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Abstract

This paper provides parametric estimates of technical change, e¢ ciency change, economies
of scale, and total factor productivity growth for large banks (those with assets in excess
of $1 billion) in the United States, over the period from 2000 to 2005. This is done by
estimating an output distance function subject to theoretical regularity within a Bayesian
framework. We �nd that failure to incorporate theoretical regularity conditions results in
mismeasured shadow revenue and/or cost shares, which in turn leads to perverse conclusions
regarding productivity growth. Our results from the regularity-constrained model show
that total factor productivity of the large U.S. banks grew at an average rate of 1.98% over
the sample period. However, our estimates also show a clear downward trend in the growth
rate of total factor productivity and our decomposition of the primal Divisia total factor
productivity growth index into its three components � technical change, e¢ ciency change,
and economies of scale � indicates that technical change is the driving force behind this
decline.

JEL classi�cation: C11; D24; G21.

Keywords: Productivity decomposition; Translog output distance function.
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1 Introduction

The great transformation of the U.S. banking industry, caused by fundamental regulatory
changes together with technological and �nancial innovations, has stimulated a substantial
body of productivity studies of this industry. Regarding regulation, major changes include,
but are not limited to, the removal of geographic restrictions and the permission of com-
binations of banks, securities �rms, and insurance companies. On the other hand, the
industry has widely adopted various innovations in technology and applied �nance. One of
the most important consequences of these regulatory changes and technological and �nancial
innovations has been �nancial consolidation, leading to larger and more complex banking
organizations. In fact, according to Jones and Critch�eld (2005), the asset share of large
banks in the United States (those with more than $10 billion in assets) increased dramatically
from 42 percent in 1984 to 73 percent in 2003. When the large banks with assets between 1
billion and 10 billion are also included, then the asset share of large banks in the U.S. would
be as high as 86%. The increasing dominance of large banks in the U.S. commercial banking
industry makes the productivity analysis of them particularly attractive.
The literature investigating productivity in the banking industry has been dominated

by two methodologies: nonparametric Data Envelopment Analysis (DEA for short) and the
parametric Stochastic Frontier Analysis (SFA for short). First put forward by Charnes et al.
(1978), the DEA approach is a linear programming technique where the e¢ cient frontier is
formed as the piecewise linear combination that connects the set of best-practice observations
in the dataset under analysis, yielding a convex production possibility set; see Berger and
Humphrey (1997). Due to its non-parametric nature, however, the DEA approach does
not provide as much insight into market structure and �rm behavior as the parametric SFA
approach does. For example, returns to scale has to be imposed a priori when the DEA
approach is employed, thus rendering the identi�cation of the contribution of scale economies
impossible. See Ray and Desli (1997) and Atkinson et al. (2003).
The SFA approach, based on the ideas of Aigner et al. (1977) and Meeusen and van den

Broeck (1977), involves the estimation of a speci�c parameterized e¢ ciency frontier with a
composite error term consisting of non-negative ine¢ ciency and noise components. Two
commonly used e¢ ciency frontiers in this literature are cost and pro�t functions. See,
for example, surveys in Berger and Humphrey (1997) and Berger et al. (1999). More
recently, output distance functions are gaining increasingly popularity in the measurement
and analysis of productivity in the banking industry. See, for example, Orea (2002) and
Lovell (2003). Compared with the cost or pro�t function approach, the distance function
approach has the major advantage of not requiring information on prices, and therefore can
be used in situations where price information is missing, distorted or inaccurate.
Despite its increasing popularity, the output distance function used in previous studies

su¤ers from the problem of inconsistency with theoretical regularity conditions. Microeco-
nomic theory requires that the output distance function satis�es the regularity conditions of
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monotonicity and curvature. In particular, monotonicity requires that the output distance
function be non-increasing in input and non-decreasing in outputs; and curvature requires
that the output distance function be quasi-convex in inputs and convex in outputs. See
Färe and Grosskopf (1994, p.38). However, none of the previous studies in the banking
productivity literature have checked or imposed those theoretical regularity conditions when
violated � see, for example, Orea (2002), Lovell (2003) and Cha¤ai et al. (2001).
While permitting a parameterized function to depart from the neoclassical function space

is usually �t-improving, it can lead to misleading conclusions regarding productivity and ef-
�ciency. First, failure to incorporate theoretical regularity conditions into the estimation
causes the hypothetical best practice frontier not to be fully e¢ cient at those data points
where theoretical regularity conditions are violated. This will result in mismeasured mag-
nitudes of e¢ ciency levels, which in turn leads to mismeasured productivity growth. See
Feng and Serletis (2009). In addition, an inaccurately estimated hypothetical best practice
frontier, on which technical change is measured, also implies mismeasured technical change.
Second, in the case of the distance elasticity based productivity index used in this paper,
the violation of the monotonicity condition can also result in mismeasured distance elas-
ticity shares (shadow revenue/cost shares), which are used as weights to aggregate output
and input growth. This will also result in mismeasured productivity growth. For exam-
ple, a negative elasticity of the output distance function with respect to some input implies
that an increase in the use of the corresponding input (with all other inputs and outputs
held constant) will increase the (measured) productivity of that bank, which is economically
implausible.
Motivated by the widespread practice of ignoring the theoretical regularity conditions, the

purpose of this paper is to reinvestigate the e¢ ciency, technical change, and returns to scale
of large banks in the United States with more recent panel data over the sample period from
2000 to 2005, and by addressing the above theoretical regularity violation problem inherent
in previous studies. In doing so, we �rst start with a parametric output-oriented (output
distance function based) productivity index, by drawing on ideas suggested by Denny et al.
(1981). We then decompose this productivity index into three components: the contribution
of scale economies, technical change, and technical e¢ ciency change.
To obtain the estimates of the three productivity components, we use a translog output

distance function, estimated subject to full theoretical regularity. There are three approaches
to incorporating theoretical regularity conditions into �exible functional forms: the Cholesky
factorization approach, the nonlinear constrained optimization approach, and the Bayesian
approach. For most �exible functional forms, the Cholesky factorization approach can only
guarantee the curvature conditions in a region around the reference point (that is, a data
point where curvature is imposed), and satisfaction of curvature at data points far away
from the reference point can only be obtained by luck.1 See Feng and Serletis (2008).

1The normalized quadratic �exible functional form, introduced by Diewert and Wales (1987), is an ex-
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This is not satisfactory, especially when the sample size is large and violations of curvature
are widespread. The nonlinear constrained optimization approach, originally proposed by
Gallant and Golub (1984) and recently used by Feng and Serletis (2009) in the context of
a stochastic cost frontier model, develops computational methods for imposing curvature
and monotonicity restrictions at any arbitrary set of points. Though powerful, a problem
with this approach is that it is di¢ cult to obtain statistical inference when the sample
size is large. This is because, in this case, the bootstrapping method needed to obtain
statistical inference is una¤ordably time consuming. See Feng and Serletis (2009). The
Bayesian approach imposes theoretical regularity conditions either by using the accept-reject
algorithm � see Terrel (1996) � or the random-walk Metropolis-Hastings algorithm � see,
for example, O�Donnell and Coelli (2005). In this paper, we use the latter algorithm to
impose monotonicity and curvature on the translog output distance function.
In this paper we take a di¤erent approach than that used in Feng and Serletis (2009).

First, a Bayesian approach is used to impose the theoretical regularity conditions, while
the nonlinear constrained optimization approach is used in Feng and Serletis (2009). An
important advantage of the Bayesian approach is that it can provide exact statistical inference
on the productivity components (i.e. �rm e¢ ciency, technical change, and returns to scale).
In contrast, the constrained optimization approach used in Feng and Serletis (2009) provides
only point estimates of the productivity components without statistical inference, which is
apparently unsatisfactory. In fact, there are two methods for obtaining con�dence intervals
when the nonlinear inequality constrained optimization approach is used: by inversion of
the chi-squared Wald or likelihood ratio statistics and by bootstrapping � see Schoenberg
(1997) and Gallant and Golub (1984) for more details. However, the former method is very
limited in that it works only when the unknown parameters are not on the boundary; while
the latter method, as argued by Feng and Serletis (2009), is una¤ordably time consuming
when the sample size is large. To get around the statistical inference problem associated
with the constrained optimization approach used in Feng and Serletis (1009), we use the
Bayesian approach in this paper.
Another di¤erence between this paper and Feng and Serletis (2009) is that here we

estimate an output distance function, while Feng and Serletis (2009) estimate a cost function.
A drawback with the cost function approach, when used in the banking e¢ ciency literature,
is that it may su¤er from a severe measurement problem in calculating input prices � see
Koetter (2006) andMountain and Thomas (1999). In particular, in estimating cost functions,
almost all existing studies in the banking e¢ ciency literature assume that the input (factor)
markets are competitive. This assumption requires a bank to be a price taker, purchasing
inputs at given prices, determined exogenously in the respective input markets. In the
absence of true input prices, most studies proxy them by relating individual banks�factor
payments to employed production factors (i.e. dividing expenses by their respective stock of

ception where global curvature conditions can be imposed using the Cholesky factorization approach.
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inputs). Consequently, the input prices used in these studies are bank speci�c and can vary
greatly across banks. Clearly, these bank speci�c input prices contradict the assumption of
competitive input markets and may be poor proxies for input prices � see also Berger and
Mester (2003). As pointed out by Greene (1993), the poor measurement of true explanatory
variables (i.e. input prices in this case) may distort e¢ ciency estimations substantially. To
overcome the potential problem occurring in the measurement of input prices, in this paper
we use an output distance function which requires quantity information only.
The rest of the paper is organized as follows. In Section 2, we brie�y discuss the paramet-

ric output-oriented productivity index and decompose it into three components: contribution
of scale economies, technical change, and technical e¢ ciency change. In Section 3 we present
the translog output distance function and specify the homogeneity, monotonicity, and cur-
vature constraints. In Section 4 we discuss Bayesian estimation procedures for imposing
theoretical regularity on the parameters of the translog output distance function. Section 5
deals with data issues. In Section 6 we apply our methodology to a panel data of 292 large
banks in the United States, discuss the e¤ects of incorporating monotonicity and curvature,
and also report our estimates of total factor productivity growth and its components. The
last section summarizes and concludes the paper.

2 Theoretical Framework

2.1 Output Distance Functions

Before introducing the parametric output-oriented (output distance function based) produc-
tivity index, we �rst de�ne the production technology and the output distance function.
Assuming x2 RN+ and y2 RM+ represent the input and output vectors at time t = 1; 2; :::; T ,
the feasible production technology can be de�ned

P t
�
xt
�
=
�
yt : y is producible from x

	
.

The production technology satis�es a standard set of axioms including convexity, strong
disposability, closedness and boundedness. See Färe and Primont (1995) for more details.
An output distance function can then be de�ned as in Shephard (1970)

Dt
o

�
yt;xt

�
= inf

�

�
� > 0 :

yt

�
2 P t

�
xt
��
. (1)

It gives the minimum amount by which an output vector can be de�ated and remains pro-
ducible with a given input vector. It also coincides with the Farrel type output oriented
measure of technical e¢ ciency. Consistent with the assumptions satis�ed by the production
technology, the output distance functions is non-decreasing, convex and linearly homoge-
neous in outputs, and non-increasing and quasi-convex in inputs � see Färe and Grosskopf
(1994, p38).
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For notational simplicity, we follow the common practice in the literature and model the
e¤ect of time through an exogenous time variable, t. Thus, the output distance function de-
�ned in (1) can be rewritten as Do(x; y; t). As suggested by (1), Do(x;y; t) � 1. Deviations
of the output distance function from one, due to technical ine¢ ciency, can be accommodated
as follows,

Do(x;y; t) (t) = 1, (2)

where  (t) � 1.

2.2 The Parametric Output-Oriented Productivity Index and Its
Decomposition

The parametric output-oriented productivity index used in this paper draws on ideas sug-
gested by Denny et al. (1981) who developed measures of productivity growth from an
estimated multi-output cost function. In Denny et al. (1981), the revenue shares, which are
used as weights to aggregate output growth in the conventional Divisia productivity index,
were replaced by cost elasticities to allow for nonmarginal cost pricing. A detailed discussion
can be found in Fuss (1994).
Replacing the cost elasticities in Denny et al. (1981) by their corresponding elasticities of

the output distance function with respect to outputs and the observed cost shares by their
corresponding normalized elasticities of the output distance function with respect to inputs,
as in Lovell (2003) and Orea (2002), we can obtain the parametric output-oriented (output
distance function) based productivity index:

d lnTFP

dt

����
Primal

=
MX
m=1

~!m _ym �
NX
n=1

!n _xn, (3)

~!m =
@ lnDo (y;x; t)

@ ln ym
, (4)

and

!n =
@ lnDo (y;x; t) =@ lnxn
NX
k=1

@ lnDo (y;x; t) =@ lnxk

(5)

A desirable characteristic of the parametric output-oriented productivity index in (3) is that
it does not make restrictive assumptions about returns to scale and market structure, since
elasticities are used as weights for both output and input growth.
Since ~!m and !n are actually the shadow revenue for outputm and the shadow cost share

for input n, respectively, the following requirements are needed
MX
m=1

~!m = 1 and
MX
m=1

!n = 1, (6)
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where the former can be easily shown to be guaranteed by the linear homogeneity of the
output distance function in outputs, and the latter is satis�ed by de�nition.
To further simplify the notation in (5), we de�ne

"n =
@ lnDo (y;x; t)

@ lnxn
, (7)

and

" = �
NX
n=1

"n,

so that !n in equation (7) can thus be rewritten as

!n = �
"n
"
,

where " has been shown by Färe and Grosskopf (1994, p. 103) to be the returns to scale
(RTS) in terms of the output distance function.
Equations (3), (4), and (5) provide a basic framework for further decomposing the total

factor productivity growth index using the output distance function. In particular, to-
tally di¤erentiating equation (2) with respect to time (after taking logs of both sides) and
rearranging yields

MX
m=1

@ lnDo (y;x; t)

@ ln ym
_ym = �

@ lnDo (y;x; t)

@t
� d ln (t)

dt
�

NX
n=1

@ lnDo (y;x; t)

@ lnxn
_xn. (8)

Substituting (8) into (3) yields

d lnTFP

dt

����
Primal

= TC +�TE + SC, (9)

where

TC = �@ lnDo (y;x; t) =@t; (10)

�TE = �@ ln (t)=@t; (11)

SC = ("� 1)
NX
n=1

�
�"n
"

�
_xn. (12)

The �rst term in (9) is a primal measure of the rate of technical change. In terms of the
output distance function, it captures the shift in the best practice distance frontier. In fact,
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it is a continuous time version of the technical change term in the Malmquist productivity
index, which measures the shift in technology between the two periods evaluated at xt
and xt+1. The second term is a primal measure of the change in technical e¢ ciency. It
represents the rate at which an observed �rm is moving towards or away from the frontier.
It is positive (negative) as technical e¢ ciency increases (decreases) over time. It should be
noted that what matters to productivity growth is not the level of technical e¢ ciency, but
its improvement over time. The third term captures the contribution of economies of scale.
It is positive when increasing returns to scale prevails (" > 1 in this case), negative when
decreasing returns to scale prevails (" < 1 in this case), and vanishes when constant returns
to scale is present.

3 The Translog Output Distance Function

In order to implement the decomposition of total factor productivity growth, we need to
parameterize and calculate the parameters of an output distance function. Here we choose to
parameterize Do (y;x; t) as a translog function, which is the functional form often employed
to model bank technology. See, for example, Orea (2002) and Cha¤ai et al. (2001). The
translog output distance function, de�ned over M outputs and N inputs can be written as

lnDo (y;x; t) = a0 +
MX
m=1

am ln ym +
1

2

MX
m=1

MX
p=1

amp ln ym ln yp

+
NX
n=1

bn lnxn +
1

2

NX
n=1

NX
j=1

bnj lnxn lnxj + �tt+
1

2
�ttt

2

+

NX
n=1

MX
m=1

gnm lnxn ln ym +

MX
m=1

�ymt ln ym +

NX
n=1

�xnt lnxn, (13)
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where t denotes a time trend. Symmetry requires amp = apm and bnj = bjn. The restrictions
required for homogeneity of degree one in outputs are

MX
m=1

am = 1;

MX
p=1

amp = 0 for all m = 1; 2; � � �;M ;

MX
m=1

gnm = 0 for all n = 1; 2; � � �; N ;

MX
m=1

�ym = 0.

One way of imposing these restrictions is to normalize the function by one of the outputs
� see, for example, Lovell et al. (1994) and O�Donnell and Coelli (2005). This speci�c
transformation through normalization has the advantage of converting equation (13), which
is di¢ cult to estimate directly, into an estimable regression model. We choose the Mth
output for normalization, which leads to the following expression

lnDo

�
y

yM
;x; t

�
= ln

�
1

yM
Do (y;x; t)

�
.

Using the homogeneity restriction, replacing � lnDo (y;x; t) with u = ln( ), and adding a
random error, v, yields the stochastic output distance function

� ln yM = a0 +
M�1X
m=1

am ln

�
ym
yM

�
+
1

2

M�1X
m=1

M�1X
p=1

amp ln

�
ym
yM

�
ln

�
yp
yM

�

+

NX
n=1

bp lnxp +
1

2

NX
n=1

NX
j=1

bnj lnxn lnxj + �tt+
1

2
�ttt

2

+

NX
n=1

M�1X
m=1

gnm lnxn ln

�
ym
yM

�
+

M�1X
m=1

�ymt ln

�
ym
yM

�
+

NX
n=1

�xnt lnxn + u+ v, (14)

where the v�s are assumed to be independently and identically distributed (iid) as N(0; �2),
intended to capture statistical noise; u = � lnD is a nonnegative random variable, intended
to capture technical ine¢ ciency. We assume that u follows an exponential distribution with
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scale parameter �, which we will discuss in more detail in Section 4. Further, we assume
that v and u are independent of each other, an assumption we maintain throughout this
paper.
Technical e¢ ciency, technical change, and returns to scale can thus be shown, respectively,

to be

TE = exp(�u); (15)

TC = �@ lnDo (y;x; t)

@t
= �

 
�t + �ttt+

MX
m=1

�ym ln ym +
NX
n=1

�xn lnxn

!
; (16)

RTS = �
NX
n=1

@ lnDo (y;x; t)

@ lnxn
. (17)

Equation (15) can then be used to obtain e¢ ciency change, �TE = �du=dt, and (17) can
be used to obtain the scale e¤ect,

("� 1)
NX
n=1

�
�"n
"

�
_xn.

3.1 Monotonicity Constraints

As required by microeconomic theory, the output distance function (13) has to satisfy the
theoretical regularity conditions of monotonicity and curvature. Monotonicity requires that
Do (y;x; t) is non-increasing in x and non-decreasing in y. That is,

@Do (y;x; t)

@xn
� 0 and

@D (y;x; t)

@ym
� 0, (18)

or, equivalently,
@ lnDo (y;x; t)

@ lnxn
� 0 and

@ lnDo (y;x; t)

@ ln ym
� 0, (19)

since xn=Do (y;x; t) > 0 and ym=Do (y;x; t) > 0. The monotonicity restrictions in (18)
ensure that the outputs and inputs have nonnegative shadow prices. When expressed
in elasticities as in (19), these monotonicity restrictions are critically important in ensuring
that the shadow revenue and cost shares are nonnegative when decomposing the productivity
growth index in (3).
The monotonicity conditions in (18) can be understood intuitively within the context

of banking inputs and outputs. In particular, the condition @Do (y;x; t) =@xn � 0 in (18)
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means that the technical e¢ ciency of a bank does not increase when usage of any input
increases. In other words, for the same amount of outputs produced, a bank that requires
more inputs cannot be more technically e¢ cient. Similarly, @D (y;x; t) =@ym � 0 in (18)
means that the technical e¢ ciency of a bank does not decrease when production of any
output increases. Put it di¤erently, for the same amount of inputs required, a bank that
produces more outputs cannot be less technically e¢ cient.
We now explicitly produce the monotonicity conditions for the output distance function

kn =
@ lnDo (y;x; t)

@ lnxn

= bn +

NX
j=1

bnj lnxj +
MX
m=1

gnm ln ym + �xnt � 0; for n = 1; � � �; N ; (20)

rm =
@ lnDo (y;x; t)

@ ln ym

= am +
MX
p=1

amp ln yp +
NX
n=1

gnm lnxn + �ymt � 0; for m = 1; � � �;M . (21)

Noting that [see (3)]
MX
m=1

@ lnDo (y;x; t)

@ ln ym
= 1,

the monotonicity condition for the Mth output can be also rewritten as

1�
M�1X
m=1

@ lnDo (y;x; t)

@ ln ym
� 0.

3.2 Curvature Constraints

Curvature requires that the output distance function Do (y;x; t) be quasi-convex in inputs
and convex in outputs. See Färe and Grosskopf (1994, p. 38) for more details. For
Do (y;x; t) to be quasi-convex in x it is su¢ cient that all the principal minors of the following
bordered Hessian matrix

F =

2664
0 f1 � � � fN
f1 f21 � � � f2N
: : � � � :
fN fN1 � � � fNN

3775 ,
12



are negative, where

fn =
@Do (y;x; t)

@xn
=
knDo (y;x; t)

xn
,

and

fnj =
@2Do (y;x; t)

@xn@xj
= (bnj + knkj � �njkn)

Do (y;x; t)

xnxj
,

with �nj = 1 if n = j and 0 otherwise. Noting that factoring out Do (y;x; t) =xn from the
rows and 1=xj from the columns of F does not change the signs of its principal minors, we
can consider the following matrix

eF =

2664
0 ~f1 ::: ~fN
~f1 ~f11 ::: ~f1N
: : ::: :
~fN ~fN1 ::: ~fNN

3775
where ~fn = kn, and ~fnj = bnj + knkj � �njkn. Thus, for Do (y;x; t) to be quasi-convex in x
it is su¢ cient that all the principal minors of eF are negative.
Convexity in outputs will be ensured if and only if all the principal minors of the Hessian

matrix,

H =

2664
h11 h12 � � � h1M
h21 h22 � � � h2M
: : � � � :

h1M h2M � � � hMM

3775 ,
are non-negative, where

hmp �
@2Do (y;x; t)

@ym@yp
= (amp � rmrp � �mprm)

Do (y;x; t)

ymyp
,

for m; p = 1; � � �;M and �mp = 1 if m = p and 0 otherwise. Note that factoring out
Do (y;x; t) =ym from the rows and 1=yp from the columns of H does not change the signs
of its principal minors. Hence, we can simplify the problem by considering the following
matrix

fH =

2664
~h11 ~h12 � � � ~h1M
~h21 ~h22 � � � ~h2M
: : � � � :
~h1M ~h2M � � � ~hMM

3775 ,
where

~hmp = amp � rmrp � �mprm. (22)

Thus, the distance function will be convex in outputs if and only iffH is positive-semide�nite.
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Compared with the monotonicity conditions, which are easy to understand intuitively
within the context of banking inputs and outputs, the curvature conditions are more technical
in that they are mainly used in proving the duality theorem � see Färe and Grosskopf (1994)
and Kuosmanen (2003). In particular, convexity in outputs of the output distance function
imposes convexity on output correspondence, while quasi-convexity in inputs of the output
distance function imposes convexity on input correspondence. At a more intuitive level,
convexity in outputs implies that if two combinations of bank output levels can be produced
with a given bank input vector x, then any average of these output vectors can also be
produced. This implicitly requires the bank output to be continuously divisible � see Greene
and Heller (1981) and Kuosmanen (2003) for a more detailed discussion of convexity and
its implications in economics. Similarly, quasi-convexity in inputs, which imposes convexity
on input correspondence, implies that if a given output vector y can be produced with two
combinations of bank input levels, then it can be produced with any average of these input
vectors. This implicitly requires the bank inputs to be continuously divisible.

4 Bayesian Estimation

As noted above, we need to use an estimation method that is capable of imposing the above
theoretical regularity conditions. In this paper, we choose the Bayesian method, whose
merits have been discussed above. With the translog function for Do(y;x; t), the stochastic
output distance function in (14) can be rewritten in a panel data framework as

qit = z
0
it� + uit + vit, (23)

where i = 1; � � �; K indicates �rms, t = 1; � � �; T indicates time, qit = � ln y3;it, zit is a vector
comprising all the variables which appear on the right hand side of (14), and � refers to the
corresponding vector of coe¢ cients of the translog function (including the intercept).
The formulation of our empirical model as a random e¤ects model (23) is convenient

for Bayesian analysis. Although equation (14) can also be formulated as a �xed e¤ects
model, we prefer a random e¤ects model. This is because, with a �xed e¤ects model, we
have to specify the same number of intercepts as that of observational units, which makes
the implementation of Bayesian estimation methods cumbersome, since we have 292 banks
in this study. The Bayesian procedures for estimating stochastic frontier models with and
without constraints can be found in Koop and Steel (2001) and O�Donnell and Coelli�s
(2005). Given that there are relatively few Bayesian applications in the banking e¢ ciency
literature to date, we brie�y detail the estimation procedure.
The use of Bayesian procedures requires choosing prior parameter values. Following

Koop and Steel (2001) and O�Donnell and Coelli (2005), we adopt the following prior for �

p (�) / I (� 2 Rj) , (24)
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where I (�) is an indicator function which takes the value 1 if the argument is true and 0
otherwise, and Rj is the set of permissible parameter values when no theoretical regularity
constraints (j = 0) are imposed and when both the monotonicity and curvature constraints
(j = 1) must be satis�ed. This particular prior for � allows us to slice away the portion of
posterior density that violates monotonicity and curvature of the output distance function.
We also follow O�Donnell and Coelli (2005) and adopt the following prior for h

p(h) / h�1, where h =
1

�2
> 0. (25)

As stated above, we choose an exponential distribution for uit. This is mainly because
van den Broek et al. (1994) argue that this distribution for ine¢ ciency uit is more robust
to prior assumptions about parameters than other distributions. Since the exponential
distribution is a special case of the gamma distribution, the prior for uit is

p
�
uit
����1 � = fGamma

�
uit
��1; ��1 � , (26)

where fGamma is a gamma density function. According to Fernandez et al. (1997), in
order to obtain a proper posterior we need a proper prior for the remaining parameter, �.
Accordingly, we use the proper prior

p(��1) = fGamma(�
�1 j1;� ln � � ), (27)

where � � is the prior median of the e¢ ciency distribution.
With the priors (24)-(27), our joint prior probability density function is therefore

f
�
�; h;u; ��1

�
= p (�) p(h)p

�
u
����1 � p(��1)

/ h�1I (� 2 Rj) fGamma
�
��1 j1;� ln � �

� KY
i=1

TY
t=1

fGamma(uit
��1; ��1 ). (28)

Finally, our best prior for the e¢ ciency of large banks in the United States is the mean
e¢ ciency value of 0:899 reported by Tsionas (2006) who applied a Bayesian cost frontier
(without constraints) to 128 large U.S. banks. In fact, after reviewing the results of 50
U.S. bank e¢ ciency studies, Berger and Humphrey (1997) found that the annual average
e¢ ciency is 0:84 with a standard deviation of 0:07. So we are comfortable following Tsionas
(2006), setting � � = 0:899 in this study.
The likelihood function can be shown to be

L
�
q
���; h;u; ��1 � = KY

i=1

TY
t=1

(r
h

2�
exp

�
�h
2
(qit � z0it� � uit)

�2)

/ hK�T=2 exp

�
�h
2
v0v

�
, (29)
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where v = (q � z0� � IKTu), with IKT being the KT �KT identity matrix.
Using Bayes�s Theorem and combining the likelihood function in (29) and the joint prior

distribution in (28), we obtain the posterior joint density function

f
�
�; h;u; ��1 jq

�
/ h(KT=2�1) exp

�
�h
2
v0v

�
I (� 2 Rj)�

� fGamma
�
��1j1;� ln � �

� KY
i=1

TY
t=1

fGamma(uit
��1; ��1 ). (30)

Also, technical change (TC), elasticities ("n), returns to scale (RTS), and total factor pro-
ductivity growth are all functions of �; h;u; and ��1. We are particularly interested in the
posterior marginal densities of �, u, TE, "n, RTS, and TFP growth, and the means and
standard deviations of these posterior densities.
Let g(�; h;u; ��1) represent these functions of interest. In theory, we could obtain the

moments of g(�; h;u; ��1) from the posterior density through integration. Unfortunately,
these integrals cannot be computed analytically. Therefore, we use the Gibbs sampling algo-
rithm which draws from the joint posterior density by sampling from a series of conditional
posteriors. Essentially, Gibbs sampling involves taking sequential random draws from full
conditional posterior distributions. Under very mild assumptions [see, for example, Tierney
(1994)], these draws then converge to draws from the joint posterior. Once draws from the
joint distribution have been obtained, any posterior feature of interest can be calculated.
The full conditional posterior distributions for �; h; u, and ��1can be shown to be

p
�
��1 jq;�; h;u

�
/ fGamma

�
��1 jKT + 1;u0�KT � ln � �

�
; (31)

p
�
h
��q;�;u; ��1 � / fGamma

�
h

����KT2 ;
1

2
v0v

�
; (32)

p
�
�
��q; h;u; ��1 � / fNormal

h
�
���b; h�1 (z0z)�1 i I (� 2 Rj) ; (33)

p
�
u
��q;�; h; ��1 � = fNormal

�
u jq � z0� � (h�)�1�KT ; h�1IKT

� KY
i=1

TY
t=1

I (uit � 0) , (34)

where b = (z0z)�1z0 [q � IKTu], with �KT being the KT vector of ones, and fNormal is a
normal density function.
The Gibbs sampler for Bayesian estimation without monotonicity and curvature con-

straints can be implemented by setting I (� 2 R0) in (33) equal to one and then drawing
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sequentially from the conditional posteriors in (31)�(34). Sampling from (31), (32), and (33)
is straightforward. However, sampling from (34), a multivariate truncated normal distribu-
tion, is more complicated. Luckily, in our particular case, sampling from the multivariate
truncated normal distribution (34) can be simpli�ed as KT independent draws from the
following univariate truncated normal distribution

p
�
uit
��q;�; h; ��1 � = fNormal

�
qit � z0it� � (h�)�1; h�1

�
I (uit � 0) , (35)

by noting that the covariance matrix is a scalar times an identity matrix, and the truncations
are independent. Sampling from univariate truncated normal distributions can be easily
implemented, using procedures discussed in Albert and Chib (1996).
The Gibbs sampler for Bayesian estimation with monotonicity and curvature constraints

also involves taking sequential random draws from the above full conditional posterior distri-
butions. Sampling from (31), (32), and (34) is the same as in the case without monotonicity
and curvature constraints. However, sampling from the multivariate normal distribution
(33) is even more involved than sampling from the multivariate normal distribution (34)
in that the region to which � is truncated cannot be explicitly speci�ed. There are two
approaches in this literature which can be used to handle the sampling from the truncated
multivariate normal distribution like (33): the accept-reject algorithm [see Terrell (1996)]
and the Metropolis-Hastings (M-H) algorithm � see, for example, O�Donnell and Coelli
(2005). The accept-reject algorithm has been criticized for its ine¢ ciency in that it needs to
generate an extremely large number of candidate draws before �nding one that is acceptable
� see O�Donnell and Coelli (2005). In this paper, we follow O�Donnell and Coelli (2005) and
sample the truncated multivariate normal distribution (33) using the Metropolis-Hastings
algorithm.

5 The Data

The data used in this study are obtained from the Reports of Income and Condition (Call
Reports) over the six-year period (T = 6) from 2000 to 2005. We examine only continuously
operating banks to avoid the impact of entry and exit and to focus on the performance of a
core of healthy, surviving institutions during the sample period. In this paper, we selected
the subsample of large banks, namely those with total assets in excess of one billion dollars
(in 2000 dollars) in the last three year in the sample. This gives a total of 292 banks
(K = 292) observed over 6 years.
To select the relevant variables, we follow the commonly-accepted intermediation ap-

proach proposed by Sealey and Lindley (1977), which treats deposits as inputs and loans
as outputs. On the input side, three inputs are included. The quantity of labor, x1; the
quantity of purchased funds and deposits, x2; and the quantity of physical capital, x3, which
includes premises and other �xed assets. On the output side, three outputs are speci�ed.
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These are securities, y1, which includes all non-loan �nancial assets (i.e., all �nancial and
physical assets minus the sum of consumer loans, non-consumer loans, securities, and eq-
uity); consumer loans, y2; and non-consumer loans, y3, which is composed of industrial,
commercial, and real estate loans. All the quantities are constructed by following the data
construction method in Berger and Mester (2003). These quantities are also de�ated by the
CPI to the base year 2000, except for the quantity of labor.
While non-traditional activities are clearly increasing in importance, the wide range of

activities and imperfect data make the measurement of non-traditional activities problem-
atic. See Stiroh (2000) for a discussion of the di¤erent approaches to the measurement
of non-traditional activities. To avoid the uncertainties associated with the introduction
of non-traditional activities, we choose not to include it as an output. But we do run an
alternative model where non-traditional activities are considered as an extra output to check
the robustness of the estimates of technical change.

6 Empirical Results

6.1 Regularity Tests

We start with the unconstrained parameter estimates and make 50,000 draws discarding
the �rst 20,000 as a burn in. Table 1 presents the estimated parameters and also reports
both standard deviations and 90% posterior density regions calculated as the 5th and 90th
percentiles of the MCMC sample observations. We calculate 90% posterior density regions
because it provides a better indication of likely values of the parameters when the marginal
posterior distributions are asymmetric � see O�Donnell and Coelli (2005).
Regularity tests can be implemented by analyzing the estimated unconstrained marginal

posterior pdfs of kn and rm and the principal minors of eF and fH. We �rst evaluate the
posterior means of kn and rm and the principal minors of eF and fH, at each of the 1752
(= K � T ) observations, and then calculate the proportions of regularity violations relative
to the total number of observations. The results, presented in the �rst column of Table 2,
indicate that only two (k2 and r1) of the six monotonicity conditions are satis�ed at all the
1752 observations and that both curvature conditions are violated, with the quasi-convexity
in outputs being violated at all observations. We then evaluate the posterior coverage
regions of kn and rm and of the principal minors of eF and fH, again at each of the 1752
observations, and calculate the ratio of the number of observations, where posterior coverage
regions span inadmissible values, to the total number of observations (1752). As can be seen
in the second column of Table 2, all eight regularity conditions have a positive probability of
being violated at some observations. In fact, both of the curvature conditions have a positive
probability of being violated at all the 1752 observations.
These violations of monotonicity and curvature in the unconstrained model may lead to
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perverse conclusions concerning TFP growth. To see this, we also generate the marginal
density plots for the shadow input cost shares, !n for n = 1; 2; 3 in (3), and the shadow
output revenue shares, ~!m for m = 1; 2; 3 in (3), from the unconstrained model, evaluated
at the mean value of all inputs and outputs in each year. As discussed above, both !n
and ~!m are required to be positive and less than one. Due to space limitations, only the
marginal densities in 2005 are plotted in Figure 1.1-1.6 � the marginal densities for other
years are similar to those in 2005. Clearly, all the three shadow output shares are reasonable,
containing no negative values or values larger than one. However, the plot of the shadow
input shares shows that the labor share and the capital share may be negative. A negative
input share implies that an increase in the use of that input (with all other inputs and outputs
held constant) will increase the (measured) productivity of that bank, which is economically
implausible. Moreover, Figure 1.2 shows that the shadow input share for funds may be
greater than one, implying that an increase in the use of that input (with all other inputs
and outputs held constant) will reduce the (measured) productivity of that bank by more
than the growth rate of funds, which is again economically implausible.
Since monotonicity and curvature are not attained in the unconstrained model, we follow

the procedures speci�ed in Section 4 to impose those constraints on the translog output
distance function. Again, we generated a total of 50,000 observations, and then discarded
the �rst 20,000 as a burn-in. The associated estimates of parameters are reported in Table 3,
the monotonicity and curvature violations reported in Table 4, and the marginal densities for
the shadow input and output shares are plotted in Figure 2.1�2.6. Generally speaking, the
constrained model has smaller posterior standard deviations and narrower Bayesian credible
intervals in terms of posterior moments for the estimated parameters and shadow revenue and
cost shares. This is consistent with Dorfman and McIntosh (2001) and O�Donnell and Coelli
(2005) who �nd that incorporating inequality constraints into the estimation process has the
e¤ect of reducing the variances of the estimated marginal pdfs. In addition, Figures 2.1�2.6
show that some densities are asymmetric � for example, those for the funds share, capital
share, and non-consumer loans share. Kleit and Terrell (2001) found similar results and
suggested that the asymmetry perhaps re�ects the fact that the constrained posterior density
slices away the portion of the unconstrained posterior density that violates monotonicity and
curvature.
As we expected, monotonicity and curvature are satis�ed by all measures after monotonic-

ity and curvature are incorporated. In particular, kn and rm and the principal minors ofeF and fH are correctly signed at all 1752 observations whether they are evaluated by using
posterior means or by using posterior coverages. Moreover, the shadow shares are all pos-
itive and less than one. In what follows, we will discuss technical e¢ ciency, technological
change, returns to scale, and the contributions of each of these components to TFP growth,
based on the constrained translog output distance function.
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6.2 Consequences of Failure to Impose Theoretical Regularity

Having estimated both the unconstrained and constrained models, in the section we inves-
tigate the consequences of failing to impose the theoretical regularity conditions in terms of
i) e¢ ciency and productivity rankings of banks, ii) identi�cation of best- and worst-practice
banks, and iii) estimates of e¢ ciency and productivity levels.

6.2.1 Rank-Order Correlations of E¢ ciency and Productivity Growth

As pointed by Bauer et al. (1998), identifying the ordering of which �nancial institutions
are more e¢ cient than others is usually more important for regulatory policy decisions than
measuring the level of e¢ ciency. Therefore, we �rst examine whether failure to impose
theoretical regularity changes the ranking of individual banks both in terms of e¢ ciency
and in terms of productivity growth. For this purpose, we calculate the Spearman rank
correlation coe¢ cient between the unconstrained model and the constrained model, for both
the case of e¢ ciency ranking and the case of productivity growth ranking � see Table 5.
Formally, the Spearman rank correlation coe¢ cient can be written a

� = 1�
6
Pnk

j=1(Rankj1 � Rankj2)2

nk(n2k � 1)
, (36)

where nk is the number of banks in the sample, Rankj1 is the rank of bank j based on the
constrained version of the model, and Rankj2 is the rank of the same bank based on the
unconstrained version of the model. If � = �1, there is perfect negative correlation; if � = 1,
there is perfect positive correlation; and if � = 0, there is no correlation.
We follow Betta and Pietrosanto (2008) and bootstrap each of the 10 Spearman rank

correlation coe¢ cients 10000 times. We report the 99% bootstrap con�dence intervals in
Table 5 (in parentheses); if the con�dence interval does not contain unity, the Spearman
rank correlation coe¢ cient is signi�cantly di¤erent from one at the 1% level. As can be seen
from Table 5, none of the 99% bootstrap con�dence intervals contain one, suggesting that
all the Spearman rank correlation coe¢ cients reported in the table are signi�cantly di¤erent
from one at the 1% level. In the case of the e¢ ciency ranking of banks (see panel A of
Table 5), the rank correlation coe¢ cients range from 0.8210 to 0.9210. This suggests that
the imposition of theoretical regularity changes the ranking of banks in terms of e¢ ciency.
Moreover, as can be seen in panel B of Table 5, the Spearman rank correlation coe¢ cients
for productivity growth are also di¤erent than 1, ranging from 0.8254 to 0.9213, suggesting
that the imposition of theoretical regularity also changes the productivity growth ranking of
banks.
In terms of magnitude, the Spearman rank correlation coe¢ cients in Table 5 are com-

parable to those reported in earlier studies. For example, Bauer et al. (1998), using data
on U.S. banks with assets greater than $100 million, over the period from 1977 to 1988,
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�nd that the Spearman rank correlation coe¢ cients among the e¢ ciency scores created by
di¤erent parametric techniques range from 0.484 to 0.976. In particular, they �nd that the
Spearman rank correlation coe¢ cient between the stochastic frontier approach (SFA) and
the distribution free approach (DFA) is 0.897, a value comparable in magnitude to those
reported here. As is well known, however, SFA and DFA make very di¤erent assumptions
regarding the distribution of e¢ ciency and also separate ine¢ ciencies from the random error
in very di¤erent ways � see, for example, Kumbhakar and Lovell (2003, p. 179). In other
words, the change in e¢ ciency and productivity ranking caused by failure to impose theo-
retical regularity conditions is comparable to that caused by switching from one parametric
technique (i.e. SFA) to another very di¤erent parametric technique (i.e. DFA).

6.2.2 Identi�cation of Best-Practice and Worst-Practice Banks

The identi�cation of the most e¢ cient and least e¢ cient banks is also important for some
regulatory purposes. We therefore investigate the consequences of not imposing theoretical
regularity in this regard. We calculate the proportion of banks that are identi�ed by the
unconstrained model as having e¢ ciency (productivity growth) scores in the least e¢ cient
(productive) 25% that are also identi�ed in the bottom quarter by the constrained model
� see Table 6.1. We also calculate the proportion of banks that are identi�ed by the
unconstrained model as having e¢ ciency (productivity growth) scores in the most e¢ cient
(productive) 25% that are also identi�ed in the top quarter by the constrained model � see
Table 6.2. We refer to these proportions as �correspondence proportions�(�). If � = 1,
there is perfect correspondence between the unconstrained and constrained models; and if
� = 0, there is no correspondence.
We also bootstrap (10000 times) each of the 20 correspondence proportions in Tables 6.1

and 6.2 and report the 99% bootstrap con�dence intervals in parentheses. As can be seen
from these tables, none of the 99% bootstrap con�dence intervals contain one, suggesting
that the best (or worst) 25% of banks identi�ed by the unconstrained model are di¤erent
from those identi�ed by the constrained model. In particular, the proportion of banks that
are identi�ed by the unconstrained model as having e¢ ciency scores in the least e¢ cient 25%
that are also identi�ed in the bottom quarter by the constrained model ranges from 0.6575
to 0.7945 (see panel A of Table 6.1). Also the proportion of banks that are identi�ed by the
unconstrained model as having productivity growth scores in the least productive 25% that
are also identi�ed in the bottom quarter by the constrained model ranges from 0.6986 to
0.8082 (see panel B of Table 6.1). As can be seen in panel A of Table 6.2, the proportion of
banks that are identi�ed by the unconstrained model as having e¢ ciency scores in the most
e¢ cient 25% that are also identi�ed in the top quarter by the constrained model ranges from
0.7703 to 0.8514. The proportion of banks that are identi�ed by the unconstrained model
as having productivity growth scores in the most productive 25% that are also identi�ed in
the top quarter by the constrained model ranges from 0.6757 to 0.8649 (see panel B of Table
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6.2).
As with the Spearman rank correlation coe¢ cients in Table 5, the correspondence pro-

portions reported in Tables 6.1 and 6.2 are also comparable (in terms of magnitude) to those
among e¢ ciency scores produced by di¤erent parametric techniques reported by Bauer et
al. (1998). For example, they �nd that the correspondence of best practice banks between
SFA and DFA is 0.795, and that the correspondence of worst practice banks between SFA
and DFA is 0.790. This shows that failure to impose theoretical regularity conditions will
lead to misidenti�cation of best-practice and worst-practice banks, and the extent of this
misidenti�cation is comparable to that caused by changing from one parametric technique
(i.e. SFA) to another very di¤erent parametric technique (i.e. DFA).

6.2.3 E¤ects on E¢ ciency and Productivity Growth Estimates

We are also interested in how failure to impose theoretical regularity a¤ects e¢ ciency and
productivity growth at the individual bank level. In Table 7 we report on the distribution
of the di¤erence in technical e¢ ciency and productivity growth, respectively, between the
unconstrained and the constrained model, using the mean di¤erence and the 5th and 95th
percentile values.
Regarding e¢ ciency, as can be seen in panel A of Table 7, the mean di¤erence in technical

e¢ ciency ranges from -5.64% to -5.46% with an average of -5.54%. That is, compared with
the technical e¢ ciency estimates obtained from the constrained model, those obtained from
the unconstrained model are 5.54% smaller on average. The decrease in technical e¢ ciency
when the theoretical regularity conditions are not imposed is not surprising, considering
that the vector of frontier outputs obtained from the constrained model is smaller than that
obtained from the unconstrained model, due to the restrictions imposed on the production
technology set, P t (xt), by the theoretical regularity conditions. Moreover, in terms of mag-
nitude, an average reduction of 5.54% in technical e¢ ciency estimates caused by failure to
impose theoretical regularity conditions is by no means small. For example, taking a repre-
sentative large bank with the mean value of inputs and outputs in 2005, a reduction of 5.54%
in technical e¢ ciency implies that, without changing its technology and inputs, this bank
could potentially increase its annual production of securities (y1), consumer loans (y2) and
non-consumer loans (y3) by 171.7982, 43.0373, and 284.9830 millions dollars, respectively,
by simply increasing its technical e¢ ciency.
As for productivity growth, as can be seen in panel B of Table 7, the mean di¤erence in

productivity growth between the unconstrained and constrained model ranges from 0.05%
to 0.71%, with an average of 0.41%. The latter �gure is not small, considering that the
average productivity growth over the sample period based on the constrained model is 1.98%
(see Table 11). In other words, failure to impose theoretical regularity conditions leads
to an overestimate of average productivity growth by 20.69% (= 0:41%=1:98%). This
�gure will be even larger if the di¤erences in productivity growth are calculated in absolute
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value, since negative and positive di¤erences in productivity growth cancel each other out
partially when taking the average (this is not a problem for the di¤erences in e¢ ciency,
which are all negative). Also, a close examination of the 5th and 95th percentiles (in panel
B of Table 7) reveals that, compared with the average di¤erence in productivity growth,
the di¤erences in productivity growth for individual banks can be very large. Taking the
di¤erence in productivity growth in 2001 as an example, the 95% percentile is 3.14% while
the 5% percentile is �2.42%.
In summary, failure to impose theoretical regularity leads to misleading ranking of banks

both in terms of technical e¢ ciency and in terms of productivity growth; misidenti�cation
of best and worst practice banks; and mismeaured technical e¢ ciency and productivity
growth. For these reasons, in what follows we concentrate on the empirical results from the
constrained model.

6.3 Results from the Constrained Model

6.3.1 Technical E¢ ciency

Table 8.1 reports the estimates of average technical e¢ ciency over the sample period, together
with the 90% posterior density regions. The average technical e¢ ciency for each year is
evaluated at the mean value of all inputs and outputs in that year. As indicated by the
standard deviations and 90% density regions, the estimates of the average technical e¢ ciency
are statistically signi�cant for every year over the sample period. The scores of technical
e¢ ciency show a high level of e¢ ciency, ranging from 92.43% to 93.41%. Thus, on average,
a 7% to 8% proportional increase in outputs can be achieved by solely increasing e¢ ciency,
without altering production technology and input usage.
Our estimates of technical e¢ ciency are quite close to those from recent research; see, for

example, Stiroh (2000) and Tsionas (2006). Both of these studies employed a translog cost
frontier (dual method), rather than a distance frontier (primal method). Thus, one of the
di¤erences in e¢ ciency estimates could be due to allocative e¢ ciency. For example, Tsionas
used the panel data on 128 large U.S. banks over the period from 1989 to 2000 and found
that the average e¢ ciency is 88.9% when a dynamic e¤ect is not considered and 95.5% when
a dynamic e¤ect is considered. Further, our technical e¢ ciency estimates show no speci�c
pattern of temporal change. In particular, it starts at 93.41% in 2000, falls to 92.49% in
2001, rebounds slightly in the following two years, falls slightly again in 2004, and picks up
again to 92.69% in 2005. This time pattern of technical e¢ ciency means that the change in
technical e¢ ciency is not a consistent source of TFP growth.
To get a better understanding of the distribution of technical e¢ ciency across banks, in

Table 8.2 we report the minimum and maximum technical e¢ ciency in each year, together
with standard deviations, and the 5th and 95th percentile values. The results show that the
scores of technical e¢ ciency can di¤er greatly across banks in all the sample years. Taking
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the technical e¢ ciencies in 2005 as an example, the highest is 97.63% whereas the lowest is
only 35.08%. Despite these extreme cases, the results on standard deviations and the 5th
and 95th percentile values show that the vast majority of the banks fall within the range
between 84% and 96%.

6.3.2 Returns to Scale

Table 9 summarizes the returns to scale (RTS) estimates, again evaluated at the mean value
of all inputs and outputs each year. The standard deviations and 90% density regions
indicate that the RTS estimates are statistically signi�cant for every year over the sample
period. Clearly, the point estimates of RTS in Table 7 are all greater than one, ranging from
1.037 to 1.056, suggesting that the large commercial banks in the sample exhibit moderate
increasing returns to scale. This is consistent with the �ndings in Bikker and Haaf (2002) and
Claessens and Laeven (2003) that the U.S. banking industry is characterized by monopolistic
competition.
The presence of moderate increasing returns to scale also has two implications for pro-

ductivity growth. First, the presence of moderate increasing returns to scale implies that
productivity growth will exhibit procyclical behavior to some extent. This is because the
contribution of scale economies to productivity growth is positive when the share weighted
input aggregate grows over time, but negative when the share weighted input aggregate
declines over time, as can be seen from (12). Second, since the economies of scale is moder-
ate in magnitude, the scale e¤ect will not be a consistent signi�cant source of TFP growth.
In addition, the presence of moderate increasing returns to scale also implies that the large
banks in the U.S. are expected to be engaged in more mergers and acquisitions until the
returns to scale are exploited.

6.3.3 Technical Change

Table 10.1 reports technical change rate estimates, again evaluated at the mean value of
all inputs and outputs each year. Again, the standard deviations and 90% density regions
indicate that the estimates are statistically signi�cant in all years except 2004. On average,
the rate of technical change is 2.22% per year. Compared with the estimates of technical
e¢ ciency, which show no speci�c pattern of temporal change, the estimates of the rate of
technical change show a declining trend. In particular, the rate of technical change falls
consistently from 6.0% in 2000 to -1.79% in 2005. In terms of the output distance function,
this means that the frontier is moving outward more slowly over time and even moving
inward at the end of the sample period.
Considering the importance of technical change, we also estimated two alternative models

to check the robustness of our results regarding the time pattern of technical change. In the
�rst alternative model (Model 1), we treat securities (instead of non-consumer loans) as the
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numeraire for normalizing the outputs, to see whether the choice of the numeraire has any
e¤ect on the time pattern of technical change. In the second alternative model (Model 2),
we add an o¤-balance-sheet variable to see whether the exclusion of non-traditional activities
a¤ects the estimated time pattern of the rate of technical change. The estimates of the rate
of technical change, together with 90% posterior density regions, from the three alternative
models are reported in Table 10.2.
The estimates of the rate of technical change from the �rst alternative model (Model

1), reported in the �rst column of Table 10.2, are almost the same as those in Table 10.1
(our standard model), suggesting that the choice of the numeraire has almost no e¤ect
on the estimated time pattern of the rate of technical change. When the o¤-balance-sheet
variable is added, the technical change rate estimates change on average by 0.45% in absolute
terms. However, as can be clearly seen in the third column of Table 10.2, the time pattern
of technical change is still almost the same. As we discussed above, the wide range and
imperfect data of the non-traditional activities could introduce more uncertainty regarding
the estimates of the rate of technical change. Thus, the second alternative model (Model 2)
is not our preferred model.
In summary, the time pattern and (to a lesser degree) magnitude of the rate of technical

change estimates are very robust to the di¤erent choice of the numeraire output and the
inclusion of o¤-balance-sheet variables.

6.3.4 TFP Growth and Its Components

We now turn to a decomposition of the growth rate of total factor productivity, as shown
in Table 11. It should be noted that the �rst year in the sample period is dropped because
we have to di¤erence the technical e¢ ciencies in two consecutive years to obtain e¢ ciency
changes. Again, all the estimates are evaluated at the mean values of all inputs and outputs
in each year. In addition to the estimates of the three TFP growth components, we also
calculate the percentage contribution of each of the three productivity components to total
factor productivity growth, shown in brackets in Table 11.
Overall, the results presented in the �rst column of Table 11 indicate that total factor

productivity grew in all years, except the last, at an average annual rate of 1.98%. However,
the estimates for total factor productivity growth also exhibit a clear downward trend. In
particular, total factor productivity growth is quite impressive in the �rst three years, in all
exceeding 2%. But, it falls almost to zero in 2004 and even turns negative in the last year in
the sample. It should be noted that while TFP growth shows a downward trend, TFP level
has been increased over the sample period except the last. In particular, if we normalize the
productivity level in 2000 to 100, then the productivity level in the last year will be 109.91.
The decomposition of total factor productivity growth in Table 11 identi�es the forces

that drive its decline. In particular, the estimates for e¢ ciency changes, �du=dt, in the
second column of Table 11 are rather small in magnitude, averaging only 0.14% per year.
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Moreover, they �uctuate around zero, indicating that e¢ ciency change has a minor e¤ect
on total factor productivity growth. The small e¤ects of e¢ ciency changes on total factor
productivity growth are also re�ected in the percentage contribution to total factor produc-
tivity growth, reported in Column 3 of Table 11, averaging 7.27% per year. The estimates
reported in the fourth column of Table 11 indicate that the scale e¤ect has a moderate
positive e¤ect on total factor productivity growth, averaging 0.44% per year. In terms of
average percentage contributions, the scale e¤ect is the second largest factor contributing
to growth in total factor productivity (22.30%). This is consistent with our estimates of
returns to scale, which show moderate economies of scale in large commercial banks in the
United States.
Without doubt, the last component, technical change, is the dominant force behind total

factor productivity growth. This can be clearly seen from the average annual rate of technical
change (of 1.39%) in column 6 of Table 11. The importance of technical change can also
be seen from its percentage contribution: it contributes over 75% each year to productivity
growth. Further, the technical change estimates show a clear downward trend, accounting
for the decline in total factor productivity growth over the sample period.

6.4 Sensitivity Analysis

A possible problem with our estimation of the output distance function is endogeneity.
That is, the regressors on the right hand side of equation (14) may not be exogenous.
To investigate the robustness of our results to alternative estimation procedures, in this
subsection we use instrumental variables.
The variables on the right hand of (14) can be classi�ed into two types of variables: the

output ratio variables (i.e. ym=yM , m = 1; � � �;M �1) and the input variables. According to
Coelli and Perelman (1999), the output ratios are measures of the output mix which are more
likely to be exogenous. Schmidt (1988) and Mundlak (1996) also �nd that, in the context
of a production function, the input ratios do not su¤er from the endogeneity problem; the
basic argument also applies to the output ratios in the transformed output distance function.
Thus, the only variables suspected of causing possible endogeneity problems are the input
variables. To use instrumental variables for the input variables, we follow the assertion of
Griliches (2000, p. 62) that �good instruments are hard to �nd without the supporting theory
that give them a formal role in the model.� For the U.S. banking industry, most previous
studies �nd that it is characterized by monopolistic competition � see, for example, Bikker
and Haaf (2002) and Claessens and Laeven (2003). Hence, consistent with the theoretical
framework of pro�t maximization in the presence of imperfect competition, input prices
and the time trend are chosen as instruments. A similar method of choosing instrumental
variables is used in Karagiannis et al. (2004) in estimating an input distance function.
The empirical results are summarized in Table 12. A comparison of Tables 11 and 12

reveals that the major conclusions reached in the previous subsection are still valid, although
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we notice that there are some changes. First, total factor productivity growth still shows
a clear downward trend, implying that productivity has been growing at a lower rate. In
particular, it has consistently decreased from 0.0491 to 0.033 over the sample period. Second,
technical change is still the driving force behind the decline in total factor productivity
growth. From the contributions of the three productivity components, we see that technical
change is still the dominant force, accounting for 70.32% of the productivity growth on
average. With the contributions from the other productivity components being rather
small, the consistent decline in technical change (see the last column of Table 12) results in
the decline in productivity growth. Third, the estimates of e¢ ciency change and the scale
e¤ect when instrumental variables are used are comparable to our earlier estimates. Finally,
we also �nd that the estimates of the contributions of the three productivity components
when instrumental variables are used are very similar to our earlier estimates as well. In
particular, the average contributions of technical change, scale e¤ect, and e¢ ciency change
when instrumental variables are used are 70.32%, 21.94%, and 7.74%, respectively, and they
are 70.33%, 22.30%, and 7.27% when instrumental variables are not used. Therefore, our
major conclusions in the previous subsection are quite robust to the use of instrumental
variables.

6.5 A Comparison with Previous Studies

Unfortunately, previous studies that investigate productivity and e¢ ciency issues of large
banks in the United States, use di¤erent functional forms, samples periods, and estimation
methods than those used in this study. For example, while we apply a translog output
distance function to large banks (with assets greater than $1 billion in 2000 U.S. dollars), over
the period from 2000 to 2005, and use Bayesian estimation procedures, Bos and Kolari (2005)
apply a translog cost frontier to a group of large banks (with assets greater than $1 billion
in 1995 U.S. dollars), over the period from 1995 to 1999, and use the maximum likelihood
method of estimation. Also, Akhigbe and McNulty (2005) apply a Fourier pro�t function
to a group of large banks (with assets greater than $1 billion in U.S. dollars), for 1995,
1997, 1999 and 2001, using maximum likelihood estimation. These di¤erences in �exible
functional forms, samples, and estimation methods make it di¢ cult to provide a meaningful
comparison between this study and previous studies and tell whether the di¤erences between
our results and those from previous studies are caused by the failure of previous studies to
impose theoretical regularity.
However, it is worth providing a comparison between this paper and Feng and Serletis

(2009). Both investigate productivity and e¢ ciency issues in the same group of large U.S.
banks, over the same sample period, and both impose theoretical regularity, although using
di¤erent �exible functional forms and di¤erent estimation methods. A major di¤erence
between them is that Feng and Serletis (2009) �nd a decline in cost e¢ ciency for large U.S.
banks (with assets greater than $1 billion) over the sample period, while this study �nds that
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technical e¢ ciency estimates of those large banks show small temporal variation. There are
three potential reasons for this di¤erence. First, di¤erent concepts of e¢ ciency are used
in these two papers. Feng and Serletis (2009) use cost e¢ ciency, which includes allocative
e¢ ciency, whereas this paper uses technical e¢ ciency, which excludes allocative e¢ ciency,
in order to keep consistency with the use of the output distance function. Second, the
measurement problem in calculating input prices when cost functions are used (as discussed
in Section 1) is another potential cause of the di¤erence in the time pattern of the estimates
of bank e¢ ciency between these two papers. Third, di¤erent approaches to imposing the
theoretical regularity conditions are used, with the Bayesian approach used in this study and
constrained optimization used in Feng and Serletis (2009). An important di¤erence between
the Bayesian and optimization approaches is that in the Bayesian approach the constraints
are satis�ed for all parameter values where the posterior density is nonzero. That means that
all values in probability intervals for parameters will be consistent with the constraints. In
the constrained optimization approach, however, only the estimates, not necessarily all values
within con�dence intervals, will satisfy the constraints. In other words, di¤erent approaches
to imposing theoretical regularity might lead to di¤erent admissible production sets, which in
turn lead to di¤erent best practice frontiers (both in quantity space). Di¤erent best practice
frontiers, against which e¢ ciency is measured, will in turn lead to di¤erent estimates of bank
e¢ ciency.

7 Conclusion

The estimation of output distance functions is gaining increasing popularity in the analysis of
bank productivity and e¢ ciency. However, the theoretical regularity conditions (especially
those of monotonicity and curvature) required by neoclassical microeconomic theory have
been widely ignored in the literature. In this paper, we adopt a Bayesian approach to impose
the theoretical regularity conditions on the parameters of a translog output distance function.
Implementing the approach involves the use of a Gibbs sampler with data augmentation. A
Metropolis-Hastings algorithm is also used within the Gibbs sampler to simulate observations
from truncated pdfs. Hence, we provide estimates of technical change, e¢ ciency and returns
to scale of large banks in the U.S., subject to theoretical regularity conditions.
Our results con�rm that the monotonicity and concavity constrained model yields more

accurate and favorable results than an unconstrained model. In particular, shadow revenue
and cost shares are well behaved, and the standard deviations are largely reduced. We also
�nd that failure to impose theoretical regularity leads to misleading ranking of banks both
in terms of technical e¢ ciency and productivity growth; misidenti�cation of best- and worst-
practice banks; and mismeasured technical e¢ ciency and productivity growth. Our results
from the constrained model show that total factor productivity grew at an average rate of
1.98% for the large U.S. commercial banks over the sample period. However, the estimates
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of total factor productivity growth show a clear downward trend and our decomposition of
the total factor productivity growth rate indicates that technical change is the driving force
that leads to the decline in the total factor productivity growth rate. Our results indicate
that returns to scale also have a positive e¤ect on productivity growth, suggesting that the
scale e¤ect should be included when examining bank productivity growth.
In estimating technical change, returns to scale, and e¢ ciency in large banks in the United

States, we have used a translog output distance function. A locally �exible functional form,
the translog is only suitable for samples composed of relatively homogenous �rms � for
example, only large banks with assets greater than $1 billion are used in this study. In
cases where the �rms are of widely varying sizes, globally �exible functional forms which
can provide greater �exibility will be more appropriate. There are two globally �exible
functional forms � the Asymptotically Ideal Model, introduced by Barnett et al. (1991),
and the Fourier �exible functional form, introduced by Gallant (1982). However, due to
the trigonometric terms which are not neoclassical, the Fourier functional forms has been
criticized for its possibility of over�tting the data � see, for example, Barnett and Yue
(1988). In contrast, with the globally regular Müntz-Szatz series, the AIM model form �ts
only that part that is globally regular, thus eliminating the risk of over�tting. Therefore,
using an AIM output distance function to estimate technical change, returns to scale, and
e¢ ciency is an area for potentially productive future research.
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Table 1

Parameter Estimates From The Unconstrained Model

Standard 90% posterior

Variable Parameter Estimate deviation coverage regions

intercept 0 02060 00723 (00663 02617)

ln1 1 −00795 00418 (−01437 − 00184)
ln2 2 −09555 00357 (−10081 − 08993)
ln3 3 −00030 00276 (−00441 00377)
(ln1)

2
11 −03669 00618 (−04754 − 02815)

(ln2)
2

22 −00268 00372 (−00815 00273)
(ln3)

2
33 009353 00281 (00499 01352)

(ln1) (ln2) 12 02467 00399 (01906 03114)

(ln1) (ln3) 13 01210 00344 (00719 01782)

(ln2) (ln3) 23 −00328 00053 (−00408 − 00247)
ln 1 1 03956 00209 (03635 04261)

ln 2 2 01094 00102 (00942 01246)

ln 3 3 04951 00202 (04651 05260)

(ln 1)
2

11 00987 00231 (00584 01296)

(ln 2)
2

22 00268 00039 (00207 00326)

(ln 3)
2

33 01376 00218 (00997 01680)

(ln 1) (ln 2) 12 00061 00066 (−00040 00163)
(ln 1) (ln 3) 13 −01047 00215 (−01342 − 00672)
(ln 2) (ln 3) 23 −00328 00053 (−00408 − 00247)
(ln1) (ln 1) 11 −00211 00226 (−00565 00125)
(ln1) (ln 2) 12 00274 00132 (00080 00479)

(ln1) (ln 3) 13 −01047 00215 (−01342 − 00672)
(ln2) (ln 1) 21 00776 00196 (00483 01083)

(ln2) (ln 2) 22 −00090 00099 (−00241 00062)
(ln2) (ln 3) 23 −00328 00053 (−00408 − 00247)
(ln3) (ln 1) 31 −00543 00156 (−00785 − 00313)
(ln3) (ln 2) 32 −00127 00082 (−00250 − 00006)
(ln3) (ln 3) 33 00671 00148 (00452 00897)

  −00867 00138 (−01073 − 00664)
2  00163 00038 (00107 00219)

(ln1) 1 −00088 00097 (−00230 00056)
(ln2) 2 00028 00079 (−00094 00145)
(ln3) 3 00053 00061 (−00036 00145)
(ln 1) 1 −00229 00047 (−00300 − 00158)
(ln 2) 2 00002 00022 (−00031 00034)
(ln 3) 3 002269 00046 (00158 00297)



Table 2

Regularity Violations (Unconstrained Model)

Regularity violations pdf  0

Regularity conditions (at the posterior mean) (in inadmissible region)

Monotonicity

1 ≤ 0 1159% 8921%

2 ≤ 0 0% 057%

3 ≤ 0 6929% 9880%

1 ≥ 0 0% 503%

2 ≥ 0 651% 4292%

3 ≥ 0 034% 074%

Curvature

All the principal minors of:eF are negative, and 100% 100%fH is positive semidifinite 1615% 100%



Figure 1. Estimated Distributions of the Shadow Shares from Unconstrained Model Evalauted at Mean Prices in 2005
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Table 3

Parameter Estimates From The Constrained Model

Standard 90% posterior

Variable Parameter Estimate deviation coverage regions

intercept 0 02548 00194 (02222 02873)

ln1 1 −01166 00223 (−01580 − 00825)
ln2 2 −08705 00223 (−09094 − 08363)
ln3 3 −00521 00151 (−00763 − 00283)
(ln1)

2
11 −00288 00112 (−00465 − 00092)

(ln2)
2

22 00119 00223 (−00246 00488)
(ln3)

2
33 00076 00047 (00011 00162)

(ln1) (ln2) 12 00140 00145 (−00105 00370)
(ln1) (ln3) 13 00059 00042 (−00010 00127)
(ln2) (ln3) 23 −00243 00084 (−00386 − 00112)
ln 1 1 03996 00169 (03741 04301)

ln 2 2 01171 00059 (01069 01264)

ln 3 3 04834 00171 (04524 05098)

(ln 1)
2

11 00720 00076 (00590 00837)

(ln 2)
2

22 00099 00007 (00087 00111)

(ln 3)
2

33 00865 00054 (00776 00951)

(ln 1) (ln 2) 12 00023 00023 (−00014 00061)
(ln 1) (ln 3) 13 −00743 00062 (−00842 − 00639)
(ln 2) (ln 3) 23 −00122 00022 (−00158 − 00086)
(ln1) (ln 1) 11 −00264 00107 (−00439 − 00079)
(ln1) (ln 2) 12 00123 00046 (00045 00203)

(ln1) (ln 3) 13 00141 00105 (−00031 00311)
(ln2) (ln 1) 21 00582 00121 (003789 00790)

(ln2) (ln 2) 22 00064 00057 (−00042 00152)
(ln2) (ln 3) 23 −00647 00119 (−00848 − 00443)
(ln3) (ln 1) 31 −00075 00032 (−00130 − 00027)
(ln3) (ln 2) 32 −00023 00014 (−00046 − 00002)
(ln3) (ln 3) 33 00098 00036 (00041 00158)

  −00914 00120 (−01116 − 00708)
2  00183 00032 (00126 00238)

(ln1) 1 −00056 00047 (−00133 00020)
(ln2) 2 00040 00046 (−00029 00116)
(ln3) 3 00010 00011 (−00009 00028)
(ln 1) 1 −00158 00036 (−00219 − 00098)
(ln 2) 2 −00021 00010 (−00037 − 00003)
(ln 3) 3 00179 00036 (00120 00240)



Table 4

Regularity Violations (Constrained Model)

Regularity violations pdf  0

Regularity conditions (at the posterior mean) (in inadmissible region)

Monotonicity

1 ≤ 0 0% 0%

2 ≤ 0 0% 0%

3 ≤ 0 0% 0%

1 ≥ 0 0% 0%

2 ≥ 0 0% 0%

3 ≥ 0 0% 0%

Curvature

All the principal minors ofeF are negative, and 0% 0%fH is positive semidifinite 0% 0%



Figure 2. Estimated Distributions of the Shadow Shares from Constrained Model Evalauted at Mean Prices in 2005

0 0.1 0.2
0

5

10

15

20

25

Figure 2.1: labor share

de
ns

ity

0.7 0.8 0.9
0

10

20

30

Figure 2.2: fund share

de
ns

ity
0 0.05 0.1

0

10

20

30

40

50

Figure 2.3: capital share

de
ns

ity

0.2 0.3 0.4
0

10

20

30

40

Figure 2.4: securities share

de
ns

ity

0.06 0.07 0.08 0.09
0

50

100

150

Figure 2.5: consumer loan share

de
ns

ity

0.6 0.65 0.7
0

10

20

30

40

Figure 2.6: non-consumer loan share

de
ns

ity



Table 5

Spearman Rank Correlation Coefficients

A. Efficiency ranking B. Productivity growth ranking

99% bootstrap 99% bootstrap

Year Coefficient confidence interval Coefficient confidence interval

2001 0.8210 (0.7479, 0.8781) 0.8307 (0.7692, 0.8788)

2002 0.8496 (0.7848, 0.8987) 0.9213 (0.8882, 0.9441)

2003 0.8946 (0.8423, 0.9306) 0.8449 (0.7792, 0.8932)

2004 0.9210 (0.8808, 0.9463) 0.8254 (0.7475, 0.8848)

2005 0.8966 (0.8545, 0.9272) 0.8518 (0.7692, 0.8788)

Note: The Spearman rank correlation coefficient is defined in equation (36).



Table 6.1

Correspondence of Worst Practice Banks
Between Unconstrained and Constrained Models

A. In terms of efficiency B. In terms of productivity growth

correspondence 99% bootstrap correspondence 99% bootstrap

Year proportion,  confidence interval proportion,  confidence interval

2001 0.6575 (0.5094, 0.7534) 0.7671 (0.6575, 0.8630)

2002 0.6849 (0.5068, 0.7671) 0.7945 (0.6849, 0.8630)

2003 0.7945 (0.6832, 0.8767) 0.6986 (0.5479, 0.7945)

2004 0.7808 (0.6849, 0.8849) 0.8082 (0.7123, 0.9041)

2005 0.7260 (0.5753, 0.8082) 0.7671 (0.6575, 0.8630)

Note: Numbers indicate the proportion of banks that are identified by the unconstrained

model as having efficiency (productivity growth) scores in the least efficient (productive)

25% that are also identified in the bottom quarter by the constrained model.

Table 6.2

Correspondence of Best Practice Banks
Between Unconstrained and Constrained Models

A. In terms of efficiency B. In terms of productivity growth

correspondence 99% bootstrap correspondence 99% bootstrap

Year proportion,  confidence interval proportion,  confidence interval

2001 0.8378 (0.7432, 0.9324) 0.7297 (0.5885, 0.8243)

2002 0.7973 (0.6977, 0.8784) 0.8649 (0.7838, 0.9595)

2003 0.7703 (0.6622, 0.8514) 0.6757 (0.5676, 0.7568)

2004 0.8378 (0.7432, 0.9189) 0.7432 (0.6486, 0.8649)

2005 0.8514 (0.7703, 0.9271) 0.7568 (0.5885, 0.8243)

Note: Numbers indicate the proportion of banks that are identified by the unconstrained

model as having efficiency (productivity growth) scores in the most efficient (productive)

25% that are also identified in the top quarter by the constrained model.



Table 7

Differences in Technical Efficiency and Productivity Growth
Between Unconstrained and Constrained Models

A. Efficiency B. Productivity growth

Mean 5% and 95% Mean 5% and 95%

Year difference percentile difference percentile

2001 -0.0546 (-0.0684, -0.0387) 0.0020 (-0.0242, 0.0314)

2002 -0.0564 (-0.0756, -0.0371) 0.0005 (-0.0203, 0.0222)

2003 -0.0548 (-0.0755, -0.0369) 0.0046 (-0.0197, 0.0296)

2004 -0.0553 (-0.0786, -0.0364) 0.0063 (-0.0195, 0.0329)

2005 -0.0562 (-0.0853, -0.0354) 0.0071 (-0.0172, 0.0303)

Average -0.0554 (-0.0767, -0.0369) 0.0041 (-0.0202, 0.0293)

Notes: Mean difference in efficiency is calculated as the mean of the differences in

technical efficiency between the unconstrained and constrained models of all the

sample banks. Similarly, mean difference in productivity growth is calculated as

the mean of the differences in productivity growth between the unconstrained and

constrained models of all the sample banks.



Table 8.1

Average Technical Efficiency

Average Standard 90% posterior

Year technical efficiency deviation coverage regions

2000 09341 00048 (09259 09418)

2001 09249 00057 (09151 09339)

2002 09294 00052 (09203 09376)

2003 09277 00054 (09183 09361)

2004 09243 00057 (09144 09331)

2005 09269 00055 (09174 09357)

Table 8.2

Distribution of Technical Efficiency Across Banks

Standard 5% 95%

Year Minimum Maximum deviation percentile percentile

2000 05242 09726 00335 09083 09585

2001 05245 09719 00365 08882 09531

2002 04589 09789 00406 08855 09616

2003 04593 09868 00441 08770 09673

2004 03717 09779 00476 08700 09638

2005 03508 09763 00474 08773 09603



Table 9

Returns To Scale

Average Standard 90% posterior

Year returns to scale deviation coverage regions

2000 10365 00061 (10266 10465)

2001 10394 00047 (10315 10474)

2002 10413 00041 (10346 10485)

2003 10446 00042 (10378 10517)

2004 10509 00047 (10430 10583)

2005 10560 00058 (10462 10659)

Table 10.1

Technical Change

Average Standard 90% posterior

Year technical change deviation coverage regions

2000 00684 00085 (00540 00829)

2001 00507 00055 (00415 00598)

2002 00335 00030 (00282 00383)

2003 00153 00030 (00098 00199)

2004 −00051 00054 (−00143 00040)
2005 −00247 00083 (−00380 − 00102)



Table 10.2

Technical Change estimates
From Alternative Models

Year Model 1 Model 2

2000 00682 00600

(00568 00795) (00460 00733)

2001 00504 00454

(00434 00576) (00366 00535)

2002 00333 00311

(00294 00379) (00265 00355)

2003 00151 00159

(00108 00198) (00098 00213)

2004 −00053 −00014
(−00139 00024) (−00115 00092)

2005 −00248 −00179
(−00376 −00129) (−00333 −00016)

Note: The 90% posterior coverage regions are shown

in parentheses.



Table 11

Productivity Change And Its Decomposition

Average Efficiency change Scale effect Technical change

Year productivity change Estimates Contribution Estimates Contribution Estimates Contribution

2001 0.0662 0.0092 13.90% 0.0063 9.52% 0.0507 76.59%

(0.0530, 0.0794) (0.0013, 0.0172) (0.0051, 0.0076) (0.0415, 0.0598)

2002 0.0311 -0.0045 -14.47% 0.0020 6.43% 0.0335 107.72%

(0.0211, 0.0409) (-0.0124, 0.0034) (0.0017, 0.0024) (0.0282, 0.0383)

2003 0.0202 0.0017 8.42% 0.0032 15.84% 0.0153 75.74%

(0.0107, 0.0296) (-0.0059, 0.0094) (0.0027, 0.0037) (0.0098, 0.0199)

2004 0.0041 0.0034 82.93% 0.0059 143.90% -0.0051 -124.39%

(-0.0087, 0.0166) (-0.0046, 0.0113) (0.0050, 0.0067) (-0.0143, 0.0040)

2005 -0.0225 -0.0026 11.56% 0.0047 -20.89% -0.0247 109.78%

(-0.0395, -0.0049) (-0.0106, 0.0055) (0.0039, 0.0056) (-0.0380, -0.0102)

Average 0.0198 0.0014 7.27% 0.0044 22.30% 0.0139 70.33%

Notes: The 90% posterior coverage regions are shown in parentheses.



Table 12

Productivity Change And Its Decomposition When Instrumental Variables Are Used

Average Efficiency change Scale effect Technical change

Year productivity change Estimates Contribution Estimates Contribution Estimates Contribution

2001 0.0491 0.0021 4.29% 0.0040 8.21% 0.0430 87.50%

(0.0179, 0.0784) (-0.0150, 0.0192) (0.0004, 0.0081) (0.0204, 0.0645)

2002 0.0360 0.0007 2.06% 0.0020 5.57% 0.0333 92.36%

(0.0127, 0.0592) (-0.0162, 0.0178) (0.0007, 0.0033) (0.0192, 0.0472)

2003 0.0263 0.0008 2.97% 0.0022 8.50% 0.0233 88.53%

(0.0062, 0.0463) (-0.0163, 0.0178) (0.0010, 0.0036) (0.0145, 0.0333)

2004 0.0183 0.0032 17.48% 0.0029 16.13% 0.0121 66.39%

(-0.0039, 0.0407) (-0.0140, 0.0206) (0.0012, 0.0052) (-0.0004, 0.0247)

2005 0.0033 0.0004 11.89% 0.0023 71.30% 0.0005 16.81%

(-0.0268, 0.0333) (-0.0173, 0.0179) (0.0007, 0.0044) (-0.0207, 0.0214)

Average 0.0266 0.0014 7.74% 0.0027 21.94% 0.0224 70.32%

Notes: The 90% posterior coverage regions are shown in parentheses.
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