THE FANO SURFACE OF THE KLEIN CUBIC THREEFOLD

XAVIER ROULLEAU

Abstract. We prove that the Klein cubic threefold F is the only one cubic threefold which has an order 11 automorphism. We calculate the period lattice of the intermediate Jacobian of F and study its Fano surface S. We compute the set of fibrations of S on a curve of positive genus and the intersection between the fibres of these fibrations. These fibres generate an index 2 sub-group of the Néron-Severi group and we obtain the generators of this group. The Néron-Severi group of S has rank 25 = $h^{1,1}$ and discriminant 11^{10}.

MSC: 14J29, 14J50 (primary); 14J70, 32G20 (secondary).

Key-words: Fano surface of a cubic threefold, Automorphisms, Surfaces with maximal Picard number.

0.1. Introduction. Let $F \hookrightarrow \mathbb{P}^4$ be a smooth cubic threefold. Its intermediate Jacobian

$$J(F) := H^{2,1}(F, \mathbb{C})^*/H_3(F, \mathbb{Z})$$

is a principally polarised Abelian variety $(J(F), \Theta)$ of dimension 5 that has the role in the analysis of curves on F similar to the role of the Jacobian variety in the study of divisors on a curve.

The Hilbert scheme of lines on F is a smooth surface S called the Fano surface of F; the Abel-Jacobi map $\vartheta : S \rightarrow J(F)$ is an embedding that induce an isomorphism $\text{Alb}(S) \rightarrow J(F)$ where

$$\text{Alb}(S) := H^0(\Omega_S)^*/H_1(S, \mathbb{Z})$$

is the Albanese variety of S and $H^0(\Omega_S) := H^0(S, \Omega_S)$ ([5] 0.6, 0.8).

The cotangent bundle theorem ([5] Lemma 12.5) ables us to recover the cubic F if we know only its Fano surface and moreover it gives a natural isomorphism between the spaces $H^0(\Omega_S)$ and $H^0(F, \mathcal{O}_F(1)) = H^0(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(1))$. As we mainly work with the Fano surface, we will identify the homogenous coordinates x_1, \ldots, x_5 of \mathbb{P}^4 with elements of $H^0(\Omega_S)$. We will also identify the Abelian variety $J(F)$ with $\text{Alb}(S)$.

In [10], we give the classification of elliptic curve configurations on a Fano surface. It is proved that this classification is equivalent to the classification of the automorphism sub-groups of S that are generated by certain involutions. Moreover, it is also proved that the automorphism groups $\text{Aut}(F)$ and $\text{Aut}(S)$ of a cubic and its Fano surface are isomorphic. In the present paper, we pursue the study of these groups. By [10] Corollary 1.19, the order of $\text{Aut}(S)$ divides
This legitimates the study of the Fano surfaces which have an order 11 automorphism. A. Adler [1] has proved that automorphism group of the Klein cubic:

\[F : x_1x_5^2 + x_5x_3^2 + x_3x_4^2 + x_4x_2^2 + x_2x_1^2 = 0 \]

is isomorphic to \(PSL_2(\mathbb{F}_{11}) \). We prove in the present paper that:

Proposition 0.1. The Klein cubic is the only one smooth cubic threefold which has an order 11 automorphism.

If a curve admits a sufficiently large group of automorphisms, Bolza has found a method to compute a period matrix of its Jacobian (see [4], 11.7). As for the case of curves, we will use the fact that the Klein cubic admits a large group of automorphisms to compute the period lattice of its intermediate Jacobian \(J(F) \) or, what is the same thing, the period lattice \(H^1(S, \mathbb{Z}) \subset H^0(\Omega_S) \) of the two dimensional variety \(S \).

\[
\nu = -\frac{1+i\sqrt{-11}}{2}
\]

and let \(E \) be the elliptic curve \(E = \mathbb{C}/\mathbb{Z}[\nu] \). Let us denote by \(e_1,..,e_5 \in H^0(\Omega_S)^* \) the dual basis of \(x_1,..,x_5 \). Let \(\xi \) be a primitive 11-th root of unity and let \(v_i \in H^0(\Omega_S)^* \) be:

\[
v_i = \xi^i e_1 + \xi^{2i} e_2 + \xi^{3i} e_3 + \xi^{4i} e_4 + \xi^{5i} e_5.
\]

For \(s \) a point of the Hilbert sheme \(S \), we denote by \(C_s \) the divisor on \(S \) that parametrizes the lines on \(F \) that cut the line corresponding to the point \(s \).

Theorem 0.2. The period lattice \(H_1(S, \mathbb{Z}) \subset H^0(\Omega_S)^* \) is equal to:

\[
\frac{\mathbb{Z}[\nu]}{1 + 2^\nu}(v_0 - 3v_1 + 3v_2 - v_3) + \frac{\mathbb{Z}[\nu]}{1 + 2^\nu}(v_1 - 3v_2 + 3v_3 - v_4) + \bigoplus_{k=0}^{2} \mathbb{Z}[\nu]v_k.
\]

The Néron-Severi group \(\text{NS}(S) \) of \(S \) has rank 25 = \(h^{1,1}(S) \) and discriminant \(11^{10} \). The image of the morphism

\[
\vartheta^* : \text{NS}(\text{Alb}(S)) \to \text{NS}(S)
\]

is sub-lattice of index 2 and \(\text{NS}(S) \) is generated by this lattice and the class of the incidence divisor \(C_s \).

The set of numerical classes of fibres of fibrations of \(S \) in a curve of positive genus is in natural bijection with \(\mathbb{P}^4_2(\mathbb{Z}[\nu]) \) and generate \(\vartheta^* \text{NS}(\text{Alb}(S)) \).

We remark that \(J(F) \cong \text{Alb}(S) \) is isomorphic to \(\mathbb{E}^5 \) but by [5] (0.12), this isomorphism is not an isomorphism of principally polarised Abelian varieties. The fact that \(J(F) \) is isomorphic to \(\mathbb{E}^5 \) is mentioned in [2].

The main properties used to prove Theorem 0.2 are the fact that the class of \(S \hookrightarrow \text{Alb}(S) \) is equal to \(\frac{1}{3} \Theta^3 \) and the fact that the action of the group \(\text{Aut}(S) \) on \(\text{Alb}(S) \) preserves the polarisation \(\Theta \).
To close this introduction, let us mention two known facts: (1) as the plane Klein quartic, the Klein cubic threefold has a modular interpretation see [7], (2) the cotangent sheaf of its Fano surface is ample [10].

0.2. Properties of the Fano surfaces. Let us recall some facts proved in [10] and fix the notations:

An automorphism \(f \) of \(F \) preserves the lines on \(F \) and induces an automorphism \(\rho(f) \) of the Fano surface \(S \).

An automorphism \(\sigma \) of \(S \) induces an automorphism \(\sigma' \) of the Albanese variety of \(S \) such that the following diagram:

\[
\begin{array}{ccc}
S & \xrightarrow{\vartheta} & \text{Alb}(S) \\
\downarrow \sigma & & \downarrow \sigma' \\
S & \xrightarrow{\vartheta} & \text{Alb}(S)
\end{array}
\]

is commutative (where \(\vartheta : S \rightarrow \text{Alb}(S) \) is a fixed Albanese morphism). We denote by \(M_\sigma \in GL(H^0(\Omega S)^*) \) the linear part of the differential of \(\sigma' \) and we denote by

\[
q : GL(H^0(\Omega S)^*) \rightarrow PGL(H^0(\Omega S)^*)
\]

the natural quotient map. We have ([10], Theorem 1.15):

Theorem 0.3. A) The morphism \(q(M_\sigma) \) is an automorphism of \(F \hookrightarrow \mathbb{P}(H^0(\Omega S)^*) \).

B) The morphisms \(\rho : \text{Aut}(F) \rightarrow \text{Aut}(S) \) and \(\sigma \rightarrow q(M_\sigma) \) are reciprocal isomorphisms.

C) For all \(\sigma \in \text{Aut}(S) \), the automorphism \(\sigma' \) is an automorphism of the principally polarised Abelian variety \((\text{Alb}(S), \Theta) \).

0.3. The unique cubic with an order 11 automorphism. Let us prove that the Klein cubic is the only one that possesses an order 11 automorphism.

Suppose that a cubic threefold \(F \) has an order 11 automorphism \(f \). Let \(\tau = \rho(f) \) be the induced automorphism of the Fano surface \(S \). The Proposition 13.2.5 and the Theorem 13.2.8 of [4] imply that the eigenvalues of \(M_\tau \) are 5 pairwise non-complex conjugate 11-th primitive root of unity.

We denote by \(\mathcal{O} \) the set of sets of 5 pairwise non-complex conjugate 11-th primitive root of unity: \(\mathcal{O} \) contains \(2^5 \) elements. The group \(\text{Aut}(\mathbb{C}) \) of automorphisms of \(\mathbb{C} \) acts on \(\mathcal{O} \).

Let \(\xi \) be a 11-th primitive root of unity. For \(i \in \{0, 1, \ldots, 10\} \), we denote by \(\chi_i \) the 1 dimensional representation:

\[
x \mapsto \xi^ix \in \mathbb{C}.
\]

Let us suppose that \(\{\xi, \xi^9, \xi^3, \xi^4, \xi^5\} \in \mathcal{O} \) is the set of eigenvalues of \(M_\tau \).

The third symmetric power of the dimension 5 representation:

\[
(x_1, x_2, x_3, x_4, x_5) \rightarrow (\xi x_1, \xi^9 x_2, \xi^3 x_3, \xi^4 x_4, \xi^5 x_5)
\]
is decomposed in the following direct sum:

\[H^n(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(3)) = 5\chi_0 + 2\chi_1 + 3\chi_2 + 3\chi_3 + 4\chi_4 + 3\chi_5 + 3\chi_6 + 3\chi_7 + 3\chi_8 + 3\chi_9 + 3\chi_{10}. \]

The space 5\chi_0 is generated by:

\[x_1x_2^2, \ x_5x_3^2, \ x_3x_4^2, \ x_4x_2^2, \ x_2x_1^2 \]

By an appropriate variable change, we see that any smooth cubic of this space is isomorphic to the Klein cubic:

\[x_1x_2^2 + x_5x_3^2 + x_3x_4^2 + x_4x_2^2 + x_2x_1^2 = 0. \]

The other stable spaces define singular cubic threefolds.

Let us study the representation \(\chi_1 + \chi_2 + \chi_3 + \chi_4 + \chi_5 \). Its third symmetric power is:

\[H^3(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(3)) = 4\chi_0 + 3\chi_1 + 2\chi_2 + 3\chi_3 + 2\chi_4 + \chi_5 + 3\chi_6 + 4\chi_7 + 4\chi_8 + 5\chi_9 + 4\chi_{10}. \]

A basis of 5\chi_9 is:

\[x_2x_3x_4, \ x_1x_3x_5, \ x_5x_2^2, \ x_1x_4^2, \ x_3^3 \]

and any cubic of this space is singular at the point: \((1:0:0:0:0) \). As we can verify, the other stable spaces give also singular threefolds.

Hence there is no Fano surface with an order 11 automorphism \(\tau \) such that the eigenvalues of \(M_\tau \) is the set \(\{\xi, \xi^2, \xi^3, \xi^4, \xi^5\} \).

The orbit \(O_0 \subset \mathcal{O} \) of the element \(\{\xi, \xi^2, \xi^3, \xi^4, \xi^5\} \) \(\in \mathcal{O} \) by \(\text{Aut}(\mathbb{C}) \) has order 10. Hence we have studied 10 representations and no one gives a smooth cubic threefold.

The set \(\{\xi, \xi^2, \xi^3, \xi^4, \xi^6\} \) \(\in \mathcal{O} \) is not an element of the orbits \(O_0 \) and \(O_1 \).

The third symmetric power of the representation:

\[(x_1, x_2, x_3, x_4, x_5) \rightarrow (\xi x_1, \xi^2 x_2, \xi^3 x_3, \xi^4 x_4, \xi^6 x_5)\]

is decomposed in:

\[H^6(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(3)) = 3\chi_0 + 3\chi_1 + 2\chi_2 + 3\chi_3 + 2\chi_4 + 3\chi_5 + 3\chi_6 + 4\chi_7 + 4\chi_8 + 4\chi_9 + 4\chi_{10}. \]

As we can verify, no element of these 11 spaces gives a smooth cubic threefold. The orbit \(O_2 \) of the set \(\{\xi, \xi^2, \xi^3, \xi^4, \xi^5\} \) by the action of \(\text{Aut}(\mathbb{C}) \) has order 10.

The set \(\{\xi, \xi^2, \xi^3, \xi^4, \xi^7\} \) \(\in \mathcal{O} \) is not an element of the orbits \(O_0, O_1 \) and \(O_2 \). The third symmetric power of the representation:

\[(x_1, x_2, x_3, x_4, x_5) \rightarrow (\xi x_1, \xi^2 x_2, \xi^3 x_3, \xi^5 x_4, \xi^7 x_5)\]

is decomposed in:

\[H^8(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(3)) = 4\chi_0 + 2\chi_1 + 3\chi_2 + 2\chi_3 + 4\chi_4 + 3\chi_5 + 4\chi_6 + 3\chi_7 + 3\chi_8 + 4\chi_9 + 3\chi_{10}. \]

No one elements of these 11 spaces gives a smooth cubic threefold. The orbit \(O_3 \) of the set \(\{\xi, \xi^2, \xi^3, \xi^4, \xi^7\} \) by the action of \(\text{Aut}(\mathbb{C}) \) has order 10.
The union of the orbits O_0, O_1, O_2, O_3 is equal to O. This shows that the Klein cubic
\[x_1x_5^2 + x_5x_3^2 + x_3x_4^2 + x_4x_2^2 + x_2x_1^2 = 0 \]
is (up to isomorphism) the only one smooth cubic on which $\mathbb{Z}/11\mathbb{Z}$ acts. \square

Remark 0.4. By the same method, we can prove that there is no smooth cubic threefold with an order 7 automorphism.

0.4. The period lattice of the intermediate Jacobian of the Klein cubic. Let F be the Klein cubic and let S be its Fano surface. Let $\vartheta : S \to \text{Alb}(S)$ be a fixed Albanese morphism; it is an embedding. We compute here the period lattice $H_1(S, \mathbb{Z}) \subset H^0(\Omega_S)^*$ of the Albanese variety of S.

The order 5 automorphism:
\[g : (x_1 : x_2 : x_3 : x_4 : x_5) \to (x_5 : x_1 : x_4 : x_2 : x_3) \]
acts on F. Let be $\sigma = \rho(g)$. By Theorem 0.3, there exists a 5-th root of unity θ such that $M_\sigma \in GL(H^0(\Omega_S)^*)$ is equal to:
\[M_\sigma : x \to \theta(x_5, x_1, x_4, x_2, x_3). \]
Since the Klein cubic and g are defined over \mathbb{Q}, we have $\theta = 1$.
Moreover, we know that M_τ verifies:
\[M_\tau : x \to (\xi x_1, \xi^9 x_2, \xi^3 x_3, \xi^4 x_4, \xi^5 x_5) \]
where $\tau = \rho(f)$ is defined in paragraph 0.2.

Let q_1 be the endomorphism of $\text{Alb}(S)$ defined by the linear part of:
\[\sum_{k=0}^{k=4} (\sigma')^k \]
(\text{where } \sigma' \circ \vartheta = \vartheta \circ \sigma). Its differential is:
\[dq_1 : x \to (x_1 + x_2 + x_3 + x_4 + x_5)(e_1 + e_2 + e_3 + e_4 + e_5) \]
and its image is an elliptic curve which we denote by E. Let us take $\xi = e^{2\pi i}$ where $i^2 = -1$. The restriction of the linear part of $q_1 \circ \tau' : \text{Alb}(S) \to E$ to E is the multiplication by:
\[\nu = \xi + \xi^9 + \xi^3 + \xi^4 + \xi^5 = \frac{-1 + i\sqrt{11}}{2}. \]
The curve E has complex multiplication by the principal ideal domain $\mathbb{Z}[\nu]$.
Up to a normalization of the basis e_1, \ldots, e_5 by a multiplication by a scalar, we can suppose that:
\[H_1(S, \mathbb{Z}) \cap \mathbb{C}v_0 = \mathbb{Z}[\nu]v_0 \]
(such normalization preserves the equation of F).
For $i \in \mathbb{Z}/11\mathbb{Z}$, let v_i be the vector:
\[v_i = (M_\tau)^i v_0 \in H^0(\Omega_S)^* \]
\[= \xi^i e_1 + \xi^{9i} e_2 + \xi^{3i} e_3 + \xi^{4i} e_4 + \xi^{5i} e_5. \]
Let $\Lambda_0 \subset H^0(\Omega_S)^* \subset H^0(\Omega_S)^*$ be the \mathbb{Z}-module generated by the v_i, $i \in \mathbb{Z}/11\mathbb{Z}$. The \mathbb{Z}-module Λ_0 is leaved stable by M_τ and $\Lambda_0 \subset H_1(S, \mathbb{Z})$.

Lemma 0.5. The \mathbb{Z}-module Λ_0 is equal to the lattice:

$$R_0 = \mathbb{Z}[\nu]v_0 + \mathbb{Z}[\nu]v_1 + \mathbb{Z}[\nu]v_2 + \mathbb{Z}[\nu]v_3 + \mathbb{Z}[\nu]v_4.$$

Proof. We have:

$$\nu v_0 = v_1 + v_3 + v_4 + v_5 + v_9,$$

hence νv_0 is an element of Λ_0. This implies that the vectors $\nu v_i = (M_\tau)^i v_0$ are elements of Λ_0 for all i, hence: $R_0 \subset \Lambda_0$.

Reciprocally, we have:

$$v_5 = v_0 + (1 + \nu)v_1 - v_2 + v_3 + \nu v_4.$$

This proves that R_0 is leaved stable by M_τ and that the lattice R_0 contains the vectors $v_i = (M_\tau)^i v_0$. Hence we have: $R_0 = \Lambda_0$. \square

We need to know the first Chern class $c_1(\Theta)$ of the Θ divisor of $\text{Alb}(S)$.

Lemma 0.6. Let H be the matrix of the Hermitian form of the polarisation Θ in the basis e_1, \ldots, e_5. There exists a positive integer such that:

$$H = a \frac{2}{\sqrt{\Pi}} I_5$$

where I_5 is the size 5 identity matrix.

Proof. The automorphism τ' preserves the polarisation Θ (see [10], Lemma 1.18). By [4] Lemma 2.17, this implies that:

$$^t M_\tau H \bar{M}_\tau = H$$

where \bar{M}_τ is the matrix in the basis e_1, \ldots, e_5 whose coefficients are conjugated of those of M_τ and where t is the transposition. The only Hermitian matrices that verify this equality are the diagonal matrices. By the same reasoning with σ instead of τ, we obtain that these diagonal coefficients are equal and:

$$H = a \frac{2}{\sqrt{\Pi}} I_5$$

where a is a positive real (H is a positive definite Hermitian form). As H is a polarisation, the alternating form $c_1(\Theta) = \Im(H)$ take integer values on $H_1(S, \mathbb{Z})$. But v_1 and v_2 are elements of $H_1(S, \mathbb{Z})$ and:

$$\Im(H(v_1, v_2)) = -a$$

hence a is an integer. \square

Let be $k \in \mathbb{Z}/11\mathbb{Z}$. The differential of the linear part of the morphism $q_1 \circ (\tau')^k$ is:

$$x \mapsto \ell_k(x)(e_1 + \ldots + e_5)$$

where ℓ_k is the linear form:

$$\ell_k = \xi^k x_1 + \xi^9 k x_2 + \xi^{3k} x_3 + \xi^{4k} x_4 + \xi^{5k} x_5 \in H^0(\Omega_S).$$
Let be $\lambda \in H_1(S, \mathbb{Z})$. As

$$H_1(S, \mathbb{Z}) \cap \mathbb{C}v_0 = \mathbb{Z}[\nu]v_0,$$

the scalar $\ell_k(\lambda)$ is an element of $\mathbb{Z}[\nu]$. Put:

$$\Lambda_4 = \{ u \in \mathbb{C}^5/\forall k, 0 \leq k \leq 4, \ell_k(u) \in \mathbb{Z}[\nu] \}. $$

The set Λ_4 contains $H_1(S, \mathbb{Z})$.

Lemma 0.7. The \mathbb{Z}-module Λ_4 is equal to the lattice:

$$R_1 = \sum_{i=3}^{12} \frac{\mathbb{Z}[\nu]}{1 + 2\nu} (v_i - v_{i+1}) + \mathbb{Z}[\nu]v_0.$$

Moreover M_τ leaves stable Λ_4.

Proof. The element $u = \sum u_i e_i \in H^0(\Omega_S)^*$ is in Λ_4 if and only if

$$
\begin{pmatrix}
\xi & \xi^9 & \xi^3 & \xi^4 & \xi^5 \\
\xi^2 & \xi^7 & \xi^6 & \xi^8 & \xi^{10} \\
\xi^3 & \xi^5 & \xi^9 & \xi^4 & 1 \\
\xi^4 & \xi^3 & \xi^5 & \xi^9 & 1
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5
\end{pmatrix}
\in
\begin{pmatrix}
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu]
\end{pmatrix}.
$$

The group Λ_4 is writted in the basis $b = v_0, ..., v_4$:

$$
\begin{pmatrix}
-1 & -\nu & 0 & -1 & 1 - \nu \\
-\nu & 2 & 0 & -\nu & 3 + \nu \\
0 & 0 & 0 & 1 & -1 \\
-1 & -\nu & 1 & -2 & 1 - \nu \\
1 - \nu & 3 + \nu & -1 & 1 - \nu & 2 + 2\nu
\end{pmatrix}
\begin{pmatrix}
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu] \\
\mathbb{Z}[\nu]
\end{pmatrix}
$$

and by elementary operations with coefficients in $\mathbb{Z}[\nu]$ on the rows, we obtain that Λ_4 is equal to R_1.

Now, we use the fact that:

$$v_5 = v_0 + (1 + \nu)v_1 - v_2 + v_3 + \nu v_4$$

to prove that $\frac{1}{1 + 2\nu}(v_4 - v_5)$ is an element of Λ_4. As $M_\tau(v_j) = v_{j+1}$, this ables us to conclude that Λ_4 is stable by M_τ. \qed

We denote by $\phi : \Lambda_4 \rightarrow \Lambda_4/\Lambda_0$ the quotient map. The ring $\mathbb{Z}[\nu]/(1 + 2\nu)$ is the finite field with 11 elements.

Lemma 0.8. The quotient Λ_4/Λ_0 is a $\mathbb{Z}[\nu]/(1 + 2\nu)$-vector space with basis:

$$
t_1 = \frac{1}{1 + 2\nu}(v_4 - v_1) + \Lambda_0, \quad t_2 = \frac{1}{1 + 2\nu}(v_1 - v_2) + \Lambda_0 \\
t_3 = \frac{1}{1 + 2\nu}(v_2 - v_3) + \Lambda_0, \quad t_4 = \frac{1}{1 + 2\nu}(v_3 - v_4) + \Lambda_0.
$$

Proof. The quotient Λ_4/Λ_0 is an hyperplane of the 5 dimensional $\mathbb{Z}[\nu]/(1 + 2\nu)$-vector space $\frac{1}{1 + 2\nu}\Lambda_0/\Lambda_0$. \qed
Let R be a lattice such that $\Lambda_0 \subset R \subset \Lambda_4$. The group $\phi(R)$ is a sub-vector space of Λ_4/Λ_0 and:

$$\phi^{-1}(R) = R + \Lambda_0 = R.$$

Because M_τ preserves Λ_0, the morphism M_τ induces a morphism \tilde{M}_τ on the quotient Λ_4/Λ_0 such that $\phi \circ M_\tau = \tilde{M}_\tau \circ \phi$. As M_τ leaves stable $H_1(S,\mathbb{Z})$, the vector space $\phi(H_1(S,\mathbb{Z}))$ is stable by \tilde{M}_τ. We denote:

$$w_1 = -t_1 + 3t_2 - 3t_3 + t_4$$
$$w_2 = t_1 - 2t_2 + t_3$$
$$w_3 = -t_1 + t_2$$
$$w_4 = t_1.$$

The matrix of \tilde{M}_τ in the basis w_1,\ldots, w_4 of Λ_4/Λ is:

$$
\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}.
$$

The sub-spaces left stable by \tilde{M}_τ are the space $W_0 = \{0\}$ and the spaces W_i, $1 \leq i \leq 4$ generated by w_1,\ldots, w_i. Let Λ_i be the lattice $\phi^{-1}W_i$, then:

Theorem 0.9. The lattice $H_1(S,\mathbb{Z})$ is equal to Λ_2, and Λ_2 is equal to

$$R_2 = \frac{\mathbb{Z}[\nu]}{1 + 2\nu}(v_0 - 3v_1 + 3v_2 - v_3) + \frac{\mathbb{Z}[\nu]}{1 + 2\nu}(v_1 - 3v_2 + 3v_3 - v_4) + \bigoplus_{k=0}^2 \mathbb{Z}[\nu]v_k.$$

Moreover, the Hermitian matrix associated to Θ is equal to $\frac{2}{\sqrt{11}}I_5$ in the basis e_1,\ldots, e_5.

Proof. Let $c_1(\Theta) = \Im m(H) = i \frac{2}{\sqrt{11}}\sum dx_k \wedge dx_k$ be the alternating form of the principal polarisation Θ. Let $\lambda_1,\ldots, \lambda_{10}$ be a basis of a lattice Λ. The Pfaffian $P_{f\Theta}(\Lambda)$ of Λ is the determinant of the matrix

$$(c_1(\Theta)(\lambda_j, \lambda_k))_{1 \leq j,k \leq 10}.$$

Since Θ is a principal polarisation, we have $P_{f\Theta}(H_1(S,\mathbb{Z})) = 1$.

It is easy to find a basis of Λ_j ($j \in \{0,\ldots, 4\}$). For example, the space W_2 is generated by $w_2 = t_1 - 2t_2 + t_3$ and $w_1 + w_2 = t_2 - 2t_3 + t_4$ and as

$$\phi\left(\frac{1}{1 + 2\nu}(v_0 - 3v_1 + 3v_2 - v_3)\right) = w_2$$
$$\phi\left(\frac{1}{1 + 2\nu}(v_1 - 3v_2 + 3v_3 - v_4)\right) = w_1 + w_2,$$

the lattice R_2 (that contains Λ_0) is equal to Λ_2.

Then, with the help of a computer, we can calculate the Pfaffian P_j of the lattice Λ_j and verify that it is equal to:

$$a^{10}11^{4-2j}.$$
where a is the integer of Lemma 0.6. As a is a positive, the only possibility that P_j equals 1 is $j = 2$ and $a = 1$. □

0.5. The Néron-Severi Group of the Fano surface of the Klein cubic.

Let us define:

\[u_1 = \frac{1}{1 + 2^v} (v_0 - 3v_1 + 3v_2 - v_3), \quad u_2 = \frac{1}{1 + 2^v} (v_1 - 3v_2 + 3v_3 - v_4) \]
\[u_3 = v_0, \quad u_4 = v_1, \quad u_5 = v_2. \]

Let $y_1, \ldots, y_5 \in H^0(\Omega_S)$ be the linear forms such that:

\[\sum_{k=1}^{k=5} x_k e_k = \sum_{k=1}^{k=5} y_k u_k. \]

Let be $k, 1 \leq k \leq 5$. The image of $H_1(S, \mathbb{Z})$ by $y_k \in H^0(\Omega_S)$ is $\mathbb{Z}[\nu]$, and this form is the differential of an Abelian varieties morphism

\[r_k : \text{Alb}(S) \rightarrow \mathbb{E} = \mathbb{C}/\mathbb{Z}[[\nu]] \]

The morphisms r_1, \ldots, r_5 form a basis of the $\mathbb{Z}[\nu]$-module $\text{Hom}_{\text{Ab var}}(\text{Alb}(S), \mathbb{E})$.

We denote by Λ_A^* the free $\mathbb{Z}[\nu]$-module of rank 5 generated by y_1, \ldots, y_5 and for $\ell \in \Lambda_A^*$, we denote by $\Gamma_{\ell} : \text{Alb}(S) \rightarrow \mathbb{E}$ the morphism whose differential is $\ell : H^0(\Omega_S)^* \rightarrow \mathbb{C}$.

Let $\vartheta : S \rightarrow \text{Alb}(S)$ be a fixed Albanese morphism. We denote by $\gamma_{\ell} : S \rightarrow \mathbb{E}$ the morphism $\gamma_{\ell} = \Gamma_{\ell} \circ \vartheta$ and we denote by F_ℓ the numerical equivalence class of a fibre of γ_{ℓ} (this class is independant of the choice of ϑ).

We define the scalar product of two forms $\ell, \ell' \in \Lambda_A^*$ by:

\[\langle \ell, \ell' \rangle = \sum_{k=1}^{k=5} \ell(e_k) \overline{\ell'(e_k)} \]

and the norm of ℓ by:

\[\|\ell\| = \sqrt{\langle \ell, \ell \rangle}. \]

We denote by $\text{NS}(X)$ the Néron-Severi group of a variety X. The aim of this paragraph is to prove the following result:

Theorem 0.10. Let ℓ, ℓ' be elements of Λ_A^*. The fibre F_ℓ has genus:

\[g(F_\ell) = 1 + 3 \|\ell\|^2, \]

verifies $F_\ell C_s = 2 \|\ell\|^2$ and :

\[F_\ell F_{\ell'} = \|\ell\|^2 \|\ell'\|^2 - \langle \ell, \ell' \rangle \langle \ell', \ell \rangle. \]

The image of the morphism $\vartheta^* : \text{NS}(\text{Alb}(S)) \rightarrow \text{NS}(S)$ is a rank 25 sub-lattice of discriminant $2^2 11^{10}$.

The following 25 fibres

\[F_{y_k}, \quad k \in \{1, \ldots, 5\} \quad F_{y_k + y_l}, \quad 1 \leq k < l \leq 5 \quad F_{y_k + vy_l}, \quad 1 \leq k < l \leq 5 \]

are a \mathbb{Z}-basis of $\vartheta^* \text{NS}(\text{Alb}(S))$ and together with the class of the incident divisor C_s ($s \in S$) they generate the Néron-Severi group of S.

We begin by the following lemma:

Lemma 0.11. The Néron-Severi group of $\text{Alb}(S)$ is generated by the 25 forms:

\[
\frac{i}{\sqrt{11}} dy_k \wedge d\bar{y}_k, \ k \in \{1, \ldots, 5\} \quad \frac{i}{\sqrt{11}} (dy_k \wedge d\bar{y}_l + dy_l \wedge d\bar{y}_k), \ 1 \leq k < l \leq 5
\]

\[
\frac{i}{\sqrt{11}} (udy_k \wedge d\bar{y}_l + \bar{u}dy_l \wedge d\bar{y}_k), \ 1 \leq k < l \leq 5
\]

Proof. The Hermitian form $H' = \frac{2}{\sqrt{11}} I_5$ in the basis u_1, \ldots, u_5 defines a principal polarisation of $\text{Alb}(S)$. Let $\text{End}^s(\text{Alb}(S))$ be the group of symmetric morphisms for the Rosati involution associated to H'. There exists an isomorphism

\[
\phi_{H'} : \text{NS}(\text{Alb}(S)) \rightarrow \text{End}^s(\text{Alb}(S)).
\]

The group $\text{End}^s(\text{Alb}(S))$ is easily calculated and we obtain the lemma when we take the inverse morphism of $\phi_{H'}$ (see [4] Proposition 5.2.1). \hfill \Box

The Néron-Severi group of the curve $E = \mathbb{C}/\mathbb{Z}[\nu]$ is the \mathbb{Z}-module generated by the form:

\[
\eta = \frac{i}{\sqrt{11}} dz \wedge d\bar{z}.
\]

Let $\ell \in \Lambda^*_A$, we have:

\[
\Gamma^*_\ell \eta = \frac{i}{\sqrt{11}} d\ell \wedge d\bar{\ell}
\]

and this form is the Chern class of the divisor $\Gamma^*_\ell 0$.

Lemma 0.12. The 25 forms:

\[
\eta_k = \Gamma^*_y \eta, \ k \in \{1, \ldots, 5\} \quad \eta^1_{k,l} = \Gamma^*_{y_k+y_l} \eta, \ 1 \leq k < l \leq 5
\]

\[
\eta^\nu_{k,l} = \Gamma^*_{y_k+\nu y_l} \eta, \ 1 \leq k < l \leq 5
\]

are a basis of the Néron-Severi group of $\text{Alb}(S)$.

Proof. Let $1 \leq k \leq 5$ be an integer. The element $\Gamma^*_y \eta = \frac{i}{\sqrt{11}} dy_k \wedge d\bar{y}_k$ is in the basis of Lemma 0.11. Let $1 \leq l < k \leq 5$ be integers, let be $a \in \{1, \nu\}$, and $\ell = y_k + ay_l$. We have:

\[
\Gamma^*_\ell \eta = \frac{i}{\sqrt{11}} (dy_k \wedge d\bar{y}_k + \bar{a}dy_k \wedge d\bar{y}_l + ady_l \wedge d\bar{y}_k + a\bar{a}dy_l \wedge d\bar{y}_l),
\]

this proves, when we take $a = 1$ and next $a = \nu$, that the forms of the basis of Lemma 0.11 are \mathbb{Z}-linear combinations of the forms $\eta_k, \eta^1_{k,l}, \eta^\nu_{k,l}, \ 1 \leq k, l \leq 5$. \hfill \Box

Let us prove the Theorem 0.10.

Proof. As the homology class of S in $\text{Alb}(S)$ is equal to $\frac{\Theta^3}{3!}$, the intersection of the fibres F_ℓ and $F_{\ell'}$ is equal to:

\[
\int_A \frac{1}{3!} \wedge^3 c_1(\Theta) \wedge \Gamma^*_\ell \eta \wedge \Gamma^*_{\ell'} \eta.
\]
Write ℓ in the basis $x_1, \ldots, x_5 : \ell = a_1x_1 + \ldots + a_5x_5$ and $\ell' = b_1x_1 + \ldots + b_5x_5$, then:

$$\frac{1}{3!} \left(\frac{i}{\sqrt{11}} \right)^2 d\ell \wedge d\ell' \wedge d\ell'' \wedge (\wedge^3 c_1(\Theta))$$

is equal to:

$$\left(\frac{i}{\sqrt{11}} \right)^3 (\sum a_jx_j) \wedge (\sum \bar{a}_jx_j) \wedge (\sum b_jx_j) \wedge (\sum \bar{b}_jx_j)$$

$$\wedge \sum_{h<j<k} dx_h \wedge dx_j \wedge dx_k$$

that is equal to:

$$\left(\sum a_k\bar{a}_k\bar{b}_j - a_k\bar{a}_jb_jb_k \right) \frac{1}{5!} \wedge^5 c_1(\Theta).$$

But: $\int_A \frac{1}{3!} \wedge c_1(\Theta) = 1$ because Θ is a principal polarisation of $\text{Alb}(S)$, hence:

$$F_{\ell}F_{\ell'} = \int_A \frac{1}{3!} \wedge^3 c_1(\Theta) \wedge \Gamma_{\ell}^* \eta \wedge \Gamma_{\ell'}^* \eta = \sum_{k\neq j} a_k\bar{a}_kb_j\bar{b}_j - a_k\bar{a}_jb_jb_k$$

$$= ||\ell||^2 ||\ell'||^2 - \langle \ell, \ell' \rangle \langle \ell', \ell \rangle.$$

By [5] (10.9) and Lemma 11.27, $\frac{3}{2} \partial^* c_1(\Theta)$ is the Poincaré dual of a canonical divisor K of S, hence:

$$KF_{\ell} = \frac{3}{2} \partial^* c_1(\Theta) \partial^* \Gamma_{\ell}^* \eta = \frac{3}{2} \int_A \frac{1}{3!} \wedge^4 c_1(\Theta) \wedge \Gamma_{\ell}^* \eta$$

and:

$$KF_{\ell} = \int_A 6 \left(\frac{i}{\sqrt{11}} \right)^5 (\sum a_jdx_j) \wedge (\sum \bar{a}_jdx_j) \wedge \sum_{1\leq k\leq 5} (\wedge_{j\neq k}(dx_j \wedge d\bar{x}_j))$$

so $KF = 6 \sum_{k=1}^5 a_k\bar{a}_k = 6 ||\ell||^2$. Hence we have $g(F_{\ell}) = (KF_{\ell} + 0)/2 + 1 = 3 ||\ell||^2 + 1$.

Lemma 0.12 gives us a basis $\eta_1, \ldots, \eta_{25}$ of $\text{NS}(\text{Alb}(S))$ and we know the intersections $\partial^* \eta_k \partial^* \eta_l$ in the Fano surface. With the help of a computer, we can verify that the determinant of the intersection matrix:

$$(\partial^* \eta_k \partial^* \eta_l)_{1 \leq k, l \leq 25}$$

is equal to $2^2 11^{10}$. By general results of [10], Proposition 1.17, the index of $\partial^* \text{NS}(\text{Alb}(S))$ is 2 and $\text{NS}(S)$ is generated by $\partial^* \text{NS}(\text{Alb}(S))$ and the class of an incidence divisor C_s.

We obtain also the following corollary:

Corollary 0.13. Let C be a smooth curve of genus > 0 and let $\gamma : S \to C$ be a fibration with connected fibres. Then there exists an isomorphism $j : \mathbb{E} \to C$ and an $\ell \in \Lambda^*_3$ such that $\gamma = j \circ \gamma_{\ell}$.

The connected fibrations (in a curve of genus > 0) up to isomorphism are in bijection with $\mathbb{P}_2^4(\mathbb{Z}[\nu])$. \hfill \square
Proof. The natural morphism \(\wedge^2 H^0(\Omega_S) \to H^0(S, \wedge^2 \Omega_S) \) is an isomorphism, hence if \(\gamma : S \to C \) is fibration on a curve of genus > 0, the curve \(C \) has genus 1. This implies that there is a morphism \(\Gamma : \text{Alb}(S) \to C \) such that \(\gamma = \Gamma \circ \vartheta \). Moreover \(\Gamma \) has connected fibres hence \(C \) is isomorphic to \(\mathbb{E} \) (here we use the fact that \(\mathbb{Z}[\nu] \) is principal).

Let \(\ell \in \Lambda^*_A, \ell = t_1y_1 + \ldots + t_5y_5 \), the fibration \(\Gamma_\ell \) has connected fibres if and only if \(t_1, \ldots, t_5 \) generates \(\mathbb{Z}[\nu] \). \(\square \)

References

Xavier Rouleau
Max Planck Institute für Mathematik,
Vivatgasse 7,
53111 Bonn,
Germany

rouleau@mpim-bonn.mpg.de