameters, this argument implies

that the seed states should be counted.

This, however, is inconsistent with the argument presented above about the diminishing im-

portance of the seed states. If we pre-multiply the regression equation (8) by L−1 we obtain a

classical regression

ỹ∗ =A∗x+ ε̃ (15)
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where ỹ∗ = L−1ỹ and A∗ = L−1A. It may be established (Snyder 1985) that this action is

equivalent to applying exponential smoothing, and that as a consequence, the elements ofA∗

in columns corresponding to the seed states converge to zero. The transformed regression

equations eventually become independent of the seed states. It then does not appear to make

sense to count them.

4.4 Complexity of seasonal models

It was argued that for monthly data, a model with two seasons is simpler than a model with

twelve seasons, so the number of seasonal effects in the state variable of a seasonal state

space model reflects the level of the complexity. This is an argument in favor of including the

number of seed states in the penalty. However, in the two season model, dummy variables

must be used to select the season that is appropriate to the period under consideration. More

specifically, the two season model based on a local level model with drift b is given by

ỹt = ˜̀
t−1+ b+ z1t s̃1t−1+ z2t s̃2t−1+ ε̃t

˜̀
t = ˜̀

t−1+ b+αε̃t

s̃i t = s̃i,t−1+ zi tγε̃t (i = 1,2)

where the zi t are seasonal dummy variables. These dummy variables represent additional

information that is not needed in the twelve season model. They suggests that the number of

states and parameters are not the sole determinant of the level of complexity of a model.

Conclusions

In the end it seems sensible to use the AIC defined as

AIC=−2logL∗+ 2(p+ k− r)

where r is the of active constraints in the optimal solution. The parameter count p should

include the unknown smoothing parameters, damping factors, and the variance σ2. Despite

the fact that prediction distributions are usually independent of the seed states, the seasonal

example suggests that the count of the unknown seed states should not be ignored. It also

motivates the adjustment for the active restrictions adjustment.
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One interesting point is that no restrictions are placed on the use of the AIC. The various ver-

sions of exponential smoothing encompass approaches such as simple exponential smoothing

(Brown 1959) which implicitly involves a unit root and trend corrected exponential smooth-

ing (Holt 1957) which involves a double unit root. We advocate the use of the AIC to choose

between them. This can be contrasted with the Box-Jenkins approach (Box et al. 1994) where

unit root tests (Dickey & Fuller 1981) rather than the AIC are advocated for determining the

appropriate level of differencing for a time series. The interesting question is whether the

Box-Jenkins approach can be adapted to forgo the use of unit root tests in favor of the AIC? It

is this question that awaits further research.
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