
A WALK IN THE NONCOMMUTATIVE GARDEN

ALAIN CONNES AND MATILDE MARCOLLI

Contents

1. Introduction 2
2. Handling noncommutative spaces in the wild: basic tools 2
3. Phase spaces of microscopic systems 6
4. Noncommutative quotients 9
5. Spaces of leaves of foliations 10
6. The noncommutative tori 17
7. Duals of discrete groups 22
8. Brillouin zone and the quantum Hall effect 24
9. Tilings 29
10. Noncommutative spaces from dynamical systems 32
11. Noncommutative spaces from string theory 36
12. Groupoids and the index theorem 38
13. Riemannian manifolds, conical singularities 39
14. Cantor sets and fractals 45
15. Spaces of dimension z and DimReg 48
16. Local algebras in supersymmetric QFT 50
17. Spacetime and the standard model of elementary particles 51
18. Isospectral deformations 57
19. Algebraic deformations 59
20. Quantum groups 62
21. Spherical manifolds 66
22. Q-lattices 69
23. Modular Hecke algebras 74
24. Noncommutative moduli spaces, Shimura varieties 81
25. The adeles class space and the spectral realization 84
26. Thermodynamics of endomotives and the Tehran program 90
References 100

1



2 CONNES AND MARCOLLI

1. Introduction

If you cleave the hearth of one drop of water
a hundred pure oceans emerge from it.

(Mahmud Shabistari, Gulshan-i-raz)

We have decided to contribute to the volume of the IPM lectures on noncommutative ge-
ometry a text that collects a list of examples of noncommutative spaces. As the quote of
the Sufi poet here above suggests, it is often better to approach a new subject by analyzing
specific examples rather than presenting the general theory. We hope that the diversity of
examples the readers will encounter in this text will suffice to convince them of the fact that
noncommutative geometry is a very rich field in rapid evolution, full of interesting and yet
unexplored landscapes. Many of the examples collected here have not yet been fully explored
from the point of view of the general guidelines we propose in Section 2 and the main point
of this text is to provide a great number of open questions. The reader should interpret this
survey as a suggestion of possible interesting problems to investigate, both in the settings
described here, as well as in other examples that are available but did not fit in this list, and
in the many more that still await to be discovered. Besides the existing books on NCG such
as [53], [144], [54], [126], [136] [103] [149], two new books are being written: one by the two
authors of this paper [77], and one by Connes and Moscovici [87].

2. Handling noncommutative spaces in the wild: basic tools

We are going to see in many example how one obtains the algebra of coordinates A of a
noncommutative space X. Here we think of A as being the algebra of “smooth functions”,
which will usually be a dense subalgebra of a C∗-algebra Ā.

Here are some basic steps that one can perform in order to acquire a good understanding of
a given noncommutative space X with algebra of coordinates A.

1) Resolve the diagonal of A and compute the cyclic cohomology.
2) Find a geometric model of X up to homotopy.
3) Construct the spectral geometry (A,H, D).
4) Compute the time evolution and analyze the thermodynamics.

1) The first step means finding a resolution of the A-bimodule A by projective A-bimodules
making it possible to compute the Hochschild homology of A effectively. In general, such
resolutions will be of Kozsul type and the typical example is the resolution of the diagonal
for the algebra C∞(X) of smooth functions on a compact manifold as in the C∞ version [58]
of the Hochschild, Kostant, Rosenberg theorem (cf. [117]). It makes it possible to know what
is the analogue of differential forms and of de Rham currents on the space X and to take
the next step of computing the cyclic homology and cyclic cohomology of A, which are the
natural replacements for the de Rham theory. For foliation algebras this was done long ago
(cf. [56], [34], [93]). It ties in with the natural double complex of transverse currents.
It is not always easy to perform this step of finding a resolution and computing Hochschild and
cyclic (co)homology. For instance, in the case of algebras given by generators and relations
this uses the whole theory of Kozsul duality, which has been successfully extended to N -
homogeneous algebras (cf. [98], [99], [100], [101], [102], [22]).
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One specific example in which it would be very interesting to resolve the diagonal is the
modular Hecke algebras (Section 23). In essence, finding a resolution of the diagonal in the
algebra of modular forms of arbitrary level, equivariant with respect to the action of the
group GL2(Af ) of finite adeles, would yield formulas for the compatibility of Hecke operators
with the algebra structure. This is a basic and hard problem of the theory of modular forms.

Cyclic cohomology (and homology) is a well developed theory which was first designed to
handle the leaf spaces of foliations as well as group rings of discrete groups (cf. [126]). The
theory admits a purely algebraic version which is at center stage in “algebraic” noncommu-
tative geometry, but it is crucial in the analytic set-up to construct cyclic cocycles with good
compatibility properties with the topology of the algebra. For instance, when the domain of
definition of the cocycle is a dense subalgebra stable under holomorphic functional calculus,
it automatically gives an invariant of the K-theory of the underlying C ∗-algebra (cf. [56]).

2) The essence of the second step is that many noncommutative spaces defined as a “bad
quotients” (cf. Section 4) can be desingularized, provided one is ready to work up to homotopy.
Thus for instance if the space X is defined as the quotient

X = Y/ ∼
of an “ordinary” space Y by an equivalence relation ∼ one can often find a description of the
same space X as a quotient

X = Z/ ∼
where the equivalence classes are now contractible spaces. The homotopy type of Z is then
uniquely determined and serves as a substitute for that of X (see [15]).
For instance, if the equivalence relation on Y comes from the free action of a torsion free
discrete group Γ, the space Z is simply a product over Γ of the form

Z = Y ×Γ EΓ,

where EΓ is a contractible space on which Γ acts freely and properly.
The main point of this second step is that it gives a starting point for computing the K-theory
of the space X i.e. of the C∗-algebra A = Ā playing the role of the algebra of continuous
functions on X. Indeed, for each element of the K-homology of the classifying space Z, there
is a general construction of an index problem for “families parameterized by X” that yields
an assembly map (cf. [15])

(2.1) µ : K∗(Z)→ K∗(A)

This Baum–Connes map is an isomorphism in a lot of cases (with suitable care of torsion, cf.
[16]) including all connected locally compact groups, all amenable groupoids and all hyper-
bolic discrete groups. It thus gives a computable guess for the K-theory of X.
The next step is not only to really compute K(A) but also to get a good model for the “vector
bundles” on X i.e. the finite projective modules over A. This step should then be combined
with the above first step to compute the Chern character using connections, curvature, and
eventually computing moduli spaces of Yang-Mills connections as was done for instance for
the NC-torus in [88].

3) The third step makes it possible to pass from the soft part of differential geometry to the
harder “Riemannian” metric aspect. The sought for spectral geometry (A,H, D) has three
essential features:
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• The K-homology class of (A,H, D).
• The smooth structure.
• The metric.

One should always look for a spectral triple whose K-homology class is as non-trivial as
possible. Ideally it should extend to a class for the double algebra A ⊗ Ao and then be a
generator for Poincaré duality. In general this is too much to ask for, since many interesting
spaces do not fulfill Poincaré duality. The main tool for determining the stable homotopy
class of the spectral triple is Kasparov’s bivariant KK-theory. Thus it is quite important
to already have taken step 2 and to look for classes whose pairing with K-theory is as non-
trivial as can be. For the smooth structure, there is often a natural guess for a subalgebra
A∞ ⊂ A of the C∗-algebra A = Ā that will play the role of the algebra of smooth functions.
It should in general contain the original algebra A but should have the further property
of being stable under the holomorphic functional calculus. This ensures that the inclusion
A∞ ⊂ A is an isomorphism in K-theory and makes it possible to complete the classification
of smooth vector bundles.
The role of the unbounded operator D for the smooth structure is that it defines the geodesic
flow by the formula

Ft(a) = eit|D| a e−it|D| , ∀a ∈ A∞

and one expects that smoothness is governed by the smoothness of the operator valued map
R 3 t 7→ Ft(a). The main result of the general theory is the local index formula of [81], which
provides the analogue of the Pontrjagin classes of smooth manifolds in the noncommutative
framework.
The problem of determining D from the knowledge of the K-homology class is very similar
to the choice of a connection on a bundle. There are general results that assert the existence
of an unbounded selfadjoint D with bounded commutators with A from estimates on the
commutators with the phase F . The strongest is obtained (cf. [54]) just assuming that the
[F, a] are in an ideal called LiH and it ensures the existence of a theta-summable spectral
triple which is what one needs to get started.
It is not always possible to find a finitely-summable spectral triple, first because of growth
conditions on the algebra [59], but also since the finitely-summable condition is very analogous
to type II in the theory of factors. In very general cases, like the noncommutative space
coming from foliations, one can however go from type III to type II by passing to the total
space of the space of transverse metrics and then use the theory of hypoelliptic operators
[82].

Another way to attack the problem of determining D is to consider the larger algebra gen-
erated by A and D, write a-priori relations between A and D and then look for irreducible
representations that fall in the correct stable homotopy class. Ideally one should minimize
the spectral action functional [45] in this homotopy class thus coming close to gravity. In
practise one should use anything available and the example of the NC-space given by the
quantum group SUq(2) shows that things can be quite subtle [192].
Once the spectral triple (A,H, D) has been determined, the basic steps are the following, one
should compute

• The dimension spectrum Σ ⊂ C.
• The local index formula.
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• The inner fluctuations, scalar curvature, and spectral action.

4) Often a noncommutative space comes with a measure class, which in turn determines a time
evolution σt, namely a 1-parameter family of automorphisms of the C ∗-algebra A = Ā. In the
type II situation one can apply the discussion of step 3 above and, in the finite dimensional
case, use the operator D to represent functionals in the measure class in the form

ϕ(a) =

∫
− a |D|−p , ∀ a ∈ A

where
∫
− is the noncommutative integral i.e. the Dixmier trace and p is the “dimension”.

In the general case one should expect to be in the type III situation in which the time evolution
σt is highly non-trivial. We shall see some examples, for instance in Section 22. Given the
data (Ā, σt) it is natural to regard it as a quantum statistical mechanical system, with Ā as
algebra of observables and σt as time evolution. One can then look for equilibrium states for
the system, for a given value β of the thermodynamic parameter (inverse temperature).
If the algebra Ā is concretely realized as an algebra of bounded operators on a Hilbert space
H, then one can consider the Hamiltonian H, namely the (unbounded) operator on H that
is the infinitesimal generator of the time evolution. If the operator exp(−βH) is trace class,
then one has equilibrium states for the system (Ā, σt) written in the usual Gibbs form

ϕβ(a) =
Tr(a exp(−βH))

Tr(exp(−βH))
,

where Z(β) = Tr(exp(−βH)) is the partition function of the system. The notion of equi-
librium state continues to make sense when exp(−βH) is not necessarily trace class, and is
given by the more subtle notion of KMS (Kubo–Martin–Schwinger) states.
These are states on Ā, namely continuous functionals ϕ : Ā → C with ϕ(1) = 1 and ϕ(a∗a) ≥
0, satisfying the KMSβ condition that, for all a, b ∈ Ā there exists a function Fa,b(z) which
is holomorphic on the strip 0 < <(z) < iβ continuous and bounded on the closed strip and
such that, for all t ∈ R,

(2.2) Fa,b(t) = ϕ(aσt(b)) and Fa,b(t+ iβ) = ϕ(σt(b)a).

KMS states at zero temperature can be defined as weak limits as β →∞ of KMSβ states.
One can construct using KMS states very refined invariants of noncommutative spaces. For
a fixed β, the KMSβ states form a simplex, hence one can consider only the extremal KMSβ

states Eβ , from which one recovers all the others by convex combinations. An extremal KMSβ

state is always factorial and the type of the factor is an invariant of the state. The simplest
situation is the type I. One can show under minimal hypothesis ([66]) that extremal KMSβ

states continue to survive when one lowers the temperature i.e. one increases β. Thus, in
essence, when cooling down the system this tends to become more and more “classical” and
in the 0-temperature limit Eβ gives a good replacement of the notion of classical points for a
noncommutative space. We shall see in Section 24 how, in examples related to arithmetic, the
“classical points” described by the zero temperature KMS states of certain quantum statistical
mechanical systems recover classical arithmetic varieties. The extremal KMS states at zero
temperature, evaluated on suitable arithmetic elements in the noncommutative algebra, can
be shown in significant cases to have an interesting Galois action, related to interesting
questions in number theory (cf. [27], [78], [74]).
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Im z = β

Im z = 0
F(t) = ϕ(aσt(b))

F(t + iβ) = ϕ(σt(b)a)

0

iβ

Figure 1. The KMS condition

In joint work with Consani, we showed in [66] how to define an analog in characteristic zero
of the action of the Frobenius on the etale cohomology by a process involving the above
thermodynamics. One key feature is that the analogue of the Frobenius is the “dual” of the
above time evolution σt. The process involves cyclic homology and its three basic steps are
([66])

• Cooling.
• Distillation.
• Dual action of R∗

+ on the cyclic homology of the distilled space.

When applied to the simplest system (the Bost–Connes system of [27]) this yields a coho-
mological interpretation of the spectral realization of the zeros of the Riemann zeta function
([64], [66]).

3. Phase spaces of microscopic systems

What can be regarded historically as the first example of a non–commutative space is the
Heisenberg formulation of the observational Ritz-Rydberg law of spectrocopy. In fact, quan-
tum mechanics showed that indeed the parameter space, or phase space of the mechanical
system given by a single atom fails to be a manifold. It is important to convince oneself
of this fact and to understand that this conclusion is indeed dictated by the experimental
findings of spectroscopy.
At the beginning of the twentieth century a wealth of experimental data was being collected
on the spectra of various chemical elements. These spectra obey experimentally discovered
laws, the most notable being the Ritz-Rydberg combination principle. The principle can be
stated as follows; spectral lines are indexed by pairs of labels. The statement of the principle
then is that certain pairs of spectral lines, when expressed in terms of frequencies, do add up
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Figure 2. Spectral lines and the Ritz-Rydberg law.

to give another line in the spectrum. Moreover, this happens precisely when the labels are
of the form i, j and j, k.

In the seminal paper [116] of 1925, Heisenberg considers the classical prediction for the
radiation emitted by a moving electron in a field, where the observable dipole moment can be
computed, with the motion of the electron given in Fourier expansion. The classical model
would predict (in his notation) frequencies distributed according to the law

(3.1) ν(n, α) = αν(n) = α
1

h

dW

dn
.

When comparing the frequencies obtained in this classical model with the data, Heisenberg
noticed that the classical law (3.1) did not match the phenomenon observed.
The spectral rays provide a ‘picture’ of an atom: if atoms were classical systems, then the
picture formed by the spectral lines would be (in our modern mathematical language) a
group, which is what (3.1) predicts. That is, the classical model predicts that the observed
frequencies should simply add, obeying a group law, or, in Heisenberg’s notation, that

(3.2) ν(n, α) + ν(n, β) = ν(n, α+ β).

Correspondingly, observables would form the convolution algebra of a group.
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What the spectral lines were instead providing was the picture of a groupoid. Heisenberg
realized that the classical law of (3.1) (3.2) would have to be replaced by the quantum–
mechanical

(3.3) ν(n, n− α) =
1

h
(W (n)−W (n− α)) .

This replaces the group law with that of a groupoid, replacing the classical (3.2) by the
quantum–mechanical

(3.4) ν(n, n− α) + ν(n− α, n− α− β) = ν(n, n− α− β).

Similarly, the classical Fourier modes Uα(n)eiω(n)αt were replaced by U(n, n− α)eiω(n,n−α)t.
The analysis of the emission spectrum given by Heisenberg was in very good agreement with
the Ritz–Rydberg law, or combination principle, for spectral lines in emission or absorption
spectra.
In the same paper, Heisenberg also extends his redefinition of the multiplication law for the
Fourier coefficients to coordinates and momenta, by introducing transition amplitudes that
satisfy similar product rules. This is, in Born’s words, “his most audacious step”: in fact, it
is precisely this step that brings non–commutative geometry on the scene.
It was Born who realized that what Heisenberg described in his paper corresponded to re-
placing classical coordinates with coordinates which no longer commute, but which obey the
laws of matrix multiplication. In his own words reported in [197],

After having sent Heisenberg’s paper to the Zeitschrift für Physik for publi-
cation, I began to ponder about his symbolic multiplication, and was soon so
involved in it that I thought the whole day and could hardly sleep at night.
For I felt there was something fundamental behind it ... And one morning ...
I suddenly saw light: Heisenberg’s symbolic multiplication was nothing but
the matrix calculus.

Thus, spectral lines are parameterized by two indices Lαβ satisfying a cocycle relation Lαβ +
Lβγ = Lαγ , and a coboundary relation expresses each spectral line as a difference Lαβ =
να − νβ. In other words, the Ritz–Rydberg law gives the groupoid law (3.4), or equivalently,

(i, j) • (j, k) = (i, k)

and the convolution algebra of the group is replaced by observables satisfying the matrix
product

(AB)ik =
∑

j

AijBjk,

for which in general commutativity is lost:

AB 6= BA.

The Hamiltonian H is a matrix with the frequencies on the diagonal, and observables obey
the evolution equation

d

dt
A = i[H,A].
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Out of Heisenberg’s paper and Born’s interpretation of the same in terms of matrix calculus,
emerged the statement of Heisenberg’s uncertainty principle in the form of a commutation
relation of matrices

[P,Q] =
h

2πi
I.

The matrix calculus and the uncertainty principle were formulated in the subsequent paper
of Born and Jordan [25], also published in 1925. This viewpoint on quantum mechanics
was later somewhat obscured by the advent of the Schrödinger equation. The Schrödinger
approach shifted the emphasis back to the more traditional technique of solving partial dif-
ferential equations, while the more modern viewpoint of Heisenberg implied a much more
serious change of paradigm, affecting our most basic understanding of the notion of space.
Heisenberg’s approach can be regarded as the historic origin of noncommutative geometry.

4. Noncommutative quotients

A large source of examples of noncommutative spaces is given by quotients of equivalence
relations. One starts by an ordinary commutative space X (e.g. a smooth manifold or more
generally a locally compact Hausdorff topological space). This can be described via its algebra
of functions C(X), and abelian C∗-algebra. Suppose then that we are interested in taking
a quotient Y = X/ ∼ of X with respect to an equivalence relation. In general, one should
not expect the quotient to be nice. Even when X is a smooth manifold, the quotient Y need
not even be a Hausdorff space. In general, one would like to still be able to characterize
Y through its ring of functions. One usually defines C(Y ) to be functions on X that are
invariant under the equivalence relation ,

(4.1) C(Y ) = {f ∈ C(X) : f(a) = f(b),∀a ∼ b}.

Clearly, for a “bad” equivalence relation one typically gets this way only constant functions
C(Y ) = C.
There is a better way to associate to the quotient space Y a ring of functions which is non-
trivial for any equivalence relation. This requires dropping the commutativity requirement.
One can then consider functions of two variables fab defined on the graph of the equivalence
relation, with a product which is no longer the commutative pointwise product, but the non-
commutative convolution product dictated by the groupoid of the equivalence relation. In
general the elements in the algebra of functions

(4.2) “C(Y )” = {(fab) : a ∼ b}

act as bounded operators on the Hilbert space L2 of the equivalence class. This also guaran-
tees the convergence in the operator norm of the convolution product

∑

a∼b∼c

fabgbc.

We give a few examples to illustrate the difference between the traditional construction and
the one of noncommutative geometry.
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Example 4.1. Consider the space Y = {x0, x1} with the equivalence relation x0 ∼ x1. With
the first point of view the algebra of functions on the quotient is C, and in the second point
of view it is B = M2(C), that is

(4.3) B =

{
f =

(
faa fab

fba fbb

)}
.

These two algebras are not the same, though in this case they are Morita equivalent.

Notice that, when one computes the spectrum of the algebra (4.3), it turns out that it is
composed of only one point, so the two points a and b have been identified. This first
trivial example represents the typical situation where the quotient space is “nice”: the two
constructions give Morita equivalent algebras. In this sense, Morita equivalent algebras are
regarded as “the same” (or better isomorphic) spaces in non–commutative geometry.

Example 4.2. Consider the space Y = [0, 1] × {0, 1} with the equivalence relation (x, 0) ∼
(x, 1) for x ∈ (0, 1). Then in the first viewpoint the algebra of functions is again given just
by the constant functions C, but in the second case we obtain

(4.4) {f ∈ C([0, 1]) ⊗M2(C) : f(0) and f(1) diagonal }.

In this case, these algebras are not Morita equivalent. This can be seen by computing their
K–theory. This means that the approach of non–commutative spaces produces something
genuinely new, as soon as the quotient space ceases to be “nice” in the classical sense.
In general, the first kind of construction of functions on the quotient space is cohomological
in nature: one seeks for functions satisfying certain equations or constraints. Usually there
are very few solutions. The second approach, instead, typically produces a very large class
of functions.

5. Spaces of leaves of foliations

There is a very rich collection of examples of noncommutative spaces given by the leaf spaces
of foliations. The connection thus obtained between noncommutative geometry and the geo-
metric theory of foliations is very far reaching for instance through the role of Gelfand-Fuchs
cohomology, of the Godbillon-Vey invariant and of the passage from type III to type II using
the transverse frame bundle. It is this class of examples that triggered the initial develop-
ment of cyclic cohomology (cf. [126] section 4), of the local index formula in noncommutative
geometry as well as the theory of characteristic classes for Hopf algebra actions.

The construction of the algebra associated to a foliation is a special case of the construction
of section 4 but both the presence of holonomy and the case when the graph of the foliation
is non-hausdorff require special care, so we shall recall the basic steps below.
Let V be a smooth manifold and TV its tangent bundle, so that for each x ∈ V , TxV is
the tangent space of V at x. A smooth subbundle F of TV is called integrable iff one of the
following equivalent conditions is satisfied:
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a) Every x ∈ V is contained in a submanifold W of V such that

Ty(W ) = Fy ∀ y ∈W .

b) Every x ∈ V is in the domain U ⊂ V of a submersion p : U → Rq (q = codimF ) with

Fy = Ker(p∗)y ∀ y ∈ U .

c) C∞(F ) = {X ∈ C∞(TV ) , Xx ∈ Fx ∀x ∈ V } is a Lie algebra.

d) The ideal J(F ) of smooth exterior differential forms which vanish on F is stable by
exterior differentiation.

Any 1-dimensional subbundle F of TV is integrable, but for dimF = 2 the condition is non

trivial, for instance if P
p→ B is a principal H-bundle (with compact structure group H) the

bundle of horizontal vectors for a given connection is integrable iff this connection is flat.

A foliation of V is given by an integrable subbundle F of TV . The leaves of the foliation
(V, F ) are the maximal connected submanifolds L of V with Tx(L) = Fx, ∀x ∈ L, and the
partition of V in leaves

V = ∪Lα , α ∈ X
is characterized geometrically by its “local triviality”: every point x ∈ V has a neighbor-
hood U and a system of local coordinates (xj)j=1,...,dimV called foliation charts, so that the

partition of U in connected components of leaves corresponds to the partition of

RdimV = RdimF × RcodimF

in the parallel affine subspaces RdimF × pt. These are the leaves of the restriction of F and
are called plaques.
The set X = V/F of leaves of a foliation (V, F ) is in most cases a noncommutative space.
In other words even though as a set it has the cardinality of the continuum it is in general
not so at the effective level and it is in general impossible to construct a countable set of
measurable functions on V that form a complete set of invariants for the equivalence relation
coming from the partition of V in leaves V = ∪Lα. Even in the simple cases in which the set
X = V/F of leaves is classical it helps to introduce the associated algebraic tools in order to
get a feeling for their role in the general singular case.

To each foliation (V, F ) is canonically associated a C ∗ algebra C∗(V, F ) which encodes the
topology of the space of leaves. The construction is basically the same as the general one for
quotient spaces of Section 4, but there are interesting nuances coming from the presence of
holonomy in the foliation context. To take this into account one first constructs a manifold
G, dimG = dimV + dimF , called the graph (or holonomy groupoid) of the foliation, which
refines the equivalence relation coming from the partition of V in leaves V = ∪Lα. This
construction is due to Thom, Pradines and Winkelnkemper, see [200].
An element γ of G is given by two points x = s(γ), y = r(γ) of V together with an equivalence
class of smooth paths: γ(t) ∈ V , t ∈ [0, 1]; γ(0) = x, γ(1) = y, tangent to the bundle F (i.e.
with γ̇(t) ∈ Fγ(t), ∀ t ∈ R) up to the following equivalence: γ1 and γ2 are equivalent iff the

holonomy of the path γ2 ◦ γ−1
1 at the point x is the identity. The graph G has an obvious

composition law. For γ, γ ′ ∈ G, the composition γ ◦ γ ′ makes sense if s(γ) = r(γ ′). If the leaf
L which contains both x and y has no holonomy, then the class in G of the path γ(t) only



12 CONNES AND MARCOLLI

depends on the pair (y, x). The condition of trivial holonomy is generic in the topological
sense of dense Gδ’s. In general, if one fixes x = s(γ), the map from Gx = {γ, s(γ) = x} to
the leaf L through x, given by γ ∈ Gx 7→ y = r(γ), is the holonomy covering of L.
Both maps r and s from the manifold G to V are smooth submersions and the map (r, s) to
V × V is an immersion whose image in V × V is the (often singular) subset

(5.1) {(y, x) ∈ V × V : y and x are on the same leaf}.
In first approximation one can think of elements of C ∗(V, F ) as continuous matrices k(x, y),
where (x, y) varies in the set (5.1). We now describe this C ∗ algebra in all details. We assume,
for notational convenience, that the manifold G is Hausdorff. Since this fails to be the case
in very interesting examples, we also explain briefly how to remove this hypothesis.

The basic elements of C∗(V, F ) are smooth half densities f ∈ C∞
c (G,Ω1/2) with compact

support on G. The bundle Ω
1/2
G of half densities on G is obtained as follows. One first defines

a line bundle Ω
1/2
V on V. For x ∈ V one lets Ω

1/2
x be the one dimensional complex vector

space of maps from the exterior power ∧k Fx, k = dimF , to C such that

ρ (λ v) = |λ|1/2 ρ (v) ∀ v ∈ ∧k Fx , ∀λ ∈ R .

Then, for γ ∈ G, one can identify Ω
1/2
γ with the one dimensional complex vector space

Ω
1/2
y ⊗ Ω

1/2
x , where γ : x→ y. In other words

Ω
1/2
G = r∗(Ω1/2

V )⊗ s∗(Ω1/2
V ) .

Of course the bundle Ω
1/2
V is trivial on V , and we could choose once and for all a trivialisation

ν turning elements of C∞
c (G,Ω1/2) into functions. Let us however stress that the use of half

densities makes all the construction completely canonical.
For f, g ∈ C∞

c (G,Ω1/2), the convolution product f ∗ g is defined by the equality

(f ∗ g)(γ) =

∫

γ1◦γ2=γ
f(γ1) g(γ2) .

This makes sense because, for fixed γ : x → y and fixing vx ∈ ∧k Fx and vy ∈ ∧k Fy, the

product f(γ1) g(γ
−1
1 γ) defines a 1-density on Gy = {γ1 ∈ G, r(γ1) = y}, which is smooth

with compact support (it vanishes if γ1 /∈ support f), and hence can be integrated over Gy

to give a scalar, namely (f ∗ g)(γ) evaluated on vx, vy.

The ∗ operation is defined by f ∗(γ) = f(γ−1), i.e. if γ : x → y and vx ∈ ∧k Fx, vy ∈ ∧k Fy

then f∗(γ) evaluated on vx, vy is equal to f(γ−1) evaluated on vy, vx. We thus get a ∗ algebra

C∞
c (G,Ω1/2). For each leaf L of (V, F ) one has a natural representation of this ∗ algebra on

the L2 space of the holonomy covering L̃ of L. Fixing a base point x ∈ L, one identifies L̃
with Gx = {γ, s(γ) = x} and defines

(πx(f) ξ) (γ) =

∫

γ1◦γ2=γ
f(γ1) ξ(γ2) ∀ ξ ∈ L2(Gx),

where ξ is a square integrable half density on Gx. Given γ : x→ y one has a natural isometry
of L2(Gx) on L2(Gy) which transforms the representation πx in πy.
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By definition C∗(V, F ) is the C∗ algebra completion of C∞
c (G,Ω1/2) with the norm

‖f‖ = sup
x∈V
‖πx(f)‖ .

Note that C∗(V, F ) is always norm separable and admits a natural smooth subalgebra, namely

the algebra C∞
c (V, F ) = C∞

c (G,Ω1/2) of smooth compactly supported half densities.
If the leaf L has trivial holonomy then the representation πx, x ∈ L, is irreducible. In
general, its commutant is generated by the action of the (discrete) holonomy group Gx

x in
L2(Gx). If the foliation comes from a submersion p : V → B, then its graph G is {(x, y) ∈
V × V, p(x) = p(y)} which is a submanifold of V × V , and C ∗(V, F ) is identical with the
algebra of the continuous field of Hilbert spaces L2(p−1{x})x∈B . Thus (unless dimF = 0)
it is isomorphic to the tensor product of C0(B) with the elementary C∗ algebra of compact
operators. If the foliation comes from an action of a Lie group H in such a way that the graph
is identical with V ×H (this is not always true even for flows) then C ∗(V, F ) is identical with
the reduced crossed product of C0(V ) by H. Moreover the construction of C∗(V, F ) is local
in the following sense.
If V ′ ⊂ V is an open set and F ′ is the restriction of F to V ′, then the graph G′ of (V ′, F ′) is

an open set in the graph G of (V, F ), and the inclusion C∞
c (G′,Ω1/2) ⊂ C∞

c (G,Ω1/2) extends
to an isometric ∗ homomorphism of C∗(V ′, F ′) in C∗(V, F ). The proof is straightforward and
also applies in the case of non Hausdorff graph.
Let us now briefly explain how the construction of the C ∗ algebra C∗(V, F ) has to be done
in the case when the graph of the foliation is not Hausdorff. This case is rather rare, since
it never occurs if the foliation is real analytic. However, it does occur in cases which are
topologically interesting for foliations, such as the Reeb foliation of the 3 sphere, which are
constructed by patching together foliations of manifolds with boundaries (Vi, Fi) where the
boundary ∂Vi is a leaf of Fi. In fact most of the constructions done in geometry to produce
smooth foliations of given codimension on a given manifold give a non Hausdorff graph.
The C∗-algebra C∗(V, F ) turns out in this case to be obtained as a fibered product of the
C∗(Vi, Fi).
In the general non-Hausdorff case the graph G of (V, F ), being non Hausdorff may have only
very few continuous fonctions with compact support. However, being a manifold, we can give

a local chart U
χ→ RdimG. Take a smooth function ϕ ∈ C∞

c (RdimG), Suppϕ ⊂ χ(U) and
consider the function on G equal to ϕ ◦χ on U and to 0 outside U . If G were Hausdorff, this
would generate all of C∞

c (G) by taking linear combinations, and in general we take this linear
span as the definition of C∞

c (G). Note that we do not get continuous functions, since there
may well be a sequence γn ∈ U with two limits, one in Suppϕ ◦ χ one in the complement of
U . The above definition of C∞

c (G) obviously extends to get C∞
c (G,Ω1/2) the space of smooth

1
2 densities on G. One then shows that the convolution ϕ1 ∗ ϕ2 of ϕ1, ϕ2 ∈ C∞

c (G,Ω1/2) is in

C∞
c (G,Ω1/2).

Then we proceed exactly as in the Hausdorff case, and construct the representation πx of the
∗ algebra C∞

c (G,Ω1/2) in the Hilbert space L2(Gx). We note that though G is not Hausdorff,
each Gx is Hausdorff, being the holonomy covering of the leaf through x.
For each ϕ ∈ C∞

c (G,Ω1/2) and x ∈ V , πx(ϕ) is an ordinary smoothing operator, bounded in
L2(Gx).
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Figure 3. The Reeb foliation

Exactly as in the Hausdorff case C∗(V, F ) is defined as the C∗ completion of C∞
c (G,Ω1/2)

with norm supx∈V ‖πx(ϕ)‖.
The obtained functor from foliations to C∗-algebras makes it possible first of all to translate
from basic geometric properties to algebraic ones and the simplest examples of foliations
already exhibit remarkable C∗-algebras. For instance the horocycle foliation of the unit sphere
bundle of a Riemann surface of genus > 1 gives a simple C ∗-algebra without idempotent. The
Kronecker foliation gives rise to the noncommutative torus, which we describe in more detail
in Section 6.
In the type II situation i.e. in the presence of a holonomy invariant transverse measure Λ the
basic result of the theory is the longitudinal index theorem which computes the L2-index of
differential operators D on the foliated manifold (V, F ) which are elliptic in the longitudinal
direction (i.e. D restrict to the leaves L as elliptic operators DL). One starts with a pair
of smooth vector bundles E1, E2 on V together with a differential operator D on V from
sections of E1 to sections of E2 such that:

1) D restricts to leaves, i.e. (Dξ)x only depends on the restriction of ξ to a neighborhood
of x in the leaf of x (i.e. D only uses partial differentiation in the leaf direction).

2) D is elliptic when restricted to any leaf.

Theorem 5.1. [52]
a) There exists a Borel transversal B (resp. B ′) such that the bundle (`2(L ∩ B))L∈V/F is
measurably isomorphic to the bundle (KerDL)L∈V/F (resp. to (KerD∗

L)L∈V/F ).
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b) The scalar Λ(B) <∞ is independent of the choice of B and noted dimΛ(Ker (D)).

c) dimΛ(Ker (D))− dimΛ(Ker (D∗)) = ε 〈ch σD Td (FC), [C]〉
(ε = (−1) k(k+1)

2 , k = dimF , Td (FC) = Todd genus, σD = symbol of D) .

Here [C] ∈ Hk(V,C) is the homology class of the Ruelle-Sullivan current, a closed de-Rham
current of dimension k = dimF which encodes the transverse measure Λ by integration of a
k-dimensional differential form ω on V along the plaques of foliation charts.

In particular the Betti numbers βj of a measured foliation were defined in [52] and give the
L2-dimension of the space of L2-harmonic forms along the leaves, more precisely one has the
following result.
a) For each j = 0, 1, 2, . . . ,dimF , there exists a Borel transversal Bj such that the bundle
(Hj(L,C))L∈V/F of j-th square integrable harmonic forms on L is measurably isomorphic to

(`2(L ∩B))L∈V/F .

b) The scalar βj = Λ(Bj) is finite, independent of the choice of Bj, of the choice of the
Euclidean structure on F .

c) One has Σ (−1)j βj = χ(F,Λ).
Here the Euler characteristic is simply given by the pairing of the Ruelle-Sullivan current
with the Euler class e(F ) of the oriented bundle F on V .
Extending ideas of Cheeger and Gromov [47] in the case of discrete groups, D. Gaboriau
has shown in a remarkable recent work (cf. [104], [105]) that the Betti numbers βj(F,Λ)
of a foliation with contractible leaves are invariants of the measured equivalence relation
R = {(x, y) | y ∈ leaf(x)}.
In the general case one cannot expect to have a holonomy invariant transverse measure and in
fact the simplest foliations are of type III from the measure theoretic point of view. Obtaining
an analogue in general of Theorem 5.1 was the basic motivation for the construction of the
assembly map (the second step of section 2). Let us now briefly state the longitudinal index
theorem.
Let D be as above an elliptic differential operator along the leaves of the foliation (V, F ).
Since D is elliptic it has an inverse modulo C∗(V, F ) hence it gives an element Inda(D) of
K0(C

∗(V, F )) which is the analytic index of D. The topological index is obtained as follows.
Let i be an auxiliary imbedding of the manifold V in R2n. Let N be the total space of
the normal bundle to the leaves: Nx = (i∗(Fx))⊥ ⊂ R2n. Let us foliate Ṽ = V × R2n

by F̃ , F̃(x,t) = Fx × {0}, so that the leaves of (Ṽ , F̃ ) are just L̃ = L × {t}, where L is a

leaf of (V, F ) and t ∈ R2n. The map (x, ξ) → (x, i(x) + ξ) turns an open neighborhood

of the 0-section in N into an open transversal T of the foliation (Ṽ , F̃ ). For a suitable

open neighborhood Ω of T in Ṽ , the C∗-algebra C∗(Ω, F̃ ) of the restriction of F̃ to Ω is

(Morita) equivalent to C0(T ), hence the inclusion C∗(Ω, F̃ ) ⊂ C∗(Ṽ , F̃ ) yields a K-theory

map: K0(N) → K0(C
∗(Ṽ , F̃ )). Since C∗(Ṽ , F̃ ) = C∗(V, F ) ⊗ C0(R

2n), one has, by Bott

periodicity, the equality K0(C
∗(Ṽ , F̃ )) = K0(C

∗(V, F )).
Using the Thom isomorphism, K0(F ∗) is identified with K0(N) so that one gets by the above
construction the topological index:

Indt : K0(F ∗)→ K0(C
∗(V, F )) .
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The longitudinal index theorem [89] is the equality

(5.2) Inda(D) = Indt([σD]),

where σD is the longitudinal symbol of D and [σD] is its class in K0(F ∗).
Since the group K0(C

∗(V, F )) is still fairly hard to compute one needs computable invariants
of its elements and this is where cyclic cohomology enters the scene. In fact its early devel-
opment was already fully completed in 1981 for that precise goal (cf. [126]). The role of the
trace on C∗(V, F ) associated to the transverse measure Λ is now played by cyclic cocycles on a
dense subalgebra of C∗(V, F ). The hard analytic problem is to show that these cocycles have
enough semi-continuity properties to define invariants of K0(C

∗(V, F )). This was achieved
for some of them in [56] and makes it possible to formulate corollaries whose statements are
independent of the general theory, such as

Theorem 5.2. [56] Let M be a compact oriented manifold and assume that the Â-genus

Â(M) is non-zero (since M is not assumed to be a spin manifold Â(M) need not be an
integer). Let then F be an integrable Spin sub-bundle of TM . There exists no metric on F
for which the scalar curvature (of the leaves) is strictly positive (≥ ε > 0) on M .

There is a very rich interplay between the theory of foliations and their characteristic classes
and operator algebras even at the purely measure theoretic level i.e. the classification of
factors.
In a remarkable series of papers (see [119] for references), J. Heitsch and S. Hurder have
analyzed the interplay between the vanishing of the Godbillon-Vey invariant of a compact
foliated manifold (V, F ) and the type of the von Neumann algebra of the foliation. Their
work culminates in the following beautiful result of S. Hurder ([119]). If the von Neumann
algebra is semi-finite, then the Godbillon-Vey invariant vanishes. We have shown, in fact,
that cyclic cohomology yields a stronger result, proving that, if GV 6= 0, then the central
decomposition of M contains necessarily factors M , whose virtual modular spectrum is of
finite covolume in R∗

+.

Theorem 5.3. [56] Let (V, F ) be an oriented, transversally oriented, compact, foliated man-
ifold, (codimF = 1). Let M be the associated von Neumann algebra, and Mod(M) be its
flow of weights. Then, if the Godbillon-Vey class of (V, F ) is different from 0, there exists an
invariant probability measure for the flow Mod(M).

One actually constructs an invariant measure for the flow Mod(M), exploiting the following
remarkable property of the natural cyclic 1-cocycle τ on the algebra A of the transverse 1-jet
bundle for the foliation. When viewed as a linear map δ from A to its dual, δ is an unbounded
derivation, which is closable, and whose domain extends to the center Z of the von-Neumann
algebra generated by A. Moreover, δ vanishes on this center, whose elements h ∈ Z can then
be used to obtain new cyclic cocycles τh on A. The pairing

L(h) = 〈τh, µ(x)〉
with the K-theory classes µ(x) obtained from the assembly map µ, which we had constructed
with P. Baum [15], then gives a measure on Z, whose invariance under the flow of weights
follows from the discreteness of the K-group. To show that it is non-zero, one uses an index
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formula that evaluates the cyclic cocycles, associated as above to the Gelfand-Fuchs classes,
on the range of the assembly map µ.

The central question in the analysis of the noncommutative leaf space of a foliation is step
3) (of section 2), namely the metric aspect which entails in particular constructing a spectral
triple describing the transverse geometry. The reason why the problem is really difficult
is that it essentially amounts to doing “metric” geometry on manifolds in a way which is
“background independent” to use the terminology of physicists i.e. which is invariant under
diffeomorphisms rather than covariant as in traditional Riemannian geometry. Indeed the
transverse space of a foliation is a manifold endowed with the action of a large pseudo group of
partial diffeomorphisms implementing the holonomy. Thus in particular no invariant metric
exists in the general case and the situation is very similar to trying to develop gravity without
making use of any particular “background” metric that automatically destroys the invariance
under the action of diffeomeorphisms (cf. [86]). Using the theory of hypoelliptic differential
operators and the basic technique of reduction from type III to type II, a general construction
of a spectral triple was done by Connes-Moscovici in [81]. The remaining problem of the
computation of the local index formula in cyclic cohomology was solved in [82] and led in
particular to the discovery of new symmetries given by an action of a Hopf algebra which
only depends upon the transverse dimension of the foliation.
This also led to the development of the noncommutative analogue of the Chern-Weil theory of
characteristic classes [83] in the general context of Hopf algebra actions on noncommutative
spaces and cyclic cohomology, a subject which is undergoing rapid progress, in particular
thanks to the recent works of M. Khalkhali and collaborators [127], [128], [129], [113].

6. The noncommutative tori

This is perhaps considered as the prototype example of a noncommutative space, since it
illustrates very clearly the properties and structures of noncommutative geometries. Non-
commutative tori played a key role in the early developments of the theory in the 1980’s (cf.
[57]), giving rise to noncommutative analogues of vector bundles, connections, curvature, etc.

One can regard noncommutative tori as a special case of noncommutative spaces arising from
foliations. In this case, one considers certain vector fields on the ordinary 2-dimensional real
torus T 2 = R2/Z2. In fact, one considers on T 2 the Kronecker foliation dx = θdy, where θ is
a given real number. We are especially interested in the case where θ is irrational. That is,
we consider the space of solutions of the differential equation,

(6.1) dx = θdy, ∀x, y ∈ R/Z

for θ ∈]0, 1[ is a fixed irrational number. In other words, we are considering the space of
leaves of the Kronecker foliation on the torus (cf. Figure 4).
We can choose a transversal T to the foliation, given by

T = {y = 0}, T ∼= S1 ∼= R/Z.

Two points of the transversal which differ by an integer multiple of θ give rise to the same
leaf. We want to describe the further quotient

(6.2) S1/θZ
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Figure 4. The Kronecker foliation and the noncommutative torus

by the equivalence relation which identifies any two points on the orbits of the irrational
rotation

(6.3) Rθx = x+ θ mod 1 .

We can regard the circle S1 and the quotient space (6.2) at various levels of regularity (smooth,
topological, measurable). This corresponds to different algebras of functions on the circle,

(6.4) C∞(S1) ⊂ C(S1) ⊂ L∞(S1) .

When passing to the quotient (6.2), if we just consider invariant functions we obtain a very
poor algebra of functions, since, even at the measurable level, we would only have constant
functions. If instead we consider the noncommutative algebra of functions obtained by the
general recipe of “noncommutative quotients” (functions on the graph of the equivalence
relation with the convolution product), we obtain a very interesting and highly non–trivial
algebra of functions describing the space of leaves of the foliation. This is given (in the
topological category) by the “irrational rotation algebra”, i.e. the C ∗-algebra

(6.5) Aθ := {(aij) i, j ∈ T in the same leaf }.
Namely, elements in the algebra Aθ associated to the transversal T ' S1 are just matrices
(aij) where the indices are arbitrary pairs of elements i, j of S1 belonging to the same leaf.
The algebraic rules are the same as for ordinary matrices. In the above situation, since the
equivalence is given by a group action, the construction coincides with the crossed product.
For instance, in the topological category, Aθ is identified with the crossed product C∗-algebra

(6.6) Aθ = C(S1) oRθ
Z.
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The algebra (6.5) has two natural generators:

(6.7) U =

{
1 n = 1
0 otherwise

and

(6.8) V =

{
e2πia n = 0
0 otherwise

In fact, an element b = (aij) of Aθ can be written as power series

(6.9) b =
∑

n∈Z

bnU
n,

where each bn is an element of the algebra (6.4), with the multiplication rule given by

(6.10) UhU−1 = h ◦ R−1
θ .

The algebra (6.4) is generated by the function V on S1,

(6.11) V (α) = exp(2πiα) ∀α ∈ S1

and it follows that Aθ is generated by two unitaries (U, V ) with presentation given by the
relation

(6.12) V U = λUV, with λ = exp(2πiθ) .

If we work in the smooth category, then a generic element b in (6.4) is given by a power series

(6.13) b =
∑

Z2

bnmU
nV m ∈ S(Z2)

where S(Z2) is the Schwartz space of sequences of rapid decay on Z2. We refer to the algebra
of smooth functions (6.13) as C∞(T2

θ), where we think of T2
θ as the (smooth) non–commutative

torus.

Notice that in the definition (6.5) it is not necessary to restrict to the condition that i, j lie
on the transversal T . It is possible to also form an algebra

(6.14) Bθ = {(aij) i, j ∈ T 2 in the same leaf },
where now the parameter of integration is no longer discrete. This ought to correspond to
the same non–commutative space, and in fact the algebras are related by

Bθ = Aθ ⊗K,
where K is the algebra of all compact operators.

The tangent space to the ordinary torus T 2 is spanned by the tangent directions ∂
∂x and ∂

∂y .

By choosing coordinates U, V , with U = e2πix and V = e2πiy, the tangent vectors are given by
∂
∂x = 2πiU ∂

∂U and ∂
∂y = 2πiV ∂

∂V . These have analogs in terms of derivations of the algebra of

the non–commutative torus. The two commuting vector fields which span the tangent space
for an ordinary (commutative) 2-torus correspond algebraically to two commuting derivations
of the algebra of smooth functions.
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These derivations continue to make sense when we replace the generators U and V of C∞(T2)
by the generators of the algebra C∞(T2

θ), which no longer commute, as shown in (6.12). The
derivations are still given by the same formulas as in the commutative case,

(6.15) δ1 = 2πiU
∂

∂U
δ2 = 2πiV

∂

∂V

so that δ1 (
∑
bnmU

nV m) = 2πi
∑
nbnmU

nV m, and similarly for δ2.
The operators (6.15) are commuting derivations of the algebra C∞(T2

θ).
In fact, it is straightforward to verify that δ1 and δ2 satisfy

(6.16) δ1δ2 = δ2δ1

and

(6.17) δj(bb
′) = δj(b)b

′ + bδj(b
′) ∀b, b′ ∈ Aθ.

Just as in the classical case of a (commutative) manifold, what ensures that the derivations
considered are enough to span the whole tangent space is the condition of ellipticity for the
Laplacian

∆ = δ21 + δ22 .

In Fourier modes the Laplacian is of the form n2 +m2, hence ∆−1 is a compact operator.

The geometry of the Kronecker foliation is closely related to the structure of the algebra.
In fact, a choice of a closed transversal T of the foliation corresponds canonically to a finite
projective module over the algebra Aθ.
In fact, the main result on finite projective module over the non–commutative tori T2

θ is the
following classification, which is obtained by combining the results of [167], [57], [175].

Theorem 6.1. Finite projective modules over Aθ are classified up to isomorphism by a pair
of integers (p, q) such that p + qθ ≥ 0. For a choice of such pair, the corresponding module
Hθ

p,q is obtained from the transversal Tp,q given by the closed geodesic of the torus T 2 specified
by (p, q), via the following construction. Elements of the module associated to the transversal
Tp,q are rectangular matrices, (ξi,j) with (i, j) ∈ T × S1, and with i and j belonging to the
same leaf. The right action of (ai,j) ∈ Aθ is by matrix multiplication.

For instance, from the transversal x = 0 one obtains the following right module over Aθ. The
underlying linear space is the usual Schwartz space

(6.18) S(R) = {ξ : ξ(s) ∈ C, ∀s ∈ R}
of complex valued smooth functions on R, all of whose derivatives are of rapid decay. The
right module structure is given by the action of the generators U, V

(6.19) (ξU)(s) = ξ(s+ θ) (ξV )(s) = e2πisξ(s) ∀s ∈ R .

One of course checks that the relation (6.12) is satisfied, and that, as a right module over Aθ,
the space S(R) is finitely generated and projective (i.e. it complements to a free module).

Finitely generated projective modules play an important role in noncommutative geometry,
as they replace vector bundles in the commutative setting. In fact, in ordinary commutative
geometry, one can equivalently describe vector bundles through their sections, which in turn
form a finite projective module over the algebra of smooth functions. The notion of finite
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projective module continues to make sense in the non–commutative setting, and provides this
way a good notion of “non–commutative vector bundles”.

Suppose given a vector bundle E, described algebraically through its space of smooth sections
C∞(X,E). One can compute the dimension of E by computing the trace of the identity
endomorphism. In terms of the space of smooth sections, hence of finite projective modules,
it is possible to recover the dimension of the vector bundle as a limit

(6.20) dimA(E) = lim
N→∞

1

N


#Generators of E ⊕ · · · ⊕ E︸ ︷︷ ︸

Ntimes


 .

This method applies to the noncommutative setting. In the case of noncommutative tori, one
finds that the Schwartz space S(R) has dimension the real number

(6.21) dimB(S) = θ .

One similarly finds values p+ qθ for the more general case of Theorem 6.1.

The appearance of a real values dimension is related to the density of transversals in the
leaves, that is, the limit of

#BR ∩ S
size of BR

,

for a ball BR of radius R in the leaf. In this sense, the dimension θ of the Schwartz space
measure the relative densities of the two transversals S = {x = 0} and T = {y = 0}.
In general, the appearance of non integral dimension is a basic feature of von Neumann
algebras of type II. The dimension of a vector bundle is the only invariant that remains
when one looks from the measure theoretic point of view, using the algebra of measurable
functions L∞(S1) in (6.4). The von Neumann algebra which describes the quotient space
from the measure theoretic point of view is the crossed product

(6.22) R = L∞(S1) oRθ
Z.

This is the well known hyperfinite factor of type II1. In particular the classification of finite
projective modules E over R is given by a positive real number, the Murray and von Neumann
dimension

(6.23) dimR(E) ∈ R+ .

The simplest way to describe the phenomenon of Morita equivalence for non–commutative
tori is in terms of the Kronecker foliation, where it corresponds to reparameterizing the leaves
space in terms of a different closed transversal. Thus, Morita equivalence of the algebras Aθ

and Aθ′ for θ and θ′ in the same PGL(2,Z) orbit becomes simply a statement that the
leaf–space of the original foliation is independent of the transversal used to parameterize
it. For instance, Morita equivalence between Aθ and A−1/θ corresponds to changing the
parameterization of the space of leaves from the transversal T = {y = 0} to the transversal
S = {x = 0}.
More generally, an explicit construction of bimodulesMθ,θ′ was obtained in [57]. These are
given by the Schwartz space S(R× Z/c), with the right action of Aθ given by

Uf (x, u) = f

(
x− cθ + d

c
, u− 1

)
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V f (x, u) = exp(2πi(x − ud/c))f(x, u)

and the left action of Aθ′

U ′f (x, u) = f

(
x− 1

c
, u− a

)

V ′f (x, u) = exp

(
2πi

(
x

cθ + d
− u

c

))
f(x, u).

The bimoduleMθ,θ′ realizes the Morita equivalences between Aθ and Aθ′ for

θ′ =
aθ + b

cθ + d
= gθ

with g ∈ PGL(2,Z), cf. [57], [174].

7. Duals of discrete groups

Noncommutative geometry provides naturally a generalization of Pontrjagin duality for dis-
crete groups. While the Pontrjagin dual Γ̂ of a finitely generated discrete abelian group is
a compact abelian group, the dual of a more general finitely generated discrete group is a
noncommutative space.
To see this, recall that the usual Pontrjagin duality assigns to a finitely generated discrete
abelian group Γ its group of characters Γ̂ = Hom(Γ, U(1)). The duality is given by Fourier

transform ei〈k,γ〉, for γ ∈ Γ and k ∈ Γ̂.
In particular, Fourier transform gives an identification between the algebra of functions on Γ̂
and the (reduced) C∗-algebra of the group Γ,

(7.1) C(Γ̂) ∼= C∗
r (Γ),

where the reduced C∗-algebra C∗
r (Γ) is the C∗-algebra generated by Γ in the regular repre-

sentation on `2(Γ).
When Γ is non-abelian Pontrjagin duality no longer applies in the classical sense. However,
the left hand side of (7.1) still makes sense and it behaves “like” the algebra of functions on

the dual group. One can then say that, for a non-abelian group, the Pontrjagin dual Γ̂ still
exists as a noncommutative space whose algebra of coordinates is the C ∗-algebra C∗

r (Γ).

As an example that illustrates this general philosophy we give a different version of Example
4.2.

Example 7.1. The algebra (4.4) of Example 4.2, is the group ring of the dihedral group
Z o Z/2 ∼= Z/2 ∗ Z/2.

In fact, first notice that to a representation of the group Z/2 ∗ Z/2 (free product of two
copies of the group with two elements) is the same thing as a pair of subspaces in the Hilbert
space, E,F ⊂ H. The corresponding operators are U = I − 2PE , V = I − 2PV , with
PE , PV the projections. The operators U, V represent reflections, since U = U ∗, U2 = I,
V = V ∗, V 2 = I. The group Γ = Z/2 ∗ Z/2 realized as words in the generators U and V
can equivalently be described as the semi-direct product Γ = Z o Z/2, by setting X = UV ,
with the action UXU−1 = X−1. The regular representation of Γ is analyzed using Mackey’s
theory for semi-direct products. 0ne considers first representations of the normal subgroup,
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and then orbits of the action of Z/2. The irreducible representations of the normal subgroup
Z are labeled by S1 = {z ∈ C |z| = 1} and given by Xn 7→ zn. The action of Z/2 is the
involution given by conjugation z 7→ z̄. The quotient of S1 by the Z/2 action is identified with
the interval [−1, 1] by the map z 7→ <(z). For points inside the interval the corresponding
irreducible representation of Γ is two dimensional. At each of the two endpoints ±1 one gets
two inequivalent irreducible representations of Γ. Thus we recover the picture of Example
4.2 and an isomorphism C∗(Γ) ∼ A where A is the algebra (4.4).

The first two basic steps of the general theory are known for arbitrary discrete groups Γ,
namely
1) The resolution of the diagonal and computation of the cyclic cohomology are provided by
the geometric model (due to Burghelea [36]) given by the free loop space of the classifying
space BΓ.
2) The assembly map (BC-map) of [15] from the K-homology of the classifying space BΓ
to the K-theory of the reduced C∗-algebra C∗

r (Γ) is refined in [16] to take care of torsion in
the group Γ and gives a pretty good approximation to the K-theory of C ∗

r (Γ) (cf. [185] and
references therein).
In the presence of a natural smooth subalgebra of C ∗

r (Γ) containing the group ring and
stable under holomorphic functional calculus, the combination of the two steps described
above makes it possible to prove an index theorem which is an higher dimensional form of
Atiyah’s L2-index theorem for coverings. This gave the first proof of the Novikov conjecture
for hyperbolic groups ([80]). Since then the analysis of dense smooth subalgebras has played
a key role, in particular in the ground breaking work of Vincent Lafforgue. See [15], [121],
[135], [185], [186].
The next step, i.e. the construction of a spectral geometry, is directly related to geometric
group theory. In general one cannot expect to get a finite dimensional spectral triple since
the growth properties of the group give (except for groups of polynomial growth) a basic
obstruction (cf. [59]). A general construction of a theta summable spectral triple was given in
[54] Section IV.9. Basically the transition from finitely summable spectral triples to the theta
summable ones is the transition from finite dimensional geometry to the infinite dimensional
case. In the theta summable case the Chern character is no longer a finite dimensional cyclic
cocycle and one needs to extend cyclic cohomology using cocycles with infinite support in
the (b,B) bicomplex fulfilling a subtle growth condition. The general theory of entire cyclic
cohomology was developed in [60]. It is in general quite difficult to compute the Chern
character in the theta summable case and one had to wait quite a long time until it was
done for the basic example of discrete subgroups of semi-simple Lie groups. This has been
achieved in a remarkable recent paper of M. Puschnigg [169] in the case of real rank one.
The fourth step i.e. the thermodynamics might seem irrelevant in the type II context of
discrete groups. However a small variant of the construction of the group ring, namely
the Hecke algebra associated to an almost normal inclusion of discrete groups (in the sense
considered in [27]) suffices to meet the type III world. One of the open fields is to extend
the above steps 1), 2) and 3) in the general context of almost normal inclusions of discrete
groups, and to perform the thermodynamical analysis in the spirit of [66] in that context.
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Figure 5. The quantum Hall effect experiment.

8. Brillouin zone and the quantum Hall effect

An important application to physics of the theory of non–commutative tori was the develop-
ment of a rigorous mathematical model for the Integer Quantum Hall Effect (IQHE) obtained
by Bellissard and collaborators [18], [19], [54].
The classical Hall effect is a physical phenomenon first observed in the XIX century [114]. A
very thin metal sample is immersed in a constant uniform strong magnetic field orthogonal
to the surface of the sample. By forcing a constant current to flow through the sample, the
flow of charge carriers in the metal is subject to a Lorentz force perpendicular to the current
and the magnetic field. The equation for the equilibrium of forces in the sample is of the
form

(8.1) NeE + j ∧B = 0,

where E is the electric field, e and N the charge and number of the charge carriers in the
metal, B the magnetic field, and j the current.

The equation (8.1) defines a linear relation: the ratio of the intensity of the Hall current to
the intensity of the electric field defines the Hall conductance,

(8.2) σH =
Neδ

B
,

with B = |B| the intensity of the magnetic field and δ the sample width. The dimensionless
quantity

(8.3) νH =
Nδh

Be
= σHRH

is called the filling factor, while the quantity RH = h/e2 is the Hall resistance. The filling
factor measures the fraction of Landau level filled by conducting electrons in the sample.
Thus, classically, the Hall conductance, measured in units of e2/h, equals the filling factor.
In 1980, about a century after the classical Hall effect was observed, von Klitzing’s experiment
showed that, lowering the temperature below 1 K, the relation of Hall conductance to filling
factor shows plateaux at integer values, [131]. The integer values of the Hall conductance are
observed with a surprising experimental accuracy of the order of 10−8. This phenomenon of
quantization of the Hall conductance is known as Integer Quantum Hall Effect (IQHE).
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Laughlin first suggested that IQHE should be of a geometric origin [138]. A detailed mathe-
matical model of the IQHE, which accounts for all the important features of the experiment
(quantization, localization, insensitivity to the presence of disorder, vanishing of direct con-
ductance at plateaux levels) improving over the earlier Laughlin model, was developed by
Bellissard and collaborators [18], [19].
Bellissard’s approach to the IQHE is based on non–commutative geometry. The quantization
of the Hall conductance at integer values is indeed geometric in nature: it resembles another
well known “quantization” phenomenon that happens in the more familiar setting of the
geometry of compact 2–dimensional manifolds, namely the Gauss–Bonnet theorem, where
the integral of the curvature is an integer multiple of 2π, a property that is stable under
deformations. In the same spirit, the values of the Hall conductance are related to the
evaluation of a certain characteristic class, or, in other words, to an index theorem for a
Fredholm operator.
More precisely, in the physical model one makes the simplifying assumption that the IQHE
can be described by non–interacting particles. The Hamiltonian then describes the motion
of a single electron subject to the magnetic field and an additional potential representing
the lattice of ions in the conductor. In a perfect crystal and in the absence of a magnetic
field, there is a group of translational symmetries. This corresponds to a group of unitary
operators U(a), a ∈ G, where G is the locally compact group of symmetries. Turning on
the magnetic field breaks this symmetry, in the sense that translates of the Hamiltonian
Ha = U(a)HU(a)−1 no longer commute with the Hamiltonian H. Since there is no preferred
choice of one translate over the others, the algebra of observables must include all translates
of the Hamiltonian, or better their resolvents, namely the bounded operators

(8.4) Ra(z) = U(a)(zI −H)−1U(a)−1.

For a particle of (effective) mass m and charge e confined to the plane, subject to a magnetic
field of vector potential A and to a bounded potential V , the Hamiltonian is of the form

(8.5) H =
1

2m

∑

j=1,2

(pj − eAj)
2 + V = H0 + V,

where the unperturbed part H0 is invariant under the magnetic translations, namely the
unitary representation of the translation group R2 given by

U(a)ψ(x) = exp

(−ieB
2~

ω(x, a)

)
ψ(x− a),

with ω the standard symplectic form in the plane. The hull (strong closure) of the translates
(8.4) yields a topological space, whose homeomorphism type is independent of the point z in
the resolvent of H. This provides a non–commutative version of the Brillouin zone.
Recall that the Brillouin zones of a crystals are fundamental domains for the reciprocal lattice
Γ] obtained via the following inductive procedure. The Bragg hyperplanes of a crystal are
the hyperplanes along which a pattern of diffraction of maximal intensity is observed when
a beam of radiation (X-rays for instance) is shone at the crystal. The N -th Brillouin zone
consists of all the points in (the dual) Rd such that the line from that point to the origin
crosses exactly (n− 1) Bragg hyperplanes of the crystal.
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Figure 6. Brillouin zones for a 2-dimensional crystal

More precisely, in our case, if e1 and e2 are generators of the periodic lattice, we obtain a
commutation relation

U(e1)U(e2) = e2πiθU(e2)U(e1),

where θ is the flux of the magnetic field through a fundamental domain for the lattice,
in dimensionless units, hence the non-commutative Brillouin zone is described by a non-
commutative torus.
This can also be seen easily in a discrete model, where the Hamiltonian is given by an operator

(8.6)
(Ha f)(m,n) = e−ia1nf(m+ 1, n)+ eia2nf(m− 1, n)

+ e−ia2mf(m,n+ 1)+ eia2mf(m,n− 1),

for f ∈ L2(Z2). This is a discrete version of the magnetic Laplacian. Notice then that (8.6)
can be written in the form

Ha = U + V + U ∗ + V ∗,

for

(U f)(m,n) = e−ia2mf(m,n+ 1) (V f)(m,n) = e−ia1nf(m+ 1, n).
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Figure 7. Observed fractions in the quantum Hall effect.

These clearly satisfy the commutation relation (6.12) of T2
θ with θ = a2 − a1.

In the zero-temperature limit, the Hall conductance satisfies the Kubo formula

(8.7) σH =
1

2πiRH
τ(Pµ[δ1Pµ, δ2Pµ]),

where Pµ is a spectral projection of the Hamiltonian on energies smaller or equal to the Fermi
level Eµ, τ is the trace on Aθ given by

(8.8) τ
(∑

an,mU
nV m

)
= a0,0.

and δ1, δ2 are as in (6.15). Here we assume that the Fermi level µ is in a gap in the spectrum
of the Hamiltonian. Then the spectral projections Pµ belong to the C∗-algebra of observables.
The Kubo formula (8.7) can be derived from purely physical considerations, such as transport
theory and the quantum adiabatic limit.
The main result then is the fact that the integrality of the conductance observed in the
Integer Quantum Hall Effect is explained topologically, that is, in terms of the integrality of
the cyclic cocycle τ(a0(δ1a

1δ2a
2 − δ2a1δ1a

2)) (cf. [57]).

The fractional QHE was discovered by Stormer and Tsui in 1982. The setup is as in the
quantum Hall effect: in a high quality semi-conductor interface, which will be modelled by an
infinite 2-dimensional surface, with low carrier concentration and extremely low temperatures
∼ 10mK, in the presence of a very strong magnetic field, the experiment shows that the graph
of h

e2σH against the filling factor ν exhibits plateaux at certain fractional values.
The independent electron approximation that, in the case of the integer quantum Hall effect,
reduces the problem to a single electron wavefunction is no longer viable in this case and one
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has to incorporate the Coulomb interaction between the electrons in a many-electron theory.
Nonetheless, it is possible to use a crude approximation, whereby one alters the underlying
geometry to account for an average effect of the multi-electron interactions. One can obtain
this way a model of the fractional quantum Hall effect via noncommutative geometry (cf.
[152], [153], [154]), where one uses hyperbolic geometry to simulate the interactions.
The noncommutative geometry approach to the quantum Hall effect described above was
extended to hyperbolic geometry in [37]. The analog of the operator (8.6) is given by the
Harper operator on the Cayley graph of a finitely generated discrete subgroup Γ of PSL2(R).
Given σ : Γ× Γ→ U(1) satisfying σ(γ, 1) = σ(1, γ) = 1 and

σ(γ1, γ2)σ(γ1γ2, γ3) = σ(γ1, γ2γ3)σ(γ2, γ3),

one considers the right σ-regular representation on `2(Γ) of the form

(8.9) Rσ
γψ(γ′) = ψ(γ′γ)σ(γ′, γ)

satisfying
Rσ

γR
σ
γ′ = σ(γ, γ′)Rσ

γγ′ .

For {γi}ri=1 a symmetric set of generators of Γ, the Harper operator is of the form

(8.10) Rσ =
r∑

i=1

Rσ
γi
,

and the operator r −Rσ is the discrete analog of the magnetic Laplacian (cf. [194]).
The idea is that, by effect of the strong interaction with the other electrons, a single electron
“sees” the surrounding geometry as hyperbolic, with lattice sites that appear (as a multiple
image effect) as the points in a lattice Γ ⊂ PSL2(R). Thus, one considers the general form
of such a lattice

(8.11) Γ = Γ(g; ν1, . . . , νn),

with generators ai, bi, cj , with i = 1, . . . , g and j = 1, . . . , n and a presentation of the form

(8.12) Γ(g; ν1, . . . , νn) = 〈ai, bi, cj

∣∣∣∣∣

g∏

i=1

[ai, bi]c1 · · · cn = 1, c
νj

j = 1〉.

The quotient of the action of Γ by isometrieson H,

(8.13) Σ(g; ν1, . . . , νn) := Γ\H,
is a hyperbolic orbifold.

Let PE denote denote the spectral projection associated to the Fermi level, i.e. PE =
χ(−∞,E](H). Then, in the zero temperature limit, the Hall conductance is given by

(8.14) σE = trK(PE , PE , PE),

where trK denotes the conductance 2-cocycle. It is a cyclic 2-cocycle on the twisted group
algebra C(Γ, σ) of the form

(8.15) trK(f0, f1, f2) =

g∑

j=1

tr(f0(δj(f1)δj+g(f2)− δj+g(f1)δj(f2))),
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Figure 8. Hyperbolic orbifolds.

where the δj are derivations associated to the 1-cocycles aj associated to a symplectic basis
{aj , bj}j=1,...,g of H1(Γ,R) (cf. [154]).
Within this model, one obtains the fractional values of the Hall conductance as integer mul-
tiples of orbifold Euler characteristics

(8.16) χorb(Σ(g; ν1, . . . , νn)) = 2− 2g + ν − n ∈ Q.

In fact, one shows (cf. [153], [154]) that the conductance 2-cocycle is cohomologous to another
cocycle, the area 2-cocycle, for which one can compute the values on K-theory (hence the
value of (8.14)) by applying a twisted version of the Connes–Moscovici higher index theorem
[80].

While in the case of the integer quantum Hall effect the noncommutative geometry model is
completely satisfactory and explains all the physical properties of the system, in the fractional
case the orbifold model can be considered as a first rough approximation to the quantum
field theory that coverns the fractional quantum Hall effect. For instance, the geometry of
2-dimensional hyperbolic orbifolds is related to Chern–Simons theory through the moduli
spaces of vortex equations. This remains an interesting open question.

9. Tilings

In general, by a tiling T in Rd one means the following. One considers a finite collection
{τ1, . . . , τN} of closed bounded subsets of Rd homeomorphic to the unit ball. These are
called the prototiles. One usually assumes that the prototiles are polytopes in Rd with a
single d-dimensional cell which is the interior of the prototile, but this assumption can be
relaxed. A tiling T of Rd is then a covering of Rd by sets with disjoint interior, each of which
is a tile, that is, a translate of one of the prototiles.
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Figure 9. Prototiles for tilings.

Given a tiling T of Rd one can form its orbit closure under translations. The metric on tilings
is defined by saying that two tilings are close if they almost agree on a large ball centered at
the origin in Rd (for more details and equivalent definitions see e.g. [4], [20]).
Tilings can be periodic or aperiodic. There are many familiar examples of periodic tilings,
while the best known examples of aperiodic tilings are the Penrose tilings [165]. Similar types
of aperiodic tilings have been widely studied in the physics of quasicrystals (cf. e.g. [13], [20]).
It was understood very early on in the development of noncommutative geometry (cf. [59]
and pp.5–7, pp.88–93, and pp.175–178 of [54]) that Penrose tilings provide an interesting
class of noncommutative spaces.
In fact, one can consider on the set Ω of tilings T with given prototiles {τ1, . . . , τN} the
equivalence relation given by the action of Rd by translations, i.e. one identifies tilings that
can be obtained from one another by translations. In the case of aperiodic tilings, this
yields the type of quotient construction described in Section 4, which leads naturally to
noncommutative spaces. An explicit description of this noncommutative space for the case
of Penrose tilings can be found in §II.3 of [54].

To simplify the picture slightly, we can consider the similar problem (dually) with arrange-
ments of points in Rd instead of tilings. This is the formulation used in the theory of aperiodic
solids and quasicrystals (cf. [20]). Then, instead of tilings T , we consider discrete subsets of
points L ⊂ Rd. Such L is a Delauney set if there are radii r,R > 0 such that every open ball
of radius r meets L in at most one point and every closed ball of radius R meets L in at least
one point. One can describe L by the counting measure

µL(f) =
∑

x∈L
f(x),
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Figure 10. Quasiperiodic tilings and zellijs.

and one can take the orbit closure Ω of the action of Rd by translations

µL 7→ T−aµL = µL ◦ Ta, for a ∈ Rd,

in the space M(Rd) of Radon measures with the weak∗ topology. The Hull of L is the
dynamical system (Ω, T ), where T denotes the action of Rd by translations.
This dynamical system determines a corresponding noncommutative space, describing the
quotient of Ω by translations, namely the crossed product C ∗-algebra

(9.1) A = C(Ω) oT Rd.

In fact, one can also consider the groupoid with set of units the transversal

(9.2) X = {ω ∈ Ω : 0 ∈ Support(ω)},
arrows of the form (ω, a) ∈ Ω×Rd, with source and range maps s(ω, a) = T−aω, r(ω, a) = ω
and (ω, a)◦ (T−aω, b) = (ω, a+ b) (cf. [20]). This defines a locally compact groupoid G(L, X).
The C∗-algebras C∗(G(L, X)) and C(Ω) oT Rd are Morita equivalent.
In the case where L is a periodic arrangement of points with cocompact symmetry group
Γ ⊂ Rd, the space Ω is an ordinary commutative space, which is topologically a torus Ω =
Rd/Γ. The C∗-algebra A is in this case isomorphic to C(Γ̂) ⊗ K, where K is the algebra of

compact operators and Γ̂ is the Pontrjagin dual of the abelian group Γ ∼= Zd, isomorphic to
T d, obtained by taking the dual of Rd modulo the reciprocal lattice

(9.3) Γ] = {k ∈ Rd : 〈k, γ〉 ∈ 2πZ,∀γ ∈ Γ}.
Thus, in physical language, Γ̂ is identified with the Brillouin zone B = Rd/γ] of the periodic
crystal L (cf. Section 8). In this periodic case, the transversal X = L/Γ is a finite set of

points. The groupoid C∗-algebra C∗(G(L, X)) is in this case isomorphic to C(Γ̂) ⊗Mk(C),
where k is the cardinality of the transversal X. Thus, the periodic case falls back into the
realm of commutative spaces, while the aperiodic patterns give rise to truly noncommutative
spaces, which are highly nontrivial and interesting.
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Figure 11. Quasiperiodic tilings and muqarnas.

One of the richest sources of interesting tilings are the zellijs and muqarnas widely used in
ancient architecture. Also collectively defined as “arabesques”, not only these patterns ex-
hibit highly nontrivial geometries, but they reflect the intricate interplay between philosophy,
mathematics, and aesthetics (cf. [9], [35]). Some of the best studies on zellijs and muqarnas
concentrate on 2-dimensional periodic patterns. For instance we find in [9], p.43:

“As Nature is based on rhythm, so the arabesque is rhythmic in concept.
It reflects movement marked by the regular recurrence of features, elements,
phenomena; hence it has periodicity.”

It seems from this viewpoint that only the theory of periodic tilings (i.e. commutative ge-
ometry) should be relevant in this context. However, more recent studies (cf. [35], [40],
[41], [162]) suggest that the design of zellijs and muqarnas was not limited to 2-dimensional
crystallographic groups, but, especially during the Timurid period, it involved also aperiodic
patterns with fivefold symmetry, analogous to those observed in quasi-crystals. This is no
accident and was certainly the result of a highly developed geometric theory: already in the
historic textbook of Abu’l-Wafa’ al-Buzjani (940-998) on geometric constructions [198] there
is explicit mention of meetings and discussions where mathematicians were directly involved
alongside artisans in the design of arabesque patterns.
The appearance of aperiodic tilings is documented in the anonymous Persian manuscript [5]
“On interlocking similar and congruent figures”, which dates back to the 11th-13th century.
Some of these aperiodic aspects of zellijs and muqarnas were studied by Bulatov in the book
[35], which also contains Vil’danova’s Russian translation of the ancient Persian text.

10. Noncommutative spaces from dynamical systems

We will look at some examples of noncommutative spaces associated to a discrete dynamical
system T , for instance given by a self mapping of a Cantor set. Such noncommutative spaces
have been extensively studied in a series of papers (cf. [107] and [187] for a survey) where
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C. Skau and his coworkers have obtained remarkable results on the classification of minimal
actions of Z on Cantor sets using the K-theory of the associated C ∗-algebra.
It was found recently (cf. [91], [92], §4 of [149] and §8 of [148]) that the mapping torus of
such systems can be used to model the “dual graph” of the fibers at the archimedean primes
of arithmetic surfaces, in Arakelov geometry, in the particular case in which the dynamical
system T is a subshift of finite type encoding the action of a Schottky group Γ ⊂ SL2(C) on
its limit set ΛΓ ⊂ P1(C). In fact, the results of [91] were motivated by earlier results of Manin
[145] that provided a geometric model for such dual graphs in terms of hyperbolic geometry
and Schottky uniformizations.

More generally, given an alphabet with letters {`1, . . . , `N}, the space S+
A of a subshift of

finite type consists of all right-infinite admissible sequences

(10.1) w = a0a1a2 . . . an . . .

in the letters of the alphabet. Namely, ai ∈ {`1, . . . , `N} subject to an admissibility condition
specified by an N ×N matrix A with entries in {0, 1}. Two letters `i and `j in the alphabet
can appear as consecutive digits ak, ak+1 in the word w if and only if the entry Aij of
the admissibility matrix A is equal to 1. One defines similarly the space SA as the set of
doubly-infinite admissible sequences

(10.2) w = . . . a−m . . . a−2a−1a0a1a2 . . . an . . .

The sets S+
A and SA have a natural choice of a topology. In fact, on SA we can put the

topology generated by the sets W s(x, `) = {y ∈ SA|xk = yk, k ≥ `}, and the W u(x, `) = {y ∈
SA|xk = yk, k ≤ `} for x ∈ SA and ` ∈ Z. This induces a topology with analogous properties
on S+

A by realizing it as a subset of SA, for instance, by extending each sequence to the left

as a constant sequence. One then considers on SA (or on S+
A ) the action of the two-sided

(resp. one-sided) shift T defined by (Tw)k = ak+1, where the ak are the digits of the word w.
Namely, the one-sided shift on S+

A is of the form

(10.3) T (a0a1a2 . . . a` . . .) = a1a2 . . . a` . . .

while the two-sided shift on SA acts as

(10.4)
T ( . . . a−m . . . a−1 a0 a1 . . . a` . . . ) =

. . . a−m+1 . . . a0 a1 a2 . . . a`+1 . . .

Tipically spaces S+
A and SA are topologically Cantor sets. The one-sided shift T of (10.3) is a

continuous surjective map on S+
A , while the two-sided shift T of (10.4) is a homeomorphism

of SA.
For example, let Γ be a free group in g generators {γ1, . . . , γg}. Consider the alphabet

{γ1, . . . , γg, γ
−1
1 , . . . , γ−1

g }. Then one can consider the right-infinite, or doubly-infinite words
in these letters, without cancellations, that is, subject to the admissibility rule that ak+1 6=
a−1

k . This defines a subshift of finite type where the matrix A is the symmetric 2g × 2g
matrix with Aij = 0 for |i − j| = g and Aij = 1 otherwise. Suppose that Γ is a Schottky
group of genus g, i.e. a finitely generated discrete subgroup Γ ⊂ SL2(C), isomorphic to a free
group in g generators, where all nontrivial elements are hyperbolic. Then the points in S+

A

parameterize points in the limit set ΛΓ ⊂ P1(C) (the set of accumulation points of orbits of
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Figure 12. Mapping Torus

Γ). The points in SA parameterize geodesics in the three dimensional real hyperbolic space
H3 with ends at points on the limit set ΛΓ.
The pair (SA, T ) is a typical example of an interesting class of dynamical systems, namely it
is a Smale space. This means that locally SA can be decomposed as the product of expanding
and contracting directions for T . Namely, the following properties are satisfied.

• For every point x ∈ SA there exist subsets W s(x) and W u(x) of SA, such that
W s(x)×W u(x) is homeomorphic to a neighborhood of x.
• The map T is contracting on W s(x) and expanding on W u(x), and W s(Tx) and
T (W s(x)) agree in some neighborhood of x, and so do W u(Tx) and T (W u(x)).

A construction of Ruelle shows that one can associate different C ∗–algebras to Smale spaces
(cf. [180], [170], [171]). For Smale spaces like (SA, T ) there are four basic possibilities: the
crossed product algebra C(SA)oT Z and the C∗–algebras C∗(Gs)oT Z, C∗(Gu)oT Z, C∗(Ga)oT

Z obtained by considering the action of the shift T on the groupoid C∗–algebra associated
to the groupoids Gs, Gu, Ga of the stable, unstable, and asymptotic equivalence relations on
(SA, T ).
The first choice, C(SA) oT Z, is closely related to the continuous dynamical system given by
the mapping torus of T , while a choice like C∗(Gu) oT Z is related to the “bad quotient” of
S+

A by the action of T . In the example of the Schottky group this corresponds to the action
of Γ on its limit set.
One can consider the suspension flow ST of a dynamical system T , that is, the mapping torus
of the dynamical system (SA, T ), which is defined as

(10.5) ST := SA × [0, 1]/(x, 0) ∼ (Tx, 1).

The first cohomology group of ST is the “ordered cohomology” of the dynamical system T ,
in the sense of [30] [164]. There is an identification of H 1(ST ,Z) with the K0-group of the
crossed product C∗-algebra for the action of T on SA,

(10.6) H1(ST ,Z) ∼= K0(C(SA) oT Z).
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This can be seen from the Pimsner–Voiculescu exact sequence (cf. [167]) for the K-theory of
a crossed product by Z, which in this case reduces to

(10.7) 0→ K1(C(S) oT Z)→ C(S,Z)
I−T∗→ C(S,Z)→ K0(C(S) oT Z)→ 0,

It can also be seen in terms of the Thom isomorphism of [55], [56].
In fact, as we discussed in Section 2, one of the fundamental construction of noncommutative
geometry (cf. [56]) is that of homotopy quotients. These are commutative spaces, which
provide, up to homotopy, geometric models for the corresponding noncommutative spaces.
The noncommutative spaces themselves, as we are going to show in our case, appear as
quotient spaces of foliations on the homotopy quotients with contractible leaves.
For the noncommutative space SA/Z, with Z acting as powers of the invertible two-sided
shift, the homotopy quotient is precisely the mapping torus (10.5),

(10.8) ST = S ×Z R.

The noncommutative space S/Z can be identified with the quotient space of the natural
foliation on (10.8) whose generic leaf is contractible (a copy of R).
Another noncommutative space associated to a subshift of finite type T (which, up to Morita
equivalence, correspond to another choice of the C ∗-algebra of a Smale space, as mentioned
above) is the Cuntz–Krieger algebra OA, where A is the admissibility matrix of the subshift
finite type (cf. [94] [95]).
A partial isometry is a linear operator S satisfying the relation S = SS∗S. The Cuntz–
Krieger algebra OA is defined as the universal C∗–algebra generated by partial isometries
S1, . . . , SN , satisfying the relations

(10.9)
∑

j

SjS
∗
j = I

(10.10) S∗
i Si =

∑

j

Aij SjS
∗
j .

In the case of a Schottky group Γ ⊂ PSL2(C) of genus g, the Cuntz–Krieger algebra OA can
be described in terms of the action of the free group Γ on its limit set ΛΓ ⊂ P1(C) (cf. [177],
[190]), so that we can regard OA as a noncommutative space replacing the classical quotient
ΛΓ/Γ,

(10.11) OA
∼= C(ΛΓ) o Γ.

The quotient space

(10.12) ΛΓ ×Γ H3 = ΛΓ ×Γ EΓ,

is precisely the homotopy quotient of ΛΓ with respect to the action of Γ, with EΓ = H3

and the classifying space BΓ = H3/Γ. Here H3/Γ is a hyperbolic 3-manifold of infinite
volume, which is topologically a handlebody of genus g. In this case also we find that the
noncommutative space ΛΓ/Γ is the quotient space of a foliation on the homotopy quotient
(10.12) with contractible leaves H3.
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11. Noncommutative spaces from string theory

The main aspects of string and D-brane theory that involve noncommutative geometry are
the bound states of configurations of parallel D-branes [201], the matrix models for M-theory
[14] and the strong coupling limit of string theory (cf. e.g. [7], [8]). It also plays an important
role in the M-theory compactifications [68]. We shall not discuss all these aspects in detail
here. Since the focus of this review is on examples we only mention a couple of examples of
noncommutative spaces arising from string and D-brane theory.

The noncommutative tori and the components of the Yang-Mills connections appear in the
classification of the BPS states in M-theory [68].
Recall first that Yang–Mills theory on noncommutative tori can be formulated (cf. [88])
using suitable notions of connections and curvature for noncommutative spaces. In fact, the
analogs of connection and curvature of vector bundles are straightforward to obtain ([57]): a
connection is just given by the associated covariant differentiation ∇ on the space of smooth
sections. Thus here it is given by a pair of linear operators,

(11.1) ∇j : S(R)→ S(R)

such that

(11.2) ∇j(ξb) = (∇jξ)b+ ξδj(b) ∀ξ ∈ S , b ∈ Aθ .

One checks that, as in the usual case, the trace of the curvature

Ω = ∇1∇2 −∇2∇1,

is independent of the choice of the connection.
We can make the following choice for the connection:

(11.3) (∇1ξ)(s) = −2πis

θ
ξ(s) (∇2ξ)(s) = ξ′(s) .

Notice that, up to the correct powers of 2πi, the total curvature of S is an integer. In fact,
the curvature Ω is constant, equal to 1

θ , so that the irrational number θ disappears in the

total curvature, θ × 1
θ . This integrality phenomenon, where the pairing of dimension and

curvature (both of which are non–integral) yields an integer:

dim× Ω ∼ θ × 1

θ
= integer,

is the basis for the development of a theory of characteristic classes for non–commutative
spaces. In the general case, this requires the development of more sophisticated tools, since
analogs of the derivations δi used in the case of the noncommutative tori are not there in
general. The general theory is obtained through cyclic homology, as developed in [58].

Consider then the modules Hθ
p,q described in Section 6. It is possible to define an Aθ valued

inner product 〈·, ·〉A on Hθ
p,q, as in [175], which is used to show that Hθ

p,q is a projective
module. Connections are required to be compatible with the metric,

(11.4) δj〈ξ, η〉A = 〈∇jξ, η〉A + 〈ξ,∇jη〉A.
It is proved in [57] that such connections always exist. The curvature Ω has values in E =
EndA(H). An E–valued inner product on H is given by

〈ξ, η〉Eζ = ξ〈η, ζ〉A,
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and a canonical faithful trace τE is defined as

τE(〈ξ, η〉E ) = τ(〈η, ξ〉A),

where τ is the trace on the algebra Aθ, given by (8.8).
The Yang–Mills action is defined (cf. [88]) as

(11.5) τ(〈Ω,Ω〉E ).

One seeks for minima of the Yang–Mills action among metric compatible connections (11.4).
The main result is that this recovers the classical moduli spaces of Yang–Mills connections
on the ordinary torus ([88]):

Theorem 11.1. For a choice of a pair of integers (p, q) with p + qθ ≥ 0, the moduli space
of Yang–Mills connections on the Aθ module Hθ

pq is a classical space given by the symmetric
product

sN (T 2) = (T 2)N/ΣN ,

where ΣN is the group of permutations in N–elements, for N = gcd(p, q).

In the matrix formulation of M-theory the basic equations to obtain periodicity of two of the
basic coordinates Xi turn out to be the

(11.6) UiXjU
−1
i = Xj + aδj

i , i = 1, 2,

where the Ui are unitary gauge transformations. The multiplicative commutator U1U2U
−1
1 U−1

2
is then central and in the irreducible case its scalar value λ = exp 2πiθ brings in the algebra of
coordinates on the noncommutative torus. TheXj are then the components of the Yang-Mills
connections. The same picture emerged from the other information one has about M-theory
concerning its relation with 11 dimensional supergravity and that string theory dualities can
then be interpreted using Morita equivalence, relating the values of θ on an orbit of SL2(Z).

Nekrasov and Schwarz [163] showed that Yang-Mills gauge theory on noncommutative R4

gives a conceptual understanding of the nonzero B-field desingularization of the moduli space
of instantons obtained by perturbing the ADHM equations. In [182], Seiberg and Witten ex-
hibited the unexpected relation between the standard gauge theory and the noncommutative
one, and clarified the limit in which the entire string dynamics is described by a gauge theory
on a noncommutative space. Techniques from noncommutative differential and Riemannian
geometry, in the sense discussed in Section 2 were applied to string theory, for instance in
[7]. The role of noncommutative geometry in the context of T -duality was considered in very
interesting recent work of Mathai and collaborators, [28], [29], [155].

Recently, in the context of the holographic description of type IIB string theory on the plane-
wave background, Shahin M.M. Sheikh-Jabbari obtained (cf. [183]) an interesting class of
noncommutative spaces from the quantization of Nambu d-brackets. The classical Nambu
brackets

(11.7) {f1, . . . , fk} = εi1···ik
∂f1

∂xi1
· · · ∂fk

∂xik
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of k real valued functions of variables (x1, . . . , xk) is quantized in the even case to the expres-
sion in 2k operators

(11.8)
1

ik
[F1, . . . , F2k] =

1

ik(2k)!
εi1···i2kFi1 · · ·Fi2k

.

This generalizes the Poisson bracket quantization {f1, f2} 7→ −i
~

[F1, F2]. The odd case is more
subtle and it involves an additional operator related to the chirality operator γ5. One sets

(11.9)
1

ik
[F1, . . . , F2k−1, γ] =

1

ik(2k)!
εi1···i2kFi1 · · ·Fi2k−1

γ,

where γ is the chirality operator in 2k-dimensions. For example, for k = 2 one gets

[F1, F1, F3, γ] = 1
24 ([F1, F2][F3, γ] + [F3, γ][F1, F2]

−([F1, F3][F2, γ] + [F2, γ][F1, F3])

+[F2, F3][F1, γ] + [F1, γ][F2, F3]).

If one describes the ordinary d-dimensional sphere of radius R by the equation

(11.10)

d+1∑

i=1

(xi)2 = R2,

the coordinates satisfy

(11.11) {xi1 , . . . , xid} = Rd−1εi1···id+1xid+1 .

The equation (11.10) and (11.11) are then replaced by their quantized version, using the
quantization of the Nambu bracket and the introduction of a quantization parameter `. This
defines algebras generated by unitaries X i subject to the relations given by the quantization
of (11.10) and (11.11). Matrix representations of these algebra correspond to certain fuzzy
spheres. It would be interesting to study the general structure of these noncommutative spaces
from the point of view of the various steps introduced in Section 2, cf. also the discussion in
Section 19.

12. Groupoids and the index theorem

Since the construction of the C∗-algebra of foliations based on the holonomy groupoid (section
5), groupoids have played a major role in noncommutative geometry. In fact the original
construction of matrix mechanics by Heisenberg (section 3) is exactly that of the convolution
algebra of the groupoid of transitions imposed by experimental results. The convolution
algebra of groupoids can be defined in the context of von-Neumann algebras and of C ∗-
algebras (cf. [52] and [173]). It is particularly simple and canonical in the context of smooth
groupoids (cf. [54] section II.5). One virtue of the general construction is that it provides a
geometric mental picture of complicated analytical constructions. The prototype example is
given by the tangent groupoid of a manifold (cf. [54] section II.5). It is obtained by blowing
up the diagonal in the square V × V of the manifold and as a set is given by

GV = V × V×]0, 1] ∪ TV
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where TV is the (total space of the) tangent bundle of V . A tangent vector X ∈ Tx(V )
appears as the limit of nearby triples (x1, x2, ε) provided in any chart the ratios (x1 − x2)/ε
converge to X. When ε→ 0 the Heisenberg (matrix) law of composition :

(x1, x2, ε) ◦ (x2, x3, ε) = (x1, x3, ε)

converges to the addition of tangent vectors, so that GV becomes a smooth groupoid. The
functoriality of the construction G→ C∗(G) of the convolution algebra for smooth groupoids
G is then enough to define the Atiyah-Singer analytic index of pseudo-differential operators.
It is simply given by the map in K-theory for the exact sequence of C ∗-algebras associated
to the geometric sequence

V × V×]0, 1]→ GV ⊃ TV
where TV is viewed as a closed subgroupoid of GV . The corresponding exact sequence of
C∗-algebras can be written as

0→ C0(]0, 1]) ×K → C∗(GV )→ C0(T
∗V )→ 0

and is a geometric form of the extension of pseudo-differential operators. By construction the
algebra C0(]0, 1]) is contractible and the same holds for the tensor product C0(]0, 1]) ×K by
the algebra K of compact operators. This shows that the restriction map C ∗(GV )→ C0(T

∗V )
is an isomorphism in K-theory :

(12.1) K0(C0(T
∗V )) ∼ K0(C

∗(GV ))

Since the K-theory of K is Z for K0, one gets the analytic index by the evaluation map

C∗(GV )→ K , K0(C
∗(GV ))→ K0(K) = Z

composed with the isomorphism (12.1). Using the Thom isomorphism yields a geometric
proof (cf. [54]) of the Atiyah-Singer index theorem, where all the analysis has been taken
care of once and for all by the functor G→ C∗(G).
This paradigm for a geometric set-up of the index theorem has been successfully extended
to manifolds with singularities (cf. [160] [161] and references there) and to manifolds with
boundary [1].

13. Riemannian manifolds, conical singularities

A main property of the homotopy type of a compact oriented manifold is that it satisfies
Poincaré duality not just in ordinary homology but also in K-homology. In fact, while
Poincaré duality in ordinary homology is not sufficient to describe homotopy type of manifolds
(cf. [159]), Sullivan proved (cf. [193]) that for simply connected PL manifolds of dimension
at least 5, ignoring 2-torsion, the same property in KO-homology suffices and the Chern
character of the KO-homology fundamental class carries all the rational information on the
Pontrjagin classes.
For an ordinary manifold the choice of the fundamental cycle in K-homology is a refinement
of the choice of orientation of the manifold and, in its simplest form, it is a choice of Spin-
structure. Of course the role of a spin structure is to allow for the construction of the
corresponding Dirac operator which gives a corresponding Fredholm representation of the
algebra of smooth functions. The choice of a square root involved in the Dirac operator D
corresponds to a choice of K-orientation.
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K-homology admits a fairly simple definition in terms of Hilbert spaces and Fredholm rep-
resentations of algebras. In fact, we have the following notion of Fredholm module (cf. [54]):

Definition 13.1. Let A be an algebra, an odd Fredholm module over A is given by:

(1) a representation of A in a Hilbert space H.
(2) an operator F = F ∗, F 2 = 1, on H such that

[F, a] is a compact operator for any a ∈ A .
An even Fredholm module is given by an odd Fredholm module (H, F ) together with a Z/2
grading γ, γ = γ∗, γ2 = 1 of the Hilbert space H satisfying:

(1) γa = aγ, for all a ∈ A
(2) γF = −Fγ.

This definition is derived from Atiyah’s definition [12] of abstract elliptic operators, and
agrees with Kasparov’s definition [123] for the cycles in K-homology, KK(A,C), when A is
a C∗-algebra.
The notion of Fredholm module can be illustrated by the following examples (cf. [54]).

Example 13.2. If X is a manifold, an elliptic operator on X can be twisted with vector
bundles, so as to give rise to an index map Ind : K0(C(X))→ Z. If P is an elliptic operator
(the symbol is invertible) and a pseudodifferential operator of order zero, P : L2(X,E+) →
L2(X,E−), then there exists a parametrix Q for P . This is also an operator of order zero,
and a quasi-inverse for P , in the sense that it is an inverse at the symbol level, namely PQ−I
and QP − I are compact operators. Consider then the operator

F =

(
0 Q
P 0

)

onH = L2(X,E+)⊕L2(X,E−). The algebra C(X) acts onH and [F, f ] is a compact operator
for all f ∈ C(X). Since F 2 − I is compact, it is possible to add to H a finite dimensional
space to obtain F 2 = I. Notice that the functions of C(X) act differently on this modified
space. In particular the function f ≡ 1 no longer acts as the identity: one recovers the index
of P this way.

Example 13.3. Let Γ = Z ∗ Z a free group, and let A = CΓ. Let T be the tree of Γ
with T 0 the set of vertices and T 1 the set of edges. Fix an origin x0 in T 0. For any vertex
v ∈ T 0 there exists a unique path connecting it to the origin x0. This defines a bijection
φ : T 0\{x0} → T 1 that assigns v 7→ φ(v) with φ(v) this unique edge. Let Uφ be the unitary
operator implementing φ, and consider the operator

F =

(
0 Uφ

U∗
φ 0

)

acting on H = `2(T 0) ⊕ `2(T 1) ⊕ C. By construction Γ acts naturally on Tj which gives a
corresponding action of A in H. The pair (H, F ) is a Fredholm module over A.

Example 13.4. On S1 ' P1(R), consider the algebra of functions C(P1(R)), acting on the
Hilbert space L2(R), as multiplication operators (f ξ)(s) = f(s)ξ(s). Let F be the Hilbert
transform

(F ξ)(s) =
1

πi

∫
f(t)

s− t dt.
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This multiplies by +1 the positive Fourier modes and by −1 the negative Fourier modes. A
function f ∈ C(P1(R)) has the property that [F, f ] is of finite rank if and only if f is a rational
function f(s) = P (s)/Q(s). This is Kronecker’s characterization of rational functions.

Besides the K-homology class, specified by a Fredholm module, one also wants to generalize
to the noncommutative setting the infinitesimal line element ds of a Riemannian manifold.
In ordinary Riemannian geometry one deals rather with the ds2 given by the usual local
expression gµν dx

µ dxν . However, in order to extend the notion of metric space to the non-
commutative setting it is more natural to deal with ds, for which the ansatz is

(13.1) ds = ×−−−× ,
where the right hand side has the meaning usually attributed to it in physics, namely the
Fermion propagator

(13.2) ×−−−× = D−1,

where D is the Dirac operator. In other words, the presence of a spin (or spinc) structure
makes it possible to extract the square root of ds2, using the Dirac operator as a differential
square root of a Laplacian.
This prescription recovers the usual geodesic distance on a Riemannian manifold, by the
following result (cf. [59]).

Lemma 13.5. On a Riemannian spin manifold the geodesic distance d(x, y) between two
points is computed by the formula

(13.3) d(x, y) = sup{|f(x)− f(y)| ; f ∈ A , ‖[D, f ]‖ ≤ 1}
where D is the Dirac operator, D = ds−1, and A is the algebra of smooth functions.

This essentially follows from the fact that the quantity ‖[D, f ]‖ can be identified with the
Lipschitz norm of the function f ,

‖[D, f ]‖ = ess sup
x∈M
‖(∇f)x‖ = sup

x6=y

|f(x)− f(y)|
d(x, y)

.

Notice that, if ds has the dimension of a length L, then D has dimension L−1 and the above
expression for d(x, y) also has the dimension of a length. On a Riemannian spin manifold X,
the condition ‖[D, f ]‖ ≤ 1, for D the Dirac operator, is equivalent to the condition that f is
a Lipschitz function with Lipschitz constant c ≤ 1.
The advantage of the definition (13.1), (13.2) of the line element is that it is of a spectral and
operator theoretic nature, hence it extends to the noncommutative setting.
The structure that combines the K-homology fundamental cycle with the spectral definition
of the line element ds is the notion of spectral triple (A,H, D) (cf. [63], [81]).

Definition 13.6. A (compact) noncommutative geometry is a triple

(13.4) (A,H, D)

where A is a unital algebra represented concretely as an algebra of bounded operators on the
Hilbert space H. The unbounded operator D is the inverse of the line element

(13.5) ds = 1/D.

Such a triple (A,H, D) is requires to satisfy the properties:



42 CONNES AND MARCOLLI

(1) [D, a] is bounded for any a ∈ A∞, a dense subalgebra of the C∗-algebra A = Ā.
(2) D = D∗ and (D + λ)−1 is a compact operator, for all λ 6∈ R.

We say that a spectral triple (A,H, D) is even if the Hilbert space H has a Z/2-grading by
an operator γ satisfying

(13.6) γ = γ∗, γ2 = 1, γ D = −Dγ, γ a = a γ ∀a ∈ A.
This definition is entirely spectral. The elements of the algebra (in general noncommutative)
are operators and the line element is also an operator. The polar decomposition D = |D|F
recovers the Fredholm module F defining the fundamental class in K-homology. The formula
for the geodesic distance extends to this context as follows.

Definition 13.7. Let ϕi : A→ C, for i = 1, 2, be states on A, i.e. normalized positive linear
functionals on A with ϕi(1) = 1 and ϕi(a

∗a) ≥ 0 for all a ∈ A. Then the distance between
them is given by the formula

(13.7) d(ϕ1, ϕ2) = sup{|ϕ1(a)− ϕ2(a)| ; a ∈ A , ‖[D, a]‖ ≤ 1} .

A spectral triple (A,H, D) is of metric dimension p, or p-summable, if |D|−1 is an infinitesimal
of order 1/p (i.e. |D|−p is an infinitesimal of order one). Here p <∞ is a positive real number.

A spectral triple (A,H, D) is θ-summable if Tr(e−tD2

) < ∞ for all t > 0. The latter case
corresponds to an infinite dimensional geometry.
Spectral triples also provide a more refined notion of dimension besides the metric dimension
(summability). It is given by the dimension spectrum, which is not a number but a subset of
the complex plane.
More precisely, let (A,H, D) be a spectral triple satisfying the regularity hypothesis

(13.8) a and [D, a] ∈ ∩kDom(δk), ∀ a ∈ A∞,

where δ is the derivation δ(T ) = [|D|, T ], for any operator T . Let B denote the algebra
generated by δk(a) and δk([D, a]). The dimension spectrum of the triple (A,H, D) is the
subset Σ ⊂ C consisting of all the singularities of the analytic functions ζb(z) obtained by
continuation of

(13.9) ζb(z) = Tr(b|D|−z), <(z) > p , b ∈ B .
Example 13.8. Let M be a smooth compact Riemannian spin manifold, and (A,H, D) is the
corresponding spectral triple given by the algebra of smooth functions, the space of spinors,
and the Dirac operator. Then the metric dimension agrees with the usual dimension n of M .
The dimension spectrum of M is the set {0, 1, . . . , n}, where n = dimM , and it is simple.
(Multiplicities appear for singular manifolds.)

It is interesting in the case of an ordinary Riemannian manifold M to see the meaning of the
points in the dimension spectrum that are smaller than n = dimM . These are dimensions in
which the space “manifests itself nontrivially” with some interesting geometry.
For instance, at the point n = dimM of the dimension spectrum one can recover the volume
form of the Riemannian metric by the equality (valid up to a normalization constant cf. [54])

(13.10)

∫
−f |ds|n =

∫

Mn

f
√
g dnx ,
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where the integral
∫
−T is given (cf. [54]) by the Dixmier trace (cf. [97]) generalizing the

Wodzicki residue of pseudodifferential operators (cf. [202]).
One can also consider integration

∫
−dsk in any other dimension in the dimension spectrum,

with ds = D−1 the line element. In the case of a Riemannian manifold one finds other
important curvature expressions. For instance, if M is a manifold of dimension dimM = 4,
when one considers integration in dimension 2 one finds the Einstein–Hilbert action. In fact,
a direct computation yields the following result (cf. [124] [122]):

Proposition 13.9. Let dv =
√
g d4x denote the volume form, ds = D−1 the length element,

i.e. the inverse of the Dirac operator, and r the scalar curvature. We obtain:

(13.11)

∫
− ds2 =

−1

48π2

∫

M4

r dv .

In general, one obtains the scalar curvature of an n-dimensional manifold from the integral∫
−dsn−2.

Many interesting examples of spectral triples just satisfy the conditions stated in Definition
13.6. However, there are significant case where more refined properties of manifolds carry over
to the noncommutative case, such as the presence of a real structure (which makes it possible
to distinguish between K-homology and KO-homology) and the “order one condition” for
the Dirac operator. These properties are described as follows (cf. [61] and [62]).

Definition 13.10. A real structure on an n-dimensional spectral triple (A,H, D) is an an-
tilinear isometry J : H → H, with the property that

(13.12) J2 = ε, JD = ε′DJ, and Jγ = ε′′γJ (even case).

The numbers ε, ε′, ε′′ ∈ {−1, 1} are a function of n mod 8 given by

n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 -1 1 -1

Moreover, the action of A satisfies the commutation rule

(13.13) [a, b0] = 0 ∀ a, b ∈ A,
where

(13.14) b0 = Jb∗J−1 ∀b ∈ A,
and the operator D satisfies

(13.15) [[D, a], b0] = 0 ∀ a, b ∈ A .
The anti-linear isometry J is given, in ordinary Riemannian geometry, by the charge conjuga-
tion operator acting on spinors. In the noncommutative case, this is replaced by the Tomita
antilinear conjugation operator (cf. [195]).

In [61] and [103] Theorem 11.2, necessary and sufficient conditions are given that a spectral
triple (A,H, D) (with real structure J) should fulfill in order to come from an ordinary
compact Riemannian spin manifold:

(1) ds = D−1 is an infinitesimal of order 1/n.
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(2) There is a real structure in the sense of Definition 13.10.
(3) The commutation relation (13.15) holds (this is [[D, a], b] = 0, for all a, b ∈ A, when
A is commutative).

(4) The regularity hypothesis of (13.8) holds: a and [D, a] are in ∩kDom(δk) for all
a ∈ A∞.

(5) There exists a Hochschild cycle c ∈ Zn(A∞,A∞) such that its representation π(c) on
H induced by

π(a0 ⊗ · · · ⊗ an) = a0[D, a1] · · · [D, an]

satisfies π(c) = γ, for γ as in (13.6), in the even case, and π(c) = 1 in the odd case.
(6) The space H∞ = ∩kDom(Dk) is a finite projective A-module, endowed with a A-

valued inner product 〈ξ, η〉A defined by

〈aξ, η〉 =

∫
−a 〈ξ, η〉A dsn.

(7) The intersection form

(13.16) K∗(A)×K∗(A)→ Z

obtained from the Fredholm index of D with coefficients in K∗(A⊗A0) is invertible.

When A is commutative, the above conditions characterize a smooth Riemannian manifold
M , with A∞ = C∞(M) (we refer to [103] for the precise statement). However, the conditions
can be stated without any commutativity assumption on A. They are satisfied, for instance,
by the isospectral deformations of [72], which we discuss in Section 18. Another very signifi-
cant noncommutative example is the standard model of elementary particles (cf. [61]), which
we discuss in Section 17.

Another example of spectral triple associated to a classical space, which is not classically a
smooth manifold, is the case of manifolds with singularities. In particular, one can consider
the case of an isolated conical singularity. This case was studied by Lescure [141].

Let X be a manifold with an isolated conical singularity. The cone point c ∈ X has the
property that there is a neighborhood U of c in X, such that Ur{c} is of the form (0, 1]×N ,
with N a smooth compact manifold, and metric g|U = dr2 + r2gN , where gN is the metric
on N .

A natural class of differential operators on manifolds with isolated conical singularities is
given by the elliptic operators of Fuchs type, acting on sections of a bundle E. These are
operators whose restriction over (0, 1] ×N takes the form

r−ν
d∑

k=0

ak(r)(−r∂r)
k,

for ν ∈ R and ak ∈ C∞([0, 1],Diff d−k(N,E|N )), which are elliptic with symbol σM (D) =∑d
k=0 ak(0)z

k that is an elliptic family parameterized by Im(z). In particular, operators of
Dirac type are elliptic of Fuchs type. For such an operator D, which is of first order and
symmetric, results of Chou [48], Brüning, Seeley [33] and Lesch [140] show that its self-adjoint
extension has discrete spectrum, with (n+ 1)-summable resolvent, for dimX = n.
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The algebra that is used in the construction of the spectral triple is A = C∞
c (X) ⊕ C, the

algebra of functions that are smooth on X r {c} and constant near the singularity. The
Hilbert space on which D acts is chosen from a family of weighted Sobolev spaces. Roughly,
one defines weighted Sobolev spaces that look like the standard Sobolev space on the smooth
part and on the cone are defined locally by norms

‖f‖2s,γ =

∫

R∗

+
×Rm−1

(
1 + (log t)2 + ξ2

)s
∣∣∣ ̂(r−γ+1/2f)(t, ξ)

∣∣∣
2 dt

t
dξ,

where f̂ denotes Fourier transform on the group R∗
+ ×Rm−1.

Then one obtains the following result (cf. [141])

Theorem 13.11. The data (A,H, D) given above define a spectral triple. In particular,
the zeta functions Tr(a|D|−z) admit analytic continuation to C r Σ, where the dimension
spectrum is of the form

Σ = {dimX − k, k ∈ N},
with multiplicities ≤ 2.

The analysis of the zeta functions uses the heat kernel

Tr(|D|−z) =
1

Γ(z/2)

∫ ∞

0
tz/2−1Tr(e−tD2

)dt,

for which one can rely on the results of [48] and [140]. The case of Tr(a|D|−z) of the form
Tr(Q|D|−z) with Q ∈ Ψ`

c(E), is treated by splitting Q|D|−z as a sum of a contribution from
the smooth part and one from the singularity.

The Chern character for this spectral triple gives a map

Ch : K∗(X)→ H∗(X,C),

where we have K∗(X) ∼= K∗(A) and H∗(X,C) ∼= PHC∗(A), the periodic cyclic homology of
the algebra A.
The cocycles ϕn in the (b,B)-bicomplex for the algebra A have also been computed explicitly
and are of the form

ϕn(a0, . . . , an) = νn

∫

X
a0da1 ∧ · · · ∧ dan ∧ Â(X) ∧ Ch(E),

for n ≥ 1, while for n = 0, λ ∈ C, ϕ0(a+ λ) =
∫
X aÂ(X) ∧ Ch(E) + λInd(D+).

14. Cantor sets and fractals

An important class of C∗-algebras are those obtained as direct limits of a sequence of finite
dimensional subalgebras and embeddings. These are called approximately finite dimensional,
or simply AF-algebras.
An AF algebra A is determined by a diagram of finite dimensional algebras and inclusions, its
Bratteli diagram [31], and from the diagram itself it is possible to read a lot of the structure
of the algebra, for instance its ideal structure. Some simple examples of algebras that belong
to this class are:
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Example 14.1. An example of a commutative AF is the algebra of complex valued continuous
functions on a Cantor set, where a Bratteli diagram is determined by a decreasing family of
disjoint intervals covering the Cantor set.

A non–commutative example of AF algebra is given by the algebra of the canonical anticom-
mutation relations of quantum mechanics.

Example 14.2. Consider a real Hilbert space E and a linear map E → B(H), f 7→ Tf , to
bounded operators in a Hilbert space H, satisfying

TfTg + TgTf = 0

T ∗
f Tg + TgT

∗
f = 〈g, f〉I,

and the algebra A generated by all the operators Tf satisfying these relations.

A survey with many examples of AF algebras and their properties is given for instance in
[96].
Let A be a commutative AF C∗-algebra. A commutative AF algebra A is spanned by its
projections, since finite dimensional commutative algebras are generated by orthogonal pro-
jections. This condition is equivalent to the spectrum Λ = Spec(A) of the algebra being a
totally disconnected compact Hausdorff space, typically a Cantor set. Realizing such Cantor
set as the intersection of a decreasing family of disjoint intervals covering Λ also provides a
Bratteli diagram for the AF algebra A = C(Λ).
As described in [54], in order to construct the Hilbert space H for a Cantor set Λ ⊂ R, let Jk

be the collection of bounded open intervals in R\Λ. We denote by L = {`k}k≥1 the countable
collection of the lengths of the intervals Jk. We can assume that the lengths are ordered

(14.1) `1 ≥ `2 ≥ `3 ≥ · · · ≥ `k · · · > 0.

We also denote by E = {xk,±} the set of the endpoints of the intervals Jk, with xk,+ > xk,−.
Consider the Hilbert space

(14.2) H := `2(E)

Since the endpoints of the Jk are points of Λ, there is an action of C(Λ) on H given by

(14.3) f · ξ(x) = f(x)ξ(x), ∀f ∈ C(Λ), ∀ξ ∈ H, ∀x ∈ E.
A sign operator F can be obtained (cf. [54]) by choosing the closed subspace Ĥ ⊂ H given
by

(14.4) Ĥ = {ξ ∈ H : ξ(xk,−) = ξ(xk,+), ∀k}.
Then F has eigenspaces Ĥ with eigenvalue +1 and Ĥ⊥ with eigenvalue −1, so that, when
restricted to the subspace Hk of coordinates ξ(xk,+) and ξ(xk,−), the sign F is given by

F |Hk
=

(
0 1
1 0

)
.

Finally, a Dirac operator D = |D|F is obtained as

(14.5) D|Hk

(
ξ(xk,+)
ξ(xk,−)

)
= `−1

k ·
(
ξ(xk,−)
ξ(xk,+)

)
.

We then obtain the following result.
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Figure 13. The Fibonacci Cantor set.

Proposition 14.3. Let Λ ⊂ R be a Cantor set. Let A∞ ⊂ C(Λ) be the dense subalgebra of
locally constant functions on the Cantor set. Then the data (A,H, D) form a spectral triple,
with H as in (14.2), the action (14.3), and D as in (14.5). The zeta function satisfies

Tr(|D|−s) = 2ζL(s),

where ζL(s) is the geometric zeta function of L = {`k}k≥1, defined as

(14.6) ζL(s) :=
∑

k

`sk.

These zeta functions are related to the theory of Dirichlet series and to other arithmetic zeta
functions, and also to Ruelle’s dynamical zeta functions (cf. [137]).

For example, for the classical middle-third Cantor set, we have set of lengths `k = 3−k and
multiplicities mk = 2k−1, for k ≥ 1, so that we obtain

(14.7) Tr(|D|−s) = 2ζL(s) =
∑

k≥1

2k3−sk =
2 · 3−s

1− 2 · 3−s
.

This shows that the dimension spectrum of the spectral triple of a Cantor set has points off
the real line. In fact, the set of poles of (14.7) is

(14.8)

{
log 2

log 3
+

2πin

log 3

}

n∈Z

.

In this case the dimension spectrum lies on a vertical line and it intersects the real axis in
the point D = log 2

log 3 which is the Hausdoff dimension of the ternary Cantor set. The same is

true for other Cantor sets, as long as the self-similarity is given by a unique contraction (in
the ternary case the original interval is replaced by two intervals of lengths scaled by 1/3).
If one considers slightly more complicated fractals in R, where the self-similarity requires more
than one scaling map, the dimension spectrum may be correspondingly more complicated.
This can be seen in the case of the Fibonacci Cantor set, for instance (cf. [137]).
The Fibonacci Cantor set Λ is obtained from the interval I = [0, 4] by successively removing
Fn+1 open intervals Jn,j of lengths `n = 1/2n according to the rule of Figure 13. We can
associate to this Cantor set the commutative AF algebra A = C(Λ).

To obtain the Hilbert space we consider again the set E of endpoints xn,j,± of the intervals
Jn,j and we take H = `2(E). We define the Dirac operator as in the previous case, and we
again consider the dense involutive subalgebra A∞ of locally constant functions.
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The data (A,H, D) give a spectral triple. The Dirac operator is related to the geometric zeta
function of the Fibonacci Cantor set by

Tr(|D|−s) = 2ζF (s) =
2

1− 2−s − 4−s
,

where the geometric zeta function is ζF (s) =
∑

n Fn+12
−ns, with Fn the Fibonacci numbers.

A simple argument shows that the dimension spectrum is given by the set

Σ =

{
log φ

log 2
+

2πin

log 2

}

n∈Z

∪
{
− log φ

log 2
+

2πi(n+ 1/2)

log 2

}

n∈Z

,

where φ = 1+
√

5
2 is the golden ratio.

Recent results on the noncommutative geometry of fractals and Cantor sets and spectral triple
constructions for AF algebras can be found in [6], [108], [109]. The construction in [6] is in
fact a spectral triple for the dual group of the Cantor set seen as the product of countably
many copies of the group Z/2. The recent work [49] shows that it is easy to describe a
compact metric space exactly (i.e. recovering the metric) via a spectral triple, which is a sum
of two-dimensional modules, but spectral triples carry much more information than just the
one regarding the metric.

15. Spaces of dimension z and DimReg

In perturbative quantum field theory, one computes expectation values of observables via a
formal series, where the terms are parameterized by Feynman graphs and reduce to ordinary
finite dimensional integrals in momentum space of expressions assigned to the graphs by the
Feynman rules. These expressions typically produce divergent integrals. For example, in the
example of the scalar φ3 theory in dimensionD = 4 orD = 4+2N, one encounters a divergence
already in the simplest one loop diagram, with corresponding integral (in Euclidean signature)

(15.1) k

p + k

p p

=

∫
1

k2 +m2

1

((p+ k)2 +m2)
dDk.

One needs therefore a regularization procedure for these divergent integrals. The regulariza-
tion most commonly adopted in quantum field theory computation is “Dimensional Regular-
ization (DimReg) and Minimal Subtraction (MS)”. The method was introduced in the ’70s
in [23] and [118] and it has the advantage of preserving basic symmetries.
The regularization procedure of DimReg is essentially based on the use of the formula

(15.2)

∫
e−λ k2

ddk = πd/2 λ−d/2 ,

to define the meaning of the integral in d = (D− z)-dimensions, for z ∈ C in a neighborhood
of zero. For instance, in the case of (15.1), the procedure of dimensional regularization yields
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the result

π(D−z)/2Γ

(
4−D + z

2

)∫ 1

0

(
(x− x2)p2 +m2

)D−z−4

2 dx.

In the recent survey [142], Yuri Manin refers to DimReg as “dimensions in search of a space”1.
Indeed, in the usual approach in perturbative quantum field theory, the dimensional reg-
ularization procedure is just regarded as a formal rule of analytic continuation of formal
(divergent) expressions in integral dimensions D to complex values of the variable D.
However, using noncommutative geometry, it is possible to construct actual spaces (in the
sense of noncommutative Riemannian geometry) Xz whose dimension (in the sense of dimen-
sion spectrum) is a point z ∈ C (cf. [76]).
It is well known in the physics literature that there are problems related to using dimensionl
regularization in chiral theory, because of how to give a consistent prescription on how to
extend the γ5 (the product of the matrices γ i when D = 4) to noninteger dimension D −
z. It turns out that a prescription known as Breitenlohner-Maison ([32], [50]) admits an
interpretation in terms of the cup product of spectral triples, where one takes the product
of the spectral triple associated to the ordinary geometry in the integer dimension D by a
spectral triple Xz whose dimension spectrum is reduced to the complex number z (cf. [76]).
We illustrate here the construction for the case where z ∈ R∗

+. The more general case of
z ∈ C is more delicate.
One needs to work in a slightly modified setting for spectral triples, which is given by the
type II spectral triples (cf. [21], [38], [39]). In this setting the usual type I trace of operators
in L(H) is replaced by the trace on a type II∞ von-Neumann algebra.
One considers a self-adjoint operator Y , affiliated to a type II∞ factor N , with spectral
measure given by

(15.3) TrN (χE(Y )) =
1

2

∫

E
dy

for any interval E ⊂ R, with characteristic function χE.
If Y = F |Y | is the polar decomposition of Y , one sets

(15.4) Dz = ρ(z)F |Y |1/z

with the complex power |Y |1/z defined by the functional calculus. The normalization constant
ρ(z) is chosen to be

(15.5) ρ(z) = π−
1

2

(
Γ(
z

2
+ 1)

) 1

z

so that one obtains

(15.6) Tr
(
e−λD2

)
= πz/2 λ−z/2 ∀λ ∈ R∗

+ .

This gives a geometric meaning to the basic formula (15.2) of DimReg. The algebra A of the
spectral triple Xz can be made to contain any operator a such that [Dz, a] is bounded and
both a and [Dz, a] are smooth for the “geodesic flow”

(15.7) T 7→ eit|Dz | T e−it|Dz |.

1Nicely reminiscent of Pirandello’s play “Six characters in search of an author”.
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The dimension spectrum of Xz is reduced to the single point z, since

(15.8) Trace′N ((D2
z)

−s/2) = ρ−s

∫ ∞

1
u−s/z du = ρ−s z

s− z
has a single (simple) pole at s = z and is absolutely convergent in the half space Re(s/z) > 1.
Here Trace′N denotes the trace with an infrared cutoff (i.e. integrating outside |y| < 1).

16. Local algebras in supersymmetric QFT

It is quite striking that the general framework of noncommutative geometry is suitable not
only for handling finite dimensional spaces (commutative or not, of non-integer dimension
etc.) but is also compatible with infinite dimensional spaces. We already saw in Section 7 that
discrete groups of exponential growth naturally give rise to noncommutative spaces which
are described by a θ-summable spectral triple, but not by a finitely summable spectral triple.
This is characteristic of an infinite dimensional space and in that case, as we saw for discrete
groups, cyclic cohomology needs to be extended to entire cyclic cohomology. A very similar
kind of noncommutative spaces arises from Quantum Field Theory in the supersymmetric
context [54] Section IV.9.β. We briefly recall this below and then explain open questions also
in the context of supersymmetric theories.
The simplest example to understand the framework is that of the free Wess-Zumino model
in two dimensions, a supersymmetric free field theory in a two dimensional space-time where
space is compact ([54]). Thus space is a circle S1 and space-time is a cylinder C = S1 × R
endowed with the Lorentzian metric. The fields are given by a complex scalar bosonic field
φ of mass m and a spinor field ψ of the same mass. The Lagrangian of the theory is of the
form L = Lb + Lf where,

Lb =
1

2
(|∂0φ|2 − |∂1φ|2 −m2|φ|2)

and for the fermions,

Lf = i ψ̄ γµ ∂µ ψ − mψ̄ ψ

where the spinor field is given by a column matrix, with ψ̄ = γ0 ψ∗ and the γµ are two by
two Pauli matrices, anticommuting, self-adjoint and of square 1.
The Hilbert space of the quantum theory is the tensor product H = Hb ⊗Hf of the bosonic
one Hb by the fermionic one Hf . The quantum field φ(x) and its conjugate momentum π(x)
are operator valued distributions in Hb and the bosonic Hamiltonian is of the form

Hb =

∫

S1

: |π(x)|2 + |∂1φ(x)|2 +m2|φ(x)|2 : dx

where the Wick ordering takes care of an irrelevant additive constant. The fermionic Hilbert
space Hf is given by the Dirac sea representation which simply corresponds to a suitable spin
representation of the infinite dimensional Clifford algebra containing the fermionic quantum
fields ψj(x). The fermionic Hamiltonian is then the positive operator in Hf given by

Hf =

∫

S1

: ψ̄ γ1 i ∂ ψ − mψ̄ ψ :
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The full Hamiltonian of the non-interacting theory is acting in the Hilbert spaceH = Hb⊗Hf

and is the positive operator

H = Hb ⊗ 1 + 1⊗Hf .

This is were supersymmetry enters the scene in finding a self-adjoint square root of H in
the same way as the Dirac operator is a square root of the Laplacian in the case of finite
dimensional manifolds. This square root, called the supercharge operator, is given by

Q =
1√
2

∫

S1

(ψ1(x)(π(x)− ∂φ∗(x)− imφ(x)) + ψ2(x)(π
∗(x)− ∂φ(x) − imφ∗(x)) + h.c.)dx

where the symbol +h.c. means that one adds the hermitian conjugate.
The basic relation with spectral triples is then given by the following result ([54] Section IV).

Theorem 16.1. For any local region O ⊂ C let A(O) be the algebra of functions of quantum
fields with support in O acting in the Hilbert space H. Then the triple

(A(O),H, Q)

is an even θ-summable spectral triple, with Z2-grading given by the operator γ = (−1)Nf

counting the parity of the fermion number operator Nf .

To be more specific the algebra A(O) is generated by the imaginary exponentials ei(φ(f)+φ(f)∗)

and ei(π(f)+π(f)∗) for f ∈ C∞
c (O). As shown in [54] Section IV.9.β, and exactly as in the case of

discrete groups with exponential growth, one needs the entire cyclic cohomology rather than
its finite dimensional version in order to obtain the Chern character of θ-summable spectral
triples. Indeed the index map is non polynomial in the above example of the Wess-Zumino
model in two dimensions and the K-theory of the above local algebras is highly non-trivial.
In fact it is in that framework that the JLO-cocycle was discovered by Jaffe-Lesniewski and
Osterwalder [120].
It is an open problem to extend the above result to interacting theories in higher dimension
and give a full computation of the K-theory of the local algebras as well as of the Chern
character in entire cyclic cohomology. The results of Jaffe and his collaborators on construc-
tive quantum field theory yield many interacting non-trivial examples of supersymmetric two
dimensional models. Moreover the recent breakthrough of Puschnigg in the case of lattices of
semi-simple Lie groups of rank one opens the way to the computation of the Chern character
in entire cyclic cohomology.

17. Spacetime and the standard model of elementary particles

The standard model of elementary particle physics provides a surprising example of a spectral
triple in the noncommutative setting, which in addition to the conditions of Definition 13.6
also has a real structure satisfying all the additional conditions of Definition 13.10.
The noncommutative geometry of the standard model developed in [61] (cf. also [44], [45], [73],
[125]) gives a concise conceptual way to describe, through a simple mathematical structure,
the full complexity of the input from physics. As we recall here, the model also allows for
predictions.
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Figure 14. Elementary particles

The physics of the standard model can be described by a Lagrangian. We consider here the
standard model minimally coupled to gravity, so that the Lagrangian we shall be concerned
with is the sum

(17.1) L = LEH + LSM

of the Einstein–Hilbert Lagrangian LEH and the standard model Lagrangian LSM .
The standard model Lagrangian LSM has a very complicated expression, which, if written in
full, might take a full page (cf. e.g. [196]). It comprises five types of terms,

(17.2) LSM = LG + LGH + LH + LGf + LHf ,

where the various terms involve:

• spin 1 bosons G: the eight gluons, γ, W±, Z;
• spin 0 bosons H such as the Higgs fields;
• spin 1/2 fermions f : quarks and leptons.

The term LG is the pure gauge boson part, LGH for the minimal coupling with the Higgs
fields, and LH gives the quartic Higgs self interaction. In addition to the coupling constants
for the gauge fields, the fermion kinetic term LGf contains the hypercharges YL, YR. These
numbers, which are constant over generations, are assigned phenomenologically, so as to
obtain the correct values of the electromagnetic charges. The term LHf contains the Yukawa
coupling of the Higgs fields with fermions. A more detailed and explicit description of the
various terms of (17.2) is given in [54] §VI.5.β. See also [196].
The symmetry group of the Einstein–Hilbert Lagrangian LEH by itself would be, by the
equivalence principle, the diffeomorphism group Diff(X) of the space-time manifold. In the
standard model Lagrangian LSM , on the other hand, the gauge theory has another huge
symmetry group which is the group of local gauge transformations. According to our current
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understanding of elementary particle physics, this is given by

(17.3) GSM (X) = C∞(X,U(1) × SU(2)× SU(3)).

(At least in the case of a trivial principal bundle, e.g. when the spacetime manifold X is
contractible.)
Thus, when one considers the Lagrangian L of (17.1), the full symmetry group G will be a
semidirect product

(17.4) G(X) = GSM (X) o Diff(X).

In fact, a diffeomorphism of the manifold relabels the gauge parameters.
To achieve a geometrization of the standard model, one would like to be able to exhibit a
space X for which

(17.5) G(X) = Diff(X).

If such a space existed, then we would be able to say that the whole theory is pure gravity
on X. However, it is impossible to find such a space X among ordinary manifolds. In fact,
a result of W. Thurston, D. Epstein and J. Mather (cf. [156]) shows that the connected
component of the identity in the diffeomorphism group of a (connected) manifold is a simple
group (see [156] for the precise statement). A simple group cannot have a nontrivial normal
subgroup, so it cannot have the structure of semi-direct product like G(X) in (17.4).
However, it is possible to obtain a space with the desired properties among noncommutative
spaces. What plays the role of the connected component of the identity in the diffeomorphism
group Diff(X) in the noncommutative setting is the group Aut+(A) of automorphisms of the
(noncommutative) algebra that preserve the fundamental class in K-homology i.e. that can
be implemented by a unitary compatible with the grading and real structure.
When the algebra A is not commutative, among its automorphisms there are, in particular,
inner ones. They associate to an element x of the algebra the element uxu−1, for some u ∈ A.
Of course uxu−1 is not, in general, equal to x because the algebra is not commutative. The
inner automorphisms form a normal subgroup of the group of automorphisms. Thus, we
see that the group Aut+(A) has in general the same type of structure as our desired group
of symmetries G(X), namely, it has a normal subgroup of inner automorphisms and it has
a quotient. It is amusing how the physical and the mathematical vocabularies agree here:
in physics one talks about internal symmetries and in mathematics one talks about inner
automorphisms (one might as well call them internal automorphisms).
There is a very simple non commutative algebra A whose group of inner automorphisms
corresponds to the group of gauge transformations GSM (X), and such that the quotient
Aut+(A)/Inn(A) corresponds exactly to diffeomorphisms (cf. [181]). The noncommutative
space is a product X ×F of an ordinary spacetime manifold X by a “finite noncommutative
space” F . The noncommutative algebra AF is a direct sum of the algebras C, H (here
denoting the quaternions), and M3(C) (the algebra of 3× 3 complex matrices).
The algebra AF corresponds to a finite space where the standard model fermions and the
Yukawa parameters (masses of fermions and mixing matrix of Kobayashi Maskawa) determine
the spectral geometry in the following manner. The Hilbert space HF is finite-dimensional
and admits the set of elementary fermions as a basis. This comprises the generations of
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quarks (down–up, strange–charmed, bottom–top),

(17.6)

uL uR dL dR ūL ūR d̄L d̄R

cL cR sL sR c̄L c̄R s̄L s̄R

tL tR bL bR t̄L t̄R b̄L b̄R,

with the additional color index (y, r, b), and the generations of leptons (electron, muon, tau,
and corresponding neutrinos)

(17.7)

eL eR νe
L ēL ēR ν̄e

L

µL µR νµ
L µ̄L µ̄R ν̄µ

L

τL τR ντ
L τ̄L τ̄R ν̄τ

L

(We discuss here only the minimal standard model with no right handed neutrinos.)
The Z/2 grading γF on the Hilbert space HF has sign +1 on left handed particles (e.g. the
uL, dL, etc.) and sign −1 on the right handed particles. The involution JF giving the real
structure is the charge conjugation, namely, if we write HF = E ⊕ Ē , then JF acts on the
fermion basis as JF (f, h̄) = (h, f̄ ). This satisfies J2

F = 1 and JFγF = γFJF , as should be for
dimension n = 0.
The algebra AF admits a natural representation in HF (see [62]). An element (z, q,m) ∈
C⊕H⊕M3(C) acts as

(z, q,m) ·
(
uR

dR

)
=

(
z uR

z̄ dR

)
(z, q,m) · eR = z̄ eR

(z, q,m) ·
(
uL

dL

)
= q

(
uL

dL

)
(z, q,m) ·

(
νe

L
eL

)
= q

(
νe

L
eL

)
,

(z, q,m) ·
(
ēL
ēR

)
=

(
z ēL
z ēR

)

(z, q,m) · ūR = mūR (z, q,m) · d̄R = md̄R

and similarly for the other generations. Here q ∈ H acts as multiplication by the matrix

q =

(
α β
−β̄ ᾱ

)
,

where q = α+ β j, with α, β ∈ C. The matrix m ∈M3(C) acts on the color indices (y, r, b).
The data (AF ,HF ) can be completed to a spectral triple (AF ,HF , DF ) where the Dirac
operator (in this finite dimensional case a matrix) is given by

(17.8) DF =

(
Y 0
0 Ȳ

)

on HF = E ⊕ Ē , where Y is the Yukawa coupling matrix, which combines the masses of the
elementary fermions together with the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing
matrix.
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The fermionic fields acquire mass through the spontaneous symmetry breaking produced by
the Higgs fields. The Yukawa coupling matrix takes the form Y = Yq ⊗ 1 ⊕ Yf , where the
matrix Yf is of the form 


0 0 Me

0 0 0
M∗

e 0 0


 ,

in the basis (eR, νL, eL) and successive generations, while Yq is of the form



0 0 Mu 0
0 0 0 Md

M∗
u 0 0 0

0 M∗
d 0 0


 ,

in the basis given by (uR, dR, uL, dL) and successive generations. In the case of the lepton
masses, up to rotating the fields to mass eigenstates, one obtains a mass term for each fermion,
and the off diagonal terms in Me can be reabsorbed in the definition of the fields. In the quark
case, the situation is more complicated and the Yukawa coupling matrix can be reduced to
the mass eigenvalues and the CKM quark mixing. By rotating the fields, it is possible to
eliminate the off diagonal terms in Mu. Then Md satisfies VMdV

∗ = Mu, where V is the
CKM quark mixing, given by a 3× 3 unitary matrix

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




acting on the charge −e/3 quarks (down, strange, bottom). The entries of this matrix
can be expressed in terms of three angles θ12, θ23, θ13 and a phase, and can be determined
experimentally from weak decays and deep inelastic neutrino scatterings.
The detailed structure of the Yukawa coupling matrix Y (in particular the fact that color is
not broken) allows one to check that the finite geometry (AF ,HF , DF ) satisfies all the axioms
of Definition 13.10 for a noncommutative spectral manifold. The key point is that elements
a ∈ AF and [Df , a] commute with JF AF JF . These operators preserve the subspace E ⊂ HF .
On this subspace, for b = (z, q,m), the action of JF b

∗ JF is by multiplication by z or by the
transpose mt. It is then not hard to check explicitly the commutation with a or [D, a] (cf.
[54] §VI.5.δ). By exchanging the roles of a and b, one sees analogously that a commutes with
JF bJF and [D, JF bJF ] on Ē , hence the desired commutation relations hold on all of HF .
We can then consider the product X×F , where X is an ordinary 4–dimensional Riemannian
spin manifold and F is the finite geometry described above. This product geometry is a
spectral triple (A,H, D) obtained as the cup product of a triple (C∞(X), L2(X,S), D1),
where D1 is the Dirac operator on X acting on square integrable spinors in L2(X,S), with
the spectral triple (AF ,HF , DF ) described above. Namely, the resulting (smooth) algebra
and Hilbert space are of the form

(17.9) A∞ = C∞(X,AF ) H = L2(X,S) ⊗HF ,

and the Dirac operator is given by

(17.10) D = D1 ⊗ 1 + γ ⊗DF ,
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where γ is the usual Z/2 grading on the spinor bundle S. The induced Z/2 grading on H is
the tensor product γ ⊗ γF , and the real structure is given by J = C ⊗ JF , where C is the
charge conjugation operator on spinors.
Notice that, so far, we have only used the information on the fermions of the standard model.
We’ll see now that the bosons, with the correct quantum numbers, are deduced as inner
fluctuations of the metric of the spectral triple (A,H, D).
It is a general fact that, for noncommutative geometries (A,H, D), one can consider inner
fluctuations of the metric of the form

D 7→ D +A+ JAJ−1

where A is of the form

(17.11) A =
∑

ai [D, a
′
i] ai, a

′
i ∈ A.

In the case of the standard model, a direct computation of the inner fluctuations gives the
standard model gauge bosons γ,W±, Z, the eight gluons and the Higgs fields ϕ with accurate
quantum numbers (cf. [61]). In fact, a field A of the form (17.11) can be separated in a

“discrete part” A(0,1) =
∑
ai [γ ⊗ DF , a

′
i] and a continuous part A(1,0) =

∑
ai [D1 ⊗ 1, a′i],

with ai = (zi, qi,mi) and a′i = (z′i, q
′
i,m

′
i), qi = αi + βij and q′i = α′

i + β′ij. The discrete part
gives a quaternion valued function

q(x) =
∑

zi
(
(α′

i − z′i) + ziβ
′
i j

)
= ϕ1 + ϕ2 j

which provides the Higgs doublet. The continuous part gives three types of fields:

• A U(1) gauge field U =
∑
zi dz

′
i

• An SU(2) gauge field Q =
∑
qi dq

′
i

• A U(3) gauge field M =
∑
mi dm

′
i, which can be reduced to an SU(3) gauge field M ′

by subtracting the scalar part of the overall gauge field which eliminates inessential
fluctuations that do not change the metric.

The resulting internal fluctuation of the metric A+ JAJ−1 is then of the form (cf. [61])


−2U 0 0

0 Q11 − U Q12

0 Q21 Q22 − U




on the basis of leptons (eR, νL, eL) and successive generations, and



4
3U +M ′ 0 0 0

0 −2
3 U +M ′ 0 0

0 0 Q11 + 1
3U +M ′ Q12

0 0 Q21 Q22 + 1
3U +M ′



,

on the basis of quarks given by (uR, dR, uL, dL) and successive generations. A striking feature
that these internal fluctuations exhibit is the fact that the expressions above recover all the
exact values of the hypercharges YL, YR that appear in the fermion kinetic term of the
standard model Lagrangian.
Finally, one can also recover the bosonic part of the standard model Lagragian from a very
general principle, the spectral action principle of Chamseddine–Connes (cf. [44], [45], [46]).
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The result is that the Hilbert–Einstein action functional for the Riemannian metric, the Yang–
Mills action for the vector potentials, and the self interaction and the minimal coupling for
the Higgs fields all appear with the correct signs in the asymptotic expansion for large Λ of
the number N(Λ) of eigenvalues of D which are ≤ Λ (cf. [44]),

(17.12) N(Λ) = # eigenvalues of D in [−Λ,Λ].

The spectral action principle, applied to a spectral triple (A,H, D), can be stated as saying
that the physical action depends only on Spec(D) ⊂ R. This spectral datum corresponds
to the data (H, D) of the spectral triple, independent of the action of A. Different A that
correspond to the same spectral data can be thought of as the noncommutative analog of
isospectral Riemannian manifolds (cf. the discussion of isospectral deformations in Section
18). A natural expression for an action that depends only on Spec(D) and is additive for
direct sums of spaces is of the form

(17.13) Trχ(
D

Λ
) + 〈ψ,D ψ〉,

where χ is a positive even function and Λ is a scale.
In the case of the standard model, this formula (17.13) is applied to the full “metric” including
the internal fluctuations and gives the full standard model action minimally coupled with
gravity. The Fermionic part of the action (17.13) gives (cf. [44], [45])

(17.14) 〈ψ,D ψ〉 =

∫

X
(LGf + LHf )

√
|g|d4x.

The bosonic part of the action (17.13) evaluated via heat kernel invariants gives the standard
model Lagrangian minimally coupled with gravity. Namely, one writes the function χ( D

Λ ) as
the superposition of exponentials. One then computes the trace by a semiclassical approxi-
mation from local expressions involving the familiar heat equation expansion. This delivers
all the correct terms in the action (cf. [45] for an explict calculation of all the terms involved).
Notice that here one treats the spacetime manifold X in the Euclidean signature. The
formalism of spectral triple can be extended in various ways to the Lorentzian signature (cf.
e.g. [115]). Perhaps the most convenient choice is to drop the self-adjointness condition for
D while still requiring D2 to be self-adjoint.

18. Isospectral deformations

A very rich class of examples of noncommutative manifolds is obtained by considering isospec-
tral deformations of a classical Riemannian manifold. These examples satisfy all the axioms
of ordinary Riemannian geometry (cf. [61]) except commutativity. They are obtained by the
following result (Connes–Landi [72]):

Theorem 18.1. Let M be a compact Riemannian spin manifold. Then if the isometry group
of M has rank r ≥ 2, M admits a non-trivial one parameter isospectral deformation to
noncommutative geometries Mθ.

The main idea of the construction is to deform the standard spectral triple describing the
Riemannian geometry along a two torus embedded in the isometry group, to a family of
spectral triples describing non-commutative geometries.
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More precisely, under the assumption on the rank of the group of isometries of the compact
spin manifold X, there exists a two-torus

T 2 ⊂ Isom(X),

where we identify T 2 = R2/(2πZ)2. Let U(s) be the unitary operators in this subgroup of
isometries, for s = (s1, s2) ∈ T 2, acting on the Hilbert space H = L2(X,S) of the spectral
triple

(C∞(X), L2(X,S), D, J).

Equivalently, we write U(s) = exp(i(s1P1 + s2P2)), where Pi are the corresponding Lie
algebra generators, with Spec(Pi) ⊂ Z, satisfying [D,Pi] = 0 and PiJ = −JPi, so that
[U(s), D] = [U(s), J ] = 0.

The action αs(T ) = U(s)TU(s)−1 has the following property. Any operator T such that the
map s 7→ αs(T ) is smooth can be uniquely written as a norm convergent series

(18.1) T =
∑

n1,n2∈Z

T̂n1,n2

where each term T̂n1,n2
is an operator of bi-degree (n1, n2), that is,

αs(T̂n1,n2
) = exp(i(s1n1 + s2n2))T̂n1 ,n2

,

for each s = (s1, s2) ∈ T 2, and the sequence of norms ‖T̂n1,n2
‖ is of rapid decay.

This property makes it possible to define left and right twists for such operators T , defined
as

(18.2) `(T ) :=
∑

n1,n2

T̂n1,n2
exp (2πiθn2P1)

and

(18.3) r(T ) :=
∑

n1,n2

T̂n1,n2
exp (2πiθn1P2) .

Both series still converge in norm, since the Pi are self-adjoint operators.

It is then possible to introduce a (left) deformed product

(18.4) x ∗ y = exp(2πiθn′
1n2)xy,

for x a homogeneous operator of bi-degree (n1, n2) and y a homogeneous operator of bi-degree
(n′1, n

′
2). A (right) deformed product is similarly defined by setting x∗r y = exp(2πiθn1n

′
2)xy.

These deformed products satisfy `(x)`(y) = x ∗ y and r(x)r(y) = x ∗r y.
The deformed spectral triples are then obtained by maintaining the same Hilbert space H =
L2(X,S) and Dirac operator D, while modifying the algebra C∞(X) to the non-commutative
algebra Aθ := `(C∞(X)) and the involution J that defines the real structure to Jθ :=
exp(2πiθP1P2)J .
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19. Algebraic deformations

There is a very general context in which one constructs noncommutative spaces via deforma-
tions of commutative algebras. Unlike the isospectral deformations discussed in Section 18,
here one proceeds mostly at a formal algebraic level, without involving the operator algebra
structure and without invoking the presence of a Riemannian structure.
The idea of deformation quantization originates in the idea that classical mechanics has as
setting a smooth manifold (phase space) with a symplectic structure, which defines a Poisson
bracket {, }. The system is quantized by deforming the pointwise product in the algebra
A = C∞(M) (or in a suitable subalgebra) to a family ∗~ of products satisfying f ∗~ g → fg as
~→ 0, which are associative but no longer necessarily commutative. These are also required
to satisfy

f ∗~ g − g ∗~ f
i~

→ {f, g},

as ~ → 0, namely, the ordinary product is deformed in the direction of the Poisson bracket.
On the algebra C∞(M) a Poisson bracket is specified by assigning a section Λ of Λ2(TM)
with the property that

{f, g} = 〈Λ, df ∧ dg〉
satisfies the Jacobi identity. Typically, this produces a formal deformation: a formal power
series in ~. Namely, the deformed product can be written in terms of a sequence of bi–
differential operators Bk satisfying

(19.1) f ∗ g = fg + ~B1(f, g) + ~2B2(f, g) + · · ·

Under this perspective, there is a good understanding of formal deformations. For instance,
Kontsevich [132] proved that formal deformations always exist, by providing an explicit com-
binatorial formula that generates all the {B2, B3, . . .} in the expansion from the B1, hence in
terms of the Poisson structure Λ. The formal solution (19.1) can then be written as

∞∑

n=0

~n
∑

Γ∈G[n]

ωΓBΓ,Λ(f, g),

where G[n] is a set of (n(n + 1))n labeled graphs with n + 2 vertices and n edges, ωΓ is
a coeffcient obtained by integrating a differential form (depending on the graph Γ) on the
configuration space of n distinct points in the upper half plane, and BΓ,Λ is a bi–differential
operator whose coefficients are derivatives of Λ of orders specified by the combinatorial in-
formation of the graph Γ.

A setting of deformation quantization which is compatible with C ∗–algebras was developed
by Rieffel in [176]. We recall briefly Rieffel’s setting. For simplicity, we restrict to the simpler
case of a compact manifold.

Definition 19.1. A strict (Rieffel) deformation quantization of A = C∞(M) is obtained by
assigning an associative product ∗~, an involution (depending on ~) and a C∗–norm ‖ · ‖~ on
A, for ~ ∈ I (some interval containing zero), such that:
(i) For ~ = 0 these give the C∗–algebra C(M),
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(ii) For all f, g ∈ A, as ~→ 0,
∥∥∥∥
f ∗~ g − g ∗~ f

i~
− {f, g}

∥∥∥∥
~

→ 0.

One denotes by A~ the C∗–algebra obtained by completing A in the norm ‖ · ‖~.

The functions of ~ are all supposed to be analytic, so that formal power series expansions
make sense.

Remark 19.2. The notion of a strict deformation quantization should be regarded as a
notion of integrability for a formal solutions.

Rieffel also provides a setting for compatible actions by a Lie group of symmetries, and
proves that non–commutative tori (also of higher rank) are strict deformation quantizations of
ordinary tori, that are compatible with the action of the ordinary torus as group of symmetry.
Typically, for a given Poisson structure, strict deformation quantizations are not unique. This
happens already in the case of tori.

In the same paper [176], Rieffel uses a basic result of Wassermann [199] to produce an example
where formal solutions are not integrable. The example is provided by the two–sphere S 2.
There is on S2 a symplectic structure, and a corresponding Poisson structure Λ which is
invariant under SO(3). Rieffel proves the following striking result (Theorem 7.1 of [176]):

Theorem 19.3. There are no SO(3)–invariant strict deformations of the ordinary product
on C∞(S2) in the direction of the SO(3)–invariant Poisson structure.

In fact, the proof of this result shows more, namely that no SO(3)–invariant deformation of
the ordinary product in C(S2) can produce a non–commutative C∗–algebra. This rigidity
result reflects a strong rigidity result for SU(2) proved by Wassermann [199], namely the
only ergodic actions of SU(2) are on von Neumann algebras of type I. The interest of this
result lies in the fact that there are formal deformations of the Poisson structure that are
SO(3)–invariant (see e.g. [111], [17]), but these only exist as a formal power series in the
sense of (19.1) and, by the results of Wassermann and Rieffel are not integrable.

Summarizing, we have the following type of phenomenon: on the one hand we have formal
solutions, formal deformation quantizations about which a lot is known, but for which, in
general, there may not be an integrability result. More precisely, when we try to pass from
formal to actual solutions, there are cases where existence fails (the sphere), and others (tori)
where uniqueness fails. The picture that emerges is remarkably similar to the case of formal
and actual solutions of ordinary differential equations.

It is very instructive to build an analogy between the problem of ambiguity for formal so-
lutions of ODE’s and the present situation of formal non–commutative spaces and actual
non–commutative spaces. The main conclusion to be drawn from this analogy is that there
ought to be a theory of ambiguity which formulates precisely the relation between the formal
non–commutative geometry and its integrated (C ∗–algebraic) version.

To illustrate this concept, we take a closer look at the analogous story in the theory of
ODE’s. A good reference for a modern viewpoint is [172]. A formal solution of a differential
equation is a power series expansion: for instance

∑∞
n=0(−1)nn!xn+1 is a formal solution of

the Euler equation x2y′ + y = x. Convergent series give rise to actual solutions, and more
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involved summation processes such as Borel summation can be used to transform a given
formal solution of an analytic ODE into an actual solution on a sufficiently narrow sector in
C of sufficiently small radius, but such solution is in general not unique. It is known from
several classical methods that some divergent series can be “summed” modulo a function
with exponential decrease of a certain order. This property (Gevrey summability) is also
satisfied by formal solutions of analytic ODE’s, and, stated in a more geometric fashion, it is
essentially a cohomological condition. It also shows that, whereas on small sectors one has
existence of actual solutions but not uniqueness, on large sectors one gains uniqueness, at the
cost of possibly loosing existence. A complete answer to summability of formal solutions can
then be given in terms of a more refined multi–summability (combining Gevrey series and
functions of different order) and the Newton polygon of the equation.

The general flavor of this theory is surprisingly similar to the problem of formal solutions in
non–commutative geometry. It is to be expected that an ambiguity theorem exists, which
accounts for the cases of lack of uniqueness, or lack of existence, of actual solutions illustrated
by the results of Rieffel.

Already in dealing with our first truly non–trivial example of noncommutative spaces, the
noncommutative tori, we encountered subtleties related to the difference between the quotient
and the deformation approach to the construction of non–commutative spaces.

In fact, the non–commutative tori we described in Section 6 admit a description as algebras
obtained as deformations of the ordinary product of functions, by setting

(19.2) (f ∗ g)(x, y) :=
(
e
2πiθ ∂

∂x
∂

∂y′ f(x, y)g(x′, y′)
)

x=x′,y=y′

=
∑ (i2πθ)n

n!
Dn

1 fD
n
2 g.

Notice however that while U ∂
∂U and V ∂

∂V are derivations for the algebra of the non–

commutative torus, this is not the case for ∂
∂U and ∂

∂V . The same holds for the quantum
plane (cf. [146]) whose algebra of coordinates admits two generators u, v with relation

u v = q v u .

These generators can be rotated (u 7→ λu, v 7→ µ v) without affecting the presentation but
translations of the generators are not automorphisms of the algebra. In other words, one can
view the non–commutative torus as a deformation of an ordinary torus, which in turn is a
quotient of the classical plane R2 by a lattice of translations, but the action of translations
does not extend to the quantum plane. This is an instance of the fact that the general
operations of quotient and deformation, in constructing non–commutative spaces, do not
satisfy any simple compatibility rules and need to be manipulated with care.
Moreover, phenomena like the Morita equivalence between, for instance θ and 1/θ, are not
detectable in a purely deformation theoretic perturbative expansion like the one given by the
Moyal product (19.2). They are non-perturbative and cannot be seen at the perturbative
level of the star product.

In this respect, a very interesting recent result is that of Gayral, Gracia-Bondia, Iochum,
Schücker, and Varilly, [106], where they consider a version of the structure of spectral triple
for non-compact spaces. In that case, for instance, one no longer can expect the Dirac
operator to have compact resolvent and one can only expect a local version to hold, e.g.
a(D − i)−1 is compact for a ∈ A. Other properties of Definitions 13.6 and 13.10 are easily
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adapted to a “local version” but become more difficult to check than in the compact case.
They show that the Moyal product deformation of R2n fits in the framework of spectral
triples and provides an example of such non-unital spectral triples. Thus, it appears that
the structure of noncommutative Riemannian geometry provided by spectral triples should
adapt nicely to some classes of algebraic deformations.

It appears at first that spectral triples may not be the right type of structure to deal with
noncommutative spaces associated to algebraic deformations, because it corresponds to a form
of Riemannian geometry, while many such spaces originate from Kähler geometry. However,
the Kähler structure can often be also encoded in the setting of spectral triple, for example
by considering also a second Dirac operator, as in [26] or through the presence of a Lefschetz
operator as in [91].

Noncommutative spaces obtained as deformations of commutative algebras fit in the context
of a well developed algebraic theory of noncommutative spaces (cf. e.g. [133] [134] [143] [144]
[146] [178] [179], [189]). This theory touches on a variety of subjects like quantum groups and
the deformation approach to non–commutative spaces and is interestingly connected to the
theory of mirror symmetry. However, it is often not clear how to integrate this approach with
the functional analytic theory of non–commutative geometry briefly summarized in section 2.
Only recently, several results confirmed the existence of a rich interplay between the algebraic
and functional analytic aspects of noncommutative geometry, especially through the work of
Connes and Dubois-Violette (cf. [69], [70], [71]) and of Polishchuk (cf. [168]). Also, the work
of Chakraborty and Pal [42] and Connes [65] and more recently of van Suijlekom, Dabrowski,
Landi, Sitarz, and Varilly [191], [192] showed that quantum groups fit very nicely within
the framework of noncommutative geometry described by spectral triples, contrary to what
was previously belived. Ultimately, successfully importing tools from the theory of operator
algebras into the realm of algebraic geometry might well land within the framework of what
Manin refers to as a “second quantization of algebraic geometry”.

20. Quantum groups

For a long time it was widely believed that quantum groups could not fit into the setting of
noncommutative manifolds defined in terms of spectral geometry. On the contrary, recent
work of Chakraborti and Pal showed in [42] that the quantum group SUq(2), for 0 ≤ q < 1,
admits a spectral triple with Dirac operator that is equivariant with respect to its own
(co)action.

The algebra A of functions on the quantum group SUq(2) is generated by two elements α
and β with the relations

(20.1)
α∗α+ β∗β = 1, αα∗ + q2ββ∗ = 1,

αβ = qβα, αβ∗ = qβ∗α, β∗β = ββ∗.
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By the representation theory of the quantum group SUq(2) (cf. [130]) there exists a Hilbert

space H with orthonormal basis e
(n)
ij , n ∈ 1

2N, i, j ∈ {−n, . . . , n}, and a unitary representation

(20.2)
α e

(n)
ij = a+(n, i, j) e

(n+1/2)
i−1/2,j−1/2 + a−(n, i, j) e

(n−1/2)
i−1/2,j−1/2

β e
(n)
ij = b+(n, i, j) e

(n+1/2)
i+1/2,j−1/2 + b−(n, i, j) e

(n−1/2)
i+1/2,j−1/2 ,

with coefficients

a+(n, i, j) = q2n+i+j+1Q(2n− 2j + 2, 2n− 2i+ 2, 4n + 2, 4n + 4)

a−(n, i, j) = Q(2n+ 2j, 2n+ 2i, 4n, 4n + 2)

b+(n, i, j) = −qn+j Q(2n− 2j + 2, 2n+ 2i+ 2, 4n+ 2, 4n+ 4)

b−(n, i, j) = qn+iQ(2n+ 2j, 2n− 2i, 4n, 4n + 2),

where we use the notation

Q(n,m, k, r) =
(1− qn)1/2(1− qm)1/2

(1− qk)1/2(1− qr)1/2
.

Consider then, as in [65], the operator

(20.3) D e
(n)
ij =

{
−2n n 6= i

2n n = i.

More generally, one can consider operators of the form D e
(n)
ij = d(n, i) e

(n)
ij , as in [42], with

d(n, i) satisfying the conditions d(n+ 1/2, i+ 1/2)− d(n, i) = O(1) and d(n+ 1/2, i− 1/2)−
d(n, i) = O(n+ i+ 1). Then one has the following result (Chakraborti–Pal [42]):

Theorem 20.1. The data (A,H, D) ad above define an SUq(2) equivariant odd 3–summable
spectral triple.

The equivariance condition means that there is an action on H of the enveloping algebra
U = Uq(SL(2)), which commutes with the Dirac operator D. This is generated by operators

k e
(n)
ij = qj e

(n)
ij

e e
(n)
ij = q−n+1/2(1− q2(n+j+1))1/2(1− q2(n−j))1/2(1− q2)−1 e

(n)
ij+1,

satisfying the relations

ke = qek, kf = q−1fk, [e, f ] =
k2 − k−2

q − q−1
,

with f = e∗, and with coproduct

∆(k) = k ⊗ k, ∆(e) = k−1 ⊗ e+ e⊗ k, ∆(f) = k−1 ⊗ f + f ⊗ k.
It is interesting that, while the classical SU(2) is of (topological and metric) dimension three,
the topological dimension of the algebra A of SUq(2) drops to one (cf. [42]), but the metric
dimension of the spectral triple remains equal to three as in the classical case.

Chakraborti and Pal showed in [42] that the Chern character of the spectral triple is non-
trivial. Moreover, Connes in [65] gave an explicit formula for its local index cocycle, where
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a delicate calculation provides the cochain whose coboundary is the difference between the
Chern character and the local version in terms of remainders in the rational approximation
to the logarithmic derivative of the Dedekind eta function.

The local index formula is obtained by constructing a symbol map

ρ : B → C∞(S∗
q ),

where the algebra C∞(S∗
q ) gives a noncommutative version of the cosphere bundle, with

a restriction map r : C∞(S∗
q ) → C∞(D2

q+ × D2
q−) to the algebra of two noncommutative

disks. Here B is the algebra generated by the elements δk(a), a ∈ A, with δ(a) = [|D|, a].
On the cosphere bundle there is a geodesic flow, induced by the group of automorphisms
a 7→ eit|D| a e−it|D|. Then ρ(b)0 denotes the component of degree zero with respect to the
grading induced by this flow.

The algebra C∞(D2
q) is an extension

0→ S → C∞(D2
q)

σ→ C∞(S1)→ 0,

where the ideal S is the algebra of rapidly decaying matrices. There are linear functionals τ0

and τ1 on C∞(D2
q),

τ1(a) =
1

2π

∫ 2π

0
σ(a)dθ,

τ0(a) = lim
N→∞

N∑

k=0

〈a εk, εk〉 − τ1(a)N,

where τ0 is defined in terms of the representation of C∞(D2
q) on the Hilbert space `2(N) with

o.n. basis {εk}.
Recall that (cf. [54]) a cycle (Ω, d,

∫
) is a triple with where (Ω, d) is a graded differential

algebra, and
∫

: Ωn → C is a closed graded trace on Ω. A cycle over an algebra A is given
by a cycle (Ω, d,

∫
) together with a homomorphism ρ : A → Ω0.

In the case of the algebra A of SUq(2), a cycle (Ω, d,
∫

) is obtained in [65] by considering

Ω1 = A⊕Ω(2)(S1), with Ω(2)(S1) the space of weight two differential forms f(θ)dθ2, with the
A–bimodule structure

a (ξ, f) = (aξ, σ(a)f) (ξ, f) a = (ξa,−iσ(ξ)σ(a)′ + fσ(a)),

with differential

da = ∂a+
1

2
σ(a)′′dθ2,

with ∂ the derivation ∂ = ∂β − ∂α, and
∫

(ξ, f) = τ(ξ) +
1

2πi

∫
f dθ,

where τ(a) = τ0(r−(a(0))), with a(0) the component of degree zero for ∂ and r− the restriction
to C∞(D2

q−). This definition of the cycle corrects for the fact that τ itself (as well as τ0) fails
to be a trace.

The following result then holds (Connes [65]):
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Theorem 20.2. (1) The spectral triple (A,H, D) of Theorem 20.1 has dimension spec-
trum Σ = {1, 2, 3}.

(2) The residue formula for pseudodifferential operators a ∈ B in terms of their symbol
is given by ∫

− a |D|−3 = (τ1 ⊗ τ1)(rρ(a)0)
∫
− a |D|−2 = (τ1 ⊗ τ0 + τ0 ⊗ τ1)(rρ(a)0)
∫
− a |D|−1 = (τ0 ⊗ τ0)(rρ(a)0)

(3) The character χ(a0, a1) =
∫
a0 da1 of the cycle (Ω, d,

∫
) is equal to the cocycle

ψ1(a0, a1) = 2

∫
−a0δ(a1)P |D|−1 −

∫
−a0δ

2(a1)P |D|−1,

with P = (1 + F )/2. The local index formula is given by

ϕodd = ψ1 + (b+B)ϕeven,

where ϕ is the local index cocycle.
(4) The character Tr(a0[F, a1]) differs from the local form ψ1 by the coboundary bψ0,

with ψ0(a) = 2Tr(aP |D|−s)s=0. This cochain is determined by the values ψ0((β
∗β)n),

which are of the form

ψ0((β
∗β)n) = q−2n(q2Rn(q2)−G(q2)),

where G is the logarithmic derivative of the Dedekind eta function

(20.4) η(q2) = q1/12
∞∏

k=1

(1− q2k),

and the Rn are rational functions with poles only at roots of unity.

More recently, another important breakthrough in the relation between quantum groups and
the formalism of spectral triples was obtained by Walter van Suijlekom, Ludwik Dabrowski,
Giovanni Landi, Andrzej Sitarz, Joseph C. Varilly, in [191] and [192].
They construct a 3+ summable spectral triple (A,H, D), where A is, as before, the algebra
of coordinates of the quantum group SUq(2). The geometry in this case is an isospectral
deformation of the classical case, in the sense that the Dirac operator is the same as the
usual Dirac operator for the round metric on the ordinary 3-sphere S3. Moreover, the spectral
triple (A,H, D) is especially nice, in as it is equivariant with respect to both left and right
action of the Hopf algebra Uq(suq(2)).
The classical Dirac operator for the round metric on S3 has spectrum Σ = Σ+ ∪ Σ− with
Σ+ = {(2j + 3/2) : j = 0, 1/2, 1, 3/2, . . .} with multiplicities (2j + 1)(2j + 2) and Σ− =
{−(2j+1/2) : j = 1/2, 1, 3/2, . . .} with multiplicities 2j(2j+1). The Hilbert space is obtained
by taking V ⊗ C2, where V is the left regular representation of A. It is very important here
to take V ⊗ C2 instead of C2 ⊗ V . Not only the latter violates the equivariance condition,
but it was shown by Ghoswami that it produces unbounded commutators [D, a], hence one
does not obtain a spectral triple in that way.
The spectral triple contructed in [191] and [192] has a real structure J and the Dirac operator
satisfies a weak form of the “order one condition” (cf. Section 13 above). The local index
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formula of [65] (cf. Theorem 20.2 above) extends to the spectral triple of [191], as proved in
[192] and the structures of the cotangent space and the geodesic flow are essentially the same.

21. Spherical manifolds

The noncommutative spheres S3
ϕ ⊂ R4

ϕ are obtained as solutions of a very simple problem,
namely the vanishing of the first component of the Chern character of a unitary U ∈M2(A)
where A is the algebra of functions on the sphere and the Chern character is taken in the
cyclic homology (b,B) bicomplex. The origin of this problem is to quantize the volume form
of a three manifold (cf. [69]). The solutions are parameterized by three angles ϕk, k ∈ {1, 2, 3}
and the corresponding algebras are obtained by imposing the “unit sphere relation”

(21.1)
∑

x2
µ = 1

to the four generators x0, x1, x2, x3 of the quadratic algebra Calg(R
4
ϕ) with the six relations

(21.2) sin(ϕk) [x0, xk]+ = i cos(ϕ` − ϕm) [x`, xm]

(21.3) cos(ϕk) [x0, xk] = i sin(ϕ` − ϕm) [x`, xm]+ ,

where [a, b]+ = a b+ b a is the anticommutator and by convention the indices k, l,m ∈ {1, 2, 3}
always appear in cyclic order.
The analysis of these algebras is a special case of the general theory of central quadratic forms
for quadratic algebras developed in [70], [71] and which we briefly recall below.
Let A = A(V,R) = T (V )/(R) be a quadratic algebra where V is the linear span of the gener-
ators and (R) ⊂ T (V ) the ideal generated by the relations. The geometric data {E , σ , L} is
given by an algebraic variety E, a correspondence σ on E and a line bundle L over E. These
data are defined so as to yield an homomorphism h from A to a crossed product algebra
constructed from sections of powers of the line bundle L on the graphs of the iterations of
the correspondence σ. This crossed product only involves the positive powers of the corre-
spondence σ and thus remains “triangular” and far remote from the “semi-simple” set-up of
C∗-algebras.
This morphism h can be considerably refined using the notion of positive central quadratic
form.

Definition 21.1. Let Q ∈ S2(V ) be a symmetric bilinear form on V ∗ and C a component of
E ×E. We say that Q is central on C iff for all (Z, Z ′) in C and ω ∈ R one has,

(21.4) ω(Z,Z ′)Q(σ(Z ′), σ−1(Z)) +Q(Z,Z ′)ω(σ(Z ′), σ−1(Z)) = 0

This makes it possible to construct purely algebraically a crossed product algebra and an
homomorphism from A = A(V,R) to this crossed product [70], [71]. The relation with C ∗-
algebras arises from positive central quadratic forms which make sense on involutive quadratic
algebras.
Let A = A(V,R) be an involutive quadratic algebra i.e. an algebra over C which is a ∗-algebra
with involution x 7→ x∗ preserving the subspace V of the generators. The real structure of
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V is given by the antilinear involution v 7→ j(v) restriction of x 7→ x∗. As (xy)∗ = y∗x∗ for
x, y ∈ A, the space R of relations fulfills

(21.5) (j ⊗ j)(R) = t(R)

in V ⊗ V where t : V ⊗ V → V ⊗ V is the transposition v ⊗ w 7→ t(v ⊗ w) = w ⊗ v. This
implies that the characteristic variety is stable under the involution j and one has

σ(j(Z)) = j(σ−1(Z))

Let then C be an invariant component of E × E, we say that C is j-real when it is globally
invariant under the involution

(21.6) j̃(Z, Z ′) := (j(Z ′), j(Z))

Let then Q be a central qudratic form on C, we say that Q is positive on C iff

Q(Z, j(Z)) > 0 , ∀Z ∈ K .

One can then endow the line bundle L dual of the tautological bundle on P (V ∗) with the
hermitian metric given by

(21.7) 〈f L, g L′〉Q(Z) = f(Z) g(Z)
L(Z)L′(Z)

Q(Z, j(Z))
L,L′ ∈ V, Z ∈ K .

(∀f, g ∈ C(K))

One then defines a generalized crossed product C ∗-algebra C(K)×σ,LZ following M. Pimsner
[166]. Given a compact space K, an homeomorphism σ of K and a hermitian line bundle L
on K we define the C∗-algebra C(K) ×σ,L Z as the twisted cross-product of C(K) by the
Hilbert C∗-bimodule associated to L and σ ([3], [166]).
We let for each n ≥ 0, Lσn

be the hermitian line bundle pullback of L by σn and (cf. [10],
[188])

(21.8) Ln := L⊗ Lσ ⊗ · · · ⊗ Lσn−1

We first define a ∗-algebra as the linear span of the monomials

(21.9) ξ W n , W ∗n η∗ , ξ , η ∈ C(K,Ln)

with product given as in ([10], [188]) for (ξ1W
n1) (ξ2W

n2) so that

(21.10) (ξ1W
n1) (ξ2W

n2) := (ξ1 ⊗ (ξ2 ◦ σn1))W n1+n2

We use the hermitian structure of Ln to give meaning to the products η∗ ξ and ξ η∗ for
ξ , η ∈ C(K,Ln). The product then extends uniquely to an associative product of ∗-algebra
fulfilling the following additional rules

(21.11) (W ∗k η∗) (ξ W k) := (η∗ ξ) ◦ σ−k , (ξ W k) (W ∗k η∗) := ξ η∗

The C∗-norm of C(K) ×σ,L Z is defined as for ordinary cross-products and due to the
amenability of the group Z there is no distinction between the reduced and maximal norms.
The latter is obtained as the supremum of the norms in involutive representations in Hilbert
space. The natural positive conditional expectation on the subalgebra C(K) shows that the
C∗-norm restricts to the usual sup norm on C(K).
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Theorem 21.2. Let K ⊂ E be a compact σ-invariant subset and Q be central and strictly
positive on {(Z, Z̄); Z ∈ K}. Let L be the restriction to K of the dual of the tautological line
bundle on P (V ∗) endowed with the hermitian metric 〈 , 〉Q.

(i) The equality
√

2 θ(Y ) := Y W +W ∗ Ȳ ∗ yields a ∗-homomorphism

θ : A = A(V,R)→ C(K)×σ,L Z

(ii) For any Y ∈ V the C∗-norm of θ(Y ) fulfills

sup
K
‖Y ‖ ≤

√
2‖ θ(Y )‖ ≤ 2 sup

K
‖Y ‖

(iii) If σ4 6= 1l, then θ(Q) = 1 where Q is viewed as an element of T (V )/(R).

In the above case of the sphere S3
ϕ one lets Q be the quadratic form

(21.12) Q(x, x′) :=
∑

xµ x
′
µ

In the generic case one has :

Proposition 21.3. 1) The characteristic variety is the union of 4 points with an elliptic
curve Fϕ.
2) The quadratic form Q is central and positive on Fϕ × Fϕ.

In suitable coordinates the equations defining the elliptic curve Fϕ are

(21.13)
Z2

0 − Z2
1

s1
=
Z2

0 − Z2
2

s2
=
Z2

0 − Z2
3

s3

where sk := 1 + t` tm , tk := tanϕk.
The positivity of Q is automatic since in the coordinates x the involution jϕ of the ∗-algebra
Calg(R

4
ϕ) is just jϕ(Z) = Z̄, so that Q(X, jϕ(X)) > 0 for X 6= 0.

Corollary 21.4. Let K ⊂ Fϕ be a compact σ-invariant subset. The homomorphism θ of
Theorem 21.2 is a unital ∗-homomorphism from Calg(S

3
ϕ) to the cross-product C∞(K)×σ,LZ.

It follows that one obtains a non-trivial C∗-algebra C∗(S3
ϕ) as the completion of Calg(S

3
ϕ) for

the semi-norm,

(21.14) ‖P‖ := sup ‖π(P )‖
where π varies through all unitary representations of Calg(S

3
ϕ). It was clear from the start that

(21.14) defines a finite C∗-semi-norm on Calg(S
3
ϕ) since the equation of the sphere

∑
x2

µ = 1
together with the self-adjointness xµ = x∗µ show that in any unitary representation one has

‖π(xµ)‖ ≤ 1 , ∀µ .
What the above corollary gives is a lower bound for the C ∗-norm such as that given by
statement (ii) of Theorem 21.2 on the linear subspace V of generators.

The correspondence σ on Fϕ, is for generic ϕ a translation of module η of the elliptic curve
Fϕ and one distinguishes two cases : the even case when it preserves the two real components
of the curve Fϕ ∩ P3(R) and the odd case when it permutes them.
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Proposition 21.5. Let ϕ be generic and even.
(i) The cross-product C(Fϕ)×σ,LZ is isomorphic to the mapping torus of the automorphism β

of the noncommutative torus T2
η = Cϕ×σ Z acting on the generators by the matrix

[
1 4
0 1

]
.

(ii) The crossed product Fϕ×σ,L Z is a noncommutative 3-manifold with an elliptic action of
the three dimensional Heisenberg Lie algebra h3 and an invariant trace τ .

It follows that one is exactly in the framework developed in [57]. We refer to [176] and [2]
where these noncommutative manifolds were analyzed in terms of crossed products by Hilbert
C∗-bimodules.
Integration on the translation invariant volume form dv of Fϕ gives the h3-invariant trace τ ,

τ(f) =

∫
fdv , ∀f ∈ C∞(Fϕ)

τ(ξ W k) = τ(W ∗k η∗) = 0 , ∀k 6= 0(21.15)

It follows in particular that the results of [57] apply to obtain the calculus. In particular the
following gives the “fundamental class” as a 3-cyclic cocycle,

(21.16) τ3(a0, a1, a2, a3) =
∑

εijk τ(a0 δi(a1) δj(a2) δk(a3))

where the δj are the generators of the action of h3.

The relation between the noncommutative spheres S3
ϕ and the noncommutative nilmanifolds

Fϕ ×σ,L Z is analyzed in [70], [71] thanks to the computation of the Jacobian of the homo-
morphism θ.

22. Q-lattices

A class of examples of noncommutative spaces of relevance to number theory is given by the
moduli spaces of Q-lattices up to commensurability. These fall within the general framework
of noncommutative spaces obtained as quotients of equivalence relations discussed in Section
4.
A Q-lattice in Rn consists of a pair (Λ, φ) of a lattice Λ ⊂ Rn (a cocompact free abelian
subgroup of Rn of rank n) together with a system of labels of its torsion points given by a
homomorphism of abelian groups

(22.1) φ : Qn/Zn −→ QΛ/Λ.

Two Q-lattices are commensurable,

(Λ1, φ1) ∼ (Λ2, φ2),

iff QΛ1 = QΛ2 and

φ1 = φ2 mod Λ1 + Λ2

In general, the map φ of (22.1) is just a group homomorphism. A Q-lattice is said to be
invertible is φ is an isomorphism. Two invertible Q-lattices are commensurable if and only if
they are equal.
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φ

φ

general case

invertible case

Figure 15. Q-lattices: generic and invertible case.

The space Ln of commensurabilty classes of Q-lattices in Rn has the typical property of
noncommutative spaces: it has the cardinality of the continuum but one cannot construct
a countable collection of measurable functions that separate points of Ln. Thus, one can
use noncommutative geometry to describe the quotient space Ln through a noncommutative
C∗-algebra C∗(Ln).
We consider especially the case of n = 1 and n = 2. One is also interested in the C ∗-algebras
describing Q-lattices up to scaling, A1 = C∗(L1/R

∗
+) and A2 = C∗(L2/C

∗).
In the 1-dimensional case, a Q-lattice can always be written in the form

(22.2) (Λ, φ) = (λZ, λ ρ)

for some λ > 0 and some

(22.3) ρ ∈ Hom(Q/Z,Q/Z) = lim←−Z/nZ = Ẑ.

By considering lattices up to scaling, we eliminate the factor λ > 0 so that 1-dimensional
Q-lattices up to scale are completely specified by the choice of the element ρ ∈ Ẑ. Thus, the
algebra of coordinates of the space of 1-dimensional Q-lattices up to scale is the commutative
C∗-algebra

(22.4) C(Ẑ) ' C∗(Q/Z),

where we use Pontrjagin duality to get the identification in (22.4).
The equivalence relation of commensurability is implemented by the action of the semigroup
N× on Q-lattices. The corresponding action on the algebra (22.4) is by

(22.5) αn(f)(ρ) =

{
f(n−1ρ) ρ ∈ nẐ
0 otherwise.
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Thus, the quotient of the space of 1-dimensional Q-lattices up to scale by the commensura-
bility relation and its algebra of coordinates is given by the semigroup crossed product

(22.6) C∗(Q/Z) o N×.

This is the Bost–Connes C∗-algebra introduced in [27].
It has a natural time evolution given by the covolume of a pair of commensurable Q-lattices. It
has symmetries (compatible with the time evolution) given by the group Ẑ∗ = GL1(Af )/Q∗

and the KMS (Kubo–Martin–Schwinger) equilibrium states of the system have interesting
arithmetic properties. Namely, the partition function of the system is the Riemann zeta
function. There is a unique KMS state for sufficiently high temperature, while at low tem-
perature the system undergoes a phase transition with spontaneous symmetry breaking. The
pure phases (estremal KMS states) at low temperature are parameterized by elements in Ẑ∗.
They have an explicit expression in terms of polylogarithms at roots of unity. At zero tem-
perature the extremal KMS states, evaluated on the elements of a rational subalgebra affect
values that are algebraic numbers. The action on these values of the Galois group Gal(Q̄/Q)
factors through its abelianization and is obtained (via the class field theory isomorphism

Ẑ∗ ∼= Gal(Qab/Q)) as the action of symmetries on the algebra (cf. [27], [74], [75] for details).

In the 2-dimensional case, a Q-lattice can be written in the form

(Λ, φ) = (λ(Z + Zτ), λρ),

for some λ ∈ C∗, some τ ∈ H, and some ρ ∈M2(Ẑ) = Hom(Q2/Z2,Q2/Z2). Thus, the space
of 2-dimensional Q-lattices up to the scale factor λ ∈ C∗ and up to isomorphisms, is given by

(22.7) M2(Ẑ)×H mod Γ = SL2(Z).

The commensurability relation giving the space L2/C
∗ is implemented by the partially defined

action of GL+
2 (Q).

One considers in this case the quotient of the space

(22.8) Ũ := {(g, ρ, α) ∈ GL+
2 (Q)×M2(Ẑ)×GL+

2 (R) : gρ ∈M2(Ẑ)}
by the action of Γ× Γ given by

(22.9) (γ1, γ2) (g, ρ, α) = (γ1gγ
−1
2 , γ2ρ, γ2α).

The groupoid R2 of the equivalence relation of commensurability on 2-dimensional Q-lattices
(not considered up to scaling for the moment) is a locally compact groupoid, which can be

parameterized by the quotient of (22.8) by Γ× Γ via the map r : Ũ → R2,

(22.10) r(g, ρ, α) =
(
(α−1g−1Λ0, α

−1ρ), (α−1Λ0, α
−1ρ)

)
.

We then consider the quotient by scaling. The quotient GL+
2 (R)/C∗ can be identified with

the hyperbolic plane H in the usual way. If (Λk, φk) k = 1, 2 are a pair of commensurable
2-dimensional Q-lattices, then for any λ ∈ C∗, the Q-lattices (λΛk, λφk) are also commensu-
rable, with

r(g, ρ, αλ−1) = λr(g, ρ, α).

However, the action of C∗ on Q-lattices is not free due to the presence of lattices (such as
Λ0 above) with nontrivial automorphisms. Thus, the quotient Z = R2/C

∗ is no longer a
groupoid. Still, one can define a convolution algebra for Z by restricting the convolution
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product of R2 to homogeneous functions of weight zero, where a function f has weight k if
it satisfies

f(g, ρ, αλ) = λkf(g, ρ, α), ∀λ ∈ C∗.

The space Z is the quotient of the space

(22.11) U := {(g, ρ, z) ∈ GL+
2 (Q)×M2(Ẑ)×H|gρ ∈M2(Ẑ)}

by the action of Γ× Γ. Here the space M2(Ẑ)×H has a partially defined action of GL+
2 (Q)

given by
g(ρ, z) = (gρ, g(z)),

where g(z) denotes action as fractional linear transformation.
Thus, the algebra of coordinates A2 for the noncommutative space of commensurability
classes of 2-dimensional Q-lattices up to scaling is given by the following convolution algebra.
Consider the space Cc(Z) of continuous compactly supported functions on Z. These can be
seen, equivalently, as functions on U as in (22.11) invariant under the Γ×Γ action (g, ρ, z) 7→
(γ1gγ

−1
2 , γ2z). One endows Cc(Z) with the convolution product

(22.12) (f1 ∗ f2)(g, ρ, z) =
∑

s∈Γ\GL+

2
(Q):sρ∈M2(Ẑ)

f1(gs
−1, sρ, s(z))f2(s, ρ, z)

and the involution f ∗(g, ρ, z) = f(g−1, gρ, g(z)).
Again there is a time evolution on this algebra, which is given by the covolume,

(22.13) σt(f)(g, ρ, z) = det(g)it f(g, ρ, z).

The partition function for this GL2 system is given by

(22.14) Z(β) =
∑

m∈Γ\M+

2
(Z)

det(m)−β =
∞∑

k=1

σ(k) k−β = ζ(β)ζ(β − 1),

where σ(k) =
∑

d|k d. The form of the partition function suggests the possibility that two

distinct phase transitions might happen at β = 1 and β = 2.
The structure of KMS states for this system is analysed in [74]. The main result is the
following.

Theorem 22.1. The KMSβ states of the GL2-system have the following properties:

(1) In the range β ≤ 1 there are no KMS states.
(2) In the range β > 2 the set of extremal KMS states is given by the classical Shimura

variety

(22.15) Eβ ∼= GL2(Q)\GL2(A)/C∗.

The symmetries are more complicated than in the Bost–Connes case. In fact, in addition to
symmetries given by automorphisms that commute with the time evolution, there are also
symmetries by endomorphisms that play an important role. The resulting symmetry group
is the quotient GL2(Af )/Q∗. An important result of Shimura [184] shows that this group is
in fact the Galois group of the field F of modular functions. The group GL2(Af ) decomposes
as a product

(22.16) GL2(Af ) = GL+
2 (Q)GL2(Ẑ),
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where GL2(Ẑ) acts by automorphisms related to the deck transformations of the tower of
the modular curves, while GL+

2 (Q) acts by endomorphisms that move across levels in the
modular tower.
The modular field F is the field of modular functions over Qab, namely the union of the fields
FN of modular functions of level N rational over the cyclotomic field Q(ζn), that is, such
that the q-expansion in powers of q1/N = exp(2πiτ/N) has all coefficients in Q(e2πi/N ).

The action of the Galois group Ẑ∗ ' Gal(Qab/Q) on the coefficients determines a homomor-
phism

(22.17) cycl : Ẑ∗ → Aut(F ).

If τ ∈ H is a generic point, then the evaluation map f 7→ f(τ) determines an embedding
F ↪→ C. We denote by Fτ the image in C. This yields an identification

(22.18) θτ : Gal(Fτ/Q)
'→ Q∗\GL2(Af ).

There is an arithmetic algebra A2,Q (defined over Q) of unbounded multipliers of the C ∗-
algebra A2, obtained by considering continuous functions on Z (cf. (22.11)), with finite

support in the variable g ∈ Γ\GL+
2 (Q) and with the following properties. Let pN : M2(Ẑ)→

M2(Z/NZ) be the canonical projection. With the notation f(g,ρ)(z) = f(g, ρ, z), we say that
f(g,ρ) ∈ C(H) is of level N if

f(g,ρ) = f(g,pN(ρ)) ∀(g, ρ).
We require that elements of A2,Q have the f(g,ρ) of finite level with f(g,m) ∈ F for all (g,m).
We also require that the action (22.17) on the coefficients of the q-expansion of the f(g,m)

satisfies

f(g,α(u)m) = cycl(u) f(g,m),

for all g ∈ GL+
2 (Q) diagonal and all u ∈ Ẑ∗, with

α(u) =

(
u 0
0 1

)
,

to avoid some “trivial” elements that would spoil the Galois action on values of states (cf.
[74], [75]). The action of symmetries extends to A2,Q. We have then the following result
([74]):

Theorem 22.2. Consider a state ϕ = ϕ∞,L ∈ E∞, for a generic invertible Q-lattice L =
(ρ, τ). Then the values of the state on elements of the arithmetic subalgebra generate the
image in C of the modular field,

(22.19) ϕ(A2,Q) ⊂ Fτ ,

and the isomorphism

(22.20) θϕ : Gal(Fτ/Q)
'−→ Q∗\GL2(Af ),

given by

(22.21) θϕ(γ) = ρ−1 θτ (γ) ρ,
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for θτ as in (22.18), intertwines the Galois action on the values of the state with the action
of symmetries,

(22.22) γ ϕ(f) = ϕ(θϕ(γ)f), ∀f ∈ A2,Q, ∀γ ∈ Gal(Fτ/Q).

A notion analogous to that of Q-lattices can be given for other number fields K. This notion
was used in [78] to construct a quantum statistical mechanical system for K an imaginary
quadratic field. This system shares properties with both the Bost–Connes system of [27] and
the GL2 system (2-dimensional Q-lattices) of [74].
We assume that K = Q(

√
−d), d a positive integer. Let τ ∈ H be such that K = Q(τ) and

O = Z + Zτ is the ring of integers of K.
A 1-dimensional K-lattice (Λ, φ) is a finitely generated O-submodule Λ ⊂ C, such that Λ⊗O
K ∼= K, together with a morphism of O-modules

(22.23) φ : K/O → KΛ/Λ.

A 1-dimensional K-lattice is invertible if φ is an isomorphism of O-modules. A 1-dimensional
K-lattice is, in particular, a 2-dimensional Q-lattice.
We consider the notion of commensurability as in the case of Q-lattices. Two 1-dimensional
K-lattices (Λ1, φ1) and (Λ2, φ2) are commensurable if KΛ1 = KΛ2 and φ1 = φ2 modulo
Λ1 + Λ2. In particular, two 1-dimensional K-lattices are commensurable iff the underlying
Q-lattices are commensurable.
The algebra of the corresponding noncommutative space is a restriction of the algebra of
the GL2-system to the subgroupoid of the equivalence of commensurability restricted to K-
lattices. The time evolution is also a restriction from the GL2-system.
The resulting system has partition function the Dedekind zeta function ζK(β) of the number
field K. Above the critical temperature T = 1 there is a unique KMS state, while at lower
temperatures the extremal KMS states are parameterized by elements of A∗

K/K
∗, where

AK = AK,f×C are the adeles of K, with AK,f = Af⊗K. The KMS states at zero temperature,
evaluated on the restriction to K-lattices of the arithmetic algebra of the GL2-system, have
an action of the Galois group Gal(Kab/K) realized (via the class field theory isomorphism)
through the action of symmetries (automorphisms and endomorphisms) of the system (cf.
[78]).

23. Modular Hecke algebras

Connes and Moscovici [84] defined modular Hecke algebras A(Γ) of level Γ, a congruence
subgroup of PSL2(Z). These extend both the ring of classical Hecke operators and the
algebra of modular forms.
Modular Hecke algebras encode two a priori unrelated structures on modular forms, namely
the algebra structure given by the pointwise product on one hand, and the action of the Hecke
operators on the other. To any congruence subgroup Γ of SL2(Z) corresponds a crossed
product algebra A(Γ), the modular Hecke algebra of level Γ, which is a direct extension of
both the ring of classical Hecke operators and of the algebra M(Γ) of Γ-modular forms.
These algebras can be obtained by considering the action of GL+

2 (Q) on the algebra of
modular forms on the full (adelic) modular tower, which yields the “holomorphic part” of the
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“ring of functions” of the noncommutative space of commensurability classes of 2-dimensional
Q-lattices, introduced in Section 22.
With M denoting the algebra of modular forms of arbitrary level, the elements of A(Γ) are
maps with finite support

F : Γ\GL+(2,Q)→M , Γα 7→ Fα ∈M ,

satisfying the covariance condition

Fαγ = Fα|γ , ∀α ∈ GL+(2,Q) , γ ∈ Γ

and their product is given by convolution.
More in detail, let G = PGL+

2 (Q) and Γ ⊂ PSL2(Z) a finite index subgroup. The quotient
map Γ\G→ Γ\G/Γ is finite to one, and Γ acts on C[Γ\G]. LetHk be the space of holomorphic
functions f : H→ C with polynomial growth, and with the action |k, for k ∈ 2Z, of PGL+

2 (R)
of the form (

f |k
(
a b
c d

))
(z) =

(ad− bc)k/2

(cz + d)k
f

(
az + b

cz + d

)
.

This determines induced actions of G and Γ on Hk. The space of modular forms is obtained
as Mk(Γ) = HΓ

k , the invariants of this action.
One can then define

(23.1) Ak(Γ) := (C[Γ\G]⊗C Hk)
Γ ,

with respect to the right action of Γ,

γ :
∑

i

(Γgi)⊗ fi 7→
∑

i

Γgiγ ⊗ (fi|kγ).

One considers the graded vector space A∗(Γ) = ⊕kAk(Γ). The elements of Ak(Γ) can be
thought of as finitely supported Γ-equivariant maps

φ : Γ\G→Hk

∑

i

(Γgi)⊗ fi 7→ fi.

We can embed

A∗(Γ) ⊂ Â∗(Γ) := HomΓ(C[Γ\G],Hk),

where we think of A∗ = H∗[Γ\G] as polynomials in Γ\G with H∗ coefficients, and of Â∗ =
H∗[[Γ\G]] as formal power series, that is, Γ-equivariant maps φ : Γ\G → Hk. There is on
A∗(Γ) an associative multiplication (cf. [84]), which makes A∗(Γ) into a noncommutative
ring. This is given by a convolution product. For any φ ∈ Ak(Γ), we have φg = φγg, with
φg = 0 off a finite subset of Γ\G, and φg|γ = φgγ , so these terms are left Γ-invariant and
right Γ-equivariant. For φ ∈ Ak(Γ) and ψ ∈ A`(Γ) we then define the convolution product as

(23.2) (φ ∗ ψ)g :=
∑

(g1,g2)∈G×ΓG,g1g2=g

(φg1
|g2)φg2

,

The algebra A∗(Γ) constructed this way has two remarkable subalgebras.

• A0(Γ) = C[Γ\G/Γ] is the algebra T of Hecke operators.
• Mk(Γ) ⊂ Ak(Γ) also gives a subalgebra M∗(Γ) ⊂ A∗(Γ).
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In particular observe that all the coefficients φg are modular forms. In fact, they satisfy
φg|γ = φgγ , hence, for γ ∈ Γ, this gives φg|γ = φg.
Notice however that the convolution product on A∗ does not agree with the Hecke action,
namely the diagram

M∗(Γ)⊗ T

ι

��

H //M∗(Γ)

ι

��
A∗ ⊗A∗

∗ // A∗,

with ι the inclusion of subalgebras and H the Hecke action, is not commutative, nor is the
symmetric one

T⊗M∗(Γ)

ι

��

H //M∗(Γ)

ι

��
A∗ ⊗A∗

∗ // A∗.

To get the correct Hecke action on modular forms from the algebra A∗(Γ), one needs to
introduce the augmentation map

ε : C[Γ\G]→ C

extended to a map

ε⊗ 1 : C[Γ\G]⊗Hk →Hk

∑
[g]⊗ φg 7→

∑
φg.

One then obtains a commutative diagram

T⊗M∗(Γ)

ι

��

H //M∗(Γ)

A∗ ⊗A∗
∗ // A∗.

ε⊗1

OO

In [82] Connes and Moscovici introduced a Hopf algebra H1 associated to the transverse
geometry of codimension one foliations. This is the universal enveloping algebra of a Lie
algebra with basis {X ,Y, δn n ≥ 1} satisfying, for n, k, ` ≥ 1,

(23.3) [Y,X ] = X , [Y, δn] = n δn, [X , δn] = δn+1, [δk, δ`] = 0,

with coproduct an algebra homomorphism ∆ : H1 →H1 ⊗H1 satisfying

(23.4)
∆Y = Y ⊗ 1 + 1⊗ Y,
∆δ1 = δ1 ⊗ 1 + 1⊗ δ1,
∆X = X ⊗ 1 + 1⊗X + δ1 ⊗ Y,

antipode the anti-isomorphism satisfying

(23.5) S(Y) = −Y, S(X ) = −X + δ1Y, S(δ1) = −δ1,
and co-unit ε(h) the constant term of h ∈ H1.
The Hopf algebra H1 acts as symmetries of the modular Hecke algebras. This is a manifesta-
tion of the general fact that, while symmetries of ordinary commutative spaces are encoded
by group actions, symmetries of noncommutative spaces are given by Hopf algebras.
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By comparing the actions of the Hopf algebra H1, it is possible to derive an analogy (cf.
[84]) between the modular Hecke algebras and the crossed product algebra of the action of a
discrete subgroup of Diff(S1) on polynomial functions on the frame bundle of S1.
In fact, for Γ a discrete subgroup of Diff(S1), and X a smooth compact 1-dimensional man-
ifold, consider as in [84] the algebra

(23.6) AΓ = C∞
c (J1

+(X)) o Γ,

where J1
+(X) is the oriented 1-jet bundle. This has an action of the Hopf algebra H1 by

(23.7)

Y(fU∗
φ) = y1

∂f
∂y1

U∗
φ

X (fU∗
φ) = y1

∂f
∂yU

∗
φ

δn(fU∗
φ) = yn

1
dn

dyn

(
log dφ

dy

)
fU∗

φ,

with coordinates (y, y1) on J1
+(X) ' X × R+. The trace τ defined by the volume form

(23.8) τ(fU ∗
φ) =

{ ∫
J1
+

(X) f(y, y1)
dy∧dy1

y2
1

φ = 1

0 φ 6= 1

satisfies

(23.9) τ(h(a)) = ν(h)τ(a) ∀h ∈ H1,

with ν ∈ H∗
1 satisfying

(23.10) ν(Y) = 1, ν(X ) = 0, ν(δn) = 0.

The twisted antipode S̃ = ν ∗ S satisfies S̃2 = 1 and

(23.11) S̃(Y) = −Y + 1, S̃(X ) = −X + δ1Y, S̃(δ1) = −δ1.
The Hopf cyclic cohomology of a Hopf algebra is another fundamental tool in noncommutative
geometry, which was developed by Connes and Moscovici in [82]. They applied it to the
computation of the local index formula for tranversely hypoelliptic operators on foliations.
An action of a Hopf algebra on an algebra induces a characteristic map from the Hopf
cyclic cohomology of the Hopf algebra to the cyclic cohomology of the algebra, hence the
index computation can be done in terms of Hopf cyclic cohomology. The periodic Hopf
cyclic cohomology of the Hopf algebra of transverse geometry is related to the Gelfand-Fuchs
cohomology of the Lie algebra of formal vector fields [83].
In the case of the Hopf algebra H1, there are three basic cyclic cocycles, which in the original
context of transverse geometry correspond, respectively, to the Schwarzian derivative, the
Godbillon-Vey class, and the transverse fundamental class.
In particular, the Hopf cyclic cocycle associated to the Schwarzian derivative is of the form

(23.12) δ′2 := δ2 −
1

2
δ21

with

(23.13) δ′2(fU
∗
φ) = y2

1 {φ(y); y} fU ∗
φ
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(23.14) {F ;x} :=
d2

dx2

(
log

dF

dx

)
− 1

2

(
d

dx

(
log

dF

dx

))2

.

The action of the Hopf algebra H1 on the modular Hecke algebra described in [84] involves the
natural derivation on the algebra of modular forms initially introduced by Ramanujan, which
corrects the ordinary differentiation by a logarithmic derivative of the Dedekind η function,

(23.15) X :=
1

2πi

d

dz
− 1

2πi

d

dz
(log η4) Y, Y(f) =

k

2
f, ∀f ∈Mk.

The element Y is the grading operator that multiplies by k/2 forms of weight k, viewed
as sections of the (k/2)th power of the line bundle of 1-forms. The element δ1 acts as
multiplication by a form-valued cocycle on GL+

2 (Q), which measures the lack of invariance
of the section η4dz. More precisely, one has the following action of H1 (Connes–Moscovici
[84]):

Theorem 23.1. There is an action of the Hopf algebra H1 on the modular Hecke algebra
A(Γ) of level Γ, induced by an action on AG+(Q) :=MoG+(Q), forM = lim−→N→∞M(Γ(N)),
of the form

(23.16)

Y(fU∗
γ ) = Y(f)U ∗

γ

X (fU∗
γ ) = X (f)U ∗

γ

δn(fU∗
γ ) = dn

dZn

(
log d(Z|0γ)

dZ

)
(dZ)n fU∗

γ ,

with X (f) and Y(f) as in (23.15), and

(23.17) Z(z) =

∫ z

i∞
η4dz.

The cocycle (23.12) associated to the Schwarzian derivative is represented by an inner deriva-
tion of AG+(Q),

(23.18) δ′2(a) = [a, ω4],

where ω4 is the weight four modular form

(23.19) ω4 = −E4

72
, with E4(q) = 1 + 240

∞∑

n=1

n3 qn

1− qn
, q = e2πiz,

which is expressed as a Schwarzian derivative

(23.20) ω4 = (2πi)−2 {Z; z}.
This result is used in [84] to investigate perturbations of the Hopf algebra action. The freedom
one has in modifying the action by a 1-cocycle corresponds exactly to the data introduced by
Zagier in [203], defining ”canonical” Rankin-Cohen algebras, with the derivation ∂ and the
element Φ in Zagier’s notation corresponding, respectively, to the action of the generator X
on modular forms and to ω4 = 2Φ.
The cocycle associated to the Godbillon-Vey class is described in terms of a 1-cocycle on
GL+

2 (Q) with values in Eisenstein series of weight two, which measures the lack of GL+
2 (Q)-

invariance of the connection associated to the generator X . The authors derive from this an
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arithmetic presentation of the rational Euler class in H 2(SL2(Q),Q) in terms of generalized
Dedekind sums.
The cocycle associated to the transverse fundamental class, on the other hand, gives rise to a
natural extension of the first Rankin-Cohen bracket [203] from modular forms to the modular
Hecke algebras.

Rankin–Cohen algebras can be treated in different perspectives: Zagier introduced them and
studied them with a direct algebraic approach (cf. [203]). There appears to be an interesting
and deep connection to vertex operator algebras, which manifests itself in a form of duality
between these two types of algebras.

The Rankin–Cohen brackets are a family of brackets [f, g ]
(k,`)
n for n ≥ 0, defined for f, g ∈ R,

where R is a graded ring with a derivation D. For R = ⊕k≥0Rk, D : Rk → Rk+2, f ∈ Rk

g ∈ R`, the brackets [, ]n : Rk ⊗R` → Rk+`+2 are given by

(23.21) [f, g ](k,`)
n =

∑

r+s=n

(−1)r

(
n+ k − 1

s

)(
n+ `− 1

r

)
Drf Dsg.

These Rankin–Cohen brackets induced by (R∗, D)⇒ (R∗, [, ]∗) give rise to a standard Rankin–
Cohen algebra, in Zagier’s terminology (cf. [203]). There is an isomorphism of categories
between graded rings with a derivation and standard Rankin–Cohen algebras.
In the case of Lie algebras, one can first define a standard Lie algebra as the Lie algebra
associated to an associative algebra (A, ∗) ⇒ (A, [, ]) by setting [X,Y ] = X ∗ Y − Y ∗ X
and then define an abstract Lie algebra as a structure (A, [, ]) that satisfies all the algebraic
identities satisfied by a standard Lie algebras, though it is not necessarily induced by an
associative algebra. It is then a theorem that the antisymmetry of the bracket and the
Jacobi identity are sufficient to determine all the other algebraic identities, hence one can
take these as a definition of an abstract Lie algebra.
Just as in the case of Lie algebras, we can define a Rankin–Cohen algebra (R∗, [, ]∗) as a
graded ring R∗ with a family of degree 2n brackets [, ]n satisfying all the algebraic identities
of the standard Rankin–Cohen algebra. However, in this case there is no simple set of axioms
that implies all the algebraic identities.
The motivation for this structure lies in the fact that there is a very important example of a
Rankin–Cohen algebra which is in fact non-standard. The example is provided by modular
forms (cf. [203]).
If f ∈Mk is a modular form satisfying

f

(
az + b

cz + d

)
= (cz + d)kf(z),

then it derivative is no longer a modular form, due to the presence of the second term in

f ′
(
az + b

cz + d

)
= (cz + d)k+2f(z) + kc(cz + d)k+1f(z).

On the other hand, if we have f ∈Mk and g ∈M`, the bracket

[f, g](z) := `f ′(z)g(z) − kf(z)g′(z)



80 CONNES AND MARCOLLI

is a modular form in Mk+`+2. Similarly, we can define an n-th bracket [, ]n : Mk ⊗M` →
Mk+`+2. Here’s the first few brackets:

[f, g]0 = fg

[f, g]1 = kfg′ − `f ′g

[f, g]2 =

(
k + 1

2

)
fg′′ − (k + 1)(`+ 1)f ′g′ +

(
`+ 1

2

)
f ′′g.

Notice that for the graded ring of modular forms we haveM∗(Γ) ⊂ H, where H is the vector
space H = Hol(H)polyn of holomorphic functions on the upper half plane H with polynomial
growth. This is closed under differentiation and (H, D) induces a standard Rankin–Cohen
algebra (H, [, ]∗). The inclusion (M∗, [, ]∗) ⊂ (H, [, ]∗) is not closed under differentiation but
it is closed under the brackets.
A way of constructing non-standard Rankin–Cohen algebras is provided by Zagier’s canonical
construction (cf. [203]). One considers here the data (R∗, D,Φ), where R∗ is a graded ring
with a derivation D and with a choice of an element Φ ∈ R4, the curvature. One then defines
the brackets by the formula

(23.22) [f, g](k,`)
n =

∑

r+s=n

(−1)r

(
n+ k − 1

s

)(
n+ `− 1

r

)
fr gs,

where f0 = f and

(23.23) fr+1 = Dfr + r(r + 1)Φfr−1.

The structure (R∗, [, ]∗) obtained this way is a Rankin–Cohen algebra (see [203]).
There is a gauge action on the curvature Φ, namely, for any ϕ ∈ R2 the transformation
D 7→ D′ and Φ 7→ Φ′ with

D′(f) = D(f) + kϕf

for f ∈Mk and

(23.24) Φ′ = Φ + ϕ2 −D(ϕ)

give rise to the same Rankin–Cohen algebra. Thus, all the cases where the curvature Φ can
be gauged away to zero correspond to the standard case.

The modular form ω4 of (23.20) provides the curvature element ω4 = 2Φ, and the gauge
equivalence condition (23.24) can be rephrased in terms of Hopf algebras as the freedom
to change the H1 action by a cocycle. In particular (cf. [84]), for the specified action, the
resulting Rankin–Cohen structure is canonical but not standard, in Zagier’s terminology.
The 1-form dZ = η4dz is, up to scalars, the only holomorphic differential on the elliptic curve
E = XΓ(6)

∼= XΓ0(36) of equation y2 = x3 + 1, so that dZ = dx
y in Weierstrass coordinates.

The Rankin–Cohen brackets on modular forms can be extended to brackets RCn on the
modular Hecke algebra, defined in terms of the action of the Hopf algebra H1 of transverse
geometry. In fact, more generally, it is shown in [85] that it is possible to define such Rankin–
Cohen brackets on any associative algebra A endowed with an action of the Hopf algebra H1

for which there exists an element Ω ∈ A such that

(23.25) δ′2(a) = [Ω, a], ∀a ∈ A,
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and with δ′2 as in (23.12), and

(23.26) δn(Ω) = 0, ∀n ≥ 1.

Under these hypotheses, the following result holds (Connes–Moscovici [85]):

Theorem 23.2. Suppose given an associative algebra A with an action of the Hopf algebra
H1 satisfying the conditions (23.25) and (23.26).

(1) There exists Rankin–Cohen brackets RCn of the form

(23.27) RCn(a, b) =

n∑

k=0

Ak

k!
(2Y + k)n−k(a)

Bn−k

(n− k)! (2Y + n− k)k(b),

with (α)r = α(α + 1) · · · (α + r − 1) and the coefficients A−1 = 0, A0 = 1, B0 = 1,
B1 = X ,

An+1 = S(X )An − nΩ0

(
Y − n− 1

2

)
An−1,

Bn+1 = XBn − nΩ

(
Y − n− 1

2

)
Bn−1,

and Ω0 the right multiplication by Ω.
(2) When applied to the modular Hecke algebra A(Γ), with Ω = ω4 = 2Φ, the above

construction yields brackets (23.27) that are completely determined by their restriction
to modular forms where they agree with the Rankin–Cohen brackets (23.22).

(3) The brackets (23.27) determine associative deformations

(23.28) a ∗ b =
∑

n

~nRCn(a, b).

The first of the steps described in Section 2, namely resolving the diagonal in A(Γ), is not
yet done for the modular Hecke algebras and should shed light on the important number
theoretic problem of the interrelation of the Hecke operators with the algebra structure given
by the pointwise product.
The algebra A(Γ) is deeply related to the algebra of the space of two dimensional Q-lattices
of Section 22.

24. Noncommutative moduli spaces, Shimura varieties

It appears from the study of some significant cases that an important source of interesting
noncommutative spaces is provided by the “boundary” of classical (algebro-geometric) mod-
uli spaces, when one takes into account the possible presence of degenerations of classical
algebraic varieties that give rise to objects no longer defined within the context of algebraic
varieties, but which still make sense as noncommutative spaces.

An example of algebro-geometric moduli spaces which is sufficiently simple to describe but
which at the same time exhibits a very rich structure is that of the modular curves. The
geometry of modular curves has already appeared behind our discussion of the 2-dimensional
Q-lattices and of the modular Hecke algebras, through an associated class of functions: the
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modular functions that appeared in our discussion of the arithmetic algebra for the quan-
tum statistical mechanical system of 2-dimensional Q-lattices and the modular forms in the
modular Hecke algebras.
The modular curves, quotients of the hyperbolic plane H by the action of a subgroup Γ of
finite index of SL2(Z), are complex algebraic curves, which admit an arithmetic structure,
as they are defined over cyclotomic number fields Q(ζN ). They are also naturally moduli
spaces. The object they parameterize are elliptic curves (with some level structure). The
modular curves have an algebro-geometric compactification obtained by adding finitely many
cusp points, given by the points in P1(Q)/Γ. These correspond to the algebro-geometric
degeneration of the elliptic curve to C∗. However, in addition to these degenerations, one
can consider degenerations to noncommutative tori, obtained by a limit q → exp(2πiθ) in
the modulus q = exp(2πiτ) of the elliptic curve, where now θ is allowed to be also irrational.
The resulting boundary P1(R)/Γ is a noncommutative space (in the sense of Section 4). It
appeared in the string theory compactifications considered in [68]. The arithmetic properties
of the noncommutative spaces P1(R)/Γ were studied in [147], [150] [151].
The modular curves, for varying finite index Γ ⊂ SL2(Z), form a tower of branched coverings.
The projective limit of this tower sits as a connected component in the more refined adelic
version of the modular tower, given by the quotient

(24.1) GL2(Q)\GL2(A)/C∗,

where, as usual, A = Af × R denotes the adeles of Q, with Af = Ẑ⊗Q the finite adeles.
The space (24.1) is also a moduli space. In fact, it belongs to an important class of algebro-
geometric moduli spaces of great arithmetic significance, the Shimura varieties Sh(G,X),
where the data (G,X) are given by a reductive algebraic group G and a hermitian sym-
metric domain X. The pro-variety (24.1) is the Shimura variety Sh(GL2,H

±), where H± =
GL2(R)/C∗ is the union of upper and lower half plane in P1(C).

We have mentioned above that the spaces P1(R)/Γ describe degenerations of elliptic curves
to noncommutative tori. This type of degeneration corresponds to degenerating a lattice
Λ = Z+Zτ to a pseudolattice L = Z+Zθ (see [143] for a detailed discussion of this viewpoint
and its implications in noncommutative geometry and in arithmetic). In terms of the space
(24.1), it corresponds to degenerating the archimedean component, namely replacing GL2(R)
by M2(R)· = M2(R) r {0}, nonzero 2 × 2-matrices. However, when one is working with
the adelic description as in (24.1), one can equally consider the possibility of degenerating a
lattice at the non-archimedean components. This brings back directly the notion of Q-lattices
of Section 22.
In fact, it was shown in [79] that the notions of 2-dimensional Q-lattices and commensurability
can be reformulated in terms of Tate modules of elliptic curves and isogeny. In these terms,
the space of Q-lattices corresponds to non-archimedean degenerations of the Tate module,
which correspond to the “bad quotient”

(24.2) GL2(Q)\M2(Af )×GL2(R)/C∗.

The combination of these two types of degenerations yields a “noncommutative compactifi-
cation” of the Shimura variety Sh(GL2,H

±) which is the algebra of the “bad quotient”

(24.3) GL2(Q)\M2(A)·/C∗,
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where M2(A)· are the elements of M2(A) with nonzero archimedean component. One recovers
the Shimura variety Sh(GL2,H

±) as the set of classical points (extremal KMS states at zero
temperature) of the quantum statistical mechanical system associated to the noncommutative
space (24.2) (cf. [74], [79]).

More generally, Shimura varieties are moduli spaces for certain types of motives or as moduli
spaces of Hodge structures (cf. e.g. [158]). A Hodge structure (W,h) is a pair of a finite
dimensional Q-vector space W and a homomorphism h : S→ GL(WR), of the real algebraic
group S = ResC/RGm, with WR = W ⊗ R. This determines a decomposition WR ⊗ C =

⊕p,qW
p,q with W p,q = W q,p and h(z) acting on W p,q by z−pz̄−q. This gives a Hodge filtration

and a weight filtration WR = ⊕kWk where Wk = ⊕p+q=mW
p,q. The Hodge structure (W,h)

has weight m if WR = Wm. It is rational if the weight filtration is defined over Q. A Hodge
structure of weight m is polarized if there is a morphism of Hodge structures ψ : W ⊗W →
Q(−m), such that (2πi)mψ(·, h(i)·) is symmetric and positive definite. Here Q(m) is the
rational Hodge structure of weight −2m, with W = (2πi)mQ with the action h(z) = (zz̄)m.
For a rational (W,h), the subspace of W ⊗Q(m) fixed by the h(z), for all z ∈ C∗, is the space
of “Hodge cycles”.
One can then view Shimura varieties Sh(G,X) as moduli spaces of Hodge structures in the
following way. Let (G,X) be a Shimura datum and ρ : G→ GL(V ) a faithful representation.
Since G is reductive, there is a finite family of tensors τi such that

(24.4) G = {g ∈ GL(V ) : gτi = τi}.
A point x ∈ X is by construction a G(R) conjugacy class of morphisms hx : S → G, with
suitable properties.
Consider data of the form ((W,h), {si}, φ), where (W,h) is a rational Hodge structure, {si} a
finite family of Hodge cycles, and φ a K-level structure, for some K ⊂ G(Af ), namely a K-
orbit of Af -modules isomorphisms φ : V (Af )→ W (Af ), which maps τi to si. Isomorphisms
of such data are isomorphisms f : W → W ′ of rational Hodge structures, sending si 7→ s′i,
and such that f ◦ φ = φ′k, for some k ∈ K.
We assume that there exists an isomorphism of Q-vector spaces β : W → V mapping si 7→ τi
and h to hx, for some x ∈ X.
One denotes by Hodge(G,X,K) the set data ((W,h), {si}, φ). The Shimura variety

ShK(G,X) = G(Q)\X ×G(Af )/K

is the moduli space of the isomorphism classes of data ((W,h), {si}, φ), namely there is a map
of Hodge(G,X,K) to ShK(G,X) (seen over C), that descends to a bijection on isomorphism
classes Hodge(G,X,K)/ ∼.
In such cases also one can consider degenerations of these data, both at the archimedean
and at the nonarchimedean components. One then considers data ((W,h), {si}, φ, β̃), with

a non-trivial homomorphism β̃ : W → V , which is a morphism of Hodge structures, and
such that β̃(`si

) ⊂ `τi
. This yields noncommutative spaces inside which the classical Shimura

variety sits as the set of classical points.
Quantum statistical machanical systems associated to Shimura varieties have been recently
studied by Ha and Paugam in [112]. Given a faithful representation ρ : G→ GL(V ) as above,
there is an “enveloping semigroup” M , that is, a normal irreducible semigroup M ⊂ End(V )
such that M× = G. Such semigroup can be used to encode the degenerations of the Hodge
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data described above. The data (G,X, V,M) then determine a noncommutative space which
describes the “bad quotient” Shnc

K (G,X) = G(Q)\X × M(Af ) and is a moduli space for
the possibly non-invertible data ((W,h), {si}, φ). Its “set of classical points” is the Shimura
variety Sh(G,X). The actual construction of the algebras involves some delicate steps,
especially to handle the presence of stacky singularities (cf. [112]).

25. The adeles class space and the spectral realization

In this section we describe a noncommutative space, the adele class space XK, associated
to any global field K, which leads to a spectral realization of the zeros of the Riemann zeta
function for K = Q and more generally of L-functions associated to Hecke characters. It also
gives a geometric interpretation of the Riemann-Weil explicit formulas of number theory as
a trace formula. This space is closely related for K = Q with the space of commensurability
classes of Q-lattices described above. Rather than starting directly with its description we
first put the problem of finding the geometry of the set of prime numbers in the proper
perspective.

The set of primes

One of the main problems of arithmetic is to understand the distribution of the set of prime
numbers

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, . . .}
as a subset of the integers. To that effect one introduces the counting function

π(n) = number of primes p ≤ n
The problem is to understand the behavior of π(x) when x → ∞. One often hears that the
problem comes from the lack of a “simple” formula for π(x). This is not really true and for
instance in 1898 H. Laurent [139] gave the following formula whose validity is an easy exercise
in arithmetic,

π(n) = 2 +
n∑

k=5

e2πiΓ(k)/k − 1

e−2πi/k − 1
,

where Γ(k) = (k − 1)! is the Euler Gamma function.
The problem with this formula is that it has no bearing on the asymptotic expansion of π(x)
when x→∞. Such an expansion was guessed by Gauss in the following form,

π(x) =

∫ x

0

du

log(u)
+ R(x)

where the integral logarithm admits the asymptotic expansion,

Li(x) =

∫ x

0

du

log(u)
∼

∑
(k − 1)!

x

log(x)k

The key issue then is the size of the remainder R(x).

The Riemann hypothesis

It asserts that this size is governed by

(25.1) R(x) = O(
√
x log(x)).
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Figure 16. Graphs of π(x) and Li(x)
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Figure 17. Graph of π(x)− Li(x)

The Riemann Hypothesis is in fact a conjecture on the zeros of the zeta function

(25.2) ζ(s) =

∞∑

1

n−s,

whose definition goes back to Euler, who showed the fundamental factorization

(25.3) ζ(s) =
∏

P
(1− p−s)−1 .

It extends to a meromorphic function in the whole complex plane C and fulfills the functional
equation

(25.4) π−s/2 Γ(s/2) ζ(s) = π−(1−s)/2 Γ((1 − s)/2) ζ(1− s),
so that the function

(25.5) ζQ(s) = π−s/2 Γ(s/2) ζ(s)

admits the symmetry s 7→ 1− s.
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Figure 18. Zeros of zeta

The Riemann conjecture asserts that all zeros of ζQ are on the critical line 1
2 + iR. The reason

why the location of the zeros of ζQ controls the size of the remainder in (25.1) is the explicit
formulas that relate primes with these zeros. Riemann proved the following first instance of
an “explicit formula”

(25.6) π′(x) = Li(x)−
∑

ρ

Li(xρ) +

∫ ∞

x

1

u2 − 1

du

u log u
− log 2

where the sum is over the non-trivial (i.e. complex) zeros of the zeta function, and where the
function π′(x) is given by

π′(x) = π(x) +
1

2
π(x

1

2 ) +
1

3
π(x

1

3 ) + · · ·

which gives by the Moebius inversion formula

π(x) =
∑

µ(m)
1

m
π′(x

1

m ).

The generalized Riemann hypothesis

The explicit formulas of Riemann were put in more modern form by A. Weil, as

(25.7) ĥ(0) + ĥ(1)−
∑

ρ

ĥ(ρ) =
∑

v

∫ ′

K∗

v

h(u−1)

|1− u| d
∗u ,

where K is now an arbitrary global field, v ∈ ΣK varies among the places of K and the integral
is taking place over the locally compact field Kv obtained by completion of K at the place v.
Also

∫ ′
is the pairing with the distribution on Kv which agrees with du

|1−u| for u 6= 1 and whose

Fourier transform (relative to a selfdual choice of additive characters αv) vanishes at 1. By
definition a global field is a (countable) discrete cocompact subfield in a locally compact ring.
This ring depends functorially on K and is called the ring AK of adeles of K. The quotient

(25.8) CK = GL1(AK)/GL1(K)



THE NONCOMMUTATIVE “PARDIS” 87

is the locally compact group of idele classes of K which plays a central role in class field
theory. In Weil’s explicit formula the test function h is in the Bruhat-Schwartz space S(CK).
The multiplicative groups GL1(Kv) = K∗

v are embedded canonically as cocompact subgroups
of CK. The sum on the left hand side takes place over the zeros of L-functions associated to

Hecke characters. The function ĥ is the Fourier transform of h. The generalized Riemann
conjecture asserts that all the zeros of these L-functions are on the critical line 1

2 + iR. This
was proved by Weil when the global field K has non-zero characteristic, but remains open
in the case when K is of characteristic zero, in which case it is a number field i.e. a finite
algebraic extension of the field Q of rational numbers.

Quantum Chaos → Riemann Flow ?

For E > 0 let N(E) be the number of zeros of the Riemann zeta function ζQ whose imaginary
parts are in the open interval ]0, E[. Riemann proved that the step function N(E) can be
written as the sum

N(E) = 〈N(E)〉 +Nosc(E)

of a smooth approximation 〈N(E)〉 and a purely oscillatory function Nosc(E) and gave the
following explicit form

(25.9) 〈N(E)〉 =
E

2π
(log

E

2π
− 1) +

7

8
+ o(1)

for the smooth approximation.
There is a striking analogy between the behavior of the step function N(E) and that of the
function counting the number of eigenvalues of the Hamiltonian H of the quantum system
obtained after quantization of a chaotic dynamical system, which is at centerstage in the
theory of quantum chaos. A comparison of the asymptotic expansions of the oscillatory
terms in both cases, namely

Nosc(E) ∼ 1

π

∑

γp

∞∑

m=1

1

m

1

2sh
(

mλp

2

) sin(mE T#
γ )

for the quantization of a chaotic dynamical system, and

Nosc(E) ∼ −1

π

∑

p

∞∑

m=1

1

m

1

pm/2
sin (mE log p)

for the Riemann zeta function, gives precious indications on the hypothetical Riemann flow
that would make it possible to identify the zeros of zeta as the spectrum of an Hamiltonian.
For instance the periodic orbits of the flow should be labeled by the prime numbers and
the corresponding periods Tp should be given by the log p. However a closer look reveals an
overall minus sign that forbids any direct comparison.

Spectral realization as an absorption spectrum

The above major sign obstruction was bypassed in [64] using the following basic distinction
between observed spectra in physics. When the light coming from a hot chemical element
is decomposed through a prism, it gives rise to bright emission lines on a dark background,
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Figure 19. Counting zeros of zeta

and the corresponding frequencies are a signature of its chemical composition. When the
light coming from a distant star is decomposed through a prism, it gives rise to dark lines,
called absorption lines, on a white background. The spectrum of the light emitted by the sun
was the first observed example of an absorption spectrum. In this case the absorption lines
were discovered by Fraunhofer. The chemicals in the outer atmosphere of the star absorb the
corresponding frequencies in the white light coming from the core of the star.

The simple idea then is that, because of the minus sign above, one should look for the
spectral realization of the zeros of zeta not as a usual emission spectrum but as an absorption
spectrum. Of course by itself this idea does not suffice to get anywhere since one needs the
basic dynamical system anyway. The adele class space, namely the quotient

XK = AK/K
∗

introduced in [64], does the job as shown there. The action of the idele class group CK on
the adele class space is simply given by multiplication. In particular the idele class group
CK acts on the suitably defined Hilbert space L2(XK) and the zeros of L-functions give the
absorption spectrum, with non-critical zeros appearing as resonances.

Exactly as adeles, the adele class space XK involves all the places of K. If in order to
simplify, one restricts to a finite set of places one still finds a noncommutative space but
one can analyze the action of the analogue of CK and compute its trace after performing a
suitable cutoff (necessary in all cases to see the missing lines of an absorption spectrum).
One gets a trace formula

Trace (RΛ U(h)) = 2h(1) log ′ Λ +
∑

v∈S

∫ ′

K∗

v

h(u−1)

|1− u| d
∗u+ o(1),

where the terms in the right hand side are exactly the same as in Weil’s explicit formula
(25.7). This is very encouraging since at least it gives geometric meaning to the complicated
terms of (25.7) as the contributions of the periodic orbits to the computation of the trace.
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Figure 20. The two kinds of Spectra

In particular it gives a perfect interpretation of the smooth function 〈N(E)〉 approximating
the counting N(E) of the zeros of zeta, from counting the number of states of the one
dimensional quantum system with Hamiltonian

h(q, p) = 2πq p

which is just the generator of the scaling group. Indeed the function E
2 π (log E

2 π − 1) of
Riemann formula (25.9) appears as the number of missing degrees of freedom in the number
of quantum states for the above system, as one obtains from the simple computation of the
area of the region

B+ = {(p, q) ∈ [0,Λ]2 ; h(p, q) ≤ E}

Area(B+) =
E

2π
× 2 log Λ − E

2π

(
log

E

2π
− 1

)

while the term E
2π × 2 log Λ corresponds to the number of degrees of freedom of white light.

A careful computation gives not only the correction term of 7
8 in (25.9) but all the remaining

o(1) terms.
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Figure 21. Counting quantum states

Finally it was shown in [64] that the generalized Riemann hypothesis is equivalent to the
validity of a global trace formula, but this is only one of many equivalent reformulations of
the Riemann hypothesis.2

26. Thermodynamics of endomotives and the Tehran program

In many ways the great virtue of a problem like RH comes from the developments that it
generates. At first sight it does not appear as having any relation with geometry, and its
geometric nature gradually emerged in the twentieth century mainly because of the solution
of Weil in the case of global fields of positive characteristic.
We outline a program, current joint work of Katia Consani and the two authors, to adapt
Weil’s proof for the case of global fields of positive characteristic to the case of number fields.3

Function Fields

Given a global field K of positive characteristic, there exists a finite field Fq and a smooth
projective curve C defined over Fq such that K is the field of Fq-valued rational functions on
C. The analogue (Artin, Hasse, Schmidt) of the zeta function is

ζK(s) =
∏

v∈ΣK

(1− q−f(v)s)−1

where ΣK is the set of places of K and f(v) is the degree (see below) of the place v ∈ ΣK.

2There is a running joke, inspired by the European myth of Faust, about a mathematician trying to bargain
with the devil for a proof of the Riemann hypothesis ...

3This program was first announced in a lecture at IPM Tehran in September 2005, hence we refer to it as
“the Tehran program”.
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The functional equation takes the form

q(g−1)(1−s) ζK(1− s) = q(g−1)s ζK(s)

where g is the genus of C.
The analogue of the Riemann conjecture for such global fields was proved by Weil (1942) who
developed algebraic geometry in that context. Weil’s proof rests on two steps.

• (A) Explicit Formula

• (B) Positivity

Both are based on the geometry of the action of the Frobenius on the set C(F̄q) of points of
C over an algebraic closure F̄q of Fq. This set C(F̄q) maps canonically to the set ΣK of places
of K and the degree of a place v ∈ ΣK is the number of points in the orbit of the Frobenius
acting on the fiber of the projection

C(F̄q)→ ΣK .

The analogue

#{C(Fqj )} =
∑

(−1)k Tr(Fr∗j|Hk
et(C̄,Q`))

of the Lefschetz fixed point formula makes it possible to compute the number #{C(Fqj )}
of points with coordinates in the finite extension Fqj from the action of Fr∗ in the etale

cohomology groupH1
et(C̄,Q`), which does not depend upon the choice of the `-adic coefficients

Q`.
This shows that the zeta function is a rational fraction

ζK(s) =
P (q−s)

(1− q−s)(1 − q1−s)

where the polynomial P is the characteristic polynomial of the action of Fr∗ in H1.
The analogue of the Riemann conjecture for global fields of characteristic p means that its
eigenvalues i.e. the complex numbers λj of the factorization

P (T ) =
∏

(1− λj T )

are of modulus |λj | = q1/2.
The main ingredient in the proof of Weil is the notion of correspondence, given by divisors
in C × C. They can be viewed as multivalued maps,

Z : C → C, P 7→ Z(P ).

Two correspondences are equivalent if they differ by a principal divisor,

U ∼ V ⇔ U − V = (f)

The composition of correspondences is

Z = Z1 ? Z2 , Z1 ? Z2(P ) = Z1(Z2(P ))

and the adjoint is given using the transposition σ(x, y) = (y, x) by

Z ′ = σ(Z) .

The degree d(Z) of a correspondence is defined, independently of a generic point P ∈ C by,

d(Z) = Z • (P × C) ,
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where • is the intersection number. One has a similar definition of the codegree

d
′

(Z) = Z • (C × P )

Weil defines the Trace of a correspondence as follows

Trace(Z) = d(Z) + d
′

(Z)− Z •∆

where ∆ is the identity correspondence. The main step in Weil’s proof is

Theorem 26.1. (Weil) The following positivity holds : Trace(Z ? Z ′) > 0 unless Z is a
trivial class.

Clearly if one wants to have any chance at imitating the steps of Weil’s proof of RH for the
case of number fields one needs to have an analogue of the points of C(F̄q) and the action of
the Frobenius, of the etale cohomology and of the unramified extensions K⊗Fq Fqn of K.

Endomotives and Galois action

The adele class space XK of a global field admits a natural action of the idele class group
CK and as such is on the adelic side of the class field theory isomorphism. In order to obtain
a description of this space which is closer to geometry one needs to pass to the Galois side
of class field theory. In the case K = Q, it is possible to present the adele class space in a
fairly simple manner not involving adeles thanks to its intimate relation with the space of
1-dimensional Q-lattices of section 22. The direct interpretation of the action of the Galois
group of Q̄/Q on the values of fabulous states for the BC-system (section 22) then suggests
that one should be able to construct directly the space XQ with a canonical action of the
Galois group of Q̄/Q.
This was done in [66] thanks to an extension of the notion of Artin motives, called endo-
motives. Following Grothendieck, one can reformulate Galois theory over a field K as the
equivalence of the category of reduced commutative finite dimensional algebras over K with
the category of continuous actions of the Galois group G of K̄/K on finite sets. By construc-
tion the algebra of the BC-system is a crossed product of a commutative algebra A by a
semi-group. When working over K = Q which is essential in the definition of fabulous states,
the algebra A is simply the group ring Q[Q/Z] of the torsion group Q/Z. Thus

A = lim−→ An , An = Q[Z/nZ]

and we are dealing with a projective limit of Artin motives. The key point then is to keep track
of the corresponding action of the Galois group G of K̄/K, K = Q. The Galois-Grothendieck
correspondence associates to a reduced commutative finite dimensional algebra B over K the
set of characters of B with values in K̄ together with the natural action of G. This action is
non-trivial for the algebras An = Q[Z/nZ] where it corresponds to the cyclotomic theory.
One can then recover the Bost–Connes system with its natural Galois symmetry in a concep-
tual manner which extends to the general context of semigroup actions on projective systems
of Artin motives. These typically arise from self-maps of algebraic varieties. Given a pointed
algebraic variety (Y, y0) over a field K and a countable unital abelian semigroup S of finite
endomorphisms of (Y, y0), unramified over y0 ∈ Y one constructs a projective system of Artin
motives Xs over K from these data as follows. For s ∈ S, one sets

(26.1) Xs = {y ∈ Y : s(y) = y0}.
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For a pair s, s′ ∈ S, with s′ = sr, the map ξs′,s : Xsr → Xs is given by

(26.2) Xsr 3 y 7→ r(y) ∈ Xs.

This defines a projective system indexed by the semigroup S itself with partial order given
by divisibility. We let X = lim←−s

Xs.

Since s(y0) = y0, the base point y0 defines a component Zs of Xs for all s ∈ S. Let ξ−1
s′,s(Zs) be

the inverse image of Zs in Xs′ . It is a union of components of Xs′ . This defines a projection
es onto an open and closed subset Xes of the projective limit X. One then shows ([66]) that
the semigroup S acts on the projective limit X by partial isomorphisms ρs : X → Xes defined
by the property that

(26.3) ξsu(ρs(x)) = ξu(x), ∀u ∈ S,∀x ∈ X.
The BC-system is obtained from the pointed algebraic variety (Gm(Q), 1) where the affine
group scheme Gm is the multiplicative group. The semigroup S is the semigroup of non-zero
endomorphisms of Gm. These correspond to maps of the form u 7→ un for some non-zero
n ∈ Z, and one restricts to n ∈ N∗.
In this class of examples one has an “equidistribution” property, by which the uniform nor-
malized counting measures µs on Xs are compatible with the projective system and define a
probability measure on the limit X. Namely, one has

(26.4) ξs′,sµs = µs′ , ∀s, s′ ∈ S.
This follows from the fact that the number of preimages of a point under s ∈ S is equal to
deg s. This provides exactly the data which makes it possible to perform the thermodynamical
analysis of such endomotives. This gives a rather unexplored new territory since even the
simplest examples beyond the BC-system remain to be investigated. For instance let Y be
an elliptic curve defined over K. Let S be the semigroup of non-zero endomorphisms of Y .
This gives rise to an example in the general class described above. When the elliptic curve
has complex multiplication, this gives rise to a system which, in the case of a maximal order,
agrees with the one constructed in [78]. In the case without complex multiplication, this
provides an example of a system where the Galois action does not factor through an abelian
quotient.

Frobenius as dual of the time evolution

The Frobenius is such a universal symmetry in characteristic p, owing to the linearity of
the map x 7→ xp that it is very hard to find an analogue of such a far reaching concept
in characteristic zero. As we now explain, the classification of type III factors provides the
basic ingredient which when combined with cyclic cohomology makes it possible to analyze
the thermodynamics of a noncommutative space and get an analogue of the action of the
Frobenius on etale cohomology.
The key ingredient is that noncommutativity generates a time evolution at the “measure
theory” level. While it had been long known by operator algebraists that the theory of von-
Neumann algebras represents a far reaching extension of measure theory, the main surprise
which occurred at the beginning of the seventies in (Connes [51]) following Tomita’s theory
is that such an algebra M inherits from its noncommutativity a god-given time evolution:

(26.5) δ : R −→ OutM = AutM/InnM
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where OutM = AutM/InnM is the quotient of the group of automorphisms of M by the
normal subgroup of inner automorphisms. This led in [51] to the reduction from type III to
type II and their automorphisms and eventually to the classification of injective factors.
They are classified by their module,

(26.6) Mod(M)⊂
∼

R∗
+ ,

which is a virtual closed subgroup of R∗
+ in the sense of G. Mackey, i.e. an ergodic action of

R∗
+, called the flow of weights [90]. This invariant was first defined and used in [51], to show

in particular the existence of hyperfinite factors which are not isomorphic to Araki-Woods
factors.
The “measure theory” level i.e. the set-up of von-Neumann algebras does not suffice to obtain
the relevant cohomology theory and one needs to be given a weakly dense subalgebra A ⊂M
playing the role of smooth functions on the noncommutative space. This algebra will play a
key role when cyclic cohomology is used at a later stage. At first one only uses its norm closure
A = Ā in M and assumes that it is globally invariant under the modular automorphism group
σϕ

t of a faithful normal state ϕ on M . One can then proceed with the thermodynamics of
the C∗ dynamical system (A, σt). By a very simple procedure assuming that KMS states at
low temperature are of type I, one obtains a “cooling morphism” π which is a morphism of
algebras from the crossed product Â = Aoσ R to a type I algebra of compact operator valued
functions on a canonical R∗

+-principal bundle Ω̃β over the space Ωβ of type I extremal KMSβ

states fulfilling a suitable regularity condition (cf. [66]). Any ε ∈ Ωβ gives an irreducible

representation πε of A and the choice of its essentially unique extension to Â determines the
fiber of the R∗

+-principal bundle Ω̃β. The cooling morphism is then given by,

(26.7) πε,H(

∫
x(t)Ut dt) =

∫
πε(x(t)) e

itH dt.

This morphism is equivariant for the dual action θλ ∈ Aut(Â) of R∗
+,

(26.8) θλ(

∫
x(t)Ut dt) =

∫
λit x(t)Ut dt.

The key point is that the range of the morphism π is contained in an algebra of functions
on Ω̃β with values in trace class operators. In other words modulo a Morita equivalence one
lands in the commutative world provided one lowers the temperature.
The interesting space is obtained by “distillation” and is simply given by the cokernel of the
cooling morphism π but this does not make sense in the category of algebras and algebra
homomorphisms since the latter is not even an additive category. This is where cyclic coho-
mology enters the scene : the category of cyclic modules is an abelian category with a natural
functor from the category of algebras and algebra homomorphisms.
Cyclic modules are modules of the cyclic category Λ which is a small category, obtained by
enriching with cyclic morphisms the familiar simplicial category ∆ of totally ordered finite sets
and increasing maps. Alternatively, Λ can be defined by means of its “cyclic covering”, the
category EΛ. The latter has one object (Z, n) for each n ≥ 0 and the morphisms f : (Z, n)→
(Z,m) are given by non decreasing maps f : Z→ Z , such that f(x+n) = f(x)+m, ∀x ∈ Z.
One has Λ = EΛ/Z, with respect to the obvious action of Z by translation. To any algebra
A one associates a module A\ over the category Λ by assigning to each n the (n+ 1) tensor
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power A ⊗ A · · · ⊗ A. The cyclic morphisms correspond to the cyclic permutations of the
tensors while the face and degeneracy maps correspond to the algebra product of consecutive
tensors and the insertion of the unit. The corresponding functor A → A\ gives a linearization
of the category of associative algebras and cyclic cohomology appears as a derived functor.
One can thus define the distilled module D(A, ϕ) as the cokernel of the cooling morphism
and consider the action of R∗

+ (obtained from the above equivariance) in the cyclic homology
group HC0(D(A, ϕ)). As shown in [66] this in the simplest case of the BC-system gives a
cohomological interpretation of the above spectral realization of the zeros of the Riemann
zeta function (and of Hecke L-functions).
One striking feature is that the KMS strip (cf. Figure 1) becomes canonically identified in
the process with the critical strip of the zeta function (recall that β > 1) by multiplication
by i =

√
−1.

This cohomological interpretation combines with the above theory of endomotives to give a
natural action of the Galois group G of Q̄/Q on the above cohomology. This action factorizes
to the abelianization Gab and the corresponding decomposition according to characters of
Gab corresponds to the spectral realization of L-functions.
The role of the invariant S(M) in the classification of factors or of the more refined flow of
weights mentioned above, is very similar to the role of the module of local or global fields
and the Brauer theory of central simple algebras. In fact there is a striking parallel (see [66])
between the lattice of unramified extensions K→ K⊗Fq Fqn of a global field of characteristic
p and the lattice of extensions of a factor M by the crossed product algebras M → M oσT

Z.
Using the algebraic closure of Fq i.e. the operation K→ K⊗Fq F̄q corresponds to passing to
the dual algebra M → M oσ R and the dual action corresponds to the Frobenius automor-
phism when as above the appropriate cohomological operations (distillation and HC0) are
performed.

Global field K Factor M

Mod K ⊂ R∗
+ ModM ⊂ R∗

+

K→ K⊗Fq Fqn M → M oσT
Z

K → K⊗Fq F̄q M → M oσ R

Points C(F̄q) Γ ⊂ XQ
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A notable difference with the original Hilbert space theoretic spectral realization of [64] is
that while in the latter case only the critical zeros were appearing directly (the possible non-
critical ones appearing as resonances), in the cyclic homology set-up it is more natural to
use everywhere the “rapid decay” framework (advocated in [157]) so that all zeros appear
on the same footing. This eliminates the difficulty coming from the potential non-critical
zeros, so that the trace formula is much easier to prove and reduces to the Riemann-Weil
explicit formula. However, it was not obvious how to obtain a direct geometric proof of this
formula from the S-local trace formula of [64]. This was done in [157], showing that the
noncommutative geometry framework makes it possible to give a geometric interpretation of
the Riemann-Weil explicit formula. While the spectral side of the trace formula is given by
the action on the cyclic homology of the distilled space, the geometric side is given as follows
[66].

Theorem 26.2. Let h ∈ S(CK). Then the following holds:

(26.9) Tr (ϑ(h)|H1) = ĥ(0) + ĥ(1)− ∆ •∆ h(1)−
∑

v

∫ ′

(K∗

v ,eKv )

h(u−1)

|1− u| d
∗u .

We refer to [66] for the detailed notations which are essentially those of [64]. The origin of the
terms in the geometric side of the trace formula comes from the Lefschetz formula by Atiyah-
Bott [11] and its adaptation by Guillemin-Sternberg (cf. [110]) to the distribution theoretic
trace for flows on manifolds, which is a variation on the theme of [11]. For the action of CK on
the adele class space XK the relevant periodic orbits on which the computation concentrates
turn out to form also the classical points of the noncommutative space XK\CK distilled in
the above sense from XK. This “classical” subspace of XK\CK is given by

(26.10) ΓK = ∪ CK [v] , v ∈ ΣK.

where for each place v ∈ ΣK, one lets [v] be the adele

(26.11) [v]w = 1 , ∀w 6= v , [v]v = 0 .

In the function field case, one has a non-canonical isomorphism of the following form.

Proposition 26.3. Let K be the function field of an algebraic curve C over Fq. Then the

action of the Frobenius on Y = C(F̄q) is isomorphic to the action of qZ on the quotient

ΓK/CK,1.

In the case K = Q the space ΓQ/CQ,1 appears as the union of periodic orbits of period log p
under the action of CQ/CQ,1 ∼ R (cf. Figure 22). This gives a first approximation to the
sought for space Y = C(F̄q) in characteristic zero. One important refinement is obtained
from the subtle nuance between the adelic description of XQ and the finer description in
terms of the endomotive obtained from the pointed algebraic variety (Gm(Q), 1). The second
description keeps track of the Galois symmetry and as in proposition 26.3 the isomorphism
of the two descriptions is non canonical.

At this point we have, in characteristic zero, several of the geometric notions which are the
analogues of the ingredients of Weil’s proof and it is natural to try and imitate the steps of
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Figure 22. The classical points of the adeles class space

his proof. The step (A), i.e. the explicit formula is taken care of by Theorem 26.2. That what
remains is to prove a positivity is a well known result of A. Weil (cf. [24]) which states that
RH is equivalent to the positivity of the distribution entering in the explicit formulae. Thanks
to the above H1 obtained as the cyclic homology of the distilled module, Weil’s reformulation
can be stated as follows.

Theorem 26.4. The following two conditions are equivalent.

• All L-functions with Grössencharakter on K satisfy the Riemann Hypothesis.
• Trϑ(f ? f ])|H1 ≥ 0, for all f ∈ S(CK).

Here we used the notation

(26.12) f = f1 ? f2 , with (f1 ? f2)(g) =

∫
f1(k) f2(k

−1 g) d∗g

for the convolution of functions, using the multiplicative Haar measure d∗g, and for the
adjoint

(26.13) f → f ] , f ](g) = | g|−1 f̄(g−1).

The role of the specific correspondences used in Weil’s proof of RH in positive characteristic
is played by the test functions f ∈ S(CK). More precisely the scaling map which replaces
f(x) by f(g−1x) has a graph, namely the set of pairs (x, g−1x) ∈ XK ×XK, which we view
as a correspondence Zg. Then, given a test function f on the ideles classes, one assigns to f
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the linear combination

(26.14) Z(f) =

∫
f(g)Zgd

∗g

of the above graphs, viewed as a “divisor” on XK ×XK.
The analogs of the degrees d(Z) and codegrees d

′

(Z) = d(Z ′) of correspondences in the
context of Weil’s proof are given, for the degree, by

(26.15) d(Z(h)) = ĥ(1) =

∫
h(u) |u| d∗ u,

so that the degree d(Zg) of the correspondence Zg is equal to |g|. Similarly, for the codegree
one has

(26.16) d
′

(Z(h)) = d(Z(h̄])) =

∫
h(u) d∗ u = ĥ(0),

so that the codegree d
′

(Zg) of the correspondence Zg is equal to 1.
One of the major difficulties is to find the replacement for the principal divisors which in
Weil’s proof play a key role as an ideal in the algebra of correspondences on which the trace
vanishes. At least already one can see that there is an interesting subspace V of the linear
space of correspondences described above on which the trace also vanishes. It is given by the
subspace

(26.17) V ⊂ S(CK) , V = { g(x) =
∑

ξ(k x) | ξ ∈ S(AK)0},

where the subspace S(AK)0 ⊂ S(AK) is defined by the two boundary conditions

ξ(0) = 0 ,

∫
ξ(x) dx = 0.

Lemma 26.5. For any f ∈ V ⊂ S(CK), one has

ϑ(f)|H1 = 0.

This shows that the Weil pairing of Theorem 26.4 admits a huge radical given by all functions
which extend to adeles and gives another justification for working with the above cohomology
H1. In particular one can modify arbitrarily the degree and codegree of the correspondence
Z(h) by adding to h an element of the radical V using a subtle failure of Fubini’s theorem.
We will show in a forthcoming paper [67] that several of the steps of Weil’s proof can be
transposed in the framework described above.
This constitutes a clear motivation to develop noncommutative geometry much further. One
can write a very tentative form of a dictionary from the language of algebraic geometry (in the
case of curves) and that of noncommutative geometry. The dictionary is summarized in the
following table. It should be stressed that the main problem is to find the correct translation
in the right column (non-commutative geometry) of the well established notion of principal
divisor in the (algebraic geometry) left column. The table below is too rough in that respect
since one does not expect to be able to work in the usual “primary” theory which involves
periodic cyclic homology and index theorems. Instead one expects that both the unstable
cyclic homology and the finer invariants of spectral triples arising from transgression will play
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an important role. Thus the table below should be taken as a very rough first approximation,
and a motivation for developing the missing finer notions in the right column.

Virtual correspondences bivariant K-theory class Γ

Modulo torsion KK(A,B ⊗ II1)

Effective correspondences Epimorphism of C∗-modules

Principal correspondences Compact morphisms

Composition cup product in KK-theory

Degree of correspondence Pointwise index d(Γ)

degD(P ) ≥ g ⇒∼ effective d(Γ) > 0⇒ ∃K,Γ +K onto

Adjusting the degree Fubini step
by trivial correspondences on the test functions

Frobenius correspondence Correspondence Zg

Lefschetz formula bivariant Chern of Z(h)
(localization on graph Z(h))

Weil trace unchanged bivariant Chern unchanged
by principal divisors by compact perturbations
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