DERIVED CATEGORIES OF COHERENT SHEAVES AND MOTIVES.

DMITRI ORLOV

The bounded derived category of coherent sheaves $D^b(X)$ is a natural triangulated category which can be associated with an algebraic variety X. It happens sometimes that two different varieties have equivalent derived categories of coherent sheaves $D^b(X) \simeq D^b(Y)$. There arises a natural question: can one say anything about motives of X and Y in that case? The first such example (see [4])—abelian variety A and its dual \hat{A}—shows us that the motives of such varieties are not necessary isomorphic. However, it seems that the motives with rational coefficients are isomorphic in all known cases.

Recall a definition of the category of effective Chow motives $\text{CH}^{\text{eff}}(k)$ over a field k. The category $\text{CH}^{\text{eff}}(k)$ can be obtained as the pseudo-abelian envelope (i.e. as formal adding of cokernels of all projectors) of a category, whose objects are smooth projective schemes over k, and the group of morphisms from X to Y is the sum $\oplus_{X_i} A^m(X_i \times Y)$ (over all connected components X_i) of the groups of cycles of codimension $m = \dim Y$ on $X_i \times Y$ modulo rational equivalence (see [3, 1]). In [7] Voevodsky introduced a triangulated category of geometric motives $\text{DM}^{\text{eff}}_{\text{gm}}(k)$. He started with an additive category $\text{SmCor}(k)$, objects of which are smooth schemes of finite type over k, and the group of morphisms from X to Y is the free abelian group generated by integral closed subschemes $Z \subset X \times Y$ such that the projection on X is finite and surjective onto a connected component of X. There is a natural embedding $[-] : \text{Sm}(k) \to \text{SmCor}(k)$ of the category $\text{Sm}(k)$ of smooth schemes of finite type over k. The category $\text{SmCor}(k)$ is additive and one has $[X \coprod Y] = [X] \oplus [Y]$. Further, he considered the quotient of the homotopy category $\mathcal{H}^b(\text{SmCor}(k))$ of bounded complexes by minimal thick triangulated subcategory T, which contains all objects of the form $[X \times \mathbb{A}^1] \to [X]$ and $[U \cap V] \to [U] \oplus [V] \to [X]$ for any open covering $U \cup V = X$. Triangulated category $\text{DM}^{\text{eff}}_{\text{gm}}(k)$ is defined as the pseudo-abelian envelope of the quotient category $\mathcal{H}^b(\text{SmCor}(k))/T$ (see [7, 1]).

There exists a canonical functor $\text{CH}^{\text{eff}}(k) \to \text{DM}^{\text{eff}}_{\text{gm}}(k)$, which is a full embedding if k admits resolution of singularities ([7, 4.2.6]). Thus, it doesn’t matter in which category (in $\text{CH}^{\text{eff}}(k)$ or in $\text{DM}^{\text{eff}}_{\text{gm}}(k)$) motives of smooth projective varieties are considered. Denote the

\hspace{1cm} This work was done with a partial financial support from grant RFFI 05-01-01034, from the President of RF young Russian scientists award MD-2731.2004.1, from grant CRDF Award No RUM1-2661-MO-05, and from the Russian Science Support Foundation.
motive of a variety X by $M(X)$, and its motive in the category of motives with rational coefficients $DM_{gm}^{\text{eff}}(k) \otimes \mathbb{Q}$ (and in $\text{CH}^{\text{eff}}(k) \otimes \mathbb{Q}$) by $M(X)_\mathbb{Q}$.

Conjecture 1. Let X and Y be smooth projective varieties, and let $D^b(X) \simeq D^b(Y)$. Then the motives $M(X)_\mathbb{Q}$ and $M(Y)_\mathbb{Q}$ are isomorphic in $\text{CH}^{\text{eff}}(k) \otimes \mathbb{Q}$ (and in $DM_{gm}^{\text{eff}}(k) \otimes \mathbb{Q}$).

Conjecture 2. Let X and Y be smooth projective varieties and let $F : D^b(X) \to D^b(Y)$ be a fully faithful functor. Then the motive $M(X)_\mathbb{Q}$ is a direct summand of the motive $M(Y)_\mathbb{Q}$.

The category $DM_{gm}^{\text{eff}}(k)$ has a tensor structure, and $M(X) \otimes M(Y) = M(X \times Y)$. One defines the Tate object $Z(1)$ to be the image of the complex $[\mathbb{P}^1] \to [\text{Spec}(k)]$ placed in degree 2 and 3 and put $M(p) = M \otimes Z(1)^{\otimes p}$ for any motive $M \in DM_{gm}^{\text{eff}}(k)$ and $p \in \mathbb{N}$. The triangulated category of geometric motives $DM_{gm}(k)$ is defined by formally inverting the functor $\simeq \otimes \mathbb{Z}(1)$ on $DM_{gm}^{\text{eff}}(k)$. The important and nontrivial fact here is the statement that the canonical functor $DM_{gm}^{\text{eff}}(k) \to DM_{gm}(k)$ is a full embedding [7, 4.3.1]. Therefore, we can work in the category $DM_{gm}(k)$. Moreover (see [7]), for any smooth projective varieties X, Y and for any integer i there is an isomorphism

$$\text{Hom}_{DM_{gm}(k)}(M(X), M(Y)(i)[2i]) \simeq A^{m+i}(X \times Y), \quad \text{where} \quad m = \dim Y.$$

Suppose, one has a fully faithful functor $F : D^b(X) \to D^b(Y)$ between derived categories of coherent sheaves of two smooth projective varieties X and Y of dimension n and m respectively. Any such functor has a right adjoint F^* by [2], and by Theorem 2.2 from [5] (see also [6, 3.2.1]) the functor F can be represented by an object on the product $X \times Y$, i.e. $F \cong \Phi_A$, where $\Phi_A = Rp_{2*}(p_1^*(-) \otimes A)$ for some $A \in D^b(X \times Y)$. With any functor of the form $\Phi_A : D^b(X) \to D^b(Y)$ one can associate an element $a \in A^*(X \times Y, \mathbb{Q})$ by the following rule

$$a = p_1^* \sqrt{\text{td}_X} \cdot \text{ch}(A) \cdot p_2^* \sqrt{\text{td}_Y},$$

where td_X and td_Y are Todd classes of the varieties X and Y. The cycle a has a mixed type. Let us consider its decomposition on the components $a = a_0 + \cdots + a_{n+m}$, where index is the codimension of a cycle on $X \times Y$. Each component a_q induces a map of motives

$$\alpha_q : M(X)_\mathbb{Q} \to M(Y)_\mathbb{Q}(q-m)[2(q-m)].$$

Thus the total cycle a gives a map $\alpha : M(X)_\mathbb{Q} \to \bigoplus_{i=-m}^{n} M(Y)_\mathbb{Q}(i)[2i]$. Now consider the object $B \in D^b(X \times Y)$, which represents the adjoint functor F^*, i.e. $F^* \cong \Psi_B$, where $\Psi_B = Rp_{1*}(p_2^*(-) \otimes B)$. One attaches to the object B a cycle $b = b_0 + \cdots + b_{n+m}$ defined by the same formula (1). The cycle b induces a map $\beta : \bigoplus_{i=-m}^{n} M(Y)_\mathbb{Q}(i)[2i] \to M(X)_\mathbb{Q}$.

Since the functor Φ_A is fully faithful, the composition $\Psi_B \circ \Phi_A$ is isomorphic to the identity functor. Applying the Riemann-Roch-Grothendieck theorem, we obtain that the composition

$$M(X)_Q \xrightarrow{\alpha} \bigoplus_{i=-m}^{n} M(Y)_Q(i)[2i] \xrightarrow{\beta} M(X)_Q$$

is the identity map, i.e. $M(X)_Q$ is a direct summand of $\bigoplus_{i=-m}^{n} M(Y)_Q(i)[2i]$.

Assume now that $\dim X = \dim Y = n$ and, moreover, suppose that the support of the object A also has the dimension n. Therefore, $a_q = 0$ when $q = 0, \ldots, n-1$, i.e. $a = a_n + \cdots + a_{2n}$. It is easily to see that in this case $b = b_n + \cdots + b_{2n}$ as well. This implies that the composition $\beta \cdot \alpha : M(X)_Q \to M(X)_Q$, which is the identity, coincides with $\beta_n \cdot \alpha_n$. Hence, $M(X)_Q$ is a direct summand of $M(Y)_Q$. Furthermore, since the cycles a_n and b_n are integral in this case we get the same result for integral motives, i.e. the integral motive $M(X)$ is a direct summand of the motive $M(Y)$ as well. Thus, we obtain

Theorem 1. Let X and Y be smooth projective varieties of dimension n, and let $F : D^b(X) \to D^b(Y)$ be a fully faithful functor such that the dimension of the support of an object A on $X \times Y$, which represents F, is equal to n. Then the motive $M(X)$ is a direct summand of the motive $M(Y)$. If, in addition, the functor F is an equivalence, then the motives $M(X)$ and $M(Y)$ are isomorphic.

Examples of such functors are known, they come from birational geometry (see e.g. [6]). In these examples one of the connected components of $\text{supp}(A)$ gives a birational map $X \dashrightarrow Y$. Blow ups and anti-flips induce fully faithful functors, and flops induce equivalences. Note that an isomorphism of motives implies an isomorphism of any realization (singular cohomologies, l-adic cohomologies, Hodge structures and so on).

For arbitrary equivalence $\Phi_A : D^b(X) \to D^b(Y)$ the map of motives $\alpha_n : M(X)_Q \to M(Y)_Q$, induced by the cycle $a_n \in A^n(X \times Y, \mathbb{Q})$, is not necessary an isomorphism (e.g. Poincare line bundle \mathcal{P} on the product of abelian variety A and its dual \widehat{A}). However, the following conjecture, which specifies Conjecture 1, may be true.

Conjecture 3. Let A be an object of $D^b(X \times Y)$, for which $\Phi_A : D^b(X) \to D^b(Y)$ is an equivalence. Then there exist line bundles L and M on X and on Y respectively such that the component a'_n of the object $A' := p_1^*L \otimes A \otimes p_2^*M$ gives an isomorphism between motives $M(X)_Q$ and $M(Y)_Q$.

I am grateful to Yu. I. Manin for very useful discussions.
REFERENCES

Steklov Mathematical Institute RAN

E-mail address: orlov@mi.ras.ru