AN EXACT GEOMETRIC MASS FORMULA

CHIA-FU YU

Abstract. We show an exact geometric mass formula for superspecial points in the reduction of any quaternionic Shimura variety modulo at a good prime \(p \).

1. Introduction

Let \(p \) be a rational prime number. Let \(B \) be a totally indefinite quaternion algebra over a totally real field \(F \) of degree \(d \), together with a positive involution \(*\). Assume that \(p \) is unramified in \(B \). Let \(O_B \) be a maximal order stable under the involution \(*\). Let \((V, \psi)\) be a non-degenerate \(\mathbb{Q} \)-valued skew-Hermitian (left) \(B \)-module with dimension \(2g \) over \(\mathbb{Q} \). Put \(m := \frac{d}{2d} \), a positive integer. A polarized abelian \(O_B \)-variety \(\mathbb{A} = (A, \lambda, \iota) \) is a polarized abelian variety \((A, \lambda)\) together with a ring monomorphism \(\iota : O_B \rightarrow \text{End}(A) \) such that \(\lambda \circ \iota(b^*) = \iota(b)^* \circ \lambda \) for all \(b \in O_B \). Let \(k \) be an algebraically closed field of characteristic \(p \). An abelian variety over \(k \) is said to be superspecial if it is isomorphic to a product of supersingular elliptic curves. Denote by \(\Lambda_g^B \) the set of isomorphism classes of \(g \)-dimensional superspecial principally polarized abelian \(O_B \)-varieties over \(k \). Define the mass of \(\Lambda_g^B \) to be

\[
\text{Mass}(\Lambda_g^B) := \sum_{\mathbb{A} \in \Lambda_g^B} \frac{1}{|\text{Aut}(A, \lambda, \iota)|}.
\]

The mass \(\text{Mass}(\Lambda_g^B) \) is studied in Ekedahl [1] (Ekedahl’s result relies on an explicit volume computation in Hashimoto-Ibukiyama [4, Proposition 9, p. 568]) in the special case \(B = M_2(\mathbb{Q}) \). He proved

Theorem 1.1 (Ekedahl, Hashimoto-Ibukiyama). One has

\[
\text{Mass}(\Lambda_g^B) = \frac{(-1)^{g(g+1)/2}}{2g} \prod_{i=1}^{g} \zeta(1 - 2i) \cdot \prod_{i=1}^{g} p^i - (-1)^i,
\]

where \(\Lambda_g \) is the set of isomorphism classes of \(g \)-dimensional superspecial principally polarized abelian varieties over \(k \) and \(\zeta(s) \) is the Riemann zeta function.

Let \(B_{p, \infty} \) be the quaternion algebra over \(\mathbb{Q} \) ramified exactly at \(\{p, \infty\} \). Let \(B' \) be the quaternion algebra over \(F \) such that \(\text{inv}_v(B') = \text{inv}_v(B_{p, \infty} \otimes \mathbb{Q} B) \) for all \(v \). Let \(\Delta' \) be the discriminant of \(B' \) over \(F \).

In this paper we prove

\begin{flushright}
Date: June 19, 2007. The research is partially supported by NSC 96-2115-M-001-001.
\end{flushright}
The maximal order of B if denoted by \mathcal{O}. Theorem 1.2.
One has
\[
\text{Mass}(\Lambda^B_g) = \frac{(-1)^{dm(m+1)/2}}{2\pi d} \prod_{i=1}^{m} \left\{ \zeta_F(1-2i) \prod_{v|\Delta'} N(v)^i + (-1)^i \prod_{v|\mathfrak{p}, v|\Delta'} N(v)^i + 1 \right\},
\]
where $\zeta_F(s)$ is the Dedekind zeta function.

Let $N \geq 3$ be a prime-to-p positive integer. Choose a primitive n-th root of unity $\zeta_N \in \mathbb{Q} \subset \mathbb{C}$ and fix an embedding $\mathbb{Q} \hookrightarrow \overline{\mathbb{Q}}$. Let M be the moduli space over \mathbb{F}_p of g-dimensional principally polarized abelian O_B-varieties with a symplectic O_B-linear level-N structure w.r.t. ζ_N. Let L_0 be a self-dual O_B-lattice of V with respect to ψ. Let G_1 be the automorphism group scheme over \mathbb{Z} associated to the pair (L_0, ψ). As an immediate consequence of Theorem 1.2, we get
Theorem 1.3. The moduli space M has
\[
|G_1(\mathbb{Z}/N\mathbb{Z})| \frac{(-1)^{dm(m+1)/2}}{2\pi d} \prod_{i=1}^{m} \left\{ \zeta_F(1-2i) \prod_{v|\Delta'} N(v)^i + (-1)^i \prod_{v|\mathfrak{p}, v|\Delta'} N(v)^i + 1 \right\}
\]
superspecial points.

We divide the proof of Theorem 1.2 into 4 parts; each part is treated in one section. The first part is to express the weighted sum in terms of an arithmetic mass; this is done in the author’s recent work [8]. The second part is to compute the mass associated to a quaternion unitary group and a standard open compact subgroup; this is done by Shimura [7] (re-obtained by Gan and J.-K. Yu [3, 11.2, p. 522]) using the theory of Bruhat-Tits Buildings). The third part is to compare the derived arithmetic mass in Section 1 with “the” standard mass in Section 2. This reduces the problem to computing a local index at p. The last part uses Dieudonné theory to compute this local index. A crucial step is choosing a good basis for the superspecial Dieudonné module concerned; this makes the computation easier.

Notation. \mathbb{A} denotes the Hamilton quaternion algebra over \mathbb{R}. A_f denotes the finite adele ring of \mathbb{Q} and $\hat{\mathbb{A}} = \prod_p \mathbb{A}_p$. For a number field F and a finite place v, denote by O_F the ring of integers, F_v the completion of F at v, e_v the ramification index for F/\mathbb{Q}, κ_v the residue field, $f_v := [\kappa_v : \mathbb{F}_p]$ and $q_v := N(v) = |\kappa_v|$. For an O_F-module A, write A_v for $A \otimes_{O_F} O_{F_v}$. For a scheme X over $\text{Spec } A$ and an A-algebra B, write X_B for $X \times_{\text{Spec } A} \text{Spec } B$. For a linear algebraic group G over \mathbb{Q} and an open compact subgroup U of $G(A_f)$, denote by $\text{DS}(G, U)$ the double coset space $G(\mathbb{Q}) \backslash G(A_f)/U$, and write $\text{Mass}(G, U) := \sum_{\Gamma_i} |\Gamma_i|^{-1}$ if G is \mathbb{R}-anisotropic, where $\Gamma_i := G(\mathbb{Q}) \cap c_i U c_i^{-1}$ and c_1, \ldots, c_h are complete representatives for $\text{DS}(G, U)$. For a central simple algebra B over F, write $\Delta(B/F)$ for the discriminant of B over F. If B is a central division algebra over a non-archimedean local field F_v, denote by O_B the maximal order of B, $m(B)$ the maximal ideal and $\kappa(B)$ the residue field. \mathbb{Q}_p denotes the unramified extension of \mathbb{Q}_p of degree n and write $\mathbb{Z}_p^n := O_{\mathbb{Q}_p^n}$.

2. Simple mass formulas

Let B be a finite-dimensional semi-simple algebra over \mathbb{Q} with a positive involution $*$, and O_B be an order of B stable under *. Let k be any field.
To any polarized abelian O_B-varieties $\mathcal{A} = (A, \lambda, \iota)$ over k, we associate a pair (G_x, U_x), where G_x is the group scheme over \mathbb{Z} representing the functor

$$R \mapsto \{ h \in (\text{End}_O(A_k) \otimes R)^\times \mid h'h = 1 \},$$

where $h \mapsto h'$ is the Rashot involution, and U_x is the open compact subgroup $G_x(\mathbb{Z})$. For any prime ℓ, we write $A_\ell(\ell)$ for the associated ℓ-divisible group with additional structures $(A[\ell^\infty], \lambda, \iota_\ell)$, where λ is the induced quasi-polarization from $A[\ell^\infty]$ to $A'[\ell^\infty] = A[\ell^\infty]'$ (the Serre dual), and $\iota_\ell: O_B \otimes \mathbb{Z}_\ell \rightarrow \text{End}(A[\ell^\infty])$ the induced ring monomorphism. For any two objects A_0 and A_2 over k, denote by $\text{Q-isom}_k(A_0, A_2)$ the set of O_B-linear quasi-isogenies $\varphi: A_1 \rightarrow A_2$ over k such that $\varphi^*\lambda_2 = \lambda_1$, and $\text{Isom}_k(A_0(\ell), A_2(\ell))$ the set of $O_B \otimes \mathbb{Z}_\ell$-linear isomorphisms $\varphi: A_1[\ell^\infty] \rightarrow A_2[\ell^\infty]$ over k such that $\varphi^*\lambda_2 = \lambda_1$.

Let $x := A_0 = (A_0, \lambda_0, \iota_0)$ be a fixed polarized abelian O_B-variety over k. Denote by $A_x(k)$ the set of isomorphisms classes of polarized abelian O_B-varieties \mathcal{A} over k such that

$$\text{(I)}: \text{Isom}_k(A_0, A_\ell(\ell)) \neq \emptyset \text{ for all primes } \ell.$$

Let $\Lambda'_x(k) \subseteq A_x(k)$ be the subset consisting of objects such that

$$\text{(Q)}: \text{Q-isom}_k(A_0, A) \neq \emptyset.$$

Let $\ker^1(Q, G_x)$ denote the kernel of the local-global map $H^1(Q, G_x) \rightarrow \prod_v H^1(Q_v, G_x)$.

Theorem 2.1. ([8, Theorem 2.3]) Suppose that k is a field of finite type over its prime field.

1. There is a natural bijection $\Lambda'_x(k) \cong \text{DS}(G_x, U_x)$. Consequently, $\Lambda'_x(k)$ is finite.
2. One has $\text{Mass}(\Lambda'_x(k)) = \text{Mass}(G_x, U_x)$.

Theorem 2.2. ([8, Theorem 4.6 and Remark 4.7]) Notation as above. If $k \supset \mathbb{F}_p$ is algebraically closed and A_0 is supersingular, then $\text{Mass}(\Lambda'_x(k)) = \text{Mass}(G_x, U_x)$ and $\text{Mass}(\Lambda_x(k)) = |\ker^1(Q, G_x)| \cdot \text{Mass}(G_x, U_x)$.

Remark 2.3. The statement of Theorem 2.2 is valid for basic abelian O_B-varieties in the sense of Kottwitz (see [6] for the definition). The present form is enough for our purpose.

3. **AN EXACT GEOMETRIC MASS FORMULA**

Let D be a totally definite quaternion division algebra over a totally real field F of degree d. Let (bar) $d \mapsto \bar{d}$ denote the canonical involution. Let (V', φ) be a D-valued totally definite quaternion Hermitian D-module of rank m. Let G^e denote the unitary group attached to φ. This is a reductive group over F and is regarded as a group over \mathbb{Q} via the Weil restriction of scalars from F to \mathbb{Q}. Choose a maximal order O_D of D stable under the canonical involution $\bar{\cdot}$. Let L be an O_D-lattice in V' which is maximal among the lattices on which φ takes its values in O_B. Let U_0 be the open compact subgroup of $G^e(\mathbb{A}_f)$ which stabilizes the adelic lattice $L \otimes \mathbb{Z}$. The following is deduced from a mass formula of Shimura [7] (also see Gan - J.-K. Yu [3, 11.2, p. 522]). This form is more applicable to prove Theorem 1.2.
Theorem 3.1 (Shimura). One has
\begin{equation}
\text{Mass}(G^\varphi, U_0) = \frac{(-1)^{dm(m+1)/2}}{2^{md}} \prod_{i=1}^{m} \left\{ \zeta_F(1-2i) \prod_{v|\Delta(O/F)} N(v)^i + (-1)^i \right\}.
\end{equation}

\begin{equation}
\text{Mass}(G^\varphi, U_0) = |D_F|^{m^2} \prod_{i=1}^{m} D_F^{1/2} \left[(2i-1)!(2\pi)^{-2i} \right] \zeta_F(2i) \prod_{v|\Delta(D/F)} N(v)^i + (-1)^i,
\end{equation}
where D_F is the discriminant of F over \mathbb{Q}. Using the functional equation for $\zeta_F(s)$, we deduce (3.1) from (3.2).

4. Global comparison

Keep the notation as in Section 1. Fix a g-dimensional superspecial principally polarized abelian O_B-variety $x = (A_0, \lambda_0, t_0)$ over k. Define $\Lambda_x := \Lambda_x(k)$ as in Section 2. Let (G_x, U_x) be the pair associated to x.

Lemma 4.1. Any two self-dual $O_B \otimes \mathbb{Z}_p$-lattices of (V_{ψ}, ψ) are isomorphic.

Proof. The proof is elementary and omitted.

Lemma 4.2. One has (1) $\Lambda_x = \Lambda^B_x \; \ker^1(\mathbb{Q}, G_x) = \{1\}$.

Proof. (1) The inclusion $\Lambda_x \subset \Lambda^B_x$ is clear. We show the other direction. Let $A \in \Lambda^B_x$. It follows from Lemma 4.1 that the condition (I_ℓ) is satisfied for primes $\ell \neq p$. Let M be the covariant Dieudonné module of A. One chooses an isomorphism $O_{B,p} \simeq M_2(O_{F,p})$ so that $* : (a_{ij}) \mapsto (a_{ij})^t$. Using the Morita equivalence, it suffices to show that any two superspecial principally quasi-polarized Dieudonné modules with compatible $O_{F,p}$-action are isomorphic. This follows from Theorem 5.1.

(2) Since G_x is semi-simple and simply connected (as it is an inner form of $\text{Res}_{F/\mathbb{Q}} \text{Sp}_{2m,F}$), the Hasse principle for G_x holds.

4.1. We compute that

(i) $G_x(\mathbb{R}) = \{ \tilde{h} \in M_m(\mathbb{H})^d | \tilde{h}^t \tilde{h} = 1 \}$,

(ii) for $\ell \neq p$, we have $G_x(\mathbb{Q}_\ell) = \prod_{v|\ell} G_{x,v}$ and $U_{x,\ell} = \prod_{v|\ell} U_{x,v}$, where

\begin{equation}
G_{x,v} = \begin{cases}
\text{Sp}_{2m}(F_v), & \text{if } v \nmid \Delta(B/F), \\
\{ h \in M_m(B_v) | \tilde{h}^t h = 1 \}, & \text{otherwise},
\end{cases}
\end{equation}

\begin{equation}
U_{x,v} = \begin{cases}
\text{Sp}_{2m}(O_{F,v}), & \text{if } v \nmid \Delta(B/F), \\
\{ h \in M_m(O_{B_v}) | \tilde{h}^t h = 1 \}, & \text{otherwise},
\end{cases}
\end{equation}

(iii) $G_x(\mathbb{Q}_p) = \prod_{v|p} G_{x,v}$, where

\begin{equation}
G_{x,v} = \begin{cases}
\text{Sp}_{2m}(F_v), & \text{if } v \nmid \Delta', \\
\{ h \in M_m(B'_{v}) | \tilde{h}^t h = 1 \}, & \text{otherwise}.
\end{cases}
\end{equation}

Take $D = B'$ and $V' = D_m^{\varphi}$ with $\varphi(x, y) = \sum x_i y_i$, and take $L = O_D^{\varphi}$. We compute that

(i) $G^\varphi(\mathbb{R}) = \{ h \in M_m(\mathbb{H})^d | \tilde{h}^t h = 1 \}$,
(ii)' for any \(\ell \), we have \(G_x(\mathbb{Q}_\ell) = \prod_{v \mid \ell} G^c_v \) and \(U_{0, \ell} = \prod_{v \mid \ell} U_{0, v} \), where

\[
G^c_v = \begin{cases} \text{Sp}_{2m}(F_v), & \text{if } v \nmid \Delta', \\
\{ h \in M_m(B'_v) \mid \tilde{h}h = 1 \}, & \text{otherwise,}
\end{cases}
\]

\[
U_{0, v} = \begin{cases} \text{Sp}_{2m}(O_{F_v}), & \text{if } v \nmid \Delta', \\
\{ h \in M_m(O_{B'_v}) \mid \tilde{h}h = 1 \}, & \text{otherwise.}
\end{cases}
\]

(4.3)

For \(\ell \neq p \) and \(v \mid \ell \), one has \(B_v = B'_v \) and that \(v \nmid \Delta(B/F) \) if and only if \(v \nmid \Delta' \). It follows from computation above that \(G_x, \mathbb{Q}_\ell \simeq G^c_v \) and \(G_x, \mathbb{Q}_\ell \simeq G^c_v \) for all \(\ell \). Since the Hasse principle holds for the adjoint group \(G^x, \mathbb{Q}_\ell \), we get \(G_x \simeq G^c \) over \(\mathbb{Q} \). We fix an isomorphism and write \(G_x = G^c \). For \(\ell \neq p \) and \(v \mid \ell \), the subgroups \(U_{0, v} \) and \(U_{x, v} \) are conjugate, and hence they have the same local volume.

4.2. Applying Theorem 2.2 in our setting (Section 1) and using Lemma 4.2, we get \(\text{Mass}(\mathbb{A}^B_g) = \text{Mass}(G_x, U_x) \). Using the result in Subsection 4.1, we get

\[
\text{Mass}(\mathbb{A}^B_g) = \text{Mass}(G^c, U_0) \cdot \mu(U_{0, p}/U_{x, p}),
\]

(4.4)

where \(\mu(U_{0, p}/U_{x, p}) = [U_{x, p} : U_{0, p} \cap U_{x, p}]^{-1} [U_{0, p} : U_{0, p} \cap U_{x, p}] \).

5. Local index \(\mu(U_{0, p}/U_{x, p}) \)

Let \((M', \langle , \rangle', \iota') \) be the covariant Dieudonné module associated to the point \(x = (A_0, \lambda_0, \iota_0) \) in the previous section. Choose an isomorphism \(O_B \otimes \mathbb{Z}_p \simeq M_2(O_F \otimes \mathbb{Z}_p) \) so that \(\ast \) becomes the transpose. Let \(M := eM', \langle , \rangle := \langle , \rangle'|_M \) and \(\iota := \iota'|_{O_F} \),

where \(e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \) in \(M_2(O_F \otimes \mathbb{Z}_p) \). The triple \((M, \langle , \rangle, \iota) \) is a superspecial principally quasi-polarized Dieudonné module with compatible \(O_F \otimes \mathbb{Z}_p \)-action of rank \(g = 2dm \). Let \(M = \oplus_{v \mid p} M_v \) be the decomposition with respect to the decomposition \(O_F \otimes \mathbb{Z}_p = \oplus_{v \mid p} O_v \); here we write \(O_v \) for \(O_{F_v} \). By the Morita equivalence, we have

\[
U_{x, p} = \text{Aut}_{DM, O_B}(M', \langle , \rangle') = \text{Aut}_{DM, O_F}(M, \langle , \rangle) = \prod_{v \mid p} U_{x, v},
\]

(5.1)

where \(U_{x, v} := \text{Aut}_{DM, O_v}(M_v, \langle , \rangle) \).

Let \(W := W(k) \) be ring of Witt vectors over \(k \) and \(\sigma \) the absolute Frobenius map on \(W \). Let \(\mathcal{J} := \text{Hom}(O_v, W) \) be the set of embeddings; write \(\mathcal{J} = \{ \sigma_i \}_{i \in \mathbb{Z}/f_v \mathbb{Z}} \) so that \(\sigma \sigma_i = \sigma_{i+1} \) for all \(i \). We identify \(\mathbb{Z}/f_v \mathbb{Z} \) with \(\mathcal{J} \) through \(i \mapsto \sigma_i \). Decompose \(M_v = \oplus_{i \in \mathbb{Z}/f_v \mathbb{Z}} M^i_v \) into \(\sigma_i \)-isotypic components \(M^i_v \). One has \((1)\) each component \(M^i_v \) is a free \(W \)-module of rank \(2m \), which is self-dual with respect to the pairing \(\langle , \rangle \), \((2)\) \(\langle M^i_v, M^j_v \rangle = 0 \) if \(i \neq j \), and \((3)\) the operations \(F \) and \(V \) shift by degree 1 and degree -1, respectively.

Theorem 5.1. Let \((M_v, \langle , \rangle, \iota) \) be as above. There is a symplectic basis \(\{ X^i_j, Y^i_j \}_{i=1, \ldots, m} \) for \(M^i_v \) such that

(i) \(Y^i_j \in VM_{v+1}^i \),

(ii) \(FX^i_j = -Y^{i+1}_j \) and \(FY^i_j = pX^{i+1}_j \),

for all \(i \in \mathbb{Z}/f_v \mathbb{Z} \) and all \(j \).
Proof. We write f, M and q for f_v, M_v and q_v, respectively. Suppose that $f = 2c$ is even. Let $N := \{x \in M \mid F^ex = (-1)^cV^ex\}$. Since M is superspecial, we have $(\ast) F^2N = pN$, $\overline{N} \otimes_{\mathbb{Q}_v} W \simeq M$ and $N = \oplus N^i$. Since VN^T is isotropic with respect to (\cdot, \cdot) in N/pN, we can choose a symplectic basis $\{X^i_j, Y^i_j\}_{j=1, \ldots, m}$ for N^0 such that $Y^0_j \in VN^1$ for all j. Define X^i_j and Y^i_j recursively for $j = 1, \ldots, i$:

\begin{equation}
X^i_{j+1} = p^{-1}FY^i_j, \quad Y^i_{j+1} = -FX^i_j.
\end{equation}

One has $X^i_{j+2} = \frac{1}{p}F^2X^i_j$ and $Y^i_{j+2} = \frac{1}{p}F^2Y^i_j$; hence

\begin{equation}
X^i_j = (-1)^cF^{2c}X^0_j = X^0_j, \quad Y^i_j = (-1)^cF^{2c}Y^0_j = Y^0_j,
\end{equation}

for all j. It is easy to see that $\{X^i_j, Y^i_j\}_{j=1, \ldots, m}$ forms a symplectic basis for N^i. Suppose that $f = 2c + 1$ is odd. Let $N := \{x \in M \mid F^2fx + pf(x) = 0\}$. We construct a symplectic basis $\{X^i_j, Y^i_j\}_{j=1, \ldots, m}$ for N^0 with the properties: $X^0_j \notin VN^1$, $Y^0_j \in VN^1$ and $Y^0_j = (-1)^c1p^{-c}F^2FX^0_j$ for all j. We can choose $X^0_j \in N^0 \setminus VN^1$ so that $\langle X^0_j, (-1)^c1p^{-c}F^2FX^0_j \rangle \in \mathbb{Q}_v$. This follows from the fact that the form $(x, y) := \langle x, p^{-c}F^2fy \rangle \mod p$ is a non-degenerate Hermitian form on N^0/VN^1. Set $Y^0_j = (-1)^c1p^{-c}FFX^0_j$ and let $\mu := \langle X^0_j, Y^0_j \rangle$. From $\langle FFX^0_j, FFX^0_j \rangle = \langle (-1)^c1p^{-c}FFX^0_j, (-1)^c1p^{-c}FFX^0_j \rangle$, we get $\mu \in \mathbb{Q}_v$. Since $\mathbb{Q}_v/\mathbb{Q}_q$ is unramified, replacing X^0_j by a suitable λX^0_j, we get $\langle X^0_j, Y^0_j \rangle = 1$. Do the same construction for the complement of the submodule $< X^0_j, Y^0_j >$ and use induction; we exhibit such a basis for N^0.

Define X^i_j and Y^i_j recursively for $i = 1, \ldots, f$ as (5.2). We verify again that $X^i_j = X^0_j$ and $Y^i_j = Y^0_j$. It follows from the relation (5.2) that $\{X^i_j, Y^i_j\}_{j=1, \ldots, m}$ forms a symplectic basis for N^i for all i. This completes the proof. ■

Proposition 5.2. Notation as above.

1. If f_v is even, then

\begin{equation}
U_{x,v} = \left\{ \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \in \text{Sp}_{2m}(\mathbb{Z}_{q^v}) \mid B \equiv 0 \mod p \right\}.
\end{equation}

2. If f_v is odd, then

\begin{equation}
U_{x,v} \simeq \{ h \in M_m(O_{\mathcal{B}^v}) \mid \hat{h}h = 1 \}.
\end{equation}

Proof. Let $\phi \in U_{x,v}$. Choose a symplectic basis B for M_v as in Theorem 5.1. Since ϕ commutes with the O_F-action, we have $\phi = (\phi_i)$, where $\phi_i \in \text{Aut}(M_v, \langle \cdot, \cdot \rangle)$. Write $\phi_i = \begin{pmatrix} A_i & B_i \\ C_i & D_i \end{pmatrix} \in \text{Sp}_{2m}(W)$ using the basis B. Since the map F is injective, ϕ_0 determines the remaining ϕ_i. From $\phi F^2 = F^2 \phi$, we have $\phi_{i+2} = \phi^{(2)}_i$ (as matrices). Here we write $\phi^{(n)}_i$ for $\phi^{(n)}_i$. From $\phi F = F \phi$ we get $A^{(1)}_i = D_{i+1}$, $B^{(1)}_i = -pC_{i+1}$, $C^{(1)}_i = -B_{i+1}$ and $D^{(1)}_i = A_{i+1}$.

1. If f_v is even, then $A_0, B_0, C_0, D_0 \in \mathbb{Z}_{q^v}$ and $B_0 \equiv 0 \mod p$. This shows (5.3).

2. Suppose f_v is odd. From $\phi_0^{(f_v+1)} = \phi_1$ we get $A^{(f_v)}_0 = D_0$, $B^{(f_v)}_0 = -pC_0$, $pC^{(f_v)}_0 = -B_0$, $D^{(f_v)}_0 = A_0$. Hence

\begin{equation}
U_{x,v} = \left\{ \left(\begin{array}{cc} A & -pC^T \\ C & A^T \end{array} \right) \in \text{Sp}_{2m}(\mathbb{Z}_{q^v}) \right\}.
\end{equation}
where \(\tau \) is the involution of \(\mathbb{Q}_{q^2} \) over \(\mathbb{Q}_q \). Note that \(O_B' = \mathbb{Z}_{q^2} \langle \Pi \rangle \) with \(\Pi^2 = -p \) and \(\Pi a = a^7 \Pi \) for all \(a \in \mathbb{Z}_{q^2} \). The map \(A + C \Pi \mapsto \begin{pmatrix} A & -pC' \\ C & A' \end{pmatrix} \) gives rise to an isomorphism (5.4). This proves the proposition. ■

Let \((V_0 = \mathbb{F}_q^{2m}, \psi_0) \) be a standard symplectic space. Let \(P \) be the stabilizer of the standard maximal isotropic subspace \(\mathbb{F}_q \langle e_1, \ldots, e_m \rangle \).

Lemma 5.3. \(|Sp_{2m}(\mathbb{F}_q)/P| = \prod_{i=1}^{m}(q^i + 1) \).

Proof. We have a natural bijection between the group \(Sp_{2m}(\mathbb{F}_q) \) and the set \(B(m) \) of ordered symplectic bases \(\{v_1, \ldots, v_{2m}\} \) for \(V_0 \). The first vector \(v_1 \) has \(q^{2m} - 1 \) choices. The first companion vector \(v_{m+1} \) has \(q^{2m-1} \) choices as it does not lie in the hyperplane \(v_1^\perp \) and we require \(\psi_0(v_1, v_{m+1}) = 1 \). The remaining ordered symplectic basis can be chosen from the complement \(\mathbb{F}_q \langle v_1, v_{m+1} \rangle^\perp \). Therefore, we have proved the recursive formula \(|Sp_{2m}(\mathbb{F}_q)| = (q^{2m} - 1)q^{2m-1}|Sp_{2m-2}(\mathbb{F}_q)| \). From this, we get

\[
|Sp_{2m}(\mathbb{F}_q)| = q^{m^2} \prod_{i=1}^{m}(q^{2i} - 1).
\]

We have

\[
P = \left\{ \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} : AD^t = I_m, \ BA^t = AB^t \right\}.
\]

This yields

\[
|P| = q^{2m^2} |GL_m(\mathbb{F}_q)| = q^{m^2} \prod_{i=1}^{m}(q^i - 1).
\]

From (5.5) and (5.6), we prove the lemma. ■

By Proposition 5.2 and Lemma 5.3, we get

Theorem 5.4. One has

\[
\mu(U_{0,p}/U_{x,p}) = \prod_{v|p} \mu(U_{0,v}/U_{x,v}) = \prod_{v|p, v^\perp \Delta} \prod_{i=1}^{m}(q_v^i + 1).
\]

Plugging the formula (5.7) in the formula (4.4), we get the formula (1.3). The proof of Theorem 1.2 is complete.

Acknowledgments. The present work relies on Shimura’s paper [7] and is also inspired by W.-T. Gan and J.-K. Yu’s paper [3]. It is a great pleasure to thank them.

References

Institute of Mathematics, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei, Taiwan, and NCTS (Taipei Office)

E-mail address: chiafu@math.sinica.edu.tw

Max-Planck-Institut für Mathematik, Vivatsgasse 7, Bonn, 53111, Germany