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1 The closure theorem and the Poncelet grid

The Poncelet closure theorem (or Poncelet porism) is a classical result of pro-
jective geometry. Given two nested ellipses, γ and Γ, one plays the following
game: choose a point x on Γ, draw a tangent line to γ until it intersects Γ
at point y, repeat the construction, starting with y, and so on. One obtains
a polygonal line, inscribed into Γ and circumscribed about γ. Suppose that
this process is periodic: the n-th point coincides with the initial one. Now
start at a different point, say, x1. The Poncelet closure theorem states that
the polygonal line again closes up after n steps, see figure 1. We will call
these closed inscribed-circumscribed lines Poncelet polygons.
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Figure 1: Poncelet polygons
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Although the Poncelet theorem is almost 200 years old1, it continues to
attract interest: see [2, 3, 4, 5, 7, 10, 12, 13, 20, 21] for a sample of references.

It is hard to believe that one can still add anything new to such a well-
studied subject! However, recently R. Schwartz [18] discovered the following
property of Poncelet polygons. Extending the sides of a Poncelet n-gon, one
obtains a set of points called the Poncelet grid, see figure 2 borrowed from
[18]. The points of the Poncelet grid can be viewed as lying on a family of
nested closed curves, and also on a family of disjoint curves having radial
directions.

Figure 2: Poncelet grid

More precisely, let `1, . . . , `n be the lines containing the sides of the poly-
gon, enumerated in such a way that their tangency points to γ are in cyclic
order. The Poncelet grid consists of n(n + 1)/2 points `i ∩ `j. The indices

1Poncelet discovered this result in 1813-14, when he was a prisoner of war in the Russian
city of Saratov; he published his theorem in 1822, upon returning to France.
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are understood cyclically and, by convention, `j ∩ `j is the tangency point of
`j with γ. Define the sets:

Pk = ∪i−j=k`i ∩ `j, Qk = ∪i+j=k`i ∩ `j. (1)

The cases of odd and even n differ somewhat and, as in [18], we assume that
n is odd. There are (n + 1)/2 sets Pk, each containing n points, and n sets
Qk, each containing (n + 1)/2 points.

The Schwartz theorem states:

Theorem 1 The sets Pk lie on nested ellipses, and the sets Qk on disjoint
hyperbolas; the complexified versions of these ellipses and hyperbolas have
four common complex tangent lines. Furthermore, all the sets P s are projec-
tively equivalent to each other, and all the sets Qs are projectively equivalent
to each other.

The proof in [18] consists in a study of properties of the underlying el-
liptic curve; we will give a different, more elementary, proof and deduce this
theorem from properties of billiards in ellipses.

2 Mathematical billiards: general facts

In this section we survey (mostly, with proofs) necessary facts about billiards,
see [9, 11, 21, 22] for detailed discussion.

The billiard system describes the motion of a free point inside a plane do-
main: the point moves with a constant speed along a straight line until it hits
the boundary, where it reflects according to the familiar law of geometrical
optics “the angle of incidence equals the angle of reflection”.

We assume that the billiard table is a convex domain with a smooth
boundary curve Γ. The billiard ball map acts on oriented lines that intersect
the billiard table, sending the incoming billiard trajectory to the outgoing
one. Let x, y, z be points on Γ such that the line segment xy reflects to the
line segment yz. The equal angles condition has a variational meaning.

Lemma 2.1 The angles made by lines xy and yz with Γ are equal if and
only if y is a critical point of the function f(y) = |xy| + |yz| (where |xy| is
the Euclidean distance between x and y).
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Proof. Assume first that y is a free point, not confined to Γ. The gradient
of the function |xy| is the unit vector from x to y, and the gradient of |yz| is
the unit vector from z to y. By the Lagrange multipliers principle, y ∈ Γ is
a critical point of the function |xy| + |yz| if and only if the sum of the two
gradients is orthogonal to Γ, and this is equivalent to the fact that xy and
yz make equal angles with Γ. 2

The space of oriented lines in the plane has a remarkable area form. An
oriented line is characterized by its direction ϕ and its signed distance p from
an origin (the sign is determined by the right-hand rule). The coordinates
(ϕ, p) identify the space of oriented lines with the cylinder; the area form is
ω = dp∧ dϕ. This area form is invariant under isometries of the plane (and,
up to a factor, is characterized by this invariance); the form ω is widely used
in integral geometry, for example, in the Crofton formula [17].

One can introduce a different coordinate system on the subset of oriented
lines in the plane consisting of the lines that intersect the billiard table (i.e.,
the space on which the billiard ball map acts). Consider the curve Γ in the
arc length parameter t. Let Γ(t) be the first intersection point of an oriented
line with the curve Γ and α ∈ [0, π] the angle between the line and the
direction of the curve at point Γ(t). Then (t, α) are coordinates on the space
of oriented lines that intersect the billiard table.

One can prove that, in these new coordinates, ω = sin α dα∧dt. We omit
this rather straightforward computation (see, e.g., [20, 21]).

A fundamental property of the billiard ball map is that it is area preserv-
ing.

Theorem 2 The area form ω is invariant under the billiard ball map.

Proof. Let Γ(t1) be the second intersection point of an oriented line with
the curve Γ and α1 the angle between the line and the curve at point Γ(t1).
Then the billiard ball map sends (t, α) to (t1, α1).

Denote by f(t, t1) the distance between points Γ(t) and Γ(t1). The partial
derivative ∂f/∂t1 is the projection of the gradient of the distance |Γ(t)Γ(t1)|
on the curve at point Γ(t1). This gradient is the unit vector from Γ(t) to
Γ(t1) and it makes angle α1 with the curve; hence ∂f/∂t1 = cos α1. Likewise,
∂f/∂t = − cos α. Therefore

df =
∂f

∂t
dt +

∂f

∂t1
dt1 = − cos α dt + cos α1 dt1,
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and hence
0 = d2f = sin α dα ∧ dt − sin α1 dα1 ∧ dt1.

This means that ω is an invariant area form. 2

Remark 2.2 The billiard ball map is an example of a discrete Lagrangian
system, see, e.g., [19, 23]. A discrete Lagrangian system on a manifold M is
determined by a smooth function f : M × M → R, a Lagrangian, satisfying
certain convexity conditions; the Lagrangian determines a map T : M×M →
M × M given by a variational principle: T (x0, x1) = (x1, x2) if

f2(x0, x1) + f1(x1, x2) = 0, (2)

where the subscript 1 or 2 indicates differentiation with respect to the first
or the second variable.2 In the case of billiards, M is a circle, the boundary
of the billiard table, and f is the chord length, cf. Lemma 2.1. The map T
has an invariant differential 2-form. To obtain this form, take the exterior
derivative of equation (2):

f12(x0, x1) dx0 + (f22(x0, x1) + f11(x1, x2)) dx1 + f12(x1, x2) dx2 = 0,

and wedge multiply by dx1:

f12(x0, x1) dx0 ∧ dx1 = f12(x1, x2) dx1 ∧ dx2

Thus
ω = f12(x0, x1) dx0 ∧ dx1

is a T -invariant 2-form (in this argument, we use vector notation: fxdx means
fx1dx1 + fx2dx2 + . . . , dx0 ∧ dx1 means dx1

0 ∧ dx1
1 + dx2

0 ∧ dx2
1 + . . . , in local

coordinates, etc). In the billiard case, we recover the above introduced area
form.

Another necessary fact about billiards concerns caustics. A caustic is a
curve inside a billiard table such that if a segment of a billiard trajectory
is tangent to this curve, then so is each reflected segment. We assume that
caustics are smooth and convex.

2The index i in (x0, x1, . . . , xi, . . . ) is the discrete analog of time t for a continuous
Lagrangian system with the position variable x(t).

5



Let Γ be the boundary of a billiard table and γ a caustic. Suppose that
one erases the table, and only the caustic remains. Can one recover Γ from
γ? The answer is given by the following string construction: wrap a closed
non-stretchable string around γ, pull it tight at a point and move this point
around γ to obtain a curve Γ.

Theorem 3 Let Γ be a curve generated by a string construction from a given
convex curve γ. Then the billiard inside Γ has γ as its caustic.

Proof. Choose a reference point y ∈ γ. For a point x ∈ Γ, let f(x) and g(x)
be the distances from x to y by going along the string from y to x on the left
and on the right, respectively. Then Γ is a level curve of the function f + g.
We want to prove that the angles made by the segments ax and bx with Γ
are equal; see figure 3.

a
b

y

x

γ

Γ

.

Figure 3: String construction

We claim that the gradient of f at x is the unit vector in the direction ax.
Indeed, ax is the direction of the fastest increase of f , and the directional
derivative Daxf = 1 Likewise, the gradient of g at x is the unit vector in the
direction bx. It follows that ∇(f + g) bisects the angle axb. Therefore ax
and bx make equal angles with Γ. 2

Note that the string construction provides a one-parameter family of bil-
liard tables: the parameter is the length of the string. Note also that, by the
same reasoning, the level curve of the function f − g is orthogonal to Γ.
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3 The billiard in an ellipse: integrability and

its consequences

Optical properties of conics were already known to the Ancient Greeks. In
this section we review billiards in ellipses and describe some consequences of
their complete integrability.

First of all, recall the geometric definition of an ellipse: it is the locus of
points whose sum of distances to two given points, F1 and F2, is fixed; these
two points are called the foci. An ellipse can be constructed using a string
whose ends are fixed at the foci, see figure 4. A hyperbola is defined similarly
with the sum of distances replaced by the absolute value of their difference.
Taking the segment F1F2 as γ in Theorem 3, it follows that a ray passing
through one focus reflects to a ray passing through the other focus.

F F1 2

Figure 4: Gardener’s construction of an ellipse

The construction of an ellipse with given foci has a parameter, the length
of the string. The family of conics with fixed foci is called confocal. The
equation of a confocal family, including ellipses and hyperbolas, is

x2
1

a2
1 + λ

+
x2

2

a2
2 + λ

= 1 (3)

where λ is a parameter.
Fix F1 and F2. Given a generic point in the plane, there exist a unique

ellipse and a unique hyperbola with foci F1, F2 passing through the point.
The ellipse and the hyperbola are orthogonal to each other: this follows from
the fact that the sum of two unit vectors is perpendicular to its difference;
cf. proofs of Lemma 2.1 and Theorem 3.
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The next theorem says that the billiard ball map in an ellipse is integrable,
that is, possesses an invariant quantity.3

Theorem 4 A billiard trajectory inside an ellipse forever remains tangent
to a fixed confocal conic. More precisely, if a segment of a billiard trajectory
does not intersect the segment F1F2, then all the segments of this trajectory
do not intersect F1F2 and are all tangent to the same ellipse with foci F1 and
F2; and if a segment of a trajectory intersects F1F2, then all the segments of
this trajectory intersect F1F2 and are all tangent to the same hyperbola with
foci F1 and F2.

Proof. We learned the following elementary geometrical proof from [8] (the
Russian original appeared about 35 years ago).

Let A0A1 and A1A2 be consecutive segments of a billiard trajectory. As-
sume that A0A1 does not intersect the segment F1F2; the other case is dealt
with similarly. It follows from the optical property of an ellipse, that the
segments F1A1 and F2A1 make equal angles with the ellipse; so the segments
A0A1 and A1A2, and hence the angles A0A1F1 and A2A1F2 are equal, see
figure 5.

Reflect F1 in A0A1 to F ′

1, and F2 in A1A2 to F ′

2, and set: B = F ′

1F2 ∩
A0A1, C = F ′

2F1 ∩ A1A2. Consider the ellipse with foci F1 and F2 that is
tangent to A0A1. Since the angles F2BA1 and F1BA0 are equal, this ellipse
touches A0A1 at the point B. Likewise an ellipse with foci F1 and F2 touches
A1A2 at the point C. One wants to show that these two ellipses coincide or,
equivalently, that F1B+BF2 = F1C+CF2, which boils down to F ′

1F2 = F1F
′

2.
We claim that the triangles F ′

1A1F2 and F1A1F
′

2 are congruent. Indeed,
F ′

1A1 = F1A1 and F2A1 = F ′

2A1 by symmetry. In addition, ∠F ′

1A1F2 =
∠F1A1F

′

2. Indeed, ∠A0A1F1 = ∠A2A1F2, as we remarked above, ∠A0A1F1 =
∠A0A1F

′

1 and ∠A2A1F2 = ∠A2A1F
′

2 by symmetry, and the angle F1A1F2 is
a common part of the angles F ′

1A1F2 and F1A1F
′

2. Hence F ′

1F2 = F1F
′

2, and
the result follows. 2

Thus the billiard inside an ellipse has a 1-parameter family of caustics
consisting of confocal ellipses. Theorems 3 and 4 imply the following Graves
theorem: wrapping a closed non-stretchable string around an ellipse produces
a confocal ellipse, see [3, 16].

3The billiard ball map inside a multi-dimensional ellipsoid is completely integrable as
well, see, e.g., [14].
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Figure 5: Integrability of the billiard in an ellipse

The space of oriented lines intersecting an ellipse is a cylinder. This cylin-
der is foliated by invariant curves of the billiard ball map, see figure 6 on the
left. Each curve represents the family of rays tangent to a fixed confocal
conic. The ∞-shaped curve corresponds to the family of rays through the
foci. The two singular points of this curve represent the major axis with two
opposite orientations, a 2-periodic billiard trajectory. Another 2-periodic
trajectory is the minor axis represented by two centers of the regions inside
the ∞-shaped curve. The invariant curves outside the ∞-shaped curve cor-
respond to the rays that are tangent to confocal ellipses, and the invariant
curves inside the ∞-shaped curve to the rays that are tangent to confocal
hyperbolas. For comparison, we also give a (much simpler) phase portrait of
the billiard ball map in a circle, see figure 6 on the right.

The integrability of the billiard ball map makes it possible to choose a
cyclic coordinate on each invariant curve, say, x mod 1, such that the map
is given by a shift x 7→ x + c; the value of the constant c depends on the
invariant curve. This construction plays the central role in our paper, and
its multi-dimensional analog is in the heart of the Arnold-Liouville theorem
in the theory of completely integrable systems, see [1].

Choose a function f on the cylinder whose level curves are the invariant
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Figure 6: Phase space of the billiard ball map in an ellipse and in a circle

curves of the billiard ball map. Let γ be a curve f = C. Consider the curve
γε given by f = C + ε. For an interval I ⊂ γ, consider the area ω(I, ε)
between γ and γε over I. Define the “length” of I as

lim
ε→0

ω(I, ε)

ε
.

Choosing a different function f , one multiplies the length of every segment
by the same factor. Choose a coordinate x so that the length element is dx;
this coordinate is well defined up to an affine transformation. Normalizing x
so that the total length is 1 determines x up to a shift x 7→ x + const (we do
not discuss explicit formulas for the parameter x, given by elliptic integrals;
in what follows, we obtain numerous geometric consequences from the very
fact that such a parameter exists).

The billiard ball map preserves the area element ω and the invariant
curves. Therefore it preserves the length element on the invariant curves,
that is, the billiard map is given by the formula x 7→ x + c.

Let us summarize. Consider an ellipse Γ and a confocal ellipse γ, a caustic
for the billiard in Γ. The billiard ball map can be considered as a self-map
of γ (it sends point a to b in figure 3). We have introduced a parameter x
on γ in which the billiard ball map is a shift x 7→ x + c. The choice of the
parameter x depends only on the area form in the space of oriented lines
and the foliation of this space by the curves, consisting of tangent lines to
confocal ellipses. That is, the parameter x depends only on γ, and not on Γ.
In contrast, the billiard ball map and therefore the constant c depend on the
ellipse Γ as well.

Let Γ′ be another confocal ellipse containing γ. Then Γ and Γ′ share the
family of caustics, in particular, the ellipse γ. Therefore the billiard ball map
associated with Γ′ is also a shift in the parameter x.
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Corollary 5 The billiard ball maps associated with Γ and Γ′ commute, see
figure 7.

Proof. The shifts x 7→ x + c and x 7→ x + c′ commute. 2

γ

ΓΓ '

Figure 7: Commuting billiard ball maps

In particular, let γ degenerate to the segment through the foci. Then
the rays in figure 7 pass through the foci, and Corollary 5 implies the fol-
lowing “most elementary theorem of Euclidean geometry”4 discovered by M.
Urquhart [6]: AB + BF = AD + DF if and only if AC + CF = AE + EF ;
see figure 8, left. The reader is challenged to find an elementary proof of this
theorem.

Another consequence is a Poncelet-style closure theorem.

Corollary 6 Assume that a billiard trajectory in an ellipse Γ, tangent to a
confocal ellipse γ, is n-periodic. Then every billiard trajectory in Γ, tangent
to γ, is n-periodic.

Proof. In the appropriate coordinate on γ, the billiard ball map is x 7→ x+c.
A point is n-periodic if and only if nc is an integer. This condition does not
depend on x, and the result follows. 2

Finally, being only a particular case of the Poncelet porism, Corollary 6
implies its general version. This is because a generic pair of nested ellipses is

4The name coined by Pedoe [15].
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Figure 8: The most elementary theorem of Euclidean geometry

projectively equivalent to a pair of confocal ones (this proof of the Poncelet
porism is mentioned in [23]).

More precisely, consider the complexified situation. Two conics have four
common tangent lines, and one has a 1-parameter family of conics sharing
these four tangents.

Lemma 3.1 A confocal family of conics consists of the conics, tangent to
four fixed lines.

Proof. A curve, projectively dual to a conic, is a conic. The 1-parameter
family of conics, dual to the confocal family (3), is given by the equation

(a2

1 + λ)x2

1 + (a2

2 + λ)x2

2 = 1.

This is an equation of a pencil, a 1-parameter family of conics that pass
through four fixed points; these are the intersections of the two conics, a2

1x
2
1+

a2
2x

2
2 = 1 and x2

1 +x2
2 = 1. Projective duality interchanges points and tangent

lines; applied again, it yields a 1-parameter family of conics sharing four
tangent lines. 2

Since projective transformations act transitively of quadruples of lines in
general position, a generic pair of conics is projectively equivalent to a pair
of confocal ones.
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4 Back to the Poncelet grid

Let γ and Γ be a pair of nested ellipses and P a Poncelet n-gon circumscribing
γ and inscribed into Γ. Applying a projective transformation, we assume that
γ and Γ are confocal.

Let x be the parameter on γ introduced in Section 3. Choosing the origin
appropriately, the tangency points of the sides of P with γ have coordinates

0,
1

n
,

2

n
. . . ,

n − 1

n
.

The set Pk in (1) lies on the locus of intersections of the tangent lines to
γ at points γ(x) and γ(x + k/n) where x varies from 0 to 1. This locus is
a confocal ellipse for which the billiard trajectories, tangent to γ, close up
after n reflections and k turns around γ (periodic trajectories with rotation
number k/n). Thus Pk lies on a confocal ellipse to γ.

Likewise, the set Qk in (1) lies on the locus of intersections of the tangent
lines to γ at points γ(x) and γ(k/n − x). We want to show that this locus
is a confocal hyperbola. To this end we need the next result, which is an
(apparently new) addition to Theorem 3, the string construction.

Theorem 7 Apply the string construction to an oval γ and let p, p′ be two
points on the curve Γ, see figure 9. Then, in the limit p′ → p, the lines pp′

and qq′ become orthogonal.

Corollary 8 The locus of intersections of tangent lines to an ellipse γ at
γ(c − x) and γ(c + x) is a confocal hyperbola. In particular, the set Qk lies
on a confocal hyperbola.

Proof of the corollary. Since points p and p′ in figure 9 lie on a confocal
ellipse, the “lengths” (measured via the parameter introduced in Section 3)
of the arcs aa′ and bb′ are equal. It follows from Theorem 7 that the locus
in question is a curve orthogonal to the family of confocal ellipses, that is, a
confocal hyperbola. Therefore the set Qk lies on a confocal hyperbola. 2

Proof of Theorem 7. We will give two arguments, geometrical and ana-
lytical.

Let p and p′ be infinitesimally close. By Theorem 3, the arc pp′ bisects
the angles qpq′ and qp′q′. Let ε be the distance between p and p′. Dilate with
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γ

Figure 9: Addition to the string construction

factor 1/ε. The angles do not change, the arc pp′ becomes straight (to order
ε), and, in the limit ε → 0, we obtain a quadrilateral pqp′q′, symmetric with
respect to the diagonal pp′. Hence pp′ ⊥ qq′.

Analytically, let us see how fast the points a and b move as one moves the
point p (not necessarily confined to Γ). Let the speeds of these points along
γ be v1 and v2; let the tangent segments ap and bp have lengths l1 and l2; let
the angular velocity of the lines ap and bp be ω1 and ω2; and let k1 and k2

be the curvatures of γ at points a and b. Denote the velocity vector of point
p by w.

Then k1 = ω1/v1 and ω1 = w1/l1 where w1 is the component of w per-
pendicular to ap. Likewise, for the variables with index 2. It follows that

v2

v1

=
l1k1

l2k2

·
w2

w1

.

Consider two choices of w: tangent to Γ and perpendicular to it. Because of
the equal angles property, Theorem 3, in the first case we have w1 = w2, and
in the second case, w1 = −w2. Thus the ratio v2/v1 in both cases will have
the same value and opposite signs. This is equivalent to orthogonality of xp′

and qq′. 2
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5 Elliptic coordinates and linear equivalence

of the sets P s and of the sets Qs

It remains to show that the sets Pk are projectively (actually, linearly) equiv-
alent for all values of k, and likewise for the sets Qk.

Given an ellipse γ, let x be the parameter on it described in Section
3. Note that the map x 7→ x + 1/2 is central symmetry of the ellipse; in
particular, the tangent lines at points γ(x) and γ(x + 1/2) are parallel.

For a point P outside of γ, draw tangent segments PA and PB to the
ellipse, and let x − y and x + y be the coordinates of the points A and B,
where 0 ≤ y < 1/4. Then (x, y) are coordinates of the point P . We proved
in Section 4 that the coordinate curves y = const and x = const are ellipses
and hyperbolas, confocal with γ.

As in Section 4, the Poncelet grid is made by intersecting the tangent lines
at points γ(i/n), i = 0, 1, . . . , n − 1. The (x, y)-coordinates of the points of
the grid are

(

k

2n
+

j

n
,

k

2n

)

; k = 0, 1, . . . ,
n − 1

2
, j = 0, 1, . . . , n − 1.

Fixing the second coordinate yields an angular set P and fixing the first one
yields a radial set Q.

An ellipse
x2

1

a2
1

+
x2

2

a2
2

= 1

also determines elliptic coordinates in the plane. Through a point P there
passes a unique ellipse and a unique hyperbola from the confocal family of
conics (3). The elliptic coordinates of P are the respective values of the
parameter, λ1 and λ2 in (3). The hyperbolas and ellipses from the confocal
family (3) are the coordinate curves of this coordinate system, λ1 = const
and λ2 = const, respectively. Cartesian coordinates of point P are expressed
in terms of the elliptic ones as follows:

x2

1 =
(a2

1 + λ1)(a
2
1 + λ2)

a2
1 − a2

2

, x2

2 =
(a2

2 + λ1)(a
2
2 + λ2)

a2
2 − a2

1

(4)

(the Cartesian coordinates are determined up to the symmetries of an ellipse:
(x1, x2) 7→ (±x1,±x2)).
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Thus the coordinates (x, y) and the elliptic coordinates (λ1, λ2) have the
same coordinate curves, a family of confocal ellipses and hyperbolas. It
follows that λ1 is a function of x, and λ2 of y.

Let Γλ and Γµ be two ellipses (or two hyperbolas) from a confocal family
of conics (3). Consider the linear map

Aλ,µ = Diag

(

√

a2
1 + µ

a2
1 + λ

,

√

a2
2 + µ

a2
2 + λ

)

.

This map takes Γλ to Γµ. The following lemma is classical and goes back to
J. Ivory.5

Lemma 5.1 If Γλ and Γµ are two ellipses (respectively, two hyperbolas) and
P is a point of Γλ then the points P and Q = Aλ,µ(P ) lie on the same confocal
hyperbola (resp., ellipse).

Proof. Unfortunately, we do not know a geometrical proof, so our argument
will be computational.

We will consider the case when Γλ and Γµ are ellipses. Let (λ1, λ2) and
(µ1, µ2) be the elliptic coordinates of points P and Q. Then λ2 = λ and
µ2 = µ. We want to prove that λ1 = µ1.

Let (x1, x2) and (X1, X2) be the Cartesian coordinates of points P and
Q. One has formulas (4) and the similar relations:

X2

1 =
(a2

1 + µ1)(a
2
1 + µ2)

a2
1 − a2

2

, X2

2 =
(a2

2 + µ1)(a
2
2 + µ2)

a2
2 − a2

1

. (5)

On the other hand, Q = Aλ,µ(P ), hence

X2

1 =
a2

1 + µ

a2
1 + λ

x2

1 =
(a2

1 + λ1)(a
2
1 + µ2)

a2
1 − a2

2

,

and likewise for X2
2 . Combined with (5), this yields λ1 = µ1, as claimed. 2

Now we can prove that the sets Pk and Pm are linearly equivalent; the
equivalence is given by the maps ±Aλ,µ, depending on whether k−m is even
or odd. The argument for the sets Qk is similar.

5Ivory was studying the gravitational potential of the infinitely thin shell between
homothetic ellipsoids, the so-called, homeoid.
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The (x, y)-coordinates of the sets Pk and Pm are

(

k

2n
+

j

n
,

k

2n

)

and

(

m

2n
+

j

n
,
m

2n

)

; j = 0, 1, . . . , n − 1.

The sets Pk and Pm lie on confocal ellipses Γλ and Γµ. According to Lemma
5.1, the map Aλ,µ preserves the first elliptic coordinate, and hence the x-
coordinate. Therefore the coordinates of the points of the set Aλ,µ(Pk) are

(

k

2n
+

j

n
,
m

2n

)

; j = 0, 1, . . . , n − 1.

If m has the same parity as k, this coincides with the set Pm, and if the
parity is opposite then this set is centrally symmetric to the set Pm.
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