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Abstract 

In this article we advocate more extensive use of the benefit function in specifying 

price-dependent or inverse demand models. In particular, we demonstrate how 

duality theory may be used to establish the inter-relationships between the 

Marshallian (or Hicksian) inverse demands and Luenberger's adjusted price 
functions, allowing estimable inverse demands to be derived directly from a benefit 

function. We also make use of a numerical inversion estimation method to rectify 

the “unobservability of utility problem” encountered in the empirical analysis of 
these inverse demands. To illustrate the usefulness of the proposed methods, we 

estimate two systems of inverse demands for Japanese quarterly fish consumption. 

Results generally indicate that the proposed methods are promising and 

operationally feasible so that we have opened up a wider range of empirical inverse 
demand specifications that can be subjected to tight theoretical restrictions.  
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Marshallian (or Hicksian) inverse demands and Luenberger's adjusted price 

functions, allowing estimable inverse demands to be derived directly from a benefit 

function. We also make use of a numerical inversion estimation method to rectify 

the “unobservability of utility problem” encountered in the empirical analysis of 
these inverse demands. To illustrate the usefulness of the proposed methods, we 
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Results generally indicate that the proposed methods are promising and 
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Price-dependent or inverse demand systems, in which quantities are exogenous and 

prices are the dependent variables, have been studied extensively in consumption 

economics.
1
 Most of the studies of these systems have made use of either the direct 

utility function or the distance function to generate inverse Marshallian or Hicksian 

demands by applying, respectively, the Hotelling-Wold identity or the Shephard-

Hanoch lemma. Recently, additional attention has been given to the benefit function, 

which was first introduced and developed by Luenberger (1992). This function is now 

recognized to be of particular value in welfare analysis because its aggregation property 

makes it attractive to analyze welfare changes for heterogeneous consumers.
2
 For 

instance, benefit functions of different individuals could be directly summed to obtain 
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meaningful aggregate benefit, which could be used to measure the welfare implications 

of changes in the economy.  

Despite its obvious potential for policy applications, there are few theoretical and 

empirical applications beyond those considered originally by Luenberger (1992) & 

(1995), Chambers, Chung and Färe (1996), and Baggio and Chavas (2006). A possible 

reason for the scarcity of applications is that the benefit function is not a convenient 

vehicle for generating empirical demand models, as the dual relationships between 

inverse Marshallian (or Hicksian) demands and the adjusted price functions derived 

from a benefit function are not well established. We provide here an attempt to establish 

such relationships. 

The first aim of this paper is to advocate a more practical use of benefit functions 

in representing preferences and specifying inverse demand models. In particular, it 

proposes the exploitation of additional duality relationships to generate systems of 

price-dependent demand functions alternative to the more typical approaches to deriving 

inverse Marshallian and Hicksian systems. As will be clear from the following 

discussion, the price-dependent demand systems derived from direct utility functions, 

distance functions and benefit functions are intimately related by a series of 

relationships, which allow simple transformations from any one to the others. 

Combining one of these relationships with known results for expenditure-normalized 

inverse prices allows expenditure-normalized inverse prices to be derived directly from 

the benefit function (a result to be referred to as the Hotelling-Wold Analogue for the 

benefit function). In this way the theoretical and empirical analysis based on benefit 

functions is greatly facilitated, and it is such analysis that forms the main theme of this 

paper. 

The second aim is to demonstrate the feasibility of using benefit functions to 
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specify estimable yet general and regular price-dependent demand systems. 

Differentiation of a chosen benefit function with respect to quantities yields 

Luenberger’s adjusted price functions, according to the envelope theorem. Since these 

functions are explicit in the unobservable utility level, in most cases they do not have a 

closed-form representation as their Marshallian counterparts i.e. in terms of the 

observable variables such as quantities.
3
 This “operational complexity” however need 

not hamper the empirical exploitation of benefit functions.
4
 A simple one-dimensional 

numerical inversion allows estimation of the parameters of a benefit function via the 

parameters of the implied inverse Marshallian demands. The formal theory for using a 

benefit function in this context will be developed and illustrated in the next section of 

this paper. 

The Benefit Function and Its Additional Duality Properties 

With 
N
 (or  N


) denoting the non-negative (or positive) orthant, let x

N
 represent an 

N-vector of commodities, p N


 the corresponding price vector, and g

N
 ( g 0 ) an 

arbitrary (fixed) N-vector of goods that serves as a reference bundle. Suppose that 

individual preferences are represented by a direct utility function u = U(x). Following 

Luenberger (1992) & (1995), the benefit function (B) for these preferences is defined as: 

(1) B(x, u; g) = Max 
b
 {b s.t. U(x - bg)  u, and x  bg}, 

which measures how many units of g an individual is willing to give up to move from a 

utility u to the point x.
5
 Provided that the direct utility function is continuous, increasing 

and quasi-concave in x, then the benefit function is continuous, increasing and concave 

in x, decreasing in u, and satisfies a translation property: B( ,  ) B( ,  )u u x g x . 

Luenberger has shown that u = U(x) implies that B(x, u) = 0 if g is a “good” (that is, 

U( ) U( ) x g x for all x and 0  ) and that B(x, u) = 0 implies  U(x) = u if 0x . 
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Luenberger (1992) and (1995) proves a duality between the benefit and cost 

functions corresponding to the utility function, and hence there is a duality between the 

benefit function and the corresponding direct utility function. Applying the envelope 

theorem, Luenberger introduces what he refers to as the “adjusted price functions”, 

which can be derived from a benefit function via simple differentiation; i.e. 

(2)      P L

i
(x, u; g) = B/x

i
 = B

xi 
    

where the superscript “L” is to remind us that (2) are the Luenberger functions derived 

from a benefit function.  Since the translation property implies 

(3)       j

j j

B
1





 g

x
,    

it follows that these price functions satisfy the normalization: 
L

j j

j

P 1g  . Because of 

the dependence of the equation systems in (2) on quantities x and utility u, the functions 

P L

i
 are clearly analogous to inverse Hicksian demands. An issue with this analogy is the 

potential dependence of the derivatives in (2) on the choice of reference vector g. To 

clarify this analogy and establish a useful notation, consider first the direct Marshallian 

( M
iX ) and Hicksian ( H

iX ) demand functions which are the solutions to the following 

constrained optimization problems: 

(4)     M
iX , cp   solution of  Max x {U(x) s.t. p'x  c}, and   

(5)     H
iX , up   solution of   Min x {p'x s.t. U(x) ≥ u},   

where c is a level of total expenditure, and the superscript “M” for Marshallian (or “H” 

for Hicksian) helps to clarify ideas, and is motivated by the arguments (p, c) (or (p, u)) 

of the corresponding functions.  
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The budget constraint p'x  c (in fact p'x = c by non-satiation) in (4) has two 

implications for the direct Marshallian demand systems: i) because the solutions satisfy 

the one-dimensional constraint, only N-1 of the N equations in (4) are functionally 

independent; and ii) because of the linearity of the budget constraint M
iX  is 

homogeneous of degree zero in (p, c), and only N-1 of the N equations in (4) are then 

linearly independent. Unless one is willing to actually condition on c, then in order to 

define the concept of inverse demands corresponding to these direct demands some 

normalization is required. A standard normalization is to define expenditure-normalized 

prices r = p/c and hence use homogeneity to rewrite X M
i  as 

(6)  M M
i i i = X ,  = X ,1

 
 
 

p
r

c
x

c c
,  

which can, at least in principle, then be inverted to give the inverse Marshallian 

demands 

(7)  IM
i i = R xr   

where the superscript “IM” (for inverse Marshallian) refers to the arguments (x) of the 

corresponding functions. The inverse Marshallian demands (7) can most 

straightforwardly be defined by the standard dual approach as the solution to 

(8)     MU Min U  s.t. ' 1 rx r r x   

(where U
M

 is the indirect utility function), in which case the inverse Marshallian 

demands follow from the envelope theorem as 

  

(9)  
 

 

i

j

IM
i i

j

j 1

U
  R

U


 



x
x

x

x

x

r

x

, 

a result usually referred to as the Hotelling-Wold identity.   
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Similarly, the Hicksian direct demands (5) are homogeneous of degree zero in p 

so that again some normalization of prices is required. However, even with the standard 

normalization of prices derivation of inverse demands is not straightforward. As is well 

known, the Slutsky and Antonelli matrices are singular of rank N-1, and thus there is an 

essential singularity in the relation between direct and inverse Hicksian demands.
6
  

Analogously to the case of inverse Marshallian demands, the inverse Hicksian 

demands can also be defined as the solution to a dual optimization problem: D(x, u) = 

Min 
r
 {r'x   s.t. C(r, u) = 1}, where D(x, u) is the distance function, and C(r, u) = Min 

x
 

{r'x  s.t. u ≥ U(x)} is the normalized cost function, which uses the same normalization 

of prices as above. In this case, the envelope theorem gives    
i

IH

i i x  R , D ,  r u u x x , 

a result often known as the Shephard-Hanoch lemma. Of course a further alternative 

approach to generating inverse Hicksian demands is to specify the constrained 

optimization: Min x {r'x : U(x)  u} and to manipulate the first order conditions to solve 

for the r as dependent variables, as functions of x
 
and u as independent variables. 

 Another possible normalization of prices is to use the arbitrary reference vector g 

introduced in the definition of the benefit function, and apply the normalization p'g = 1. 

This amounts to the introduction of the alternative set of normalized prices s
i
 = p

i 
/ p'g 

and allows the Hicksian demands to be written as 

(10)    x
i
 =  H

iX ,  p u  = H
iX ,  

'
u

 
 
 

p

p g
=  H

iX ,  us . 

Inverse demands might be written in the notation 

(11)  IH
i i = S , xs u .  

A similar singularity exists between the Hicksian demands and the Luenberger price 

functions as between the direct and inverse Hicksian demands, as shown by Luenberger 

(1996), and again the use of an appropriate dual result is the most straightforward way 
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to define the “inverse” relationship.  Luenberger (1992) shows that provided U(x) is 

quasi-concave and continuous, the following duality relationship holds: 

(12)     B , ; =Inf  - C ,  s.t.  = 1, 0u u  sx g s x s s g s . 

 Luenberger (1996) then defines the “adjusted price function” as an envelope result: 

(13)      , ;  Argmin C ,   s.t. 1,  0S u u    sx g s x s s g s . 

With sufficient differentiability this envelope result is that  

(14) IH
i

i

B
S

x





 = P L

i
(x, u) 

where, for clarity, the notation P L

i
(x, u) has been replaced by  IH

iS , x u to reflect the 

specific normalization of prices. The matrix of derivatives of these functions with 

respect to quantities is singular because of the implication (3) of the translation property. 

System (14) is an inverse in the sense that: 
7
 

(15)  L H i
i iP ,  =  =    

X p
p g

p
u s . 

While inverse Marshallian or Hicksian demands cannot give absolute prices, the 

two alternative types of normalized prices can be simply related.  Since 

(16) 
'' '

c

c

  

p
r p

s
p gr g p g

, and 


  
 



p
s pp g

r
p xs x p x

p g

  then 

(17)    
 

 
 i i

i i

R , S , 
S , = ;    and R , =

' '

u u
u u

x x
x x

R g S x
.
8
 

These results suggest a two-step procedure in which the benefit function can be used to 

construct “standard” (i.e. functions defining expenditure-normalized prices) inverse 

Hicksian demand functions: 
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(18)  IH i
i N

j
j

j=1

B

R ,  

B

x
u

x
x









x .  

With this background, it is illustrative to see how (18) can be derived more directly. 

Recall that the benefit function is an implicit representation of the direct utility function:  

(19)  B , U 0   x x .  

Differentiating once gives 
i i

B B U 0 x u x , implying that 
i i

B B U x u x . Weighting by 

quantities and summing, this implies that 
j j

j j

j j

B = -B U x u xx x , and using these two 

results we find that    i i

j j

IH IM
i i

j j

j j

B U
R ,       = R

B U
 
 

x x
x x

x x

u
x x

 where the last 

equality follows by the Hotelling-Wold Identity.
9
  

Estimation of demand systems is usually carried out using budget shares. Thus we 

collect the foregoing results together in a form that is referred to as: 

The Hotelling-Wold Analogue for the Benefit Function: Given a functional form for 

a benefit function satisfying the appropriate regularity conditions, the corresponding 

inverse Hicksian and Marshallian share equations can be derived as 

(20)    
 

 

i

j

iIH IH
i i i N

j

j=1

B , 
W ,  = R , =

B , 

x
x x

x

x

x

x u
u x u

x u

, and  

(21)          i

j

iIM IH
i i N

j

j=1

B [ ,  U( )]
W  = W ,  U( ) =

B [ ,  U( )]

x x
x x x

x x

x

x

x

x

    

where U(x) is obtained by inverting the identity function  (19). 
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Considerations in the Choice of a Functional Form for a Benefit 

Function 

Econometric analysis of demand systems essentially relates to empirical representations 

of underlying preference orderings within the framework of “rational” consumer 

behavior. A standard result on preference ordering representation is the existence of a 

direct utility function, but its application in the standard situation of endogenous 

quantities and exogenous prices and expenditure requires the analytical solution of a 

nonlinear optimization problem, which limits applicability to simple and empirically 

unacceptable functional forms.  

Duality theory provides the way forward for empirical work. Provided the dual 

function satisfies appropriate regularity conditions (typically curvature, monotonicity 

and homogeneity conditions), then the problem of an analytic solution of an 

optimization problem is avoided, and replaced by the need to specify a regular dual 

function. So the standard results are the followings: to specify Marshallian demands, we 

represent preferences by an indirect utility function and apply Roy’s Identity; to specify 

inverse Marshallian demands, we represent preferences by a direct utility function and 

apply the Hotelling-Wold Identity; to specify Hicksian demands, we represent 

preferences by a cost function and apply Shephard’s Lemma; to specify inverse 

Hicksian demands, we represent preferences by a distance function and apply the 

Shephard-Hanoch lemma (or by a benefit function and apply Luenberger’s result (14)).  

Since utility is an unobservable variable, one may think that empirical work 

should be restricted to the first two of these. However, the imposition of regularity 

conditions is crucial, since the duality results only apply in regions of regularity. 

Because the indirect utility function and direct utility function are required to be quasi-

convex or quasi-concave respectively, it is quite difficult to construct reasonably general 
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functional forms, because, for example, linear combinations of quasi-convex functions 

are not necessarily quasi-convex, and decreasing quasi-convex functions of decreasing 

quasi-convex functions are not necessarily quasi-convex. Hence only simple regular 

representations of preferences are available in these cases. Note that this is not the case 

with concave or convex functions, for which various composition rules maintain 

regularity. For example, positive linear combinations of increasing concave functions 

are increasing concave, and increasing concave functions of increasing concave 

functions are also increasing and concave. One can construct arbitrary rank (in the sense 

of Lewbel (1992)) cost and distance functions that are regular over unbounded (and 

policy relevant) regions. These functions can then be used to represent Marshallian 

functions by the use of a simple one dimensional numerical inversion (a technique 

introduced in McLaren, Rossiter, and Powell (2000)), a small cost to pay for the 

enhanced regularity properties of the resulting representation of preferences. The 

purpose of this paper is to extend this analysis to the use of benefit functions, thus 

further extending the capacity to represent preferences by regular functional forms. 

Because of the translation property, regular benefit functions are not as easy to 

generalize as are regular cost and distance functions. However, the following result is 

straightforward to demonstrate. Given m regular benefit functions each with reference 

vector g, then a positive weighted average of these m functions is a regular benefit 

function with reference vector g.  

Note that the use of “flexible” functional forms is not attractive. Flexible 

functional forms (such as Translog) have one attractive property: the ability to represent 

an arbitrary set of price and income elasticities at a point in price-income space. Usually 

they cannot be constrained to satisfy the required regularity properties (apart from 

homogeneity) even at this particular point, but far more damaging is that they cannot be 
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constrained to satisfy the regularity properties required by a dual specification even over 

the sample space, let alone over points outside the sample space where we may wish to 

carry out policy analysis. (As an illustration, CGE models typically do not use flexible 

functional forms.) Thus well-known “flexible” functional forms are not necessarily 

useful for empirical specification of dual representations of preferences.   

The Numerical Inversion Estimation Method 

As shown in (20) and (21), the benefit function, together with its derivative property, 

provides a convenient vehicle for generating inverse Hicksian share systems. 

Specifically, for a chosen reference bundle g and a parametric specification of B 

satisfying certain conditions, one could obtain a share system by the above result.  If we 

could invert the benefit function B explicitly to give the implied direct utility function 

U(x), then the inverse Hicksian shares could be “Marshallianized” by replacing the u by 

U(x) as shown in (21).
10

 In practice, however, it is only in simple cases that it is 

possible to obtain a closed-form solution for U(x) for an arbitrary specification of B; it 

depends heavily on the particular parametric form of B. This paper focuses on the class 

of benefit functions for which such explicit inversion is not available; that is, solving 

B(x, u) = 0 for U(x) may not be accomplished analytically, and thus the benefit function 

cannot be equivalently represented by a closed form direct utility function.  

For a given parametric form for the benefit function with parameters , the inverse 

Marshallian share system could be expressed implicitly by the set of functions: 

(22)     i i

'p x

p x
 = W IH

i
(x, u; ) = i

j

i

j

j

B

B
x

x

x

x
, and    

(23)     B(x, u; ) = 0.        

Provided that the benefit function is strictly decreasing in u, then it becomes feasible to 

numerically invert (23) to express u as a function of x and  . Therefore, given a specific 
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functional form for B and , the corresponding inverse share system can be written as: 

(24) W IH

i
(x, u; ) = i

j

i

j

j

B ( , ; )

B ( , ; )

x θ

x θ

x

x

x u

x u
 = i

j

i

j

j

B [ , U( ; ); ]

B [ , U( ; ); ]

x x θ θ

x x θ θ

x

x

x

x
 = W IM

i
(x; ),   

where u = U(x; ) is the numerical solution of the identity function B(x, u; ) = 0 for u, 

solved at the given values of x and . 

 In a maximum likelihood search for the parameters of the inverse budget shares, 

explicit solution of the Marshallian inverse demands is not necessary; all that is required 

is that software capable of solving the identity function (23) be imbedded in the 

maximum likelihood computer routine. At each iterative step of the maximization of the 

likelihood function, there is a given set of parameter values. For these parameter values, 

(23) may be numerically inverted to recover the value of utility consistent with the 

given values of x. Then, this value of utility can be used to eliminate the value of u from 

the inverse Hicksian share system.   

Benefit Function Specification 

In this section, we examine the two specifications on which our empirical analysis is 

based.
11

 The first specification, the Simple Non-Additive Benefit (SNAB) function, 

serves to make the theoretical arguments developed in Section 2 less abstract and 

provide a bridge to our empirical analysis. The choice is motivated by a number of 

reasons, mainly the simplicity of the functional structure, the ease of imposing and 

maintaining regularity conditions, and the fact that the number of parameters will not 

increase rapidly with the number of inputs under consideration. More importantly, it is 

general enough to include “implicitly additive preference structure” as hypothesis to be 

tested rather than maintained. For purposes of comparison, we present and estimate the 

budget share equations corresponding to a second specification, the Baggio and Chavas 

(2006)  model (to be referred to as the B&C model). 
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The Simple Non-Additive Benefit (SNAB) Function 

Suppose that preferences are represented by the following form:  

(25)   B(x, u) =  j j j j j

j j

log( ) log( ) / X1x x u        ,    

where X1 =
jμ

j

j

x  with 
j


j
 = 1, and 

i
 = (

i
 + 

i 
u) / (1 + u) are the utility varying 

coefficients with 
j


j
 = 

j


j
 = 1. The structure (25) maintains all of the regularity 

properties in the quantities (increasing and concave in x) of the benefit function over the 

regions log(u)  0 and x
i
 > 

i
  i provided that the following conditions are satisfied: 

(26)    
i
 ≥ 0, 

i
 ≥ 0 and 0 ≤ 

i
 , 

i
, 

i
,  ≤ 1.     

We have seen from (3) that j

j j

B


 g

x
 = 1 for all x and u, requiring that 

j


j
g

j
 = 1, 

and 
j j

j j j

g

γx




  = 

j

j

j j

μ
g

x
  = 0. Furthermore, imposition of the restriction  = 0 gives a 

benefit function (to be referred to as the restricted SNAB) which is consistent with 

Hanoch's (1975) implicitly additive preference structure.  

As indicated by (22), differentiation of (25) after some manipulation gives the 

inverse Hicksian budget share system: 

(27)   W IH

i
(x, u) = 

η

i i i i i i i

η

j j j j j j j

j

δ /( γ ) η μ log( )/X1

δ /( γ ) η μ log( )/X1

x x x u

x x x u

   

     
. 

It is evident from (25) that it is impossible to solve explicitly for the value of u in terms 

of x and . In order to convert (27) to a Marshallian system, the unobservable u in (27) 

has to be replaced by the numerical inversion of (25) at B 0 . 

 

 

The B&C Model 
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The B&C model is obtained from the following specification of the benefit function: 

(28)     B(x, u) = 
X2

X1 - 
1 X3

u

u



 
,  

where Xk, k=1, 2 and 3, are three positive and continuous quantity functions. The B&C 

model results if Xk are specified as: 

 (29)   X1 = j j ij i j

j j i

0.5   x x x , X x j

j

j
2 



, and X3 = j j

j

x , 

where j, j, j
, and ij are the parameters. Symmetry of the Hessian matrix of the 

benefit function, implied by Young's theorem, requires that ij = ji. Furthermore, 

j

j j

B
1g

x





  must hold for all x and u, requiring that:  

j

j j

X1
1g

x





 , and j j

j jj j

X2 X3
0g g

x x

 
 

 
  . 

These generate the following restrictions: 

(30)   j j

j

1g  , and ij i ij j j j j j

i j j j

0g g g g           . 

Functions (28) and (29), on application of the Hotelling-Wold Analogue, generate 

the following system of inverse Hicksian budget share equations: 

(31)  W IH

i
(x, u) = 

2

i
i ij j i i i

j

2

j

j jk k j j j

j k

X2
X2

1 X3 1 X3

X2
X2

1 X3 1 X3

u u
x x x

u u

u u
x x x

u u

     
           

     

     
                   



 

. 

Elimination of u from (31) by the analytical inversion of (28) at the optimum (setting  

(28) equal to zero) leads immediately to the inverse Marshallian demand system, given 

by: 
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(32)   W IH

i
(x, u) = 

2

i ij j i i i i

j

2

j jk k j j j j

j k

X1
X1

X2

X1
X1

X2

x x x

x x x

 
         
 

  
          
  



 

. 

It is also transparent that, given the values of parameters and quantities of goods, the 

numerical inversion of (28) at the optimum to give u in terms of x and  and its 

substitution in (31) would give the same results as analytical inversion. 

Brief Remarks on the Database, Estimation and Stochastic 

Specification 

Price-dependent or inverse demand systems have been used recently to characterize 

short-run demand behavior for food, agricultural and fishery products. These systems 

seem especially useful in markets for agricultural and natural resource commodities 

where in the short run it is reasonable to argue that supplies are close to being perfectly 

inelastic. To illustrate the modeling and estimation strategies outlined in the preceding 

sections, the general SNAB function, its nested case (setting  to zero) and the B&C 

model were estimated using quarterly Japanese data on six categories of fish products – 

i) High Value Fish; ii) Medium Value Fish; iii) Low Value Fish; iv) Cuttlefish, Squid & 

Octopus; v) Lobster, Shrimp & Crab; and vi) Shellfish covering the period January 

1985 through December 2005. The data used are based on those of Eales, Durham and 

Wessells (1997) for 1985 to 1992, and are extended for 1993 to 2005.
 12

 The data were 

further aggregated to quarterly frequency resulting in 84 usable observations, and were 

deseasonalized and mean centered prior to estimation.
13  

One important remaining issue is the choice of reference bundle g which, because 

of the requirement j

j j

B


 g

x
 = 1 implies restrictions on the parameters defining B. To 

simplify matters, we choose g to be an N-vector (0, 0,…, 1)' implying that all valuations 
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are made relative to the value of the last commodity (shellfish). In other words, the 

Luenberger price function of shellfish (P L

6
) is normalized to unity. This choice of g then 

implies the following parameter restrictions:  

i) the SNAB function: 
6
 = 1, and 

6
 = 

6
 = 

6
 = 0; and 

ii) the B&C model: 
6
 = 1, and 

6
 = 

6
 = 

6j = 
j6 = 0 (j = 1 to 6).

14
  

 Since the GAUSS language is ideally suited for handling the implicit 

representation of functional relationships, the price-dependent demand systems may be 

estimated by using the GAUSS 3.6.27 computer package with the modules NLSYS and 

CML. The estimation method is non-linear Maximum Likelihood, and the inequality 

restrictions in (26) are imposed when estimating the systems.  

To implement the empirical analysis, the model has to be imbedded within a 

stochastic framework. To do so, we assume that the budget share equations are 

stochastic due to errors of optimization. Let w
it
 denote the ith budget share at time t, z

t
 a 

vector of all exogenous variables, and w t

n  = (w
1t

,……, w
(N-1)t

)
'
 an (N-1) x 1 vector of 

w
it
.
15

 The budget share system to be estimated may then be expressed compactly as: 

(33)    w t

n

 
= W

n
(x

t
; ) + e t

n
, t = 1,……, T,     

where W
n
(.) is the vector of deterministic components of the budget share equations,  

and e t

n
 is a vector of the error terms e

it
. To allow for serially correlated error terms, the 

following fourth-order autoregressive scheme is specified:
16

 

(34)     e t

n

 
= R *

n
e n

t-4  +  t

n
,  t

 = 2,……, T,    

where R *

n
 is an (N-1) x (N-1) autocorrelation matrix, and  t

n

 
is a vector of serially 

uncorrelated error terms characterized by a multivariate normal distribution with zero 

mean and a constant contemporaneous covariance matrix . By using (34), (33) could 
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be rewritten as:   

(35)  w t

n

 
= W

n
(z

t
; ) + R *

n [ n

t-4w  - W
n
(z

t-4 
; )] +  t

n , 
 
t = 2,……, T,   

which forms the basis for the empirical work. 

 While there are several ways in which the autocorrelation matrix R *

n  may be 

parameterized, preliminary analysis revealed that Moschini and Moro
'

s 

parameterization gave reasonable results and resulted in significant parameter 

parsimony. Following Moschini and Moro
'

s (1994) procedure, the N x N counterpart to 

matrix R *

n  (matrix R
*
) is specified by:  

R* *
'

'
 




 

where  = (
1
,……, 

 


N
)', * = diag(

1
,……, 

 


N
),   is an N x 1 vector of ones, and 

1  

to 
 


N
 are the autocorrelation coefficients. In estimation, the typical elements of R *

n  

( R*ij

n ) are recovered by using the identity R*ij

n  = R
*ij

 – R
*iN

 where R
*ij

 is the typical 

element of matrix R
*
. Accordingly, estimation of the equation systems with fourth order 

autoregressive error terms can be carried out based on the system (35), with N 

additional parameter (
1
,……, 

 


N
) to estimate in addition to parameters . 

 Because of the adding-up restriction of the budget shares, contemporaneous errors 


t
 are correlated with a singular variance covariance matrix . To cope with the singular 

error structure, the system (35) is estimated by deleting one of the budget share 

equations in the share systems (27) and (32). The coefficients of the deleted share 

equation can be recovered by using the theoretical restrictions in conjunction with the 

estimated coefficients of the other share equations. As usual, the estimation should be 

independent of which equation is excluded. 
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Empirical Results and Their Interpretation 

Analysis of the Estimates: Comparative results for the three specifications are presented 

in table 1. The most important point to highlight from the results is that the general and 

restricted SNAB satisfy the required regularity conditions for all observations. 

Regarding the single equation fit and performance, all three specifications fit the data 

reasonably well given that estimation is in share form: the R
2
 values range from 49.4% 

for high value fish (implied by the B&C) to 89.6% for lobster (implied by the restricted 

SNAB). The serial correlation properties of the error terms as shown in the Durbin-

Watson statistics are no longer severely pathological although there is some evidence of 

remaining autocorrelation in the residuals. This should probably be considered to be the 

small cost paid for the simplicity of Moschini and Moro's (1994) method for specifying 

autoregressive errors. 

For the general and restricted SNAB functions, the main point to make is that the 

restricted model is rejected in favor of its generalization on the basis of a 
2
 test. As can 

be seen, the computed chi-square value (
2
) is 8.604 which far exceeds the critical value 

for 
2
 of 3.841 for the 5% significance level. This leads to the conclusion that the 

implicitly additive benefit function (or restricted SNAB) is overly restrictive. Of interest 

is that the B&C, while containing four (or three) more free parameters than the general 

(or restricted) SNAB function, has a substantially lower likelihood function value 

(1380.096 versus 1397.501 or 1380.096 versus 1393.199). This indicates a preference 

for general and restricted SNAB over B&C. Thus, the likelihood function value ranks 

the models (from most to least preferred) as follows: general SNAB, restricted SNAB 

and B&C. 

To obtain further insights into the relative performance of the three specifications, 

Pollak and Wales
'
 (1991) Likelihood Dominance Criterion (LDC) test is performed. The 
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results of this test are shown in table 2. In all cases, LDC test statistics are less than the 

lower bound of the critical range, which means the models with fewer parameters 

(general and restricted SNAB) are preferred to the model with more parameters (B&C). 

Consequently, the LDC comparisons suggest B&C is not supported by the data, 

whereas the general and restricted SNAB are preferred. The preferred model is therefore 

based on the general SNAB function; its detailed parameter estimates are reported in 

table 3. 

Analysis of the Elasticity Estimates:
17

 The quantity and scale elasticity estimates for the 

general SNAB evaluated at the sample means of the exogenous variables are reported in 

table 4. Overall, these estimates offer no surprises. The Hicksian and Marshallian own 

quantity elasticities (h
ii
 and m

ii
) are negative, although their magnitudes are fairly 

similar to those reported by, for example, Barten and Bettendorf (1989), Holt and 

Bishop (2002), and Wong and McLaren (2005). Additionally, most of these elasticities 

are generally greater than minus one, suggesting that all types of fish (except lobster) 

are own quantity inelastic, whereas the corresponding direct demands for fish are price 

elastic.  

With respect to the derived Hisksian cross quantity elasticities (h
ij
), they are 

generally small in magnitude – the largest Hicksian cross-quantity elasticity is for 

shellfish with respect to high value fish, illustrating weak gross substitutability among 

all types of fish. These findings are fairly similar to those obtained in Belgium by 

Barten and Bettendorf (1989), in U.S. by Holt and Bishop (2002), and in Japan by 

Wong and McLaren (2005). Regarding the Marshallian cross quantity elasticities, 

magnitudes for these estimates are smaller in absolute terms than their Hicksian 

counterparts; all cross quantity effects are, however, still very small. We also find that 

most fish pairs are gross q-substitutes as indicated by the negative signs.  
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Turning to the scale elasticities (y
i
), the estimates are consistently negative whilst 

low value fish has the largest scale effect.
18

 More importantly, the estimated y
i
 are fairly 

different from minus one, suggesting that preferences are non-homothetic. Of interest is 

that earlier estimates of the scale elasticities of Japanese fish consumption by Eales, 

Durham and Wessells (1997), and Wong and McLaren (2005) range from -0.16 to -1.95. 

Prima facie, our estimates of scale elasticities are somewhat comparable to those in the 

early studies, although they adopted different functional forms.  

Analysis of Estimated Welfare Change: The main reason for imposing regularity 

restrictions such as (26) is to obtain consistent estimates for welfare losses caused by 

quantity restrictions. By applying the theory developed by Luenberger (1995) and 

(1996), the estimated inverse share system may be used to examine welfare changes 

associated with forced reduction in fish landings. Suppose that an individual's 

consumption bundle is changed from x
0
 with utility u

0
 to x

1
 with utility u

1
. Then the 

compensating benefit (CB) is defined by: 

(36)    CB = B(x
1
, u

0
) - B(x

0
, u

0
) = B(x

1
, u

0
)     

where the base utility u
0
 is defined implicitly from B(x

0
, u

0
) = 0. Intuitively, CB is the 

maximum amount of g that individuals are willing to give up in order to reach the utility 

level u
0
 while facing the quantity x

1
. A positive (negative) value for CB indicates that 

consumers are better (worse) off while facing quantities x
1
.   

In a similar manner, the equivalent benefit (EB) for a change in quantity from x
0
 

to x
1
 is defined as: 

(37)    EB = B(x
1
, u

1
) - B(x

0
, u

1
) = - B(x

0
, u

1
),    

where u
1
 is defined implicitly from B(x

1
, u

1
) = 0. According to Luenberger (1995) and 

(1996), EB is the minimum amount of g needed to move individuals to the new utility 

level u
1
 while facing the initial quantities x

0
. As for CB, a positive (negative) value for 
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EB suggests that consumers are better (worse) off under x
1
 than under x

0
. 

 By using equations (36) and (37) along with the preferred model (the general 

SNAB function), we may compute the welfare change associated with an arbitrary 10% 

catch reduction for a particular fish species. In the application, welfare change (CB and 

EB) estimates are obtained on an annualized basis for 1985-2005, as well as at the 

sample means. The CB and EB estimated for selected years are reported in table 5. 

 Note first that, as expected, CB and EB are negative in all instances, indicating 

that Japanese consumers are made worse off after the reduction in the harvest of an 

individual fish species. For example, the CB for a 10% reduction in the supply of high 

(or medium) value fish is -0.259 (or -0.511) unit of x
6
. Furthermore, the largest 

(smallest) welfare loss associated with the supply reduction is for medium (or low) 

value fish. Interestingly, the numerical differences between the CB and EB estimates are 

rather small, amounting to no more than 0.117 unit of x
6
 in all instances. In general, 

discrepancies between CB and EB are relatively small for medium and low value fish, 

lobster and cuttlefish, and are the largest for high value fish.  

Narrow fluctuations over time in CB and EB estimates are observed for medium 

and low value fish, lobster and cuttlefish. On the other hand, we find that there are 

considerable variations in the magnitude of EB for high value fish across years. 

Particularly, in 1985 the EB estimate associated with a 10% reduction in high value fish 

catch was -0.371 unit of x
6
, whereas the comparable estimate for 1995 was -0.186 unit 

of x
6
, over a 50% decrease (in absolute value). Possibly, this result simply reflects the 

decreased value of high value fish in 1995 versus 1985.  
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Conclusion 

The application of duality theory in consumer demand studies has allowed specification 

of a wide range of functional forms, which has helped considerably in the generation of 

empirical price-dependent demand systems. For the most part, specification has 

concentrated upon either the direct utility function or the distance function. Recently, 

more attention has been paid to the benefit function, but this has been mainly in the 

context of study of welfare issues. In this paper, we advocate a more extensive use of 

benefit functions in specifying inverse demand models by exploring the inter-

relationships between the inverse Marshallian (or Hicksian) demands, and Luenberger's 

adjusted price-dependent demands. It has been demonstrated that for a chosen benefit 

function, application of an analogue to the Hotelling-Wold Identity yields expressions 

for inverse Hicksian normalized price functions. While these functions are explicit in 

the level of utility, in most cases they do not have a closed-form representation as 

corresponding Marshallian functions i.e. in terms of observable variables. This aspect, 

however, need not hinder estimation, and was solved by applying a numerical inversion 

estimation method, as illustrated in Section 2. 

The implementation of the proposed methods relies on relatively simple 

functional forms to specify the benefit function, and the one used in this paper (referred 

to as the SNAB function), allows a simple generalization away from implicitly additive 

preferences. The application of the SNAB function was illustrated with an application to 

Japanese fish demand. Results in Section 4 generally indicate that this new specification 

is statistically preferred over the Baggio and Chavas (2006) model. Results also show 

that the modeling procedures and estimation methods employed here are promising and 

operationally feasible, and that the general and restricted SNAB functions satisfy their 

required regularity conditions for all observations in the sample period. This leads to the 
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conclusion that specification of preferences in terms of the benefit function may open 

up a wider range of empirical price-dependent demand specifications that may be 

constrained to satisfy tight theoretical restrictions.  
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Table 1: Single Equation and System Measures of Fit 

 The General 
SNAB 

The Restricted 

SNAB ( = 0) 
The B&C 

Log Likelihood Values 1397.501 1393.199 1380.096 

No. of Parameters 27 26 31 

R
2
    

High Value Fish 0.550 0.514 0.494  

Medium Value Fish 0.752 0.751 0.750  

Low Value Fish 0.652 0.648 0.649  

Lobster 0.895 0.896 0.893  

Cuttlefish 0.706 0.708 0.728  

Shellfish 0.683 0.683 0.695  

Durbin-Watson Statistics 

High Value Fish 2.485 2.621 2.741 

Medium Value Fish 2.474 2.492 2.497 

Low Value Fish 2.155 2.136 2.424 

Lobster 1.831 1.873 1.819 

Cuttlefish 1.780 1.758 2.039 

Shellfish 1.946 1.937 2.158 

Likelihood Ratio Test  

H
0
: 

 
= 0  i (rejected)   

Test Statistic = 8.604 and 
2

1, 5%χ  = 3.841 

 
 

Table 2: Summary Statistics for Non-Nested Comparisons 
 

Comparison (M1 versus M2) Test 
Statistic 

Critical Value Range 

(5% Significance Level)
 

 
General SNAB– Null Model  

v.s.  

B&C – Alternative Model  

 

-8.703 

 

(2.444, 3.615) 

Restricted SNAB– Null Model  

v.s.  

B&C – Alternative Model  

 

-6.552 

 

(3.060, 4.375) 

 
Note: M1 (or M2) is the model with fewer (or more) independent parameters in the model 

comparison. 

In each cell, the first value is the lower bound of the LDC critical ranges, computed as: 

0.5  [C(N2+1)-C(N1+1)], whilst the second value is the lower bound of the LDC critical 

ranges, computed as 0.5  [C(N2-N1+1)-C(1)], where N1 (or N2) denotes the number of 

parameters in M1 (or M2), and C(v) denotes the critical value of a 
2

 statistic with v 
degrees of freedom at the chosen significance level. 
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Table 3: Parameter Estimates for the Preferred Model (Asymptotic T 
Ratios in Parentheses) 
 


1
 0.302 (2.558) 

1
 0.337 (5.078)  0.061 (5.290) 


2
 0.182 (1.960) 

2
 0.608 (9.163) 

1
 0.100 (0.362) 


3
 0.155 (5.853) 

3
 0.055 (3.809) 

2
 0.590 (5.977) 


4
 0.124 (2.808) 

4
 0.000 (0.001) 

3
 0.040 (1.128) 


5
 0.236 (6.114) 

5
 0.000  

4
 0.080 (1.342) 


1
 0.117 (0.896) 

1
 0.189 (0.914) 

5
 0.000  


2
 0.268 (2.280) 

2
 0.257 (0.593) 

6
 0.000  


3
 0.036 (0.399) 

3
 0.194 (0.517) 

1
 0.999 (199.980) 


4
 0.228 (1.816) 

4
 0.146 (0.260) 

2
 0.999 (142.843) 


5
 0.351 (1.675) 

5
 0.215 (0.231) 

3
 0.999 (164.104) 

      
4
 0.974 (145.612) 

      
5
 0.998 (209.385) 

      
6
 0.480 (26.661) 

 
Note: The constraints 0  

5 , 


6 
 1 and 0  

5  
 1 were binding, and hence no t-values are 

reported.  
The estimated t-ratios must be interpreted with care since the standard asymptotic theory 
is unfortunately inapplicable when parameters are subject to inequality constraints. 
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Table 4: Elasticity Estimates for the General SNAB function (Asymptotic T Ratios 

in Parentheses) 

 

Commodity i 
Hicksian Quantity Elasticities 

h
i1
 h

i2
 h

i3
 h

i4
 h

i5
 h

i6
 

High Value  -0.286 0.267 0.053 0.118 0.132 -0.285 

 (-7.018) (6.874) (6.116) (7.489) (6.799) (-9.448) 

Medium Value  0.211 -0.447 0.072 0.145 0.168 -0.150 
 (6.278) (-3.927) (4.644) (4.344) (9.895) (-4.994) 

Low Value 0.244 0.366 -0.608 0.174 0.190 -0.366 

 (9.965) (8.870) (-12.595) (5.572) (6.999) (-7.726) 
Lobster 0.250 0.483 0.083 -0.929 0.191 -0.078 

 (12.413) (12.700) (9.194) (-32.504) (9.315) (-4.801) 

Cuttlefish 0.240 0.456 0.081 0.155 -0.814 -0.117 

 (11.779) (12.759) (9.184) (9.079) (-37.543) (-7.078) 
Shellfish -0.642 -0.491 -0.234 -0.085 -0.148 -0.255 

 (-8.494) (-5.005) (-6.180) (-2.721) (-4.889) (-13.751) 

Commodity i 
Marshallian Quantity Elasticities 

m
i1

 m
i2

 m
i3
 m

i4
 m

i5
 m

i6
 

High Value  -0.574 -0.153 -0.029 -0.014 -0.028 -0.414 
 (-19.909) (-2.091) (-11.295) (-9.491) (-18.762) (-10.318) 

Medium Value  -0.073 -0.859 -0.009 0.012 0.011 -0.276 

 (-13.465) (-6.127) (-3.676) (7.923) (8.203) (-10.061) 
Low Value -0.229 -0.323 -0.742 -0.044 -0.073 -0.578 

 (-15.441) (-4.399) (-16.387) (-16.264) (-21.822) (-9.495) 

Lobster -0.037 0.065 0.002 -1.061 0.031 -0.207 

 (-6.149) (0.832) (0.786) (-63.350) (16.447) (-9.325) 
Cuttlefish -0.060 0.018 -0.005 0.017 -0.982 -0.252 

 (-10.624) (0.235) (-2.167) (10.611) (-1033.101) (-10.557) 

Shellfish -0.087 -0.035 -0.013 0.007 0.003 -0.300 

 (-12.783) (-0.484) (-6.779) (6.125) (7.294) (-11.633) 

 
Scale Elasticities 

 y
1
 y

2
 y

3
 y

4
 y

5
 y

6
 

 -1.212 -1.194 -1.989 -1.207 -1.264 -0.423 

 (-13.519) (-10.193) (-20.291) (-12.215) (-13.424) (-4.888) 
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 Table 5: Annualized Compensating and Equivalent Benefit for a 10% Increase in 

Supply of All Types of Fish 

 

Fish Category CB EB 

1985 

High Value  -0.259 -0.376 

Medium Value  -0.511 -0.510 

Low Value  -0.074 -0.074 
Lobster -0.083 -0.083 

Cuttlefish -0.125 -0.125 

Shellfish -0.100 -0.100 

1995 

High Value  -0.256 -0.186 

Medium Value  -0.526 -0.525 

Low Value  -0.069 -0.069 
Lobster -0.099 -0.099 

Cuttlefish -0.147 -0.147 

Shellfish -0.100 -0.100 

2005 

High Value  -0.249 -0.262 

Medium Value  -0.502 -0.501 
Low Value  -0.074 -0.074 

Lobster -0.091 -0.090 

Cuttlefish -0.134 -0.133 

Shellfish -0.100 -0.100 

Sample Average 

High Value  -0.248 -0.224 

Medium Value  -0.514 -0.513 
Low Value  -0.071 -0.071 

Lobster -0.093 -0.093 

Cuttlefish -0.139 -0.138 
Shellfish -0.100 -0.100 

 

                                                
1

 See, for example, Eales and Unnevehr (1994), Holt (2002), Holt and Bishop (2002), and 

Wong and McLaren (2005).  

2

 See Luenberger (1992), pp. 468-469. 

3

 In Baggio and Chavas (2006), since the specification of the benefit function can be 

analytically inverted to derive the implied direct utility function, the closed form inverse 

Marshallian demands can be derived. Thus the inverse Marshallian demands could have been 

derived just as easily by applying the Hotelling-Wold Identity to the corresponding direct utility 



The Benefit Function Approach to Modeling Price-Dependent Demand Systems 

29 
 

                                                                                                                                          
function, and thus this does not represent an advance in our ability to represent a wider class of 

underlying preference orderings. 

4

 See McLaren et al (2000), and Wong and McLaren (2005). 

5

 The definition of a benefit function is illustrated in Luenberger (1995), pp. 98-99. 

6

 See Deaton (1979). 

7

 See Luenberger (1996), p. 449. 

8

 Superscripts have been suppressed for simplicity. The mapping from R to S is in fact 

equation 2.12 in Chambers, Chung and Fare (1996). 

9

 The same derivation could apply to the distance function D(x, u), with the identity D(x, 

u)=1. Thus it should be true that the benefit and the distance functions are related by the 

functional identity i i i

j j

i

x x x

j x j x

j j

x

B D D

x B x D D
D  

 
, by homogeneity of D, and D = 1, which 

provides further insight into the relation between these functions. See also Chambers, Chung 

and Fare (1996). This relationship also says something about the way in which the reference 

vector g may enter into the functional specification of B, since the corresponding inverse 

Hicksian demands are independent of g. 

10

 This is essentially the procedure employed in Baggio and Chavas (2006). 

11

 See Luenberger (1992), p. 469-472 for examples of using other functional forms to 

represent the benefit function. 

12

 See Eales, Durham and Wessells (1997), p. 1157 for a complete description of the data. 

13

 The seasonal adjustment of the data set was done with the help of SAMA procedure in 

TSP version 4.5 package. An alternative approach to accounting for seasonality’s effects is to 

specify each i (or i) parameter in (27) (or (31)) to be a function of three quarterly dummy 

variables and a constant, as suggested by Eales and Unnevehr (1994), and Holt and Bishop 
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(2002). Note however that this will significantly increase the number of parameters, which may 

create estimation convergence problems.    

14

 The i
th
 adjusted price function is derived by applying the envelope theorem to (25) and 

(28). Thus, 

i) the SNAB function  P
L

i
(x, u; g) = i i

i

i i i

log( )
  

X1

u

x x 

 
  

 
; and 

ii) the B&C model  P
L

i
(x, u; g) = 

2

i
i ij j i

j i

X2
X2

(1 X3) 1 X3

u u
x

u x u

   
       

    
 . 

Provided that g = (0, 0, 0, 0, 0, 1) and noting that 
N

L

i i

i=1

P g  = 1 must hold for all x and u, 

these imply the following parameter restrictions:  

i) the SNAB function: 
6
 = 

6
 = 

6
 = 0; and 

ii) the B&C model: 
6
 = 1, and 

6
 = 

6
 = 

6j = 0 (j = 1 to 6). 

15

 The superscript “n” indicates the last row (row and column) of the respective vector 

(matrix) has been annihilated.  

16

 Preliminary analysis revealed significant autocorrelation in the residuals of (33) at lag four.  

17

 For reasons of brevity, the elasticity equations derived from the general SNAB are not 

presented below. The derivations of these equations are available separately. 

18

 Scale elasticities (y
i
), reported in the third part of table 3, measure the potential response 

of commodity price to a proportionate increase in all commodities. For example, the scale 

elasticity for high value fish is -1.212, which indicates that a 1% proportionate increase in all 

commodities will reduce the price (or the marginal value) of this fish category by about 1.212%.  
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Appendix: Elasticity Equations for the SNAB Function 

Let 
ijM  denote the Marshallian quantity elasticities for commodity i with respect to x j

, 

S
i 
the scale elasticity of commodity i, and 

ijH  the Hicksian quantity elasticities for 

commodity i with respect to x j
. To facilitate thinking about preferences in terms of a 

benefit function, the quantity and scale elasticity functions can be written in terms of x 

and u:
 
 

ijM  = 
i jM

ji

j j

log B [ , U( )] / B [ , U( )]
log(R )

log( ) log( )

jx x x

x x

 
  

  
 

x x x x

, Si =

 
ij

j

M , and

 

ijH

 

= 
i jH

ji

j j

log B ( , ) / B ( , )
log(R )

log( ) log( )

jx xu u x

x x

 
  

  
 

x x

.  

Given the functional form of the SNAB function, it follows that the quantity and 

scale elasticity equations are expressed as: 

ijM  = - ij + 

i

ij i ij i j

i

δ V U μ Z

Bx x

 

j

j ij j

j

j

j

V U Z

Bx x

  
 

  
 
 




, 

Si = -1 + 

i

ij i ij i j

i i

δ V U μ Z

Bx x

  
 
 
 


j

j ij j

j

i j

j

V U Z

Bx x

  
 

  
 
 





, and  

ijH = - ij + 

i

2 η

ij i ij i j

i

δ V U μ μ η log( ) / X1

Bx

u

x

 

j

2 η

j j

j

j

V μ η log( ) / X1

Bx

u

x

 
 

  
 
 


, 

where Vi = ixi + i i

i iγ

x

x




 - 

2

i i

2

i i( γ )

x

x




,  

Uij=
i i

i i j

log(U)

γ log( ) log( )

x

x u x

 

  
 in which 

j

log(U)

log( )x




 =

j j

j'

j' j' η
j'

B

1
log( γ )

log( ) X1

x x

x
u




 




, 

i

log( )u




 = i i

2

(β -α )

(1 )

u

u
, Bxi = B/xi = i

i i i i η

i

μ ηlog( )
δ /( γ )

X1

u
x

x
   , and  

Zj = 
η

η

X1

j j

j
j'

j' j' η
j'

B
μ ηlog( )

1
log( γ )

log( ) X1

x x
u

x
u

 
 
 

 
   


.    

 


