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Abstract 

Damped trend exponential smoothing has previously been established as an important 

forecasting method.  Here, it is shown to have close links to simple exponential 

smoothing with a smoothed error tracking signal. A special case of damped trend 

exponential smoothing emerges from our analysis, one that is more parsimonious because 

it effectively relies on one less parameter. This special case is compared with its 

traditional counterpart in an application to the annual data from the M3 competition and 

is shown to be quite competitive. 
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1.  Introduction 

     Damped trend exponential smoothing (Gardner and McKenzie, 1985) has a reputation 

for being a robust forecasting method (Gardner, 2006; Hyndman et al., 2008; and Fildes, 

2008).   In this paper we attempt to demonstrate why this should be the case.  Using 

innovations state space models (Hyndman et al., 2008), we show that this method has 

close links with simple exponential smoothing when used in conjunction with a 

smoothed-error tracking signal to detect and respond to structural change. 

     The white noise model forms a convenient starting point for our study. It takes the 

form 𝑦𝑡 = 𝜇 + 𝜀𝑡 , where 𝑦𝑡  is the series value in typical period 𝑡, and  𝜇 is a time 

invariant mean representing the global underlying level of the series.  The error term  𝜀𝑡  

is a normally distributed shock with a mean 0 and a constant variance 𝜎2 and is 

uncorrelated with the error terms in other time periods. The effect of a shock on the series 

is restricted to only one period, the one in which it occurs; it has no spillover effect on 

future series values. 

     The white noise model invariably fails in business and economic applications, one of a 

number of reasons being that it ignores the impact of structural change so often found in 

business and economic processes. Structural change is said to occur when a shock leads 

to changes to the underlying states of a process that in turn impact on future values of a 

time series. The white noise model can be adapted to allow for structural change; the 

mean   is replaced by a time dependent random variable  ℓ𝑡  called the local level. The 

resulting innovations state space model is 

     𝑦𝑡 = ℓ𝑡−1 + 𝜀𝑡         (1.1) 

     ℓ𝑡 = ℓ𝑡−1 + 𝛼𝜀𝑡                               (1.2) 

The one period lag in the measurement equation (1.1) is used to indicate that underlying 

level references the beginning of period 𝑡.  

     The term 𝛼𝜀𝑡  is the change in the underlying level from one period to the next. It is an 

underlying growth rate, but one which is uncertain because it is affected by the shock. 

Hence, Equations  (1.1) and (1.2) define a stochastic trend. The following features of this 

underlying growth rates may be inferred: 
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1. they are normally distributed; 

2. they have a common mean of zero and a variance 𝛼2𝜎2; and 

3. they are temporally uncorrelated. 

Models that are more general are conceivable, where the underlying growth has more 

enhanced features. To distinguish it from its more counterparts, we refer to it as a simple 

stochastic trend.  

     The parameter 𝛼 determines the magnitude of the underlying growth. When 𝛼 = 0 

there is no underlying growth, a situation corresponding to the white noise process. In 

most applications 𝛼 is positive, its magnitude being a reflection of the amount of 

structural change in a time series. When 𝛼 = 1, the model corresponds to a random walk. 

     The simple stochastic trend model is estimated using simple exponential smoothing 

(Brown, 1959). When a time series value 𝑦𝑡  has been observed, it may be compared with 

the one-step-ahead prediction ℓ𝑡−1, to give the error 𝜀𝑡 = 𝑦𝑡 − ℓ𝑡−1. The underlying level 

is then updated with the transition equation ℓ𝑡 = ℓ𝑡−1 + 𝛼𝜀𝑡 . For a time series of length 

T , the seed level ℓ0 and the parameter 𝛼, both of which determine the trajectory of the 

underlying levels, may be chosen to minimize the sum of squared errors 𝑆𝑆𝐸 =  𝜀𝑡
2𝑇

𝑡=1 . 

The point forecasts for periods beyond the prediction origin at the end of period 𝑇 all 

equal the final underlying level ℓ𝑇 . 

     The structural change embedded in the simple stochastic trend occurs from one period 

to the next. Being entirely reflected by the underlying growth, the properties 1 to 3 above 

ensure that this structural change is relatively stable. Yet occasionally a series can also be 

affected by a rapid structural change or a structural break, changes that are typically 

disproportionate in size to the stable structural change of the local level model. Although 

an extensive literature exploring the possibility of incorporating structural breaks into a 

model exists, the occurrence of these breaks is typically too infrequent to permit the 

reliable prediction of their timing and size. It makes more sense, from a practical 

perspective, to ignore the existence of structural breaks in the model itself, but to adopt 

instead measures to detect structural breaks when they occur so that commensurate 

adjustments can then be made to the forecasts.  
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     The structure of the paper is as follows.  In Section 2, we examine a tracking signal 

that uses the smoothed one-step-ahead prediction errors statistic as a monitoring statistic.  

Then, it is argued that the smoothed one-step-ahead prediction errors statistic represents 

the average deviation in the underlying level of the time series from its ‘ideal’ value. This 

deviation is incorporated as an adjustment to the underlying level in a simple stochastic 

trend model to yield a model that underpins a restricted version of classical damped trend 

exponential smoothing method.  In Section 3, the new restricted damped trend model is 

compared with the conventional damped trend models in a study based on the annual 

time series from the M3 competition database (Makridakis and Hibon, 2000). 

 

2.  A model combining simple exponential smoothing with a tracking signal 

The smoothed-error statistic 𝑏𝑡  is defined recursively by the equation 

 

     𝑏𝑡 = 𝜙𝑏𝑡−1 + 𝛽𝜀𝑡                                      (2.1) 

      

where 𝛽 is a smoothing parameter such that 𝜙 + 𝛽 = 1. This statistic is an exponentially 

weighted average of the errors, the weights declining back through time. It may be used 

in conjunction with control limits to monitor forecasts and is known as the smoothed-

error tracking signal (cf. Farnum and Stanton, 1989).  Under the null hypothesis that the 

error terms are independent and normally distributed, 𝑏𝑡  has a normal distribution with 

mean 0 and standard deviation 𝜎𝛽  1 − 𝜙2 .  The smoothed-error statistic 𝑏𝑡  can be 

employed as a tracking signal, in which case the out-of-control region is 

            𝑏𝑡 > 𝑧𝜎𝛽  1 − 𝜙2     (2.2) 

where 𝑧 is the value of the standard normal variable corresponding to a specified level of 

significance.   This tracking signal is the well-known exponentially weighted moving 

average (EWMA) control chart (Roberts, 1959) that is applied to the error terms. 

     The choice of 𝛽 is a challenge.  If the simple stochastic trend model (i.e. simple 

exponential smoothing) is used for forecasting, 𝛽 could be chosen to be equal to 𝛼.  
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However, there is no reason why the same smoothing parameter should be used for both 

smoothing and monitoring. When distinct smoothing parameters are used, it is incumbent 

on us to suggest a mechanism for determining a separate value for 𝛽. 

      It should be stressed that systematic patterns also emerge in the smoothed-error 

statistic when the process generating the time series changes or the model has been 

incorrectly specified. For example, suppose the change in the underlying level is given by 

𝑏 + 𝛼𝜀𝑡  instead of just 𝛼𝜀𝑡  where 𝑏 is a constant termed the drift. A time series under this 

assumption typically displays an upward drift when 𝑏 > 0.  So, when this new regime 

applies, the smoothed-error statistic has a constant upward bias which can be shown to be 

well approximated by the quantity 𝑏 𝛼 . Other plausible deviations from the assumptions 

of the simple stochastic trend lead to other systematic patterns in the smoothed-error 

statistic.  

     A more robust approach to forecasting emerges if the predictions are corrected each 

period by the average error as depicted by the smoothed-error statistic 𝑏𝑡 .  At the 

beginning of period 𝑡, the expected value of 𝑏𝑡  is 𝜙𝑏𝑡−1.  The Equations (1.1) and (1.2) 

of the simple stochastic trend can be augmented by this expected change to give the new 

equations 

                                                        𝑦𝑡 = ℓ𝑡−1 + 𝜙𝑏𝑡−1 + 𝜀𝑡                                          (2.3)  

                                                        ℓ𝑡 = ℓ𝑡−1 + 𝜙𝑏𝑡−1 + 𝛼𝜀𝑡   (2.4) 

                                                         𝑏𝑡 = 𝜙𝑏𝑡−1 + 𝛽𝜀𝑡   (2.5) 

This is a damped stochastic trend model, the statistical framework underpinning damped 

trend exponential smoothing.  It differs, however, in one respect. Because the smoothed-

error statistic is an exponentially weighted average, the parameters 𝜙 and 𝛽 satisfy the 

additional restriction 𝜙 + 𝛽 = 1. The new model is a restricted version of the classical 

damped stochastic trend model.  

      The use of this new model enables us to resolve the problem of determining the 

appropriate value of  𝛽. Under the null hypothesis that there are no structural breaks, the 

value of 𝛽 can quite simply be estimated in conjunction with the parameter 𝛼 while 

fitting the restricted stochastic damped trend model to the time series data. It is possible 
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to still resort to the use of simple exponential smoothing in conjunction with the 

smoothed error statistic to detect structural breaks, using the value of 𝛽 that emerges from 

this fitting exercise. Such an approach would successfully detect structural breaks 

provided the assumptions underpinning simple exponential smoothing apply. 

     Restricted damped trend exponential smoothing should be reasonably robust. Because 

it effectively adjusts the underlying level by the average error, it should automatically 

adapt to many of the possible deviations from the underlying conditions that make simple 

exponential smoothing the appropriate approach to forecasting. It should therefore yield 

robust forecasts. 

      A number of interesting questions now emerge. First, the restricted damped trend 

model effectively has one less parameter than the conventional damped trend model. This 

makes it inherently simpler. However, does it yield competitive forecasts? This question 

is explored in Section 3.  

     Second, is it more effective to use the restricted stochastic damped trend model than 

the simple stochastic trend model with monitoring?  In general, the answer is ‘maybe’. 

The parameters of the damped trend model are tuned to the stable structural change 

situation. When the prospect of a structural break is remote, it must then be better. 

Otherwise, the method that relies on the tracking signal is likely to be the better 

performer, provided that appropriate responses are made when the out-of-control 

situations are detected.   

3. Comparison of Damped Trend Models 

     The two damped trend models were compared on the annual time series from the M3 

competition database (Makridakis and Hibon, 2000). The final six years of values for 

each series were reserved for evaluating their forecasts; and the earlier part of each series 

was used to find minimum sum of squared error estimates of the model parameters and 

seed states. The one-step-ahead prediction errors needed for the evaluation of the 

likelihood function, for each trial set of values for the parameters and seed states, were 

obtained with damped trend exponential smoothing and its new restricted form. The 

smoothing parameters were restricted to the closed real interval [0,1]. The point 

predictions for the final six years from the fitted models were compared with the reserved 
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actual values using the mean absolute percentage error (MAPE) statistic.  The outcomes 

of the study, obtained using Matlab, are summarized in Table 1. Intriguingly, the 

constrained form predicted better for slightly more than half of the series.  

  

Wins 

 

      MAPEs      

model 

 

count percent 

 

     mean   median 

Unrestricted 

 

312 48.4 

 

     22.66      10.92 

Restricted 

 

333 51.6 

 

     20.67      10.75 

Table 1. Results for damped trends on M3 time series 

 

Figure 1. Comparison of damped trend models: cumulative relative frequency distribution of the 

gaps between their MAPEs. 

     It might be conjectured that the differences between both models are small. The graph 

in Figure 1 shows the cumulative relative frequency of the magnitude of the differences 

in the MAPEs to determine the ‘distance’ between the two models. The MAPE’s differed 

by less than two percent for sixty percent of the series; and, they differed by less than five 

percent for eighty percent of the series.  Most of the results are remarkably close, 

consistent with the possibility that one might replace the conventional damped stochastic 

trend with its constrained analogue. There exist a minority of cases where the gap 

between the two models is unacceptably high; and an analysis of the data suggests that no 

particular model has a monopoly of wins in this particular circumstance. It is quite 
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possible that these larger gaps can be traced to computational problems caused by the 

distorting effects of sub-optimal solutions obtained when minimizing a multi-modal sum 

of squared errors function. 

     The exponential smoothing forecasting framework in Hyndman et al. (2002) already 

includes the classical damped stochastic trend model. These results indicate that this 

framework should be extended to include the restricted form of the damped stochastic 

trend model. Indeed, it might even make sense to drop the classical damped stochastic 

trend altogether. 

4.   Conclusions 

The most significant contribution of this paper is in providing an explanation for why 

damped trend exponential smoothing has been a successful method for exponential 

smoothing: it adapts automatically to situations that may differ in a number of potential 

ways from the conditions needed for simple exponential smoothing to be the optimal 

form of algorithm.  We have also demonstrated that a restricted form of damped trend 

exponential smoothing can be thought of as simple exponential smoothing with an 

embedded tracking signal that adapts forecasts to unanticipated structural change.  

Moreover, it was argued that the parameters of the damped trend could be restricted 

without seriously sacrificing its forecasting capacity, an advantage in the sense that it 

leads to a more parsimonious model. 
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