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Abstract

Combining the Kazarian approach to Thom polynomials via clas-
sifying spaces of singularities with the Fulton-Lazarsfeld theory of nu-
merical positivity for ample vector bundles, we show that the coeffi-
cients of Schur function expansions of the Thom polynomials of stable
singularities are nonnegative.

1 Introduction

The global behavior of singularities1 is governed by their Thom polynomials
(cf. [13], [1], [6], [12]). As these polynomials are quite complicated even for
“simplest” singularities (cf., e.g., [12], [10]), it is important to study their
structure. In the present note, following [10], we study Schur function ex-
pansions of these polynomials from a “qualitive” point of view. Contrary to
[12] and [10], where the Szücs-Rimanyi approach via symmetries of singu-
larities was used, we follow here the Kazarian approach [6] to Thom polyno-
mials. This approach relies on suitable “classifying spaces of singularities”,
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and combined with the Fulton-Lazarsfeld theory of numerical positivity of
polynomials in the Chern classes of ample vector bundles [4], leads to non-
negativity of the coefficients in the Schur function expansions of the Thom
polynomials of the singularities stable under suspension.

This positivity was previously checked for a number of singularities: by
Thom [13] for A1(r), by Feher and Komuves [3] for some second order Thom-
Boardman singularities, by the first author [10] for I2,2(r), A3(r), and for
Ai(r) under the aditional assumption that Σj = ∅ for j ≥ 2, by the first
author and Ozturk for Thom polynomials from [12], by the second author
for the Thom polynomials (from [6]) of singularities of functions, and by
Ozturk [9] for A4(3), A4(4).

2

2 Thom polynomials

Fix m,n, k ∈ N. We denote by Autn the group of k-jets of automorphisms
of (Cn, 0), and by J = J (m,n) the space of k-jets of functions (Cm, 0) →
(Cn, 0) 3.

Moreover, we set
G := Autm × Autn .

Consider the classifying principal G-bundle EG → BG, i.e. a contractible
space EG with a free action of the group G, and define

J̃ = J̃ (m,n) = EG ×G J .

Let Σ ⊂ J be an analytic closed G-invariant subset, which we shall call a
“class of singularities”. For a given class of singularities Σ, set

Σ̃ = EG ×G Σ ⊂ J̃

and denote by T Σ ∈ H2 codim Σ(J̃ ;Z) the (Poincaré) dual class of [Σ̃].
Since

H•(J̃ ;Z) ' H•(BG;Z) ' H•(BGLm × BGLn;Z) ,

T Σ is identified with a polynomial in c1, . . . , cm and c′1, . . . , c
′
n which are the

Chern classes of universal bundles Rm and Rn on BGLm and BGLn. This
is a classical Thom polynomial. Speaking slightly informally, given a general
map f : M → N of smooth varieties of corresponding dimensions m and n,
the Thom polynomial

T Σ(c1(M), . . . , cm(M), c1(N), . . . , cn(N))

2We use here the notation from [10]. The calculations in the last three cases used
extensively ACE [15].

3Though these objects depend on k, we omit “k” in the notation. This will happen
also to other objects introduced later.
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evaluates the dual class of the set where f has singularity “of the class Σ”.
A precise version of this statement is a content of the Thom theorem [13]
(see also [6], Theorem 1 and [12], Section 6).

The suspension

S : J (m,n) ↪→ J (m + 1, n + 1)

allows one to increase the dimension of the source and the target simulta-
neously: with the local coordinates x1, x2, . . . for the source and a function
f = f(x1, . . . , xm), the jet (Sf) ∈ J (m + 1, n + 1) is defined by

(Sf)(x1, . . . , xm, xm+1) := (f(x1, . . . , xm), xm+1) .

Suppose that the class of singularities Σ is stable under suspension. By this
we mean that it is a member Σ0 = Σ of a family

{Σr ⊂ J (m + r, n + r)}r≥0

such that
Σr+1 ∩ J (m + r, n + r) = Σr

and
T Σr+1

|H•(BGLm+r×BGLn+r ;Z) = T Σr .

This means that if we specialize

cm+r+1 = c′n+r+1 = 0

in the polynomial T Σr+1 , we obtain the polynomial T Σr . The usual notion
of stable equivalence fits into our setup.

The theorem of Thom has the following refinement due to Damon [2] for
a class of singularities Σ which is stable under suspension: T Σ is supersym-
metric, i.e. is a polynomial in

ci(TM − f∗TN) = [c(TM)/c(f ∗TN)]i where i = 1, 2, . . . .

Cf. also [6, Theorem 2].

3 Schur functions expansions

Instead of using Chern monomial expansions to express Thom polynomials
(cf., e.g., [12] and the references therein), there is a recent (initiated in 2005)
attempt to use Schur function expansions

∑
I αISI (cf. [3] and [10]).

Recall that given a partition I = (0 ≤ i1 ≤ i2 ≤ . . . ≤ il), and vector
bundles E and F , the Schur function SI(E − F ) is

SI(E − F ) :=
∣∣∣Sip+p−q(E − F )

∣∣∣
1≤p,q≤l

,
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where ∑
Si(E − F ) =

∏

b

(1 − b)/
∏

a

(1 − a) ,

and the a’s and b’s are the Chern roots of E and F . We have for any
partition I ,

SI(E
∗ − F ∗) = SI∼(F − E) (1)

where I∼ denotes the dual partition of I. In particular, Si(E
∗ − F ∗) =

ci(F −E) for any i. We refer to [7] and [11] for the theory of Schur functions
(a brief account of Schur functions applied to Thom polynomials, can be
found in [10, Section 3]).

Using the theory of supersymmetric functions (cf., e.g., [11]), the Thom-
Damon theorem can be rephrased by saying that there exist αI ∈ Z such
that

T Σ =
∑

I

αISI(R
∗
m − R∗

n) , (2)

the sum is over partitions I with |I| = codim(Σ). Here, and in the following,
we omit pull back indices. The expression in Eq. (2) is unique (loc.cit.).

4 Positive polynomials for ample vector bundles

In the proof of our main result, we shall use the following two results of
Fulton and Lazarsfeld from [4]. Recall that by a cone in a vector bundle E
we mean a subvariety of E which is stable under the natural C∗ action on
E. The first result is

Proposition 1 ([4, Theorem 2.1]) Let E be an ample vector bundle of rank
e on a projective variety X of dimension e, and let C ⊂ E be a cone of
pure dimension e. Then the cone class [C] ∈ A0(X) (the Chow group) has
strictly positive degree.

The second result characterizes polynomials numerically positive for am-
ple vector bundles, cf. [4, p. 35] for this last notion.

Theorem 2 ([4, Theorem I]) A homogeneous polynomial

∑

I

βISI ,

where βI ∈ Z, is numerically positive for ample vector bundles iff it is
nonzero and for any partition I, βI ≥ 0.
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5 Main result

The main result of the present note, suggested/conjectured in [10] and in [3]
for Thom-Boardman singularities, is

Theorem 3 Let Σ be a stable class of singularities. Then for any partition
I, the coefficient αI occuring in the Schur function expansion of the Thom
polynomial T Σ (cf. Eq. (2)), is nonnegative.

Proof. To prove the theorem, we first pull back the bundle J̃ from BG to
BGLm × BGLn via the map induced by the embedding

GLm × GLn ↪→ Autm × Autn .

Since GLm × GLn acts linearly on J , the obtained pullback bundle is now
the vector bundle on BGLm × BGLn associated with the representation of
Glm × GLn on J :

J (Rm, Rn) :=
(
⊕k

i=1Symi(R∗
m)

)
⊗ Rn .

The bundle J (Rm, Rn) contains the preimage of Σ̃, denoted by Σ(Rm, Rn),
whose dual class is given by the RHS of Eq. (2).

Consider, more generally, a pair of vector bundles E and F of ranks m
and n on a variety X. We define the following vector bundle on X:

J (E,F ) :=
(
⊕k

i=1Symi(E∗)
)
⊗ F .

In fact, the pair of bundles (E,F ) corresponds to a principal GLm × GLn-
bundle P (E,F ) and

J (E,F ) = P (E,F ) ×GLm×GLn
J

is the bundle associated with the representation. Similarly, we define the
singularity set

Σ(E,F ) := P (E,F ) ×GLm×GLn
Σ ⊂ J (E,F ) .

The dual class of [Σ(E,F )] in

H2 codim(Σ)(J (E,F );Z) = H2 codim(Σ)(X;Z)

is equal to ∑

I

αISI(E
∗ − F ∗) , (3)

where the αI ’s were defined in Eq. (2). The proof of this fact is fairly stan-
dard but one has to pass to topological homotopy theory, where each pair of
bundles can be pulled back from the universal pair (Rm, Rn) of bundles on
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BGLm × BGLn. It is possible to work entirely with the algebraic varieties.
One can use the Totaro construction and representability for affine varieties
([14, proof of Theorem 1.3]). Another solution is to pass to homotopy cat-
egory of algebraic varieties, where the classifying space is defined and has
desired properties, cf. [8, §4.2]. (This enormous machinery seems to be
“much too heavy” for the needs of our problem.)

Suppose from now on that rank(F ) = n′ = n + r ≥ codim(Σ) and
E = 1m′

is a trivial bundle of rank m′ = m + r. If we check that αI ≥ 0
in Eq. (3) for all such pairs of bundles, then by Eq. (2) the assertion of
Theorem 3 will follow. By Eq. (3) the dual class of [Σ(1m′

, F )] is equal to

∑

I

αISI(−F ∗) =
∑

I

αISI∼(F ) (4)

(we use here Eq. (1)). We shall check that if F is ample then the expression
(4) is numerically positive. Since a direct sum of ample vector bundles is
ample ([5, Proposition 2.2]), the vector bundle J (1m′

, F ) = F⊕K (for some
integer K) is ample. Moreover, Σ(1m′

, F ) is a cone in J (1m′
, F ) because

C∗ ⊂ Autn′ . Therefore, by Proposition 1 the expression (4) is numerically
positive. We conclude that the coefficients αI in Eq. (4) are nonnegative by
Theorem 2.

The theorem has been proved. 2

Remark 4 We give here a slightly different argument proving the assertion
of the theorem. As above, by [4] we know that the following statement (*)
holds: if the dual class of [Σ(1n′

, F )] is

∑

I

αISI∼(F )

(where the coefficients αI are universal), then for any partition I we have
αI ≥ 0.

Let G = Gm(CM ) be the Grassmannian parametrizing m-dimensional
subspaces of CM . It is endowed with the tautological sequence of vector
bundles:

0 → Rm,M → 1m
G → Qm,M → 0 . (5)

Taking another Grassmannian Gn(CN ), and M,N >> 0, to estimate the
αI ’s from Eq. (2), it is sufficient to estimate the coefficients in the dual class
of [Σ(Rm,M , Rn,N )], given by

∑

I

αISI(R
∗
m,M − R∗

n,N ) =
∑

I

αISI(−Q∗
m,M − R∗

n,N ) (6)

=
∑

I

αISI∼(Qm,M + Rn,N ) .
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This equation follows from the sequence (5). Applying (*) to the RHS of
Eq. (6), we get that the coefficients on its LHS are nonnegative.

Acknowledgment The first author thanks Alain Lascoux for helpful dis-
cussions on Schur functions and Thom polynomials.
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