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Abstract
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The optimality is achieved by estimating the forecast distribution nonparametrically
over a given broad model class and proving asymptotic e¢ ciency in that setting.
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overall superiority of the nonparametric method relative to a misspeci�ed parametric
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1 Introduction

Probabilistic forecasting involves the assignment of a probability distribution to the future

values of a random variable. As such, probabilistic forecasts �t naturally with the human

propensity to quantify uncertainty in terms of probabilities and to frame forecasts of an

uncertain future in probabilistic terms. Probabilistic forecasts are also coherent - i.e. con-

sistent with the sample space of the variable in question - and replete with all important

distributional (in particular tail) information. In contrast, point forecasts, based on single

summary measures of central location (e.g. a (conditional) mean, median or mode), con-

vey no such distributional information and, potentially, also lack coherence as, for example,

when a conditional mean forecast of an integer-valued variable assumes non-integer values.

Despite earlier attempts to draw attention to the value of probabilistic forecasts (e.g.

Dawid, 1984), such forecasts have only started to gain real purchase in the literature since

the mid to late 1990�s (see, for example, Abramson and Clemen, 1995; Diebold et al.,

1998; Tay and Wallis, 2000; Berkowitz, 2001, Krysztofowicz, 2001; Gneiting and Raftery,

2005; Gneiting et al., 2005; Elsner and Jagger, 2006; Egorova et al., 2006; Gneiting et al.,

2006; Corradi and Swanston, 2006; Alkema et al., 2007; Bao et al. 2007; Amisano and

Giacomini, 2007; Gneiting et al., 2007; Gneiting and Raftery, 2007; Gneiting, 2008; Czado

et al., 2009; Geweke and Amisano, 2009). Central to much of this literature is the ex-post

evaluation of distributional forecasts using observed outcomes. Calibration with realized

values is assessed via the probability integral transform method (e.g. Dawid; Diebold et

al.; Geweke and Amisano), predictive accuracy tests (e.g. Corradi and Swanston; Amisano

and Giacomini), or via the application of calibration criteria in combination with measures

of predictive �sharpness�, including the use of various scoring rules (e.g. Gneiting et al.,

2007; Gneiting and Raftery, 2007; Czado et al.). Most notably, Czado et al. investigate

alternative evaluation methods in the context of probabilistic forecasts for discrete count

data, the data type of interest in this paper.

The methods used in the existing literature to evaluate and compare alternative fore-

cast distributions often treat these distributions as primitives. That is, the methods are

applicable no matter what formal model and inferential technique (if any) have been used

to assign probabilities to the future values of the random variable (see Dawid; Corradi and

Swanston; Gneiting et al., 2007; Gneiting, 2008, for discussion). In particular, comparisons

of the predictive accuracy of alternative distributions do not preclude the possibility that

all alternatives are misspeci�ed versions of the true dynamic process that has generated

the data.

In contrast, the focus of this paper is on producing probabilistic forecasts that are ex-

ante optimal within a given broad class of structural models deemed appropriate for a

particular data type. The optimality is achieved by estimating the forecast distribution
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nonparametrically over the model class and proving asymptotic e¢ ciency in that setting.

On the assumption that the broad model class is a suitable structure for the empirical

data under analysis, the optimality of the nonparametric estimator of the forecast distrib-

ution provides strong motivation for its adoption. Whilst certainly not to be viewed as a

competitor to the fundamental principle of assessing distributional forecasts using realized

outcomes, this approach does serve to re-focus attention on the suitability of the model

class used to forecast particular data types and on the production of optimal forecasts

within that class. In fact, the two approaches complement each other. The existence of a

suitable model class a¤ords the advantage of optimality whilst, at the same time, empirical

validation guards against unforeseen circumstances such as, for example, an unanticipated

structural break in the data generating process.1

The optimal probabilistic forecasts are derived within the context of a particular class

of time series models for count data: the integer autoregressive (INAR) class. The INAR

class may variously be interpreted as a queue, a stock, a birth and death process or a special

type of branching process (with immigration). Each of these interpretations is suggestive

of certain types of count data. Any data series that may be thought of as the number of

clients (e.g. people, �rms, machines, computer software, stock market orders) waiting for

a service in a speci�ed time period is a queue. The number of units in an inventory at a

given time is a stock variable. So too, in a given time period, is the number of �rms located

in a region, the number of aircraft in a speci�ed partition of airspace and the number of

people with a certain disease or characteristic. Over long time spans, the numbers of peo-

ple, plants, animals, species etc. in a given environment may be thought of as a birth and

death process. Branching processes are concerned with phenomena where characteristics

(o¤spring) are transmitted between generations, for example, the propagation of surnames,

the transmission of genes, the growth of bacteria and so on. The INAR model is a branch-

ing process that allows for immigration but may place some restrictions on the number of

o¤spring transmitted between generations.

The INAR class is thus a behavioural/structural model of a potentially very large col-

lection of count data time series, and a suitable class over which to optimize. Of course, the

class may also be used as a versatile modelling tool for any kind of count time series data,

even those without an inherent queue or branching interpretation. In such settings, the

optimal forecast distribution over the INAR class may still be produced, and compared

- via ex-post methods - with forecast distributions produced from competing count data

1The current paper paper does not contribute to the ex-post evaluation literature in any way, nor
demonstrate the empirical application of the evaluation techniques that have already been extensively
reviewed and applied in the literature cited above. As noted in the text, such techniques would simply
complement the approach developed in this paper, in particular empirical settings, if deemed necessary by
the investigator.
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models. The broad scope of the empirical literature in which the INAR class is applied is

indicative of its relevance, with recent examples including: Franke and Seligmann (1993),

Pickands and Stine (1997) and Cardinal et al. (1999) (medicine); Bockenholt (1999) (mar-

keting); Thyregod et al. (1999) (environmental studies); Brännäs and Hellstrom (2001) and

Rudholm (2001) (economics); Brännäs and Shahiduzzaman (2004) (�nance); Gourieroux

and Jasiak (2004) (insurance) and Pavlopoulos and Karlis (2007) (environmental studies).

The focus on producing an optimal estimator of a forecast distribution for the count

variable entails the need for a measure of sampling variability in any empirical application.

Standard scalar methods would enable us to construct a con�dence interval for the proba-

bility that the future variable assumes a particular value (or �nite set of values). However,

it is advantageous to be able to describe variation in the full predictive distribution and to

present this information in a way that is easily understood. To this end, we use bootstrap

methods to allow the e¤ect of sampling �uctuations to be visualized whilst retaining the

positivity and summation to unity properties of probabilities.

The paper is organized as follows. In Section 2 we outline the structure of the INAR

model for count time series and discuss the application of a nonparametric maximum like-

lihood estimator (NPMLE) in that setting. The asymptotic e¢ ciency of the NPMLE

of the forecast distribution is demonstrated, with the proof of the di¤erentiability of the

mapping that de�nes the forecast distribution given in the Appendix. The �nite sample

performance of the NPMLE, within the INAR class, is documented via simulation in

Section 3. In particular, the overall superiority of the NPMLE relative to a misspeci�ed

parametric maximum likelihood estimator, in large but �nite samples, is illustrated. In Sec-

tion 4 the NPMLE is applied to three data series. The �rst two series, which enumerate,

respectively, Canadian wage loss bene�t claims and German stock market iceberg orders,

both constitute a record of the number of elements over time in a queue and, hence, are

suitably modelled as an INAR process. The third series is a daily count of civilian deaths

in Iraq, during 2006. As the deaths are due, at least in part, to local sectarian violence, we

may consider today�s deaths to be a combination of retaliation to (or �o¤spring�of) other

prior deaths and new deaths (immigration). The civilian deaths may thereby be viewed as

a branching process and thus modelled via the INAR class. Section 5 concludes.

2 Probabilistic Forecasting of Count Data in the INAR
Class

Coherent forecasting for count data requires that positive probabilities be assigned only to

the non-negative integers to form the forecast distribution. Within a model class, such as

the INAR class described below, optimal forecasting is synonymous with optimal estima-
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tion of the forecast distribution, where this distribution is to be estimated nonparametri-

cally over the model class. Thus, optimal probabilistic forecasting requires the production

of the (asymptotically) e¢ cient nonparametric estimator of the INAR model, and the

demonstration of the required smoothness of the transformation that de�nes the forecast

distribution.

The INAR class of models was �rst introduced by Al-Osh and Alzaid (1987) and

McKenzie (1988). It was further investigated by, amongst others, Du and Li (1991), Brän-

näs (1994), Dion et al. (1995), Latour (1998), Ispany et al. (2003, 2005), Freeland and

McCabe (2004a,b, 2005), Jung et al. (2005), McCabe and Martin (2005), Silva and Oliveira

(2005), Jung and Tremayne (2006a,b), Silva and Silva (2006), Zhu and Joe (2006), Neal and

Subba Rao (2007), Bu and McCabe (2008), Bu et al. (2008) and Drost et al. (2008, 2009).

McKenzie (2003) provides a review of the model class. The INAR class models dependence

between the observations directly and thus exempli�es a class of observation-driven mod-

els.2 In Section 2.1 we outline the INAR class and the properties of the NPMLE. This

is followed, in Section 2.2, by demonstration of the asymptotic optimality of the NPMLE

of the forecast distribution.

2.1 NPMLE in the INAR Class

In the spirit of Du and Li (1991) we de�ne the INAR(p) class to be

Xt = �1 �Xt�1 + �2 �Xt�2 + � � �+ �p �Xt�p + "t; (1)

where the innovations f"tg are an i.i.d process with a distribution G. The distribution
G = fgrg is a discrete sequence of probabilities on the set Z = f0; 1; 2; :::g. Conditional on
Xt�k, k 2 f1; 2; :::; pg, the thinning operators �k �Xt�k, k 2 f1; 2; :::; pg are Binomial, and
de�ned as

�k �Xt�k =

Xt�kX
i=1

Bi;k;t;

where each collection fBi;k;t; i = 1; 2; :::; Xt�kg consists of independently distributed Bernoulli
random variables with thinning parameter (probability of unity) �k, and the collections

are mutually independent. It is assumed that �k 2 [0; 1), for all k 2 f1; 2; :::; pg; and thatPp
k=1 �k < 1. The innovations are assumed to be independent of all thinning operations.

The initial values (X0; X�1; :::; X�p) are assumed to be independent drawings from the

stationary distribution of the model. The in�nite dimensional parameter of the model is

� = (�1; :::; �p; G).

2This is in contrast to the class of parameter-driven models, which introduce dynamics in the counts
indirectly by specifying time-varying parameters as functions of a random latent process.
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At time t, each thinning operator performs one of p binomial experiments, with para-

meters (Xt�k; �k), k 2 f1; 2; :::; pg, to determine the number from that time vintage that

survives in the system. When �k is close to zero it is expected that there are almost no

survivors from the (t� k) vintage and, correspondingly, there expected to be are many
survivors when �k is close to unity. Consider the vintage Xt. At t+1, Xt is thinned by �1
and at time t+2, Xt is again thinned but using �2. Thus, the �o¤spring�of Xt are distrib-

uted across future times t+1, t+2; ::: according to the number of lags and the sizes of the

thinning parameters. This allows for the e¤ect of Xt to be propagated across multiple time

periods. More formally, when p > 1, Dion et al. (1995) show that the INAR(p) process

may be generally viewed as a special multitype branching process with immigration.

When p = 1, Xt behaves like a queue, with arrivals at time t represented by "t and

survivors remaining in the queue, from t � 1 to t, by �1 � Xt�1. Alternatively the model

may be thought of as a birth and death, or stock process, with additions (births) being

generated by "t and losses (deaths) by (Xt�1 � �1 �Xt�1). When G is Poisson and p = 1,

the model is known as Poisson autoregression (PAR) since, in this case, the marginal

stationary distribution of Xt is also Poisson.

For any set of values i0; i1; :::; ip in Z de�ne the function

fi0ji1;:::;ip (�) =
X

(j1;:::;jp)2J(i0;:::;ip)

pY
k=1

pjkjik (�k) :gi0�(j1+:::+jp); (2)

where

pjkjik (�k) =

�
ik
jk

�
�jkk (1� �k)

ik�jk ; 0 � jk � ik (3)

and

J (i0; : : : ; ip) =

(
(j1; : : : ; jp) 2 Zp : jk �

 
i0 �

k�1X
l=1

jl

!
^ ik; k = 1; 2; : : : ; p

)
:

Empty sums are taken to be zero, so that j1 � (i0 ^ i1). Expression (2) gives the probability

Pr (Xt = i0jXt�1 = i1; : : : ; Xt�p = ip; �)

under the model (1) and is the convolution of p binomials and the arrivals distribution

G = fgrg. Given observed counts x1; x2; :::; xT ; the nonparametric likelihood (given the
initial observations) is

L(�jx1; :::; xT ) =
TY

t=p+1

P (Xt = xtjXt�1 = xt�1; : : : ; Xt�p = xt�p; �); (4)

where

P (Xt = xtjXt�1 = xt�1; : : : ; Xt�p = xt�p; �) = fxtjxt�1;:::;xt�p (�) :

6



When p = 1, these expressions simplify considerably and

L(�jx1; :::; xT ) =
TY
t=2

xt^xt�1X
j=0

�
xt�1
j

�
�j1(1� �1)xt�1�jgxt�j:

The parameter space is � = ([0; 1)p �M), whereM is the space of discrete probability

distributions on Z. To obtain theNPMLE, (4) is maximized over 0 � �k < 1; k = 1; 2; :::; p
and

Pg+
r=g�

gr = 1 where g� = 0 _mint=p+1;:::;T (xt �
Pp

k=1 xt�k) and g+ = maxt=p+1;:::;T xt.

The NPMLE is denoted �̂ =
�
�̂; Ĝ

�
= (�̂k; k = 1; 2; :::; p; fĝrg) and consists of a vector, �̂,

which is an estimator of � = (�1; :::; �p)
0 and a sequence fĝrg, which is an estimator of the

distribution G = fgrg :3 The sequence estimator Ĝ = fĝrg contains only a �nite number,
(g+ � g�), of non-zero values in �nite samples but this number becomes potentially in�nite
as T !1. Let the p-dimensional Euclidean space be denoted Rp and let the Banach space
of sequences that are absolutely summable be `1. The parameter space � is a subset of the

Banach space H = (Rp � `1) and any h 2 H is partitioned h = (h�; hG). We use the sum

norm khkH = kh�kRp + khGk`1 where

kh�kRp =

 
pX
j=1

h2�;j

!1=2

khGk`1 =
1X
j=0

jhG;jj

and h�;j and hG;j are, respectively, the jth elements of h� and hG: Thus,
p
T
��
�̂; Ĝ

�
� (�;G)

�
is considered a random element of the space H.
Drost et al. (2009) (DvdAW hereafter) establish asymptotic normality and e¢ ciency

for the NPMLE in the INAR class. (See Drost et al., 2008, for related work). Let �� and

G� = fg�rg be the true values of the binomial probabilities and the arrivals distribution in
(1), and �� = (��; G�): When G� has �nite p+ 4 moments and g�0 < 1, DvdAW show that

the NPMLE is regular (van der Vaart, 1998, Section 25) and asymptotically Gaussian;

i.e. p
T
h
�̂ � ��

i
=
p
T
h�
�̂; Ĝ

�
� (��; G�)

i
 (N�;NG) ; (5)

where N� is a p-dimensional zero mean normal random variable, NG is a centered Gaussian

process that lives in `1 and  means weak convergence. In addition, DvdAW prove as-

ymptotic e¢ ciency in the sense of the Hajek convolution theorem (see van der Vaart, 1998,

Theorem 25.20). Let
�
~�; ~G

�
be a regular estimator, then

p
T
h�
~�; ~G

�
� (��;G�)

i
 (N� +W;NG +W) ;

3For notational simplicity we supress the dependence of estimators, like �̂, on the sample size T .
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whereW andW are �noise�processes independent of the Gaussian process (N�;NG). Thus,

any other regular estimator has a covariance structure that �exceeds�that of the NPMLE

and the NPMLE is the best regular estimator. This is the sense in which asymptotic

e¢ ciency is understood.

2.2 Optimal Forecasting in the INAR Class

In the �rst instance we deal with the one-step-ahead forecast and thereafter the m-step-

ahead case. In the model (1) the one-step-ahead forecast probability,

P (XT+1 = i0jXT = xT ; : : : ; XT�p+1 = xT�p+1; �);

for any i0 2 Z, is, again, a convolution of p Binomials and the innovation distribution and
this convolution is written more succinctly as

f
(1)
i0ji1;:::;ip (�) = fi0ji1;:::;ip (�) (6)

using (2). The one-step-ahead predictive distribution is therefore

F
(1)
i1;:::;ip

(�) =
n
f
(1)
i0ji1;:::;ip (�) ; i0 2 Z

o
(7)

and F (1)i1;:::;ip
(�) is a mapping from the Banach space H to the Banach space `1, as de�ned

in Section 2.1. In probabilistic forecasting the objective is to estimate the one-step-ahead

distribution F (1)i1;:::;ip
(�). In applications, � in (6) is to be replaced by theNPMLE estimator

�̂ =
�
�̂; Ĝ

�
, which is asymptotically e¢ cient in the sense of Section 2.1. This suggests that

F
(1)
i1;:::;ip

(�̂) may inherit the properties of �̂ and also be asymptotically e¢ cient, if the map

F
(1)
i1;:::;ip

(�) : H 7! `1 is smooth enough. That the map is su¢ ciently smooth is a consequence

of the following Theorem, proved in the Appendix.

Theorem 1 De�ning F (1)i1;:::;ip
(�̂T ) as in (7), the map F

(1)
i1;:::;ip

: H 7! `1 is Frechet di¤eren-

tiable with derivative _F
(1)
i1;:::;ip

(h), where _F
(1)
i1;:::;ip

: H 7! `1 is a bounded linear operator with

typical element

_f
(1)
i0ji1;:::;ip (h) =

X
(j1;:::;jp)2J(i0;:::;ip)

hG;i0�(j1+:::+jp)

pY
k=1

pjkjik (�k) +

X
(j1;:::;jp)2J(i0;:::;ip)

gi0�(j1+:::+jp)

pX
k=1

@pjkjik (�)

@�k
h�;k

pY
l=1
l 6=k

pjkjik (�k) : (8)

In particular for khkH < 1 we haveF (1)i1;:::;ip
(� + h)� F (1)i1;:::;ip

(�)� _F
(1)
i1;:::;ip

(h)

`1
= o (khkH) :
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Since the NPMLE �̂ is asymptotically e¢ cient under the DvdAW conditions speci-

�ed in Section 2.1 and since Frechet di¤erentiability implies Hadamard di¤erentiability,

Proposition 2 of van der Vaart (1995) and Theorem 1 together imply that F (1)i1;:::;ip
(�̂) is also

asymptotically e¢ cient for the one-step-ahead distribution. Thus, F (1)i1;:::;ip
(�̂) is the optimal

probability forecast in the INAR class.

We can interpret what is meant by an asymptotically e¢ cient forecast distribution more

concretely via the Hajek convolution theorem. Since, as in (5),
p
T
h
�̂ � ��

i
 (N�;NG)

and since the spaces H and `1 are linear spaces, it is a consequence of Theorem 20.8 of van
der Vaart (1998) that

p
T
�
F
(1)
i1;:::;ip

(�̂)� F (1)i1;:::;ip
(��)

�
 _F

(1)
i1;:::;ip

(N�;NG) :

It follows from Theorem 1 above that _F (1)i1;:::;ip
(N�;NG) is also a Gaussian process by the

linearity of _F (1)i1;:::;ip
. Thus, any other suitably standardised forecast mapping, based on a

regular estimator of � must have a limit distribution with a covariance process no smaller

than that of F (1)i1;:::;ip
(�̂) by the Hajek convolution theorem.

When p = 1, the one-step-ahead forecast is quite simple and may be computed, for

i 2 Z, as

P [XT+1 = ijXT = xT ; �] = f
(1)
ijxT (�) =

i^xTX
j=0

pjjxT (�)gi�j; (9)

where the binomial probabilities, pjjxT (�), are given in (3). The estimated distribution,n
P
h
XT+1 = ijXT = xT ; �̂

i
; i 2 Z

o
;

where �̂ is the NPMLE, is asymptotically e¢ cient for the distribution

fP [XT+1 = ijXT = xT ; �] ; i 2 Zg

under the DvdAW conditions.

The treatment of the m-step-ahead case, for m > 1, is facilitated by the fact that the

model (1) may also be considered as a Markov Chain from Zp+1 to Zp+1. This interpretation
allows them-step-ahead prediction distributions to be de�ned recursively (see, for example,

Resnick, 1992, Sec 2.3, and Bu and McCabe, 2008). That is,

f
(m)
i0ji1;:::;ip (�) =

1X
u=0

f
(m�1)
i0ju;i1;:::;ip�1 (�) f

(1)
uji1;:::;ip (�) (10)

and

F
(m)
i1;:::;ip

(�) =
n
f
(m)
i0ji1;:::;ip (�) : i0 2 Z

o
: (11)

It also follows, for any m, that F (m)i1;:::;ip
(�) : H 7! `1 are mappings between Banach spaces.

This mapping is also su¢ ciently smooth, as a consequence of the following theorem, with

proof of the theorem given in the Appendix.
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Theorem 2 Assume
P1

u=0 (u
2su)

p
gu < 1 for some s > 1. For each i0 2 Z, de�ne

recursively, using (6) and (8),

_f
(m)
i0ji1;:::;ip (h) =

1X
u=0

_f
(m�1)
i0ju;i1;:::;ip�1 (h) f

(1)
uji1;:::;ip (�) +

1X
u=0

f
(m�1)
i0ju;i1;:::;ip�1 (�)

_f
(1)
uji1;:::;ip (h)

and set _F (m)i1;:::;ip
(h) =

n
_f
(m)
i0ji1;:::;ip (h) : i0 2 Z

o
. Then the map F (m)i1;:::;ip

: H 7! `1 is Frechet

di¤erentiable. That is, _F (m)i1;:::;ip
: H 7! `1 is a bounded linear operator that satis�esF (m)i1;:::;ip

(� + h)� F (m)i1;:::;ip
(�)� _F

(m)
i1;:::;ip

(h)

`1
= o (khkH)

for any m > 1.

Thus, the m-step-ahead forecast distribution is asymptotically e¢ cient in the sense of

the Hajek convolution theorem for any m � 1. The condition
P1

u=0 (u
2su)

p
gu < 1 of

Theorem 2 (not required in the one-step-ahead case) is satis�ed, for any p, by many well

known distributions (e.g. the Poisson and the negative binomial) and trivially for any

distribution with �nite support. For a Poisson distribution with parameter � (Pois (�)),

1X
u=0

�
u2su

�p
gu =

1X
u=0

u2p
e�� (sp�)u

u!
=
es

p�

e�

1X
u=0

u2p
e�s

p� (sp�)u

u!
<1

for any s because a Pois (sp�) distribution has �nite 2p moments. For a negative binomial

distribution,

gu =
� (v + u)

� (v) � (u+ 1)
�u (1� �)v ; v > 0; 0 < � < 1; (12)

we have
1X
u=0

�
u2su

�p
gu =

(1� �)v

� (v)

1X
u=0

u2p
� (v + u)

� (u+ 1)
(sp�)u ;

which is �nite for any s < ��1=p, as can be seen by applying Stirling�s formula to the gamma

functions in the summation.

3 Finite Sample Performance in the INAR Class

In the previous section we have proven the asymptotic optimality of the nonparametric

estimator of the m-step-ahead forecast distribution in the INAR(p) model for m � 1. In
this section we document the �nite sample performance of the estimator, in comparison with

both a correctly speci�ed and incorrectly speci�ed parametric estimator.4 We focus on the

one-step-ahead forecast distribution (i.e. m = 1), and for notational convenience we denote

4All numerical results reported in this and the following empirical section have been produced using the
GAUSS software. Programs are available from the corresponding author on request.
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f
(1)
ijxT (�) ; i 2 Z by fi, i 2 Z, using the notation ffig to denote the full sequence of forecast
probabilities over Z. We consider the INAR(p) data generating process in (1) with p = 1
and "t distributed, respectively, as Poisson, Pois(� = 2), binomial, Bin(n = 4; � = 0:4),

and negative binomial, NBin(v = 5;� = 0:3)5. These distributions are representative,

respectively, of equi-, under- and over-dispersed distributions for the arrivals. The true

value of �1 is set to 0:2 and 0:6 respectively. These speci�cations produce, in turn, low

count data with sample autocorrelations that are typical of those observed in practice,

including for the data sets analysed in Section 46.

The performance of the NPMLE is compared with that of the parametric estimator

of ffig based on the application of MLE to the INAR(1) model with Poisson arrivals;

i.e. the canonical PAR model. This parametric MLE (denoted MLE-P ) is obviously

misspeci�ed when the arrivals are either binomial or negative binomial. In what follows we

denote the NPMLE of fi by bfi and the Poisson based MLE-P of fi by bfPi , where
bfPi = i^xTX

j=0

pjjxT
�
�̂P1
�
exp

n
�b�Po

�b�P�(i�j)
(i� j)! ;

for i = 0; 1; : : : ; K; and b�P1 and b�P are produced via MLE-P . All results are based on 5000
replications of ffig:

Fix a value for i and let bE �� bfi � fi�2� be the simple average of the squared errors� bfi � fi�2 over the 5000 replications. The �AV: MSE��gures recorded in the �rst row
of results in Tables 1 to 3 are estimates of the mean squared error of

nbfio, calculated by
averaging bE �� bfi � fi�2� over the support i = 0; 1; : : : ; K, with K chosen to ensure that all

predictive mass is estimated. The �gures recorded in the rows immediately below the AV:

MSE measures for the NPMLE give the ratio of the relevant measure for the NPMLE

to the corresponding measure for the MLE-P . Clearly, values for the AV: MSE ratio

that are less than one indicate that the NPMLE is superior in terms of this measure of

accuracy.

The �gures presented in the second panel in each of Tables 1 to 3 refer only to the

upper 10% tail in the predictive support. The �AV: BIAS��gures consist of bE � bfi � fi�
averaged over the upper 10% of the support i = 0; 1; : : : ; K. The AV: MSE �gures are

computed analogously. Whilst the AV: MSE �gures (both in raw and ratio form) measure

the accuracy with which the NPMLE estimates the probability of occurrence of rare large

5The negative binomial random variable used in the simulation experiments has a mass function as
de�ned in (12).

6See the sample statistics reported for several empirical count series in Feigen et al. (2008).
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counts, the corresponding AV: BIAS �gures capture the phenomenon of under- or over-

estimation of the tail probability.7 Positive values for the AV: BIAS ratios indicate that

both the NPMLE and the MLE-P either under- or over- estimate the tail mass.

Finally, in the bottom panel of all three tables, statistics associated with estimation of �1
are presented. The (estimated) bias and mean squared error of theNPMLE of �1 (denoted

by b�1), calculated as BIAS = bE(b�1 � �1) and MSE = bE �(b�1 � �1)2� respectively, are
reported, along with the ratios of these �gures to the corresponding �gures for theMLE-P

of �1 (b�P1 ). For all three panels in each table, results that are favourable to the NPMLE
(i.e. ratios with magnitude less than unity) are highlighted in bold font.

As is indicated by the results in the top panel of Table 1, the AV: MSE for theNPMLE

of fi, across the full support, like the corresponding �gures for the correctly speci�ed

parametric estimator, are negligible in absolute size, most notably for the larger sample

sizes. In that sense the NPMLE is competitive with the correctly speci�ed MLE-P

in �nite samples. In other words, even if the true arrivals distribution were known to

be Poisson, use of the nonparametric approach would not lead to qualitatively di¤erent

predictive conclusions than if the correctly speci�ed parametric estimator were used. AV:

MSE for the NPMLE declines monotonically with the sample size, in accordance with

the theoretical consistency of the estimator. In comparison with its performance over the

full support, the performance of the NPMLE in estimating the upper 10% tail of ffig
(recorded in the second panel of Table 1) is more competitive, overall, with that of the

correctly speci�ed MLE-P , with lower AV: BIAS actually recorded for the NPMLE in

two cases.

The results reported in the bottom panel of Table 1 show that both the nonparamet-

ric and parametric estimators of �1 are slightly negatively biased, with both the BIAS

and MSE of the NPMLE declining monotonically in T: Again, although the parametric

estimator is superior to the nonparametric estimator, according to both measures, this su-

periority declines as T increases, with the BIAS and MSE of the NPMLE being zero to

two decimal places for T = 1000, for both values of �1: The magnitudes of the correspond-

ing BIAS and MSE values for the NPMLE of �1, across the two di¤erent true values

for �1, are very similar.

When the true DGP has binomial arrivals and the MLE-P is misspeci�ed as a conse-

quence, the results recorded in Table 2 show the NPMLE to be uniformly more accurate

than the MLE-P in estimating ffig, for T = 500 and T = 1000: This result holds both for
estimation over the full support (�rst panel) and for estimation of the upper tail (second

panel). The NPMLE is only slightly less accurate, in terms of AV: MSE, in three of the

7The estimated bias across the full support of the count variable is equal to zero due to the summation
restriction imposed on estimated and true forecast distributions.
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Table 1: Finite sampling performance of the NPMLE and MLE-P ;

True Poisson arrivals

Figures in bold denote results that are favourable to the NPMLE

"t � Pois "t � Pois

� = 2; �1 = 0:2 � = 2; �1 = 0:6

T : 100 500 1000 100 500 1000

Average over all i Average over all i

AV: MSE of bfi 0.0008 0.0001 6.3e-005 0.0005 8.8e-005 4.1e-005
AV: MSE of bfi
AV: MSE of bfPi 5.1779 4.4981 4.5802 4.7491 4.6934 4.4943

Average in upper 10% tail Average in upper 10% tail

AV: BIAS of bfi 7.0e-005 -3.7e-005 -4.2e-005 -2.8e-005 -8.7e-006 -2.8e-005
AV: BIAS of bfi
AV: BIAS of bfPi 0.5899 7.1831 1.5091 -0.1934 18.4619 1.8453

AV: MSE of bfi 0.0002 3.9e-005 1.8e-005 0.0002 2.7e-005 1.3e-005
AV: MSE of bfi
AV: MSE of bfPi 4.4037 3.8901 3.8828 4.6177 3.8970 3.9846

BIAS of b�1 -0.0506 -0.0084 -0.0032 -0.0568 -0.0067 -0.0030
BIAS of b�1
BIAS of b�P1 4.1138 2.4706 3.5556 9.3115 4.7857 5.197 6

MSE of b�1 0.0167 0.0025 0.0011 0.0147 0.0014 0.0006
MSE of b�1
MSE of b�P1 1.7579 1.3158 1.1000 3.8684 2.0000 1.9500
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Table 2: Finite sampling performance of the NPMLE and MLE-P ;

True binomial arrivals;

Figures in bold denote results that are favourable to the NPMLE

"t � Bin "t � Bin

n = 4; � = 0:4; �1 = 0:2 n = 4; � = 0:4; �1 = 0:6

T : 100 500 1000 100 500 1000

Average over all i Average over all i

AV: MSE of bfi 0.0010 0.0002 7.9e-005 0.0005 8.7e-005 4.023e-005
AV: MSE of bfi
AV: MSE of bfPi 0.7588 0.1700 0.0841 1.2156 0.3128 0.1596

Average in upper 10% tail Average in upper 10% tail

AV: BIAS of bfi -6.8e-005 -0.0002 -5.2e-005 0.0012 4.9e-005 -0.0001
AV: BIAS of bfi
AV: BIAS of bfPi 0.0135 0.0415 0.0112 -0.1705 -0.0065 0.0147

AV: MSE of bfi 0.0012 0.0002 0.0001 0.0010 0.0002 8.1e-005
AV: MSE of bfi
AV: MSE of bfPi 1.2241 0.2652 0.1362 1.8532 0.4273 0.2035

BIAS of b�1 -0.0155 -0.0024 -0.0010 -0.0316 -0.0067 -0.0028
BIAS of b�1
BIAS of b�P1 -0.1158 -0.0170 -0.0073 -0.3802 -0.0790 -0.0330
MSE of b�1 0.0105 0.0020 0.0010 0.0087 0.0014 0.0007
MSE of b�1
MSE of b�P1 0.3519 0.0909 0.0475 0.9774 0.1867 0.0884
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Table 3: Finite sampling performance of the NPMLE and MLE-P ;

True negative binomial arrivals;

Figures in bold denote results that are favourable to the NPMLE

"t � NBin "t � NBin

v = 5; � = 0:3; �1 = 0:2 v = 5; � = 0:3; �1 = 0:6

T : 100 500 1000 100 500 1000

Average over all i Average over all i

AV: MSE of bfi 0.0006 0.0001 5.2e-005 0.0004 7.6e-005 3.9e-005
AV: MSE of bfi
AV: MSE of bfPi 2.0570 0.4772 0.2496 2.6267 0.7795 0.4400

Average in upper 10% tail Average in upper 10% tail

AV: BIAS of bfi 0.0001 9.0e-006 -2.5e-005 0.0001 -5.0e-005 3.2e-006
AV: BIAS of bfi
AV: BIAS of bfPi -0.0639 -0.0049 0.0132 -0.1478 0.0506 -0.0035

AV: MSE of bfi 0.0001 2.6e-005 1.2e-005 0.0001 2.2e-005 1.3e-005
AV: MSE of bfi
AV: MSE of bfPi 3.2918 1.2727 0.6922 2.8432 1.0881 0.7735

BIAS of b�1 -0.0571 -0.0070 -0.0034 -0.0630 -0.0067 -0.0026
BIAS of b�1
BIAS of b�P1 1.2682 0.1894 0.0929 0.9850 0.1110 0.0475
MSE of b�1 0.0180 0.0022 0.0010 0.0182 0.0013 0.0006
MSE of b�1
MSE of b�P1 2.1190 0.8298 0.4845 2.2751 0.3212 0.1631
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four cases for T = 100: Again, as noted above for the Poisson arrivals case, the absolute

level of accuracy with which both methods estimate the true forecast distribution is high;

that said, the overall superiority of the nonparametric estimator, for the larger sample sizes

in particular, is worthy of note.

As indicated by the results in the third panel of Table 2, for all sample sizes, the

NPMLE has smaller BIAS and MSE than the MLE-P in estimating �1. Most notably,

when the true value of �1 is quite low (�1 = 0:2), and for the larger sample sizes, the

magnitude of the BIAS of the MLE-P ranges from (approximately) 13 to 137 times

greater than that of the NPMLE. Clearly, misspeci�cation of the arrivals process impacts

on the ability of the parametric estimator to accurately estimate the dynamics in the data.

Moreover, a comparison of the corresponding �gures in the �rst two rows of the bottom

panel in Table 2 shows that whilst the BIAS and MSE of the NPMLE of both values

of �1 decline uniformly with T , the BIAS of the MLE-P (for both values of �1), and the

MSE of the MLE-P (in the �1 = 0:6 case), do not.

Whilst the results recorded in Table 3 - for the case of true negative binomial arrivals

- are not as clear cut as those in Table 2, the NPMLE is still the superior estimator,

overall, for the larger sample sizes. The NPMLE has smaller AV: MSE values, over the

full support (�rst panel), than does the MLE-P , for T = 500 and T = 1000, and in the

upper tail (second panel) for T = 1000. Most notably, the magnitude of AV: BIAS for

the NPMLE in the upper tail is uniformly (i.e. for all values of T and for both values of

�1) lower than that of the MLE-P , with the latter underestimating the tail probability in

all cases. Once again, the misspeci�cation of the arrivals process appears to impact on the

ability of the MLE-P to accurately estimate �1, with the NPMLE being more accurate,

according to both measures, for the larger sample sizes. Both the BIAS and MSE of the

NPMLE, for both values of �1, decline uniformly with T .

4 Empirical Applications

4.1 Data Description

In this section we apply the NPMLE to three empirical series of count data. The �rst

series constitutes T = 120 monthly counts of workers collecting wage loss bene�ts for burns

injuries received whilst working in the British Columbia (Canada) logging industry from

January 1984 to December 1994. This data set (denoted hereafter by BURNS) has been

analysed using INAR-type speci�cations in Freeland and McCabe (2004a,b) and McCabe

and Martin (2005). During any month t; the observed number of claimants, Xt; is the sum

of the number of claimants from the previous period who continue to collect bene�ts (i.e.

who remain in the claims queue), �1 �Xt�1, and the number of newly injured workers (i.e.
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�arrivals�in the queue), "t. The BURNS data assumes values of 0, 1 and 2 only, due to the

infrequency with which burn injuries occurred over the relevant time period.

The second data set comprises T = 3072 counts of �iceberg�buy orders (bids) in the order

book (up to and including the �fth best bid only) of Deutsche Telekom stock, collected every

10 minutes on the XETRA system of the Deutsche Borse (denoted hereafter by DEUT).

The data is recorded over the 8 hours of each of the 64 trading days in �rst quarter of 2004.8

Iceberg orders are so-called because only a portion of the volume of the order, or the �tip of

the iceberg�, is revealed in the order book. Such orders constitute only a small proportion

of the total number of limit book orders, but have been shown to exert a signi�cant impact

on trading behaviour - and the subsequent dynamic behaviour of transaction prices - as

traders adjust their bid (or ask) prices in the face of the �hidden liquidity�associated with

the icebergs.9 Over any 10 minute time period t; the number of iceberg orders, Xt; is the

sum of the number of orders remaining from the previous ten minute period, waiting for

execution, �1�Xt�1, and the number of new iceberg orders placed in the book (or �arrivals�),

"t. All iceberg orders are deleted from the book at the end of the trading day, even if not

executed. The DEUT data in this sample assumes values of 0 to 5 (inclusive) only, due to

the infrequency with which iceberg bids occur.10

The �nal data set, denoted by IRAQ, comprises daily counts of violent deaths su¤ered by

Iraqi civilians during the 1 January 2006 to 31 December 2006 period. The time series was

constructed from the information provided on the website http://www.iraqbodycount.org.

As detailed on this website, the database documents violent incidents that have led to

loss of life of Iraqi citizens, as reported either in the media or, in certain cases, by non-

government organizations. For some deaths the database provides only a range of possible

dates, and in these cases we choose the earliest of these dates. Two extreme counts of 18

and 19 were omitted from the data set, leaving counts ranging from 0 to 11 (inclusive).

The sample autocorrelation functions of the BURNS and DEUT data sets indicate

signi�cant �rst-order autocorrelation, indicating that there is indeed dependence to be

modelled and predictive power in the data. Given that both of these data sets may clearly

8This data has been kindly supplied by Joachim Grammig, with the permission of the Deutsche Börse.
A detailed analysis of the impact of iceberg orders on price dynamics is conducted in Frey and Sandas
(2008). Jung and Tremayne (2008) also analyse the autocorrelation properties of these count time series,
using the INAR family of models.

9In the set of German stocks analysed by Frey and Sandas (2008), iceberg orders account for only 8%
of shares traded. Note that not only are traders unaware of the extent of the hidden volume of iceberg
orders, the very existence of such orders is not made explicit by the exchange at the time of trading. Hence,
traders themselves need to adopt various strategies for identifying the number and size of iceberg orders;
see Frey and Sandas for further discussion.
10Note that although the order book is scanned every 10 minutes only to the depth of the best �ve

trades, it is quite possible for an iceberg trade to be among the best �ve bids at any instance during that
10 minute period. Hence, it is quite possible for there to be more than �ve iceberg trades recorded after
any 10 minute interval. The Deutsche Telekom series, however, has no count exceeding the value of 5.
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be interpreted as time series observations on the number of members of a queue, the

INAR(1) speci�cation is inherently suitable for modelling these data. In the case of the

IRAQ data set, the number of deaths, Xt at time t, may be thought of as those exogenously

generated by the con�ict (�immigrants�), "t, combined with those (�o¤spring�), �1 �Xt�1 +

�2�Xt�2+ � � �+�p�Xt�p, which result - both directly and indirectly - from deaths at earlier

periods. The impulse response function for the INAR(p) model provides some insight into

this process. Consider, for example, the model with p = 2 and X0 = X�1 = 0. In this case,

X1 = "1

X2 = �1 �X1 + "2

X3 = �1 �X2 + �2 �X1 + "3

= d"3 + �1 � "2 + �21 � "1 + �2 � "1:

The deaths in day 3 may be disaggregated into the following components. The term "3

represents those deaths generated exogenously in day 3 (immigrants). The deaths on day 3

that have occurred as the result of retaliation to the shock "2 in day 2 are �1�"2 (o¤spring).
The o¤spring in day 3 of day 2�s retaliation to the shock "1 in day 1 (�1 � "1) are �21 � "1.
Finally, those deaths on day 3 that have occurred as the lagged response to the day 1 shock

are �2 � "1. The branching process interpretation of the INAR(p) model thus captures the
e¤ect that �violence begets violence�.11 The IRAQ data set has signi�cant autocorrelation

at the third lag and reasonable (although not formally signi�cant) autocorrelation at lag

two and hence an INAR(3) model is a reasonable choice of speci�cation.12

4.2 Bootstrap Measurement of Sampling Error

Rather than producing pointwise con�dence intervals for individual forecast probabilities,

we produce a representation of sampling variation in the entire estimated forecast distrib-

ution (for any m � 1), retaining the property that the forecast probabilities sum to unity.

Given the applicability of the INAR class to the data sets in question, the B bootstrap

11The binomial thinning operator imposes restrictions on the number of deaths that can occur as re-
taliation to the exogenous shock, "1, in the period immediately following; i.e. �2 � "1 � "1. Use of a
more general operator (see Weiß, 2008, for a survey of thinning operators) would remove this restriction;
however, investigation of this option is beyond the scope of this paper. Note that the binomial thinning
operator does still allow the cumulated response to "1, �2 � "1 + �21 � "1; to be greater than "1.
12The results of all preliminary data analysis are available from the authors on request. Note that

the choice of value for p > 1 in the INAR(p) model in cases where the queue/stock interpretation is
not appropriate (as in the IRAQ case) could be based on predictive performance. That is, an ex-post
evaluation of predictive accuracy could be used to determine the particular INAR(p) speci�cation to
which the optimality criterion is, in turn, applied to produce a forecast distribution. In order to keep the
paper within reasonable bounds, we have chosen to use the simple preliminary diagnostic analysis reported
in the text to select p in the case of the IRAQ data.
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samples of size T are produced using the dynamic structure of (1), based on the assumed

value of p. Speci�cally, for the jth bootstrap sample, we perform the following steps:

1. Given the estimated arrivals distribution, de�ned by Ĝ, draw the i:i:d: series,
n
"
(j)
t

oT
t=1
;

2. Given b� and p initial values for Xt, generate
n
x
(j)
t

oT
t=1

via the INAR(p) model in

(1);

3. Use
n
x
(j)
t

oT
t=1
to produce Ĝ(j) and b�(j);

4. Use Ĝ(j), b�(j) and the observed values, xT ; xT�1; : : : ; xT�(p�1); to produce nf̂ (j)i o,
where

n
f̂
(j)
i

o
denotes the NPMLE of the m-step-ahead forecast distribution, for

any m � 1;13

5. Repeat for j = 1; 2; : : : ; B:

For each
n
f̂
(j)
i

o
, j = 1; 2; : : : ; B, we calculate the �distance�between the empirical m-

step-ahead forecast distribution,
n
f̂i

o
, and the jth bootstrap distribution using a suitable

metric, namely:

dB

�n
f
(j)
i

o
;
n
f̂i

o�
=

KX
i=1

���f̂ (j)i � f (j)i
��� :

The B bootstrap distributions are then ranked in the metric and the distributions at

various percentiles of the metric noted. For example, measuring distance by the metric,

the chance of seeing a distribution that is more �extreme�than the distribution at the 95th

percentile is 5%:Given that extreme values of the metric can, potentially, be associated with

quite di¤erent shapes in the forecast distributions, we also record the forecast distributions

ranked two places either side of that at the 95th percentile. For example, given the choice

of B = 3000 below, the distribution at the 95th percentile is that with 2850th largest value

of dB
�n
f
(j)
i

o
;
n
f̂i

o�
. We also report those distributions with the 2848th, 2849th, 2851st

and 2852nd largest values of the metric. These distributions serve to quantify the way in

which �extreme�sampling behaviour can manifest itself over the full predictive support.14

13Note, we have chosen not to use an additional superscript for the forecast horizon m (as would be
consistent with the notation used in Section 2.2) for notational clarity.
14Comparable results to those recorded in the following section were produced for a second metric:

cB

�n
f
(j)
i

o
;
n
f̂i

o�
=

KX
i=1

���f̂ (j)i � f (j)i

���
1 +

���f̂ (j)i � f (j)i

���2�i:
Given that the results were qualitatively very similar to those based on dB , we report the latter results
only.
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4.3 Empirical Forecast Results

In Figures 1a to 1c respectively, we reproduce the estimated one-step-ahead (m = 1) fore-

cast distribution for the BURNS, DEUT and IRAQ data sets, along with the corresponding

�ve bootstrap distributions centred on the 95th percentile of the metric, as estimated from

B = 3000 replications. The forecasts are produced for the last time period in each data

set, with the forecasts for BURNS and IRAQ based on all data up to and including the

penultimate observation in the relevant samples. For the DEUT data set, in order to mimic

a prediction strategy based on very recent data, we present results in which only the �nal

two days of data in the full series (T = 95) are used to predict the number of iceberg orders

in the last 10 minutes of the last day in the sample.

In Figure 1a the empirical estimate of the one-step-ahead forecast distribution for

BURNS claims in December, 1994, allocates non-negligible predictive probability to the

values of 0 to 3 only. A probability of approximately 64% is assigned to the event of zero

claimants next month, with a probability of half that magnitude (approximately 32%) as-

signed to the event of a single claimant. The �ve distributions that de�ne an extreme value

of the metric dB(:) all do so by allocating quite a deal more weight to zero and, corre-

spondingly, less weight to one, than does the empirical forecast distribution. The extreme

distributions also all essentially reduce the support of the forecast distribution to 0 and 1.

In Figure 1b, the estimated forecast distribution assigns only 22% probability to the

event of no DEUT iceberg order being included in the 5 best bids during the last 10

minutes of the last trading day of the �rst quarter in 2004. This indicates that some

degree of hidden liquidity was very likely to be available, and needed to be catered for in

trading decisions. Four of the extreme distributions indicate an increase in probability to

the event of zero bids, and a corresponding decrease in probability to the existence of some

degree of hidden liquidity. However, the distribution below that at the 95th percentile

allocates less probability mass to zero bids and, correspondingly, more probability to the

presence of at least one iceberg bid.15

Finally, Figure 1c reproduces the estimated one-step-ahead forecast distribution for

IRAQ civilian deaths on 31 December, 2006. While the estimated distribution assigns the

bulk of probability mass to very low numbers of deaths (� 3), a non-negligible probability is
assigned to counts larger than 6. In this case, the extreme distributions are quite variable in

their shape, allocating either more or less probability mass to various parts of the support,

than does the empirical estimate, with the corresponding adjustment made to the mass

assigned to the remainder of the support.16

15As successively larger segments of the DEUT data series are used to estimate the forecast distribution,
the �ve extreme bootstrap distributions become increasing similar, being visually indistinguishable from
the empirical estimate when the full sample (T = 3071) is used for inference.
16As has already been noted in the paper, our focus in is on producing an optimal estimate of the forecast
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Figure 1: NPMLE estimation of the one-step-ahead forecast distributions for the three
empirical count time series
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In Figure 2, we juxtapose the three estimated one-step-ahead forecast distributions

with the corresponding distributions for m = 5 steps ahead. Along with both empirical

estimates we reproduce the bootstrap distribution at the 95th percentile. The �ve-step-

ahead distributions are estimated using the Markov chain structure described in Section

2.2 (see (11)) and �rst applied in an INAR setting in Bu and McCabe (2008). Due to the

stationarity of the models in each case, the forecast distributions �ve days out are closer

(than are the one-step-ahead forecasts) to the corresponding unconditional distributions, as

estimated by the sample proportions in each case (recorded in each graph of the right panel

in Figure 2). For both the BURNS and IRAQ data, the extent of sampling variability, as

measured here by the deviation of the bootstrap distribution at the 95% percentile from

the empirical estimate, is less for the �ve-step-ahead forecast than for the one-step-ahead

estimate. This reduction does not occur in the DEUT case.

To conclude the empirical analysis we note that the adoption of the INAR(1) model

for two of the three data sets (BURNS and DUET) allows us to estimate in those cases the

mean number of time periods that an element will remain in the queue - or mean waiting

time - as w = 1=(1� b�1), where b�1 denotes the NPMLE estimate of �1: We report these
estimates in Table 4, along with the estimates of b�1 itself. The high frequency order book
data exhibits a higher degree of �rst-order autocorrelation, as measured by b�1, than does
the lower frequency claims data. Interestingly, in the case of the order data set, the most

recent data (T = 95) produces the highest value for �̂1, with the degree of autocorrelation

declining as soon as the data set used to estimate the model extends further into the past.

Associated with the higher value of b�1, the expected time spent waiting in the order book
is largest when measured using only recently observed data, amounting to more than three

periods (half an hour). On the other hand, the smaller values of b�1 for the claims data
lead to estimates of less than two periods (months) for the average number of months that

a worker is expected to be claiming bene�ts.

5 Conclusions

In this paper we demonstrate an approach to forecasting integer-valued time series data.

The method involves estimating the forecast distribution of the random variable in question

and, in so doing, allows for the full uncertainty associated with possible future values of

the variable to be quanti�ed. Within the INAR class an optimal estimate is produced

distribution, within the INAR class, and not on calibrating the estimated forecast distribution with the
observed count in time period T + 1: However, we do note that the modal prediction for the BURNS data
is equivalent to the realized count of 0 at time T + 1: The modal prediction for the DEUT data is 1, with
the realized value being 0. Finally, the modal prediction for the IRAQ data is 2, whilst the realized value
is 1.
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Figure 2: One-step-ahead and �ve-step-ahead forecast distributions for the three empirical
count time series

23



Table 4: Estimated mean waiting times for the queue (INAR(1)) data sets

Estimated binomial Estimated mean
thinning parameter waiting time

b�1 w = 1=(1� b�1)
BURNS: T = 119 0.2571 1:3461 months

DEUT: T = 95 0.7119 3:4710 ten minute periods
T = 500 0.5410 2:1786 ten minute periods
T = 1000 0.5271 2:1146 ten minute periods
T = 3072 0.5384 2: 1664 ten minute periods

by treating the arrivals process nonparametrically and proving the asymptotic e¢ ciency of

the estimated forecast distribution. The INAR model class is applicable to a broad range

of count data types which may variously be viewed as a queue, a stock, a birth and death

process, or a branching process with immigration. In circumstances where the INAR class

applies, the optimality of the estimated distribution provides motivation for its use as a

basis for making probabilistic forecasts of the count variable. Even in cases where the class

is not inherently suitable to a particular count data set, producing the optimal forecast

distribution within the INAR class is still a sensible �rst step prior to comparing - using

ex-post methods - with relevant alternatives from outside the class.

Simulation results for the INAR(1) model indicate that the NPMLE performs well

even in moderately sized samples. Most notably, the NPMLE is superior, overall, to

a misspeci�ed parametric estimator, in particular when estimating the upper tail of the

forecast distribution and the dynamic parameter in the INAR(1) model.

We also present a bootstrap-based method for assessing the e¤ect of sampling varia-

tion on the NPMLE of the forecast distribution which incorporates the positivity and

summation properties of the probabilities involved. Three data sets, all of which may be

interpreted as the output of INAR structures, are analysed, with forecast distributions

produced and sampling variation assessed.

Appendix
The following preliminary lemma is used in the proofs below:
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Lemma 1 If pjji (�) is a binomial probability
�
i
j

�
�j (1� �)i�j and h is a constant then
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���� � 3h2i (i� 1) (1 + jhj)i�2 � 3h2i2 (1 + jhj)i (13)

iX
j=0

��pjji (�+ h)� pjji (�)�� � 2 jhj i (1 + jhj)i�1 + h2i (i� 1) (1 + jhj)i�2 : (14)

If jhj < 1 then this latter bound can be reduced to

iX
j=0

��pjji (�+ h)� pjji (�)�� � 3 jhj i2 (1 + jhj)i :
We also use the well known results on binomial thinning that � � (x1 + x2) =d � � x1 +
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!
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.

Proof of Theorem 1

From (6) and (8) we obtain the expression
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and
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We can now apply the binomial bounds of Lemma 1 in (16)�(18). Using the condition

that the h�;k displacements are less than unity in absolute value and the notation D =
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In the same way, (18) is bounded, with
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as required.

Proof of Theorem 2

We will prove thatF (m)i1;:::;ip
(� + h)� F (m)i1;:::;ip

(�)� _F
(m)
i1;:::;ip

(h)

`1
� khk2HCmD2p (1 + khkH)

Dp ;

for some small enough khkH and D = max1�u�p iu. This implies thatF (m)i1;:::;ip
(� + h)� F (m)i1;:::;ip

(�)� _F
(m)
i1;:::;ip

(h)

`1
= o (khkH) (20)

as required for the derivative. It has already been shown in Theorem 1 that (20) holds for

m = 1 and so we proceed by induction and suppose that it holds for m�1 for some m � 2.
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In Theorem 1, (15) is bounded by (16), (17) and (18) which, in turn, leads to (19). This

is su¢ cient to bound (21b). The same sequence of steps bounds (21a) when we take
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Thus Cm is constant for small enough khkH, which completes the proof of (22).
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with Bm = 1. Now suppose that _F
(m�1)
i1;:::;ip

(h) satis�es this bound. It follows that

 _F (m)i1;:::;ip
(h)

`1

=

1X
i0=0

��� _f (m)i0ji1;:::;ip (h)
���

�
1X
u=0

1X
i0=0

��� _f (m�1)i0ju;i1;:::;ip�1 (h)
��� f (1)uji1;:::;ip (�) + 1X

u=0

��� _f (1)uji1;:::;ip (h)���
=

1X
u=0

 _F (m�1)u;i1;:::;ip�1 (h)

`1
f
(1)
uji1;:::;ip (�) +

 _F (1)i1;:::;ip
(h)

`1

� Bm�1 khkH
1X
u=0

�
(u _ i)2 + 1

�
f
(1)
uji1;:::;ip (�) +

�
D2 + 1

�
khkH

� (Bm�1 + 1) khkH
�
D2 + 1

� iX
u=0

f
(1)
uji1;:::;ip (�) +Bm�1 khkH

+Bm�1 khkH
1X
u=0

u2f
(1)
uji1;:::;ip (�)

� khkH
�
D2 + 1

� 
2Bm�1 + 1 +Bm�1

1X
u=0

u2f
(1)
uji1;:::;ip (�)

!
= khkH

�
D2 + 1

�
Bm;

where Bm is a constant. This constant is �nite because

1X
u=0

u2f
(1)
uji1;:::;ip (�) =

1X
u=0

u2
X

(j1;:::;jp)2J(i0;:::;ip)

gu�(j1+:::+jp)

pY
k=1

pjkjik (�k)

=

i1X
j1=0

pj1ji1 (�1) : : :

ikX
jk=0

pjkjik (�k)
1X

u=j1+:::+jp

u2gu�(j1+:::+jp)

�
1X
u=0

(u+Dp)2 gu

=

1X
u=0

u2gu + 2Dp
1X
u=0

ugu + (ip)
2 <1

under the summability conditions on gu.

31



Proof of Lemma 1

For completeness we provide details of the bounds used in Lemma 1. First we use the

binomial expansions,
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The three terms on the right-hand-side of the inequality are bounded by three further
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inequalities: �rst
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and third
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This completes the proof of (14). To prove (13) note that
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and we can see that the third term on the right-hand-side above, is already bounded by

the development above. The �rst term satis�es
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and the second,
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This completes the proof of (13).
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