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tween levels of air pollution and respiratory disease in countries of diverse populations,
geographical locations and varying levels of air pollution and climate. The aims of this
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fication, with particular emphasis on the inclusion of seasonally adjusted covariates; and

(2) to study the effect of air pollution on respiratory disease in Melbourne, Australia.
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1 Introduction

1.1 Background

The adverse effects of air pollution on respiratory disease have been widely documented
in countries of diverse populations, geography and climate. In fact, increases in respira-
tory admissions and respiratory mortality suggest adverse effects of air pollutants well

below the recommended World Health Organization guidelines (Touloumi et al., 1997).

Recently, there has been some effort to determine the replicability of these findings across
a range of exposure outcomes. For example, the APHEA (Air Pollution and Health, a
European Approach) produced a standard protocol designed to assess replicability across

different countries (Katsouyanni et al., 1996).

We extend this work on replicability by examining the robustness of the estimated rela-
tionships between air pollution and respiratory disease under different statistical models.
The work is motivated by the idea that applications of different statistical models with
varying underlying methodological assumptions may lead to different conclusions re-

garding the air pollution and respiratory disease relation.

1.2 Data

COPD (Chronic Obstructive Pulmonary Disease) and asthma hospital admissions from
all short-stay acute public hospitals in Melbourne, registered on a daily basis by the
Department of Human Services (State Government of Victoria), were used as response
variables for the period 1 July 1989 to 31 December 1992. International Classification of
Disease (ICD) codes for COPD (490-492, 494, 496) and asthma (493) were used to define
COPD and asthma.

Melbourne is the second largest city in Australia, with the main source of air pollution

emissions from motor vehicles. In Melbourne, levels of sulfur dioxide are relatively low
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due to the absence of sulfur-emitting industries. Particulate pollution is highest during
autumn and winter, due to the widespread use of wood fires. High levels of nitrogen
dioxide (about 65% of total emissions from motor vehicles) and ozone are major con-

stituents of air pollution in this city (Environment Protection Authority, 1999).

Air pollution data were obtained from the Environment Protection Authority (EPA).
Maximum hourly values were averaged each day across nine monitoring stations in
Melbourne, for nitrogen dioxide, sulfur dioxide, and ozone, all measured in parts-per-
hundred-million (pphm). Particulate matter was measured by a device which detects
back-scattering (Bsc,¢) of light by visibility-reducing particulates between 0.1 and 1pm in
aerodynamic diameter. Air particles index (API) were derived from By X 10~%. Me-
teorological data include three hourly maximum daily levels of relative humidity, dry
bulbs temperature and dew point temperature. The measures were averaged across four

monitoring stations in the Melbourne area.

1.3 Statistical Methodological Issues

A key issue which arises is controlling for seasonal variation in respiratory disease and
air pollution. Fourier terms of sine and cosine pairs with varying periods have been
accepted as a method to control for seasonal variation in respiratory disease (Hoek et al.,
1997, Simpson et al., 1997). However, few studies have controlled for possible seasonality
in the covariates (Schwartz 1993, Kelsall et al., 1997, Samet et al., 2000). The sensitivity
of the observed effects may change with inclusion of confounding effects for seasonality
in model specification. Therefore, it is necessary to control for possible confounding that

may induce spurious pollution effects.

To assess the strength and magnitude of seasonal and or cyclic variation in the pollutants
and climatic variables, we utilize a method of seasonal adjustment called STL (Seasonal-
Trend decomposition based on Loess smoothing) (Cleveland and Terpenning, 1982). Co-
variates exhibiting strong seasonality were adjusted with the STL method and the result-

ing seasonally adjusted series were used in subsequent analysis.
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We explore the robustness of the pollution-respiratory disease relation using a variety of
regression-based approaches, controlling for secular trends, seasonality, and confound-
ing effects of climate. These models include: (1) Generalized Linear Models (GLM);
(2) Generalized Additive Models (GAM); (3) Parameter Driven Poisson Regression Mod-
els (PDM); and (4) Transitional Regression Models (TRM). In each case, we consider mod-
els based on a Poisson distribution, incorporating over-dispersion and serial correlation

where possible.

2 Statistical Models

2.1 Generalized Linear Models

For a Generalized Linear Model (GLM) with a log link function, we specify the expecta-

tion of a random variable Y; as
r
E(Y;|X;) = exp (50 + Z ﬁiXt,i>- 1)
i=1

Refer to McCullagh and Nelder (1989) for a detailed discussion of GLMs.

Here Y; denotes daily counts of respiratory disease and air pollutionand X = (X;1,..., X¢,)’
denotes the explanatory variables at time . We assume an overdispersed Poisson model,
estimated using a quasi-likelihood approach. Akaike’s Information Criterion, AIC (Akaike,

1973) was used for variable selection.

2.2 Generalized Additive Models

A nonparametric alternative to the parametric GLM is the Generalized Additive Model

(GAM). GAMs allow non-linear relationships between the response variable and each
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explanatory variable (Hastie and Tibshirani, 1990). For a GAM, we assume

E(Y:|X;) = exp (ﬁo + i gi<Xt,i)> )
=1

1

where each g; is a smooth, possibly non-linear, univariate function. Any of the g; can be
made linear to obtain a semi-parametric model. As with a GLM, we use quasi-likelihood

estimation.

Cubic smoothing splines were used to estimate the non-parametric functions g;. We fix
the smoothing parameter to be that value for which ¢; has four “degrees of freedom” (see

Hastie and Tibshirani, 1990).

A step-wise model selection procedure in S-PLUS (1999) was used to determine the op-
timal GAM. Both linear and non-linear terms were allowed for each covariate, and the
step-wise procedure automatically selected whether each covariate should be included,
and if so, whether it should be linear or non-linear. The AIC was used in this algorithm

for variable selection.

2.3 Parameter Driven Models

In a parameter driven model (PDM), serial correlation is set up through an unobservable

latent process (Zeger, 1988). A Poisson regression model has conditional mean
E(Yiler, Xi) = exp(XiB + &), ©)

where 3 denotes a vector of parameters, and ¢; is a latent process allowing both overdis-
persion and autocorrelation in Y;. We allow ¢; to follow a first-order autoregressive pro-

cess.
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2.4 Transitional Regression Models

Transitional Regression Models (TRM) were introduced by Brumback et al., (2000). In
this paper we present a special case of a TRM, defined as GLM with time series errors.

For a Poisson with AR(1) errors the conditional mean is defined as

w = exp(XiB) + prer11/v1, (4)

where e; = (Y; — v¢) /+/vr and vy = exp(XB).

Here ¢; is scaled to give constant variance. Note that e; = 11e;_1 + 6 where {5;} is an

independent series with zero mean.

3 Results

Each of the four models was fitted to the asthma and COPD hospital admissions data.
To simplify the analysis of seasonality, we excluded the leap days of 29 February 1992 in

each series. The following covariates were considered for each model.

e Fourier series functions sin(27jt/365) and cos(27jt/365) for j = 1,2,...,]. The
value of | was chosen using the AIC. For COPD admissions, | = 4 and for asthma

admissions, | = 10.
e Time trend (a quadratic time trend was considered for GLM, PDM and TRM).
e Day of week factor.
e Covariates at time t and lags of up to 5 days.
e Seasonally adjusted climatic variables: dry bulb temperature and humidity.
e Seasonally adjusted pollutants: nitrogen dioxide (NO> ) and ozone (O3 ;);

e Non-seasonally adjusted pollutants: sulfur dioxide (SO, ;) and air particles index

(API,).
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For sulfur dioxide and API, there was virtually no seasonality observed. Lagged values of

each of the climatic and pollutant covariates were considered up to five days previously.

To allow comparison across different statistical models we use the following three mea-

sures:

e Mean square error (MSE) = mean {(Yt — Yt)z }, where Y; are the (inverse link trans-

formed) fitted values.
e Mean square proportional error (MSPE) = mean {(Y; — Y;)2/Y;}.

e AIC =nlog(o?) + 2p, where 02 is the variance of the raw residuals (response minus

fitted values), and p is the number of degrees of freedom in each model.

3.1 COPD hospital admissions in Melbourne, Australia from 1 July 1989 to 31
December 1992

Table 1 displays results from the analyses of COPD hospital admissions, using different
statistical methods. Where a variable has been included in a linear function, the relative
risk is shown. For the GAM, variables which were included using a smoothing spline are

denoted by g(-).

Table 1: Relative Risk and 95% CI of COPD hospital admissions for an increase from the 10th to
90th percentile for levels of pollutants, generated using different statistical methods.
COPD

GLM GAM PDM TRM
Pollutant| RR  95%CI | RR  95%CI | RR 95%CI | RR  95%ClI
NOy 1.06 1.00-1.12|1.06 1.01-1.11|1.05 1.00-1.11|1.05 1.00-1.10
O3 2 1.06 1.00-1.11
API, , 0.95 0.91-1.00
SO2,t-2 g()
MSE 13.23 12.76 12.88 12.29
MSPE 1.24 1.19 1.13 1.16
AIC 3340.42 3292.19 3252.84 3243.09

Daily COPD hospital admissions increased significantly with increased ambient outdoor

levels of same day nitrogen dioxide (NO;). The estimated nitrogen dioxide coefficients
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from the models in Table 1 were consistent, replicated across different models, and were
statistically significant (p < 0.5), which is indicative of a robust relationship between

nitrogen dioxide and COPD hospital admissions.

The observed effects for ambient outdoor levels of ozone, particulates and sulfur dioxide

were all highly sensitive to model specification.

A GAM analysis showed a nonlinear relationship between sulfur dioxide and COPD
hospital admissions in Melbourne, Australia (see Figure 1). This is similar to that found

in London (Schwartz and Marcus, 1990) and Europe (Touloumi et al., 1994).

0.1
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Figure 1: The nonlinear function for sulfur dioxide (lagged 2 days). Dashed lines represent
pointwise 95% confidence intervals.

Figure 2 displays the residual autocorrelation function for each of the models in Table 1.
The GLM is inadequate because of significant serial correlation. The other three mod-

els fare better, although there is some significant correlation remaining in the GAM and

PDM.

Of these three models, the TRM is ranked highest on the basis of AIC and MSE, and
the PDM is best on the basis of MSPE. However, the GAM has the important advantage
that it explains more of the variation in COPD admissions through the structure of the

covariates than through the correlation terms.
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Figure 2: The autocorrelation function for the deviance residuals from the models applied to
COPD hospital admissions in Table 1.

3.2 Asthma hospital admissions in Melbourne, Australia from 1 July 1989 to
31 December 1992

Table 2 displays results from the analyses of asthma hospital admissions, using different

statistical methods.

Table 2: Relative Risk and 95% CI of asthma hospital admissions for an increase from the 10th to
90th percentile for levels of pollutants, generated using different statistical methods.

Asthma

GLM GAM PDM TRM
Pollutant| RR  95%CI | RR 95%CI | RR 95%CI | RR 95% CI
NOy 1.05 1.01-1.08|1.05 1.01-1.09|1.04 1.01-1.08|1.05 1.02-1.08
NOg ;1 0.96 0.92-0.99
Oz 0.97 0.93-1.00
Oz3,41 0.96 0.93-0.99 0.97 0.94-1.0910.97 0.95-0.99
Ozt-2 g()
API,
SOy,
MSE 57.81 53.68 56.05 55.8
MSPE 1.75 1.61 1.70 1.69
AIC 5244.03 5153.41 5207.56 5206.92

Similar results were found for asthma hospital admissions and same day nitrogen diox-
ide. The observed effects for same day nitrogen dioxide in Table 2 were robust to different

model specifications, but lagged 1 day effects were not agreeable. The observed effects
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for ambient outdoor levels of ozone and API were highly sensitive to model specification.

A GAM analysis of asthma hospital admissions showed a significant nonlinear effect of

ozone lagged 2 days. This result is displayed in Figure 3.
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Figure 3: The nonlinear function for ozone (lagged 2 days). Dashed lines represent pointwise
95% confidence intervals.

Figure 4 displays the residual autocorrelation function for each of the models in Table 2.
For asthma hospital admissions, the GAM is best on all three criteria, although all models

were inadequate due to the strong and significant correlation pattern in the residuals.

4 Discussion and Conclusions

This study extends recent epidemiological studies by focusing on the following question:
How robust is the observed pollution-respiratory disease relation to different statistical

models with various underlying methodological assumptions?

The statistical methodologies adopted in this study are all variations of regression meth-
ods. They range from nonnormal methods (generalized linear and additive models), to
recently developed parameter and observation driven models (Poisson regression with

autocorrelation and transitional regression models).
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Figure 4: The autocorrelation function for the deviance residuals from the models applied to
asthma hospital admissions in Table 2.

The findings from this study show that the relation between ambient outdoor concentra-
tions of nitrogen dioxide and COPD hospital admissions is robust to different statistical
methodology. The positive same day relationship between respiratory admissions and
nitrogen dioxide reported in this study is similar to a study of air pollution and hospital
admissions in Sydney, Australia by Morgan et al., (1998a). A positive result was also re-
ported between respiratory mortality and nitrogen dioxide in a Sydney study by Morgan
etal., (1998b) and a recent Melbourne EPA study (Melbourne Mortality Study, 2000).

The observed effects of ozone on both COPD and asthma hospital admissions were highly
sensitive to model specification. Both the Melbourne mortality study (EPA Melbourne
Mortality Study, 2000) and the Sydney study (Morgan et al., 1998b) report positive asso-
ciations between ozone and respiratory mortality. A study conducted in Brisbane (Simp-
son et al., 1997) also confirms this association. A six-city European study (Anderson et
al., 1997) established significant associations between same day and lagged 1 day ozone
and daily admissions for COPD. They report these associations as the strongest and most

replicable.

The relationship between particulates (API) and both COPD and asthma hospital admis-

sions were non-robust. However, a negative association is similar to other studies in
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Australia. The Sydney hospital admissions study (Morgan et al., 1998a) report negative
effects of particulates (measured similar to the Melbourne study) on asthma hospital ad-
missions. The Brisbane mortality study (Simpson et al., 1997) report a non-significant
negative association between respiratory mortality and maximum 1 hour BSP (can be
compared with PM;5). The relationship between sulfur dioxide and both COPD and

asthma admissions were non-robust.

Table 3 displays the strengths and weaknesses of each model used in this study. A +

indicates a strength and — indicates a weakness of the methodology.

Table 3: Strengths and weaknesses of the statistical methods used in this study.

GLM GAM PDM TRM

Methodological Issues

Nonnormality + + + +
Overdispersion + + + +
Nonlinearity - + — _
Autocorrelation - - + +

The statistical methods presented in this study were inadequate in addressing all the
methodological issues common to studies of respiratory disease and air pollution. For
COPD hospital admissions a poisson regression model with AR(1) errors performed
best, although a GAM was in some ways preferable because of its superior ability to ex-
plain variation through the structure of the covariates. For asthma hospital admissions,
a GAM performed best, although no model was completely satisfactory in representing

the strong correlation structure in the residuals.

GAM methodology is a flexible method that accounts for complex covariate effects. A
recent study by Coull et al., (2000) extends the nonparametric framework, with the in-
clusion of a time series error structure for the residuals and including random effects to
reflect population heterogenity resulting in an additive mixed models analysis for a nor-
mally distributed response variable. The extension of these models to nonnormally dis-
tributed outcomes would be of great interest and potential value in modeling respiratory
disease and air pollution. Studies of respiratory disease have clearly demonstrated that

the outcome (respiratory disease) is not normally distributed and further developments
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in the statistical methodology should reflect this.
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