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Introduction

A considerable part of this manuscript is based on the notes of a lecture course in
noncommutative algebraic geometry given at Kansas State University during the Fall of
2005 and Spring of 2006 and on (the second half of) my lectures delivered at the School
on Algebraic K-Theory and Applications which took place at the International Center for
Theoretical Physics (ICTP) in Trieste during the last two weeks of May of 2007 (see [R2],
or [R3]). The starting point of the actual lectures in Kansas was the homological algebra
of exact categories as it is viewed by Keller and Vossieck [KeV]. Besides an optimization
of the Quillen’s definition of an exact category, they observed that the stable categories
of exact categories with enough injectives have a suspension functor and triangles whose
properties give a 'one-sided’ version of Verdier’s triangulated category, which they call a
suspended category. A short account on this subject is given in Appendix K.

The main body of the text reflects attempts to find natural frameworks for fundamen-
tal homological theories which appear in noncommutative algebraic geometry. The first
move in this direction is the replacing exact categories with a much wider class of right
exact categories. These are categories endowed with a Grothendieck pretopology whose
covers are strict epimorphisms. The dual structures, left exact categories, appear naturally
and play a crucial role in a version of K-theory sketched in Section 7 of this work.

Sections 1 and 2 contain generalities on right exact categories. In Section 1, we intro-
duce right ezact (not necessarily additive) categories and sketch their basic properties. We
define Karoubian right exact categories and prove the existence (under certain conditions)
of the Karoubian envelope of a right exact category. We observe that any k-linear right
exact category is canonically realized as a subcategory of an exact k-linear category — its
exact envelope. In Section 2, we consider right exact categories with initial objects. The
existence of initial (resp. final) objects allows to introduce the notion of the kernel (resp.
cokernel) of a morphism. Most of the section is devoted to some elementary properties of
the kernels of morphisms, which are well known in the abelian case.

Section 3 is dedicated to satellites on right exact categories. Its content might be
regarded as a non-abelian and non-additive (that is not necessarily abelian or additive)
version of the classical theory of derived functors. We introduce 9*-functors and prove
the existence of the universal 0*-functors on a given right exact 'space’ with values in
categories with kernels of morphisms and limits of filtered diagrams. We establish the
existence of a universal ’exact’ 0*-functor on a given right exact 'space’.

The latter subject naturally leads to a general notion of the costable category of a right
exact category, which appears in Section 4. We obtain (by turning properties of costable
categories into axioms) the notion of a (not necessarily additive) cosuspended category. We
introduce the notion of a homological functor on a cosuspended category and prove the
existence of a universal homological functor.



In Section 5, we introduce projective objects of right exact categories (and injective
objects of left exact categories). They play approximately the same role as in the classical
case: every universal 0*-functor annihilates pointable projectives (we call this way projec-
tives which have morphisms to initial objects); and if the right exact category has enough
projectives, then every ’exact’ 0*-functor which annihilates all projectives is universal.

Starting from Section 6, a (noncommutative) geometric flavor becomes a part of the
picture: we interpret svelte right exact categories as dual objects to (noncommutative) right
exact 'spaces’ and ’exact’ functors between them as inverse image functors of morphisms
of ’spaces’. We introduce a natural left exact structure on the category of right exact
‘spaces’. Inverse image functors of its inflations are certain localizations functors.

Section 7 is dedicated to the first applications: the universal K-theory of right exact
‘spaces’. We define the functor Ky and then introduce higher K-functors as satellites of
Ky. More precisely, the K-functor appears as a universal contravariant 9*-functor on a left
exact category over the left exact category of right exact ’spaces’. Here ‘over’ means an
‘exact’ functor to the category left exact ’spaces’. Our K-functor has exactness properties
which are expessed by the long ’exact’ sequences corresponding to those ’exact’ localiza-
tions which are inflations. In the abelian case, every exact localization is an inflation.
Quillen’s localization theorem states that the restriction of his K-functor to abelian cat-
egories has a natural structure of a an ’exact’ d-functor. It follows from the universality
of the K-theory defined here, that there exists a unique morphism from the Quillen’s K-
functor K2 to the universal K-functor K¢ defined on the left exact category of ’spaces’
represented by abelian categories. In Section 8, we introduce infinitesimal ’spaces’. We
establish some general facts about satellites and then, as an application, obtain the devis-
sage theorem in K-theory. It is worth to mention that infinitesimal ’spaces’ is a serious
issue in noncommutative (and commutative) geometry: they serve as a base of a noncom-
mutative version of Grothendieck-Berthelot crystalline theory and are of big importance
for the D-module theory on noncommutative ’spaces’. We make here only a very little use
of them leaving a more ample development to consequent papers.

The remaining five sections appear under the general title “complementary facts”.

In Section C1 (which complements Section 3), we look at some examples, which acquire
importance somewhere in the text. In Section C2, we pay tribute to standard techniques of
homological algebra by expanding the most popular facts on diagram chasing to right exact
categories. They appear here mainly as a curiosity and are used only once in the main body
of the manuscript. Section C3 is dedicated to localizations of exact and (co)suspended cat-
egories. In particular, t-structures of (co)suspended categories appear on the scene. Again,
a work by Keller and Vossieck, [KV1], suggested the notions. Section C4 is dedicated to
cohomological functors on suspended categories and can be regarded as a natural next
step after the works [KeV] and [Kel]. It is heavily relied on Appendix K, where the basic
facts on exact and suspended categories are gathered, following the approach of B. Keller
and D. Vossieck [KeV], [KV1], [Ke2], except for some complements and most of proofs,
which are made more relevant to the rest of the work. We consider cohomological func-
tors on suspended categories with values in exact categories and prove the existence of a
universal cohomological functor. The construction of the universal functor gives, among
other consequences, an equivalence between the bicategory of Karoubian suspended svelte
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categories with triangle functors as 1-morphisms and the bicategory of exact svelte Z -
categories with enough injectives whose 1-morphisms are ’exact’ functors. We show that if
the suspended category is triangulated, then the universal cohomological functor takes val-
ues in an abelian category, and our construction recovers the abelianization of triangulated
categories by Verdier [Ve2]. It is also observed that the triangulation of suspended cate-
gories induces an abelianization of the corresponding exact Z,-categories. We conclude
with a discussion of homological dimension and resolutions of suspended categories and
exact categories with enough injectives. These resolutions suggest that the 'right’ objects
to consider from the very beginning are exact (resp. abelian) and (co)suspended (resp.
triangulated) Z7 -categories. All the previously discussed facts (including the content of
Appendix K) extend easily to this setting. In Section C5, we define the weak costable cat-
egory of a right exact category as the localization of the right exact category at a certain
class of arrows related with its projectives. If the right exact category in question is exact,
then its costable category is isomorphic to the costable category in the conventional sense
(reminded in Appendix K). If a right exact category has enough pointable projectives (in
which case all its projectives are pointable), then its weak costable category is naturally
equivalent to the costable category of this right exact category defined in Section 4. We
study right exact categories of modules over monads and associated stable and costable
categories. The general constructions acquire here a concrete shape. We introduce the
notion of a Frobenius monad. The category of modules over a Frobenius monad is a Frobe-
nius category, hence its stable category is triangulated. We consider the case of modules
over an augmented monad which includes as special cases most of standard homological
algebra based on complexes and their homotopy and derived categories.

A large part of this manuscript was written during my visiting Max Planck Institut
fiir Mathematik in Bonn and THES. I would like to express my gratitude for hospitality
and excellent working conditions.



1. Right exact categories.

1.1. Right exact categories and (right) ’exact’ functors. We define a right
exact category as a pair (Cx, €x ), where Cx is a category and €x is a pretopology on C'x
whose covers are strict epimorphisms; that is for any element M — L of & (- a cover),
the diagram M xp M — M — L is exact. This requirement means precisely that the
pretopology €x is subcanonical; i.e. every representable presheaf is a sheaf. We call the
elements of Ex deflations and assume that all isomorphisms are deflations.

1.1.1. The coarsest and the finest right exact structures. The coarsest right
exact structure on a category Cx is the discrete pretopology: the class of deflations coin-
cides with the class Iso(Cx) of all isomorphisms of the category Cx.

Let &% denote the class of all universally strict epimorphisms of C'x; i.e. elements of

% are strict epimorphisms M — N such that for any morphism NN , there exists
a cartesian square

f

M — M
?l cart le

f
N —— N

whose left vertical arrow is a strict epimorphism. It follows that €% is the finest right
exact structure on the category C'x. We call this structure canonical.

If C'x is an abelian category or a topos, then €% consists of all epimorphisms.

If C'x is a quasi-abelian category, then &5 consists of all strict epimorphisms.

1.1.2. Right ’exact’ and ’exact’ functors. Let (Cx,€x) and (Cy, €y) be right
exact categories. A functor Cx L, Oy will be called right ‘exact’ (resp. ’exact’) if it
maps deflations to deflations and for any deflation M —— N of €x and any morphism

N 7, N, the canonical arrow
F(N xy M) —— F(N) xp(y) F(M)

is a deflation (resp. an isomorphism). Thus, the functor F is ’exact’ if it maps deflations
to deflations and preserves pull-backs of deflations.

1.1.3. Weakly right ’exact’ and weakly ’exact’ functors. A functor Cx N Cy
is called weakly right ’exact’ (resp. weakly ’exact’) if it maps deflations to deflations and
for any arrow M — N of €x, the canonical morphism

F(M XNM) —>F(M) XF(N) F(M)
is a deflation (resp. an isomorphism). In particular, weakly ’exact’ functors are weakly
right 'exact’.

1.1.4. Note. Of cause, 'exact’ (resp. right ’exact’) functors are weakly ’exact’
(resp. weakly right ’exact’). In the additive (actually, a more general) case, weakly ’exact’
functors are ’exact’ (see 2.5 and 2.5.2).



1.2. Proposition. (a) Let (Cx,€x) be a svelte right exact category. The Yoneda

embedding induces an ’exact’ fully faithful functor (Cx,€x) =, (Cxe, €%, ), where
Cx, is the category of sheaves of sets on the presite (Cx,€x) and €%, the family of all
universally strict epimorphisms of Cx, (- the canonical structure of a right exact category).

(b) Let (Cx, €x) and (Cy, Ey) be right exact categories and (Cx, Ex) AN (Cy, Ey)

©
a right weakly ‘exact’ functor. There exists a functor Cx, —— Cy, such that the diagram

*

CXL)CY

i | | i

*

@
Cx e CY@

quasi commutes, i.e. *j% ~ iy *. The functor ©* is defined uniquely up to isomorphism
and has a right adjoint, Q..

Proof. (a) The argument is the same as the part (i) of the proof of K5.2.
(b) The argument coincides with the proof of K5.4. m

1.3. Interpretation: ’spaces’ represented by right exact categories. Right
weakly ’exact’ functors will be interpreted as inverse image functors of morphisms between
'spaces’ represented by right exact categories. We consider the category €sp® whose
objects are pairs (X, €x), where (Cx,€x) is a svelte right exact category. A morphism

from (X, €x) to (Y, €y) is a morphism of ’spaces’ X —- Y whose inverse image functor

Cy £= Cx is a right weakly ’exact’ functor from (Cy, €y) to (Cx, €x). The map which
assigns to every ’space’ X the pair (X, [so(Cx)) is a full embedding of the category |Cat|®
of ’spaces’ into the category Esp”. This full embedding is a right adjoint functor to the
forgetful functor

Espy —— |Cat|®, (X,€x)+— X.

1.4. Proposition. Let (Cx, €x) and (Cy, Ey) be additive right ezact categories and

Cx £, Cy an additive functor. Then
(a) The functor F is right weakly ’exact’ iff it maps deflations to deflations and the

Sequence
F(e)
F(Ker(¢)) —— F(M) —— F(N) —— 0

is exact for any deflation M —— N.
(b) The functor F is weakly ’exact’ iff it maps deflations to deflations and the sequence

0 F(Ker(e)) —— F(M) —s F(N) —— 0

is ‘exact’ for any deflation M —— N.



Proof. (a) Notice that each arrow of €x has a kernel, because the square

Ker(e) —— M

| et |

0 — N

is cartesian, and it exists when ¢ € €x. This observation allows to use the argument of
K4.3 which proves the assertion.

(b) If the category Cx is additive and there exists the kernel of M —— N, then
M x n M is canonically isomorphic to the coproduct of M and Ker(e). In fact, we have a
commutative diagram

Ker(pa) . Ker(e)
0
& | | M
P1
A
M M, MxyM —— M — N

P2
(borrowed from the argument of K4.3). Its left vertical arrow and the diagonal morphism

M ﬂ M xn M determine an isomorphism M @ Ker(ps) — M x x M, which implies
an isomorphism M @ Ker(e) — M xy M. Since the functor F' is additive, we have
canonical isomorphisms F (M xy M) ~ F(M @ Ker(e)) ~ F(M) ® F(Ker(e)). There is a
commutative diagram

[e%

F(MXNM) E— F(M)XF(N)F(M)

| k 2)

id®pS
F(M)® F(Ker(e)) —— F(M)® Ker(F(e))

. . a B

in which F(M xy M) —— F(M) xp(n) F(M) and F(Ker(¢)) —— Ker(F(e)) are
natural morphisms. Since the vertical arrows of (2) are isomorphisms, this shows that « is
an isomorphism iff 4 is an isomorphism. This and (a) imply that the functor F' is weakly
‘exact’ iff the sequence

0 —— F(Ker(e)) —— F(M) & F(N) —— 0

is exact for every deflation M — N. m

1.5. Karoubian envelopes of categories and right exact categories.
1.5.1. Lemma. Let M be an object of a category Cx and M 2= M an idempotent
(i.e. p?> =p). The following conditions are equivalent:

(a) The idempotent p splits, i.e. p is the composition of morphisms M N M
such that e oj = idy.



idM

(b) There exists a cokernel of the pair M —= M.

idM

(c) There exists a kernel of the pair M ——= M.

If the equivalent conditions above hold, then Ker(id,,,p) ~ Coker(id,,,p).

Proof. (b) < (a) = (). If the idempotent M —2» M is the composition of M —» N

1d

and N - M such that ¢ oj = idy, then M —— N is a cokernel of the pair M —— M,

because eop = eojoe = ¢ and if M LI § any morphism such that top = t, then
t = (toj)oe. Since ¢ is an epimorphism, there is only one morphism g such that t =goe.
This shows that (a) = (b). The implication (a) = (c¢) follows by duality.

idM

(b) = (a). Let M —= N be a cokernel of the pair M —— M. Since p o p = p, there

exists a unique morphism N s M such that p=joe. Sinceeojoe=c¢op=e=1ddyoe
and e is an epimorphism, ¢ oj = idy.

The implication (¢) = (a) follows by duality. m

1.5.2. Definition. A category Cx is called Karoubian if each idempotent in Cx
splits. It follows from 1.5.1 that C'x is a Karoubian category iff for every idempotent
M 25 M in Cx, there exists a kernel (equivalently, a cokernel) of the pair (id,,,p).

1.5.3. Proposition. For any category Cx, there exists a Karoubian category Cx,

*

¢
and a fully faithful functor Cx — Cx, such that any functor from Cx to a Karoubian
category factors uniquely up to a natural isomorphism through €% . Every object of Cx,, s
a retract of an object € (M) for some M € ObCx.

Proof. Objects of the category Cx, are pairs (M,p), where M is an object of the
category Cx and M —2» M is an idempotent endomorphism, i.e. p? = p. Morphisms
(M,p) — (M "'p’) are morphisms M L M’ such that fp= f = p'f. The composition
of (M,p) — (M’,p") and (M’,p) (M",p") is (M,p) 25 (M”,p”) It follows from
this definition that (M, p) == (M, p) is the identical morphlsm If (M, p) - (M p) is an
idempotent, then it splits into the composition of (M, p) — (M, q) and (M, q) — (M, p).
The composition of (M,q) —— (M,p) —— (M,q) is (M,q) —— (M,q), which is the

identical morphism. The functor Cx E—X> Cx, assigns to each object M of Cx the pair
(M,id,,) and to each morphism M -2 N the morphism (M, id,,) - (N, idy).

For any functor Cx £, Cz to a Karoubian category Cyz, let Cx, Fx, C'z denote a
functor which assigns to every object (M, p) of the category Cx, the kernel of the pair

(idp(ary, F(p)). Tt follows that Fx o 8% ~ F. In particular, for any functor Cx F, Cy,
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there exists a natural functor Cx, I, ¢ X such that the diagram

Cx . Cy
| | &
Cx, —— Cyy

quasi-commutes. The map F' —— F defines a (pseudo) functor from Cat to the category
KCat of Karoubian categories which is a left adjoint to the inclusion functor. This implies,
in particular, the universal property of the correspondence Cx —— Cx, .

For every object (M,p) of the category Cx,, the morphism (M,p) —— (M, id,,)
splits; i.e. (M,p) is a retract of €5 (M) = (M,id,,). =

The category Cx, in 1.5.3 is called the Karoubian envelope of the category Cx.
1.5.4. Karoubian envelopes of right exact categories.

1.5.4.1. Definition. We call a right exact category (Cx,&€x) Karoubian if the
category Cx is Karoubian and any split epimorphism of the category C'x is a deflation.

1.5.4.2. Proposition. Let (Cx,Ex) be a right exact category. Suppose that for

every idempotent M 2> M in Cx and every morphism N M such that f=npf, there
exists a cartesian square /
N L
¢/ l cart l D
N L

Then the Karoubian envelope Cx, of Cx has a structure €x,. of a right ezact Karoubian

*

category such that the canonical functor Cx x, Cx, is an ’exact’ functor from (Cx, Ex)
to (Cxy,€x,). The right exact Karoubian category (Cx, ,€x, ) is universal in the fol-
lowing sense: every (weakly) right exact functor from the right exact category (Cx, €x)
to a right exact Karoubian category (Cy, Ey) is uniquely represented as the composition
of the canonical exact, hence ‘exact’, functor from (Cx,€x) to its Karoubian envelope
(Cxy,€x,) and a (weakly) right exact furnctor from (Cx, €x, ) to (Cy, Ey).

Proof. (a) Let Cx be a category and M —— L a split epimorphism; i.e. there exists

a morphism L —— M such that e oj = idy,. Let N < L be a morphism. Since j is a

monomorphism, a pullback of N 2, L <& M exists iff a pullback of N 2, LM
exists and they are isomorphic to each other. Notice that p = je is an idempotent and a

morphism N L\ M factors through L I M f =pf. Thus, we have cartesian squares

N’ L M N’ L M
¢/ l cart l D and ¢/ l cart l ¢
N LA
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It follows from the right cartesian square that the morphism ¢’ is a split epimorphism,
because it is a pullback of a split epimorphism.

(b) Suppose that the condition of 1.5.4.2 holds, and consider a pair of morphisms
(N, u) 4, (M, q) < (M, p) of the Karoubian envelope Cx, . By definition, fu = qf = f
and gp = pq = q. By the hypothesis, there exists a pullback N x;, M. The equality

qf = f implies that the projection N x; , M 9, N splits, i.e. there exists a morphism
NN X f.q M such that ¢'j = idy. Set v’ =j’q’. Then

/

f
(N Xpq M,u') —— (M,p)

q J J q
f
(N, u) — (M, q)
is a cartesian square in C'x,. . This shows that split epimorphisms of Cx, are stable under

base change. The class of deflations € x, consists of all possible compositions of morphisms
of ¥% (€x) and split epimorphisms.

(c) By the universal property of Karoubian envelopes, any functor Cx , Cy is
represented as the composition of the canonical embedding Cx — Cx, and a uniquely

determined functor Cx L. Cy. It Fisa (weakly) right ’exact’ functor from (Cx, €x) to

(Cy, @y ), then F is a (resp. weakly) right ’exact’ morphism from the Karoubian envelope
(CXK, QEXK) of (Cx, QEX) to (Cy, ny) n

1.5.5. Proposition. Let (Cx,€x) and (Cy,Ey) be right exact categories. Suppose

that €x consists of split deflations. Then a functor Cx L, Cy 1is a weakly right ‘exact’
functor from (Cx,&x) to (Cy, Ey) iff it maps deflations to deflations.

Proof. Let M —— N be a split epimorphism in Cx and N 5 M its section. Set
p = joe. Suppose that M Xy M exists (which is the case if ¢ € €x). Then we have a

commutative diagram
p

M — M . N
idM
tl lz’dM lz’dN (1)
p1
Mx, M —— M . N

P2

whose left vertical arrow, t, is uniquely determined. A functor Cx £, Cy maps (1) to
the commutative diagram

F(p) F(e)
(M) — . FM) —— F(N)
id
F(o) | | i | 2)
F(p1) F(e)
F(Mx; M) —— FM) —— F(N)
F(p2)



whose upper row is an exact diagram (by 1.5.1). Therefore, the lower row of (2) is an exact
diagram. The assertion follows now from the definition of a weakly right ’exact’ functor. m

1.5.6. Corollary. Let (Cx,€x) be a right exact category whose deflations are split.
Then every presheaf of sets on (Cx,€x) is a sheaf.

2. Right exact categories with initial objects.

2.1. Kernels and cokernels of morphisms. Let C'x be a category with an initial

object, x. For a morphism M I N we define the kernel of f as the upper horizontal

arrow in a cartesian square
e(f)

Ker(f) ——
f’l cart l f
x — N

when the latter exists.
Cokernels of morphisms are defined dually, via a cocartesian square

c(f)

N —— Cok(f)
f T cocart T I’
M — oy

where y is a final object of C'x.

If C'x is a pointed category (i.e. its initial objects are final), then the notion of the

f

e(f) ;
kernel is equivalent to the usual one: the diagram Ker(f) ——

0

N is exact.

. ¢(f)

Dually, the cokernel of f makes the diagram M —____, N —— Cok(f) exact.

—_—
0

2.1.1. Lemma. Let Cx be a category with an initial object x.

(a) Let a morphism M SN of Cx have a kernel. The canonical morphism

e(f)
Ker(f) — M s a monomorphism, if the umque arrow © —5 N is a monomorphism.

(b) If M S Nisa monomorphism, then x —% M is the kernel of f.

Proof. (a) By definition of the kernel of f, we have a cartesian square

e(f)

Ker(f) —
f’l cart l f
x Z—N> N

e(f)
Therefore, Ker(f) —— M is a monomorphism if % N is a monomorphism.
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(b) Suppose that M T Nisa monomorphism. If

L — =
(0 l l IN
f
M — N
is a commutative square, then f equalizes the pair of arrows (1, iy 0¢). If f is a monomor-
phism, the latter implies that ¢ = ij; o ¢. Therefore, in this case, the square

idg

5 IN

R =
2%&

e
f
_—

is cartesian. m

2.1.2. Corollary. Let Cx be a category with an initial object x. The following

conditions are equivalent:

e(f)
(a) If M Ly N has a kernel, then the canonical arrow Ker(f) —— M is a

monomorphism.
(b) The unique arrow x ~% M is a monomorphism for any M € ObCx.

Proof. (a) = (b), because, by 2.1.1(b), the unique morphism x M, M is the kernel of
the identical morphism M — M. The implication (b) = (a) follows from 2.1.1(a). m

2.1.3. Note. The converse assertion is not true in general: a morphism might have
a trivial kernel without being a monomorphism. It is easy to produce an example in the
category of pointed sets.

2.2. Examples.

2.2.1. Kernels of morphisms of unital k-algebras. Let C'x be the category Algy
of associative unital k-algebras. The category C'x has an initial object — the k-algebra k.
For any k-algebra morphism A — B, we have a commutative square

A _* . B

ey) | |

e(¢)
ko K(g) —s &k
where K () denote the kernel of the morphism ¢ in the category of non-unital k-algebras
and the morphism £(y) is determined by the inclusion K(¢) — A and the k-algebra
structure K — A. This square is cartesian. In fact, if



is a commutative square of k-algebra morphisms, then C' is an augmented algebra: C' =
k@ K (). Since the restriction of @ oy to K(v) is zero, it factors uniquely through K ().

Therefore, there is a unique k-algebra morphism C =k & K (v) 2K er(p) =k @ K(p)
such that v = €(¢) o 3 and 9 = €(¢p) o S.

This shows that each (unital) k-algebra morphism A —~ B has a canonical kernel
Ker(p) equal to the augmented k-algebra corresponding to the ideal K (¢p).

t(yp)
It follows from the description of the kernel Ker(¢) —— A that it is a monomor-
phism iff the k-algebra structure kK — A is a monomorphism.

Notice that cokernels of morphisms are not defined in Algg, because this category
does not have final objects.

2.2.2. Kernels and cokernels of maps of sets. Since the only initial object of the
category Sets is the empty set () and there are no morphisms from a non-empty set to (), the

kernel of any map X — Y is ) — X. The cokernel of a map X .Y is the projection

)]
y Y/f(X), where Y/ f(X) is the set obtained from Y by the contraction of f(X)

into a point. So that ¢(f) is an isomorphism iff either X = (), or f(X) is a one-point set.

2.2.3. Presheaves of sets. Let Cx be a svelte category and C% the category of
non-trivial presheaves of sets on C'x (that is we exclude the t¢rivial presheaf which assigns
to every object of Cx the empty set). The category C% has a final object which is the
constant presheaf with values in a one-element set. If C'x has a final object, y, then
y = Cx(—,y) 1is a final object of the category C%. Since C% has small colimits, it has
cokernels of arbitrary morphisms which are computed object-wise, that is using 2.2.2.

If the category Cx has an initial object, z, then the presheaf T = Cx(—,x) is an
initial object of the category C'%. In this case, the category C% has kernels of all its
morphisms (because C'y has limits) and the Yoneda functor C'x RN, > preserves kernels.

Notice that the initial object of C% is not isomorphic to its final object unless the
category C'x is pointed, i.e. initial objects of C'x are its final objects.

2.2.4. Sheaves of sets. Let 7 be a pretopology on Cx and Cx, denote the category
of sheaves of sets on (Cx, 7). Similarly to C'y, the category Cx. has a final object. If C'x
has an initial object x, then the sheaf associated with the presheaf C'x(—,z) is an initial
object of Cx_. In particular, Cx(—, ) is an initial object of C'x_ if it is a sheaf (say, the
pretopology 7 is subcanonical).

2.3. Some properties of kernels. Fix a category Cx with an initial object x.

2.3.1. Proposition. Let M S Nbea morphism of C'x which has a kernel pair,
P1
M xny M —— M. Then the morphism f has a kernel iff p1 has a kernel.

P2

12



Proof. Suppose that f has a kernel, i.e. there is a cartesian square

Ker(f) m M
| f

| |

x — N

Then we have the commutative diagram

p2

Ker(f) —— MxyM -2 M

f l pll l f (2)

in f
T — M — N
which is due to the commutativity of (1) and the fact that the unique morphism x N, N

factors through the morphism M . N. The morphism ~ is uniquely determined by
the equality ps o v = €(f). The fact that the square (1) is cartesian and the equalities
paoy =t(f) and iy = f oip imply that the left square of the diagram (2) is cartesian,

ie. Ker(f) M x n M is the kernel of the morphism p;.
Conversely, if p; has a kernel, then we have a diagram

t(p1) P2
Ker(py) —— MxyM —— M

P} l cart pll cart l f
x RGN M — N

which consists of two cartesian squares. Therefore the square

e(f)

Ker(py) —— M
p’ll cart l f
N
x — N

with &(f) = p2 o €(p1) is cartesian. m
2.3.2. Remarks. (a) Needless to say that the picture obtained in (the argument of)

7_/
2.3.1 is symmetric, i.e. there is an isomorphism Ker(p,) — Ker(py) which is an arrow
in the commutative diagram

t(p1) P1
Ker(py) —— MxyM —— M

7 | |2 | .,
t(p2) P2

Ker(py) —— MxyM —— M

13
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(b) Let a morphism M L, N have a kernel pair, M x yM — M, and a kernel. Then,

pz
t(p1)
by 2.3.1, there exists a kernel of p;, so that we have a morphism Ker(p;) M XN M
A
and the diagonal morphism M M x ~N M. Since the left square of the commutative
diagram

’

P
r —— Ker(p) —

l cart c(pl)l l

A D1
M — MxyM — M
is cartesian and compositions of the horizontal arrows are identical morphisms, it follows
that its left square is cartesian too. Loosely, one can say that the intersection of Ker(p;)
with the diagonal of M Xy M is zero. If there exists a coproduct Ker(py) [[ M, then the

t(p1) A
pair of morphisms Ker(p;) M x N M " M determine a morphism

Ker(pl)HM —— M xy M.

If the category C'x is additive, then this morphism is an isomorphism, or, what is the
same, Ker(f)[[M ~ M xxy M. In general, it is rarely the case, as the reader can find
out looking at the examples of 2.2.

2.3.3. Proposition. Let

N
g l cart l g (3)
f
M ——- N

be a cartesian square. Then Ker(f) exists iff K er(f) exists, and they are naturally iso-
morphic to each other.

e(f)
Proof. Suppose that Ker(f) —— M exists, i.e. we have a cartesian square

f’l cart l f (4)

Since x — N factors through N’ 2, N and the square (3) is cartesian, there is a unique
morphism Ker(f') —— N’ such that the diagram

Ker(f) .M L M
f’l l f cart l f (5)
N 2. N



commutes and €(f) = g o y. Therefore the left square of (5) is cartesian.
If Ker(f) exists, then we have the diagram

Ker(f) i M L M
f’l l f cart l f
x — % N 7, N

whose both squares are cartesian. Therefore, their composition

is a cartesian square.

It follows that the unique morphism K er(f) <, Ker(f) making the diagram

Ker(f) —
g’l
Ker(f) &

commute is an isomorphism. m

2.3.4. The kernel of a composition and related facts. Fix a category Cx with
an initial object x.

2.3.4.1. The kernel of a composition. Let L L M and M -2 N be morphisms
such that there exist kernels of g and g o f. Then the argument similar to that of 2.3.3
shows that we have a commutative diagram

Ker(gf) —— Ker(g) —— =
t(gf) l cart l t(g) cart l IN (1)
L — M — N

whose both squares are cartesian and all morphisms are uniquely determined by f, g and
the (unique up to isomorphism) choice of the objects Ker(g) and Ker(gf).
Conversely, if there is a commutative diagram



whose left square is cartesian, then its left vertical arrow, K SN L, is the kernel of the

. gof
composition L —— N.

2.3.4.2. Remarks. (a) It follows from 2.3.3 that the kernel of L L M exists iff

!
the kernel of Ker(gf) —— Ker(g) exists and they are isomorphic to each other. More
precisely, we have a commutative diagram

Ker(f) Lf)> Ker(gf) L Ker(g) g—/> T

Zl t(gf) l cart l t(g) cart l iN

e(f) !
Ker(f) —— L — M . N

whose left vertical arrow is an isomorphism.
(b) Suppose that (Cx, €x) is a right exact category (with an initial object x). If the
morphism f above is a deflation, then it follows from this observation that the canonical

morphism Ker(gf) —— Ker(g) is a deflation too. In this case, Ker(f) exists, and we
have a commutative diagram

Ker(F) 2 Ker(gf) —— Ker(g)

| o) | cart | t(g)

e(f) f
Ker(f) —— L — M

whose rows are conflations.
The following observations is useful (and will be used) for analysing diagrams.

2.3.4.3. Proposition.(a) Let M 2> N be a morphism with a trivial kernel. Then

a morphism L I M has a kernel iff the composition g o f has a kernel, and these two
kernels are naturally isomorphic one to another.

(b) Let
L 1w
v | | g
Mo N

be a commutative square such that the kernels of the arrows f and ¢ exist and the kernel
of g is trivial. Then the kernel of the composition ¢ o~y is isomorphic to the kernel of the
morphism f, and the left square of the commutative diagram

~ e(f) f
Ker(f) —— Ker(¢y) —— L — M

| o s

() ~ 4
Ker(¢) —— M —— N

16



18 cartesian.

Proof. (a) Since the kernel of g is trivial, the diagram 2.3.4.1(1) specializes to the
diagram

Ker(gf) L x & x
tof) | cart | E) | i
L . m . N

with cartesian squares. The left cartesian square of this diagram is the definition of Ker(f).
The assertion follows from 2.3.4.1.

(b) Since the kernel of ¢ is trivial, it follows from (a) that Ker(f) is naturally isomor-
phic to the kernel of g o f = ¢ o y. The assertion follows now from 2.3.4.1. m

2.3.4.4. Corollary. Let Cx be a category with an initial object x. Let L T M e

t(g)
a strict epimorphism and M 2, Na morphism such that Ker(g) —— M exists and is
a monomorphism. Then the composition g o f is a trivial morphism iff g is trivial.

Proof. The morphism g o f being trivial means that there is a commutative square

M
| g
N

f
SN
IN
_

L
dl
x

By 2.3.4.3(a), Ker(go f) ~ Ker(vy) = L. Thus, we have a commutative diagram

! g’

Ker(gf) —— Ker(g) —— =z
Zl cart l t(g) cart l iN
. M N

(cf. 2.3.4.1). Since f is a strict epimorphism, it follows from the commutativity of the

t(g)
left square that Ker(g) —— M is a strict epimorphism. Since, by hypothesis, £(g) is a

monomorphism, it is an isomorphism, which implies the triviality of g. m

2.3.4.4.1. Note. The following example shows that the requirement ” Ker(g) — M
is a monomorphism” in 2.3.4.4 cannot be omitted.

Let Cx be the category Algy of associative unital k-algebras, and let m be an ideal
of the ring k such that the epimorphism k& — k/m does not split. Then the identical
morphism k/m — k/m is non-trivial, while its composition with the projection & — k/m
is a trivial morphism.

17



2.3.5. The coimage of a morphism. Let M I, N be an arrow which has a

kernel, i.e. we have a cartesian square

e(f)

Ker(f) ——
1 l cart l f
T _, N
e(f)
with which one can associate a pair of arrows Ker(f) — M, where Oy is the composition
Oy
of the projection f’ and the unique morphism = -*% M. Since iy = f o4, the morphism
e(f)
f equalizes the pair Ker(f) —= M. If the cokernel of this pair of arrows exists, it will
Of

be called the coimage of f and denoted by Coim(f), or. loosely, M/Ker(f).
Let M — N be a morphism such that Ker(f) and Coim(f) exist. Then f is the

by
composition of the canonical strict epimorphism M —— Coim/(f) and a uniquely defined

j
morphism Coim(f) TN,

2.3.5.1. Lemma. Let M 1> N be a morphism such that Ker(f) and Coim(f)
exist. There is a natural isomorphism Ker(f) — Ker(py).

Proof. The outer square of the commutative diagram

f/

Ker(f) —— x —
E(f)l cart l | l (1)

M —— Com(f) ——

is cartesian. Therefore, its left square is cartesian which implies, by 2.3.3, that Ker(py) is
isomorphic to Ker(f'). But, Ker(f') ~ Ker(f). m

2.3.5.2. Note. By 2.3.4.1, all squares of the commutative diagram

Ker(f) L x
1d l cart l

. bs .
Ker(jrpf) —— Ker(jy) —— = (2)

E(f)l cart l cart l
Mo P coim(f) 2 L

are cartesian.

18



If Cx is an additive category and M L L is an arrow of C x having a kernel and

Jf
a coimage, then the canonical morphism Coim(f) —— L is a monomorphism. Quite a
few non-additive categories have this property.

2.3.5.3. Example. Let C'x be the category Algy of associative unital k-algebras.
Since cokernels of pairs of arrows exist in Algy, any algebra morphism has a coimage. It
follows from 2.2.1 that the coimage of an algebra morphism A - B is A/K(y), where
K(p) is the kernel of ¢ in the usual sense (i.e. in the category of non-unital algebras).
The canonical decomposition ¢ = j, o p,, coincides with the standard presentation of ¢ as
the composition of the projection A — A/K(y) and the monomorphism A/K(p) — B.
In particular, ¢ is strict epimorphism of k-algebras iff it is isomorphic to the associated

coimage map A =, Coim(p) = A/K (o).

2.4. Conflations and fully exact subcategories of a right exact category.
Fix a right exact category (Cx, €x) with an initial object z. We denote by Ex the class

of all sequences of the form K M N , where ¢ € Ex and K Y, M is a kernel of e.
Expanding the terminology of exact additive categories, we call such sequences conflations.

2.4.1. Fully exact subcategories of a right exact category. We call a full
subcategory B of Cx a fully eract subcategory of the right exact category (Cx, €x), if B
contains the initial object x and is closed under extensions; i.e. if objects K and N in a

conflation K —— M — N belong to B, then M is an object of B.
In particular, fully exact subcategories of (Cx, €x) are strictly full subcategories.

2.4.2. Proposition. Let (Cx,&x) be a right exact category with an initial object x

and B its fully exact subcategory. Then the class €x g of all deflations M > N such
that M, N, and Ker(e) are objects of B is a structure of a right exact category on B such
that the inclusion functor B — Cx is an ‘exact’ functor (B,€x g) — (Cx,€x).

Proof. (a) We start with the invariance of €x ;5 under base change. Let

M —— N
’gvl cart lg
M N

be a cartesian square such that e (hence ¢) is a deflation and the objects M, N, Ker(e),
and N belong to B. The claim is that the remaining object, M, belongs to B.
In fact, consider the diagram

e(e) — p ~

Ker(¢) —— M —— N
g’l §l cart lg (7)

E(t) e
Ker(¢) —— M —— N



Since its right square is cartesian, it follows from 2.3.3 that the canonical morphism

Ker(e) -, Ker(e) is an isomorphism; i.e. the upper row of the diagram (7) is a
conflation whose ends, Ker(e¢) and N, are objects of B. Since B is fully exact, the middle

object, M , belongs to B, which means that the deflation M5 N belongs to €x 5.
(b) The invariance of €x s under base change implies that it is closed under com-

position. In fact, let L — M 5 N be morphisms of €x 5. By 2.3.4.1, we have a
commutative diagram

t/
Ker(ts) LN Ker(s) ——

t(ts) l cart l t(s) cart l iN (8)
r 2 M N

€(s)
whose squares are cartesian. Since s belongs to €x z, its kernel Ker(s) —— M is an

£(ts)
arrow of B. Applying (a) to the left cartesian square of (8), we obtain that Ker(ts) —— L

is an arrow of B, which means that ts € €x 3.

(c) Each isomorphism of the category B belongs to the class €x 3, because each
isomorphism is a deflation and its kernel is an initial object, and, by hypothesis, initial
objects belong to B. =

2.4.3. Remark. Let (Cx, €x) be a right exact category with an initial object x and
B its strictly full subcategory containing x. Let & be a right exact structure on B such
that the inclusion functor B —— C'x maps deflations to deflations and preserves kernels
of deflations. Then € is contained in €x g. In particular, € is contained in €x g if the
inclusion functor is an ’exact’ functor from (B, &) to (Cx,€x). This shows that if B is
a fully exact subcategory of (Cx,€x), then €x g is the finest right exact structure on B
such that the inclusion functor B — Cx is an exact functor from (B, €x ) to (Cx, €x).

2.5. Proposition. Let (Cx,€x) and (Cy,Ey) be right exact categories and F a
functor C'x — Cy which maps conflations to conflations. Suppose that the category Cy
1s additive. Then the functor F is ’exact’.

Proof. Let F' be a functor C'x — Cy which preserves conflations. We need to show
that the functor F' preserves arbitrary pull-backs of deflations.

(a) Let M —— N be a deflation and N L, Na morphism of Cx. Consider the
associated with this data diagram

Ker(e) —— M —— N
gl Fl oeart |7 3)
Ker(¢) — M —— N



whose right square is cartesian. Therefore, by 2.3.3, the left vertical arrow of the diagram

(3), Ker(e) I K er(e), is an isomorphism. Since the rows of the diagram (3) are confla-
tions and, by hypothesis, F' preserves conflations, the rows of the commutative diagram

F(Ker(e)) ——) P (M) N
F(f") | F(f) | | 7 (4)

Fer) 2 ran S e

are conflations. The diagram (4) can be decomposed into a commutative diagram

Fere) " ran S m

5] L

Ker(e") & M e—”> F(N) (5)
v | 0| crt | ()

FEer(e) — oy — gV

where the right lower square is cartesian, v is a morphism uniquely determined by the

equalities ¢” oy = F(¢) and ¢ oy = F(f); and p o 8 = F(f"”). Since the lower row

of (5) is a conflation, it follows from 2.3.3 that the morphism Ker(e”) 2, F(Ker(e))
is an isomorphism. Therefore, 3 = =1 o F(f”) is an isomorphism. Thus, we have a
commutative diagram

Fere) " ran S m

3 lz y l Zl id (6)

e(e’) " ~
Ker(e") = M F(N)

whose rows are conflations and two vertical arrows are isomorphisms.
(b) The claim is that then the third vertical arrow, F(M) —— M, is an isomorphism.
In fact, applying the canonical 'exact’ embedding of (Cy, €y) to the category Cy, of
sheaves of Z-modules on the presite (Cy, €y ), we reduce the assertion to the case when
the category is abelian (with the canonical exact structure); and the fact is well known for
the abelian categories. m

2.5.1. Corollary. Let (Cx,€x) and (Cy,€y) be additive k-linear right exact cate-
gories and F an additive functor Cx — Cy. Then the functor F is weakly ’exact’ iff it
s ‘exact’.

Proof. By 1.4, a k-linear functor C'x N Cy is a weakly ’exact’ iff it maps conflations
to conflations. The assertion follows now from 2.5. m
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2.5.2. The property (}). In Proposition 2.5, the assumption that the category Cy
is additive is used only at the end of the proof (part (b)). Moreover, additivity appears
there only because it garantees the following property:

(1) if the rows of a commutative diagram

L — M —— N

are conflations and its right and left vertical arrows are isomorphisms, then the middle
arrow is an isomorphism.

So that the additivity of Cy in 2.5 can be replaced by the property (}) for (Cy, €y ).

2.5.3. An observation. The following obvious observation helps to establish the
property (1) for many non-additive right exact categories:

If (Cx,€x) and (Cy, €y ) are right exact categories and C'x £, Cy is a conservative
functor which maps conflations to conflations, then the property (f) holds in (Cx,€x)
provided it holds in (Cy, €y ).

2.5.3.1. Example. Let (Cy,&y) are right exact k-linear category, (Cx,€x) a

right exact category, and Cx i Cy is a conservative functor which maps conflations to
conflations. Then the property (1) holds in (Cx, €x).
For instance, the property (f) holds for the right exact category (Algg, €°) of associa-

tive unital k-algebras with strict epimorphisms as deflations, because the forgetful functor

Algy, Tk — mod is conservative, maps deflations to deflations (that is to epimorphisms)

and is left exact. Therefore, it maps conflations to conflations.
2.6. Digression: right exact additive categories and exact categories.

2.6.1. Proposition. Let (Cx,€x) be an additive k-linear right eract category.
Then there exists an exact category (Cx,,€x,) and a fully faithful k-linear ’exact’ functor

Tx

(Cx,€x) —— (Cx.,€x,) which is universal; that is any ’exact’ k-linear functor from
(Cx,Ex) to an exact k-linear category factorizes uniquely through ~%.

Proof. We take as Cx, the smallest fully exact subcategory of the category Cx, of
sheaves of k-modules on (Cx, €x) containing all representable sheaves. By 8.3.1, the sub-

category Cx, coincides with 5&,00), where Cx denotes the image of C'x in Cx,. Therefore,
objects of the category Cx, are sheaves F such that there exists a finite filtration

0=Fy—F, — ... —m F,=F

such that F,, /F,,—1 is representable for 1 < m < n. By Kb5.1, the subcategory Cx_, being
a fully exact subcategory of an abelian category, is exact.
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Let (Cy, €y) be an exact k-linear category and (Cx, €x) AN (Cy,€y) an exact k-
linear functor. The functor ¢* extends to a continuous (i.e. having a right adjoint) functor

Cx, = Cy, such that the diagram

*

CX@—>C’Y

i | |3

*

(2]
CX@ e Cye

is quasi-commutative (see 1.2). Since the functor ¢* is ’exact’, it preserves pullbacks of
deflations. In particular, it preserves kernels of deflations. Therefore, the restriction of
©* to the Gabriel square, Cx(2), of C'x regarded as a subcategory of the exact category
(Cx.,€x,), preserves conflations, hence it is ’exact’. This implies that the restriction of
©* to the n-th Gabriel power C'x ), of Cx (in (Cx,, €x,)) is ’exact’ for all n, whence the
assertion. m

2.6.2. The bicategories of exact and right exact k-linear categories. Right
exact svelte k-linear categories are objects of a bicategory Rexy. Its 1-morphisms are right
weakly ’exact’ k-linear functors and 2-morphisms are morphisms between those functors.

We denote by €rry the full subbicategory of fRexr; whose objects are exact k-linear
categories. It follows from 2.6.1 that the inclusion functor €rr, — Rexy has a left adjoint
(in the bicategorical sense).

3. Satellites in right exact categories.

3.1. Preliminaries: trivial morphisms, pointed objects, and complexes. Let
C'x be a category with initial objects. We call a morphism of C'x trivial if it factors through
an initial object. It follows that an object M is initial iff ¢d,, is a trivial morphism. If C'x
is a pointed category, then the trivial morphisms are usually called zero morphisms.

3.1.1. Trivial compositions and pointed objects. If the composition of arrows

f g . .. . ) .
L — M —— N is trivial, i.e. there is a commutative square

L — M
él lg
s iN

—>N

where z is an initial object, and the morphism ¢ has a kernel, then f is the composition of
. ¢ . . .
the canonical arrow Ker(g) Y9 A and a morphism L RNy’ er(g) uniquely determined
by f and &. If the arrow z — N is a monomorphism, then the morphism ¢ is uniquely
determined by f and g ; therefore in this case, the arrow f, does not depend on &.

3.1.1.1. Pointed objects. In particular, f,; does not depend on &, if N is a pointed
object. The latter means that therre exists an arrow N — x.
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3.1.2. Complexes. A sequence of arrows

fn+1 fn fn—l fn—2
T Mo M, My, 2 (1)

is called a complex if each its arrow has a kernel and the next arrow factors uniquely
through this kernel.

3.1.3. Lemma. Let each arrow in the sequence

f3 J2 f1 fo
M3 M2 Ml MO (2)

of arrows have a kernel and the composition of any two consecutive arrows is trivial. Then

s ! f
My — My ——— M, (3)

is a complex. If My is a pointed object, then (2) is a complez.
Joof

Proof. The composition My o, My factors through an initial object; in particular,
there exist morphisms from M; to an initial object x of C'x for all ¢ > 2. Therefore, the
unique morphism z — M; is a (split) monomorphism for all i > 2. By 2.1.1(a), this

e(fi)
implies that Ker(f;) —— M;11 is a monomorphism. Therefore, there exists a unique
fiva e(fi)

arrow M; o —— Ker(f;) whose composition with Ker(f;) —— M;11 equals to f;i1.

By the similar reason, if there exists a morphism from My (resp. M;) to x, then

e(fi)
Ker(f;) —— M4 is a monomorphism for ¢ > 0 (resp. for i > 1). m

3.1.4. Corollary. A sequence of morphisms

fn+1 fn fn—l fn—2

L My M, M,y —— ...

unbounded on the right is a complex iff the composition of any pair of its consecutive arrows
18 trivial and for every i, there exists a kernel of the morphism f;.

3.1.4.1. Example. Let Cx be the category Alg, of unital associative k-algebras.
The algebra k is its initial object, and every morphism of k-algebras has a kernel. Pointed
objects of C'x which have a morphism to initial object are precisely augmented k-algebras.
If the composition of pairs of consecutive arrows in the sequence

b f ! f
3 A3 2 A2 1 Al 0 AO

is trivial, then it follows from the argument of 3.1.2 that A; is an augmented k-algebra for
all 4 > 2. And any unbounded on the right sequence of algebras with trivial compositions
of pairs of consecutive arrows is formed by augmented algebras.
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3.1.5. The categories of complexes. Let C'x be a category with initial objects.
For any integer m, we denote by K,,,(C'x) the category whose objects are complexes of the

form

fma2 fma1 fm
. — My —— M1 — My,

and morphisms are defined as usual. Every finite complex

fn—l fn—Z fm+2 fm+1 f’ln

M, — M, 1 —— ... —— Myyo —— My —— My, (3)

is identified with an object of KC,,(Cx) by adjoining on the left the infinite sequence of
trivial objects and (unique) morphisms from them.

We call an object (3) of the category K,,(Cx) a bounded complex if M,, is an initial
object for all n > m. We denote by K% (Cx) the full subcategory of K,,(Cx) generated
by bounded complexes.

The categories K,,(Cx) (resp. Kb (Cx)) are naturally isomorphic to each other via
obvious translation functors.

We denote by (Cx) the category whose objects are complexes

frnt1 fn fn—1 frn—2
. T n+1 Mn Mn—l —_— ... (4)

which are infinite in both directions. Unless C'x is a pointed category, there are no natural
embeddings of the categories K,,(Cx) into K(Cx). There is a natural embedding into
K(Cx) of the full subcategory IC,, »(Cx) of K, (Cx) generated by all complexes (3) with
M, equal to an initial object.

We say that an object (4) of the category K(Cx) is a complex bounded on the left
(resp. on the right) if M, is an initial object for all n > 0 (resp. n < 0). We denote by
K+ (Cx) (resp. by K~ (Cx)) the full subcategory of K(Cx) whose objects are complexes
bounded on the left (resp. on the right). Finally, we set K°(Cx) = K~ (Cx) N K+ (Cx)
and call objects of the subcategory K?(Cx) bounded complexes.

3.1.6. Exact’ complexes. Let (Cx,Ex) be a right exact category with an initial
object. We call a sequence of two arrows L JoMm 4 Nin Cx ’exact’ if the arrow g
e
has a kernel, and f is the composition of Ker(g) 9 A1 and a deflation L % Ker(g). A
complex is called ’exact’ if any pair of its consecutive arrows forms an ’exact’ sequence.
3.2. 0*-functors. Fix a right exact category (Cx, €x) with an initial object x and
a category Cy with an initial object. A 9*-functor from (Cx,Ex) to Cy is a system of
functors Cx AN Cy, © > 0, together with a functorial assignment to every conflation

, . 2i(E)
E = (N - M - L) and every i > 0 a morphism T}, (L) —— T;(N) which depends

functorially on the conflation E and such that the sequence of arrows

Ta(e) 0.(B) 0 T (e) 2% (E) To(j)
. —— Ty(L) —— Ti(N) —— T1 (M) —— Ti(L) —— To(N) —— To(M)
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i, (z)
is a complex. Taking the trivial conflation z — = — x, we obtain that T;(z) —— T;(z)

is a trivial morphism, or, equivalently, T;(z) is an initial object, for every i > 1.

Let T = (T;,0;] i > 0) and T = (T/,9}| i > 0) be a pair of 9*-functors from (Cx,Ex)

1T
to Cy. A morphism from T to 7" is a family f = (7; LN T! | i > 0) of functor morphisms
such that for any conflation E = (N - M —— L) of the exact category Cx and every

1 > 0, the diagram
DZ(E)
Tiya(L) —— T(N)
fi

fern(L) |

T (L) —— TIN)

commutes. The composition of morphisms is naturally defined. Thus, we have the category
Hom*((Cx, €x),Cy) of 0*-functors from (Cx,Ex) to Cy-.

3.2.1. Trivial 0*-functors. We call a 0*-functor T' = (73,9;| ¢ > 0) trivial if all
T; are functors with values in initial objects. Omne can see that trivial 0*-functors are
precisely initial objects of the category Hom*((Cx,€x),Cy). Once an initial object y of
the category Cy is fixed, we have a canonical trivial functor whose components equal to
the constant functor with value in y — it maps all arrows of Cx to id,.

3.2.2. Some natural functorialities. Let (Cx, €x) be a right exact category with
an initial object and Cy a category with initial object. If C'z is another category with an
initial object and Cy N Cyz a functor which maps initial objects to initial objects, then
for any 0*-functor T' = (7},0;| @ > 0), the composition F'oT = (F oT;, Fo;| ¢ > 0) of T
with F is a 0*-functor. The map (F,T) —— F o T is functorial in both variables; i.e. it
extends to a functor

Cat*(Cy,Oz) X Hom*((ox, @)(),Cy) —_— Hom*((C’X, @X),Cz). (1)

Here Cat, denotes the subcategory of C'at whose objects are categories with initial objects
and morphisms are functors which map initial objects to initial objects.

On the other hand, let (C'x, €x) be another right exact category with an initial object

and ® a functor Cy — C'x which maps conflations to conflations. In particular, it maps

d
initial objects to initial objects (because if z is an initial object of Cy, then 2 — M =iy V'

is a conflation; and ®(x — M M, g ) being a conflation implies that ®(z) is an initial
object). For any 0*-functor T' = (T;,0;| ¢ > 0) from (Cx,€x) to Cy, the composition
To® = (T;0P,0,®| i >0) is a 0*-functor from (Cx, €x) to Cy. The map (T, P) — T o P
extends to a functor

Hom*((C’X, Qfx), Cy) X gl‘*«cx, Qfx), (Cx, @)()) —_— Hom*((Cx, QE%), Cy), (2)

where £z.((Cx, €x), (Cx, €x)) denotes the full subcategory of Hom(Cx,Cx) whose ob-
jects are preserving conflations functors C'y — Cx.
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3.3. Universal 0*-functors. Fix a right exact category (Cx,&€x) with an initial
object x and a category Cy with an initial object y.
A 9*-functor T = (T;,0;| i > 0) from (Cx, Ex) to Cy is called universal if for every 0*-

functor 7" = (TV,0}| i > 0) from (Cx,Ex) to Cy and every functor morphism T} - Ty,

1)

there exists a unique morphism f = (77 LN T; | i >0) from T” to T such that f, = g.
3.3.1. Interpretation. Consider the functor

*

Hom*((Cx, €x),Cy) —— Hom(Cx,Cy) (3)

which assigns to every 9*-functor (resp. every morphism of 9*-functors) its zero compo-

nent. For any functor Cx —— Cy, we have a presheaf of sets Hom(¥*(—), F) on the
category Hom*((Cx,€x),Cy). Suppose that this presheaf is representable by an object
(i.e. a 0*-functor) ¥, (F'). Then W, (F) is a universal 0*-functor.

Conversely, if T = (1;,0;| i > 0) is a universal 9*-functor, then 7' ~ ¥, (Tp).

3.3.2. Proposition. Let (Cx,€x) be a right exact category with an initial object x;
and let C'y be a category with initial objects, kernels of morphisms, and limits of filtered

systems. Then, for any functor Cx £, Cy, there exists a unique up to isomorphism
universal 0*-functor T = (T;,9;| i > 0) such that To = F.
In other words, the functor

*

Hom*((Cx, €x),Cy) ——s Hom(Cx,Cy) (3)

which assigns to each morphism of 0*-functors its zero component has a right adjoint, V..

Proof. (a) For an arbitrary functor C'x L ¢y, we set S_ (F)(L) = lim Ker(F(t(e))),

where the limit is taken by the (filtered) system of all deflations M —— L. Since deflations
S_(F)
form a pretopology, the map L — S_(F')(L) extends naturally to a functor Cx —— Cy.

By the definition of S_(F), for any conflation E = (N -+ M —— L), there exists a unique

0%, (E) ~
morphism S_(F)(L) SR Ker(F(j)). We denote by 0%(FE) the composition of 0% (E)
and the canonical morphism Ker(F(j)) — F(N).

(b) Notice that the correspondence F' —— S_(F') is functorial. Applying the iterations
of the functor S_ to F, we obtain a §*-functor S*® (F) = (S°(F)]i > 0). The claim is that
this 9*-functor is universal.

In fact, let T' = (T;,0]i > 0) be a 0*-functor and Tj 29, F a functor morphism. For

any conflation E = (N = M — L), we have a commutative diagram

20 (E) To(i) To(e)
M) | | o) [ 2@ @
F(j) F(e)
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00 (E) To())
Since T1(L) -, To(N) 7 To(M) is a complex, the morphism 9y(F) is the

20(E)
composition of a uniquely defined morphism 77 (L) LK er(Tp(j)) and the canonical

arrow Ker(Ty(j)) — To(N). We denote by i (E) the composition of the morphism dy(E)

>\1
and the morphism Ker(Ty(j)) —— Ker(F(j) uniquely determined by the commutativity
of the diagram
. t(To(j)) To(j)
Ker(To(j)) —— T
x| Mo(N) | o2y
E(F (i)
Ker(F(j)) —= F

Thus, we have a commutative diagram

) =2 ) Y pw

with the morphism \; (FE) uniquely determined by the arrows of the diagram (4). Since the
20(E)
connecting morphism 77 (L) — T 0(/V) depends on the conflation E functorially, same

- N (E)
is true for \;(E); that is the morphisms T} (L) A Ker(F(j)), where E runs through

conflations N — M — L (with fixed L and morphisms of the form (h,g,idy)), form
A(L)
a cone. This cone defines a unique morphism 73 (L) s (F)(L). It follows from

the universality of this construction that A = (A1 (L)| L € ObCx) is a functor morphism
A1
Ty —— S_(F) such that the diagram

2 (E) To(i) To(e)

(L) — To(N) —— To(M) — To(L)
ML) | (V) | | o) | o)
s (FyL) L9 PN —2 R 2O pw

commutes. Iterating this construction, we obtain uniquely defined functor morphisms
i :
T, —— S (F)foralli>1.m

3.3.3. Remark. Let the assumptions of 3.3.2 hold. Then we have a pair of adjoint
functors

*

W,
Hom*((CX,Qfx),Cy) —_— HOm(Cx,Cy) —_— Hom*((CX,Qx),Cy)

By 3.3.2, the adjunction morphism ¥*W, — Id is an isomorphism which means that W,
is a fully faithful functor and ¥* is a localization functor at a left multiplicative system.
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3.3.4. Proposition. Let (Cx,&x) be a right exact category with an initial object and
T = (T;,0; | i > 0) a 0*-functor from (Cx,Ex) to Cy. Let Cy be another category with
an initial object and F a functor from Cy to Cyz which preserves initial objects, kernels of
morphisms and limits of filtered systems. Then

(a) If T is a universal O*-functor, then F oT = (F o T;, F0;| i > 0) is universal.

(b) If, in addition, the functor F is fully faithful, then the 0*-functor FoT is universal
iff T' is universal.

Proof. (a) Suppose that the 0*-functor T' = (7;,0; | ¢« > 0) is universal. Then it
follows from the argument of 3.3.2 that T; ~ S (Tp) for all i > 0, where S_(G)(L) =

lim Ker(G(t(e))) and the limit is taken by the system of all deflations M —» L. Since
the functor F' preserves kernels of morphisms and filtered limits (that is all types of limits
which appear in the construction of S_(G)(L)), the natural morphism

FoS_(G)(L) — S_(FoG)(L)

is an isomorphism for any functor C'x S, Cy such that S_ (G)(L) = lim Ker(G(#(e))) ex-
ists. Therefore, the natural morphism FoS® (Ty)(L) — S* (FoTp)(L) is an isomorphism
for all 2 > 0 and all L € ObC'x.
(b) Suppose that the functor F' is fully faithful and the 9*-functor F o T is universal.
Then
FoTiy1(L)~S_(FoT;)(L)=1limKer(F oT;(t(e))) ~

lim F(Ker(T;(e(e)))) ~ F(lim Ker(T;(¢(e)))) = F(S_(T;)(L)),

where the isomorphisms are due to compatibility of F' with kernels of morphisms and
filtered limits. Since all these isomorphisms are natural (i.e. functorial in L), we obtain
a functor isomorphism F o T;11 — F o S_(T;). Since the functor F' is fully faithful, the
latter implies an isomorphism T;41; — S_(T;) for all ¢ > 0. The assertion follows now
from (the argument of) 3.3.2. m

3.3.5. An application. Let (Cx,€x) be a right exact category and Cy a category
with an initial object. Consider the Yoneda embedding

hy —
Cy —— Cp, M+ M =Cy(—,M).

of the category Cy into the category C{ of presheaves of sets on Cy. The functor hy is
fully faithful and preserves all limits. In particular, it satisfies the conditions of 3.3.4(b).
Therefore, a 0*-functor T = (7;,0; | i« > 0) from (Cx,Ex) to Cy is universal iff the
&*-functor T & hy oT = (ﬁ,ﬁz | i >0) from (Cx,Ex) to Cy is universal.

By 3.3.2, for any functor Cx <, C$, there exists a unique up to isomorphism uni-
versal 0*-functor T' = (7;,0;| i > 0) = V,(G) such that T; = G. In particular, for
every functor C'x x, Cy, there exists a unique up to isomorphism universal 9*-functor
T = (T;,0; | i > 0) such that Ty = hy o F' = F. It follows from 3.3.4(b) that there exists a
universal 9*-functor whose zero component coincides with F' iff for all L € ObC'x and all
i > 1, the presheaves T;(L) are representable.
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3.3.6. Remark. Let (Cx, €x) be a svelte right exact category with an initial object
x and Cy a category with an initial object y and limits. Then, by the argument of 3.3.2,
we have an endofunctor S_ of the category Hom(Cx,Cy) of functors from Cx to Cy,

together with a cone S_ 2, n, where t is the constant functor with the values in the
initial object y of the category Cy. For any conflation E = (N - M —- L) of (Cx, €x)
and any functor Cx £, Cy, we have a commutative diagram

A(L)
S F(L) —% oy

e | l

Fj Fe
F(N) — FM) —— F(L)
3.3.7. Digression: deflations with trivial kernels. Let (Cx, €x) be a right exact
category with an initial objects. We denote by QS?( the class of all arrows of €x whose
kernel is an initial object.

3.3.7.1. Proposition. The class of arrows @g@( 1s a right exact structure on the
category Cx .

Proof. The class Qig’@( contains all isomorphisms of the category Cx. It is closed under
compositions, because, by 2.3.4.3, if Ker(s) is trivial (i.e is an initial object of Cx ), then
Ker(s o t) is naturally isomorphic to Ker(t). In particular, Ker(s o t) is trivial, if both
Ker(s) and Ker(t) are trivial. Finally, if

—~ P1

M — M

tl ls
f

N —— L

is a cartesian square, then, by 2.3.3, Ker(s) ~ Ker(t), which shows that ¢% is stable
under base change. m

3.3.7.2. Proposition. Let (Cx,Ex) be a right exact category with an initial object
x; and let Cy be a category with initial objects, kernels of morphisms, and limits of filtered
systems. Let T = (T3,0; | © > 0) be a universal 0*-functor from (Cx,&x) to Cy. If the
functor To maps all arrows of QE%B( to isomorphisms, then all functors T;, i > 0, have this
property.

Proof. By the argument of 3.3.2, the assertion is equivalent to the following one:

If a functor Cx £, Cy maps arrows of (’Eg@( to isomorphisms, then its satellite, S_F’,
has the same property.

In fact, let £ — L be an arrow of Qig? and M —— L an arbitrary deflation. Then we
have a commutative diagram

e(e) ~ 7
Ker(e) —— M — L

59 l? 51 l cart lﬁ (1)

?(e) 4
Ker(e) —— M — L
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whose vertical arrows belong to €§. Therefore, the left square of (1) determines iso-

b(e)
morphism Ker(F(¢(¢)) >, Ker(F(t(e)) which is functorial in e. So that we obtain

an isomorphism lim Ker(F(¢(¢)) —— lim Ker(F(t(¢)) = S_F(L) whose composition
with the canonical arrow S_F (L) —— lim Ker(F(£(¢)) coincides with the morphism

S-F(s)
S_F(L) = S_F(L) (see the argument of 3.3.2).

On the other hand, for any deflation M’ —~ £, there is a commutative diagram

t(v)
Ker(v) 7, My .z

lz id l l s (2)

t(s7)
Ker(sy) —— My L

Here the left vertical arrow is an isomorphism, because Ker(s) is an initial object (see

. . . o(7)
2.3.4.3). The left square of (2) induces an isomorphism Ker(F(¢(sy)) —— Ker(F(¢(v))
which is functorial in . The latter implies that the composition ¢(y) of ¢(7v) with the

()
unique morphism S_F (L) —— Ker(F(#(s7)) defines a cone S_F(L) AL Ker(F(t(v)),

hence a unique morphism S_F(L) LS F (£). The claim is that ¢ is the inverse to
S_F(s)
the morphism S_F(L) —— S_F(L).

We complete (2) to a commutative diagram

e(s7) —

N 5y
Ker(sy) —— 1 — L
& |2 b | | id
()
Ker(v) 7, My . r (3)
59 lz id l l 5
t(s7)
Ker(sv) -, My L

where the square

My —— L
tll lg
M, — L

is cartesian. Since t; € €%, the diagram (3) induces isomorphisms
KerF(t(sy)) — KerF(¢(y)) — KerF(t(sv))
which imply isomorphisms of the lower row of the commutative diagram

id S_F(s) id
S_F(L) —_— S_F(L) —— S_F(L) «— S_F(L)

l i L J

lim KerF(¢(s7)) —— lim KerF(¢(v)) L S_F(L) —— limKerF(t(sv))
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The isomorphness of ¢ (or, equivalently, the isomorphness of S_F(s)) follows from
the universal property of limits. m

3.4. The dual picture: 0-functors and universal J-functors. Let (Cx,Jx) be
a left exact category, which means by definition that (C,J¥) is a right exact category.
A O-functor on (Cx,Jx) is the data which becomes a J*-functor in the dual right exact
category. A O-functor on (Cx,Jx) is universal if its dualization is a universal 0*-functor.
We leave to the reader the reformulation in the context of O-functors of all notions and facts
about 0*-functors. Below, there are two versions — non-linear and linear, of a fundamental
example of a universal 0-functor.

3.4.1. Example: Ext®. Let (Cx,&x) be a right exact category with an initial
object. For any L € ObC'x, we have the corresponding representable functor

hx (L)
CP =5 Sets, M+ CP(L,M) = Cx (M, L).

Therefore, by (the dual version of) 3.3.2, there exists a universal O-functor Ezt% (L) =
(Exts, (L)| i > 0), whose zero component, Ext% (L), coincides with hx (L).

3.4.2. The functors £xt}. Suppose that the category Cx is k-linear. Then for any
L € ObCx, the functor hx (L) factors through the category k — mod (that is through the
forgetful functor k —mod — Sets). Therefore, by 3.3.2, there exists a universal d-functor
Exts (L) = (Exty(L)| i > 0), whose zero component, Ext% (L), coincides with the presheaf
of k-modules Cx (—, L).

3.5. Universal 0*-functors and ’exactness’.

3.5.1. The properties (CE5) and (CE5*). Let (Cx, €x) be a right exact category.
We say that it satisfies (CE5*) (resp. (CE5)) if the limit of a filtered system (resp. the
colimit of a cofiltered system) of conflations in (Cy, €y ) exists and is a conflation.

In particular, if (C'x, €x) satisfies (CE5*) (resp. (CE5)), then the limit of any filtered
system (resp. the colimit of any cofiltered system) of deflations is a deflation.

The properties (CE5) and (CE5*) make sense for left exact categories as well. Notice
that a right exact category satisfies (CE5*) (resp. (CED)) iff the dual left exact category
satisfies (CE5) (resp. (CE5Y)).

3.5.2. Note. If (Cx,€x) is an abelian category with the canonical exact structure,
then the property (CE5) for (Cx, €x) is equivalent to the Grothendieck’s property (AB5)
and, therefore, the property (CE5*) is equivalent to (AB5*) (see [Gr, 1.5]).

The property (CE5) holds for Grothendieck toposes.

In what follows, we use (CE5*) for right exact categories and the dual property (CE5)
for left exact categories.

3.5.3. Proposition. Let (Cx,€x), (Cy, Ey) be right exact categories, and (Cy, Ey)
satisfy (CE5*). Let F be a weakly right ’exact’ functor (Cx,€x) — (Cy, €y) such that

S_(F) exists. Then for any conflation E = (N - M — L) in (Cx, €x), the sequence

s.yv) Y s ryoan T2 s my) 2 rovy 2 rony )
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is ‘exact’. The functor S_(F) is a weakly right ‘exact’ functor from (Cx, €x) to (Cy, Ey).

Proof. Let Cx L Cy bea right ’exact’ functor such that S_(F") exists.
(a) The claim is that for any conflation £ = (N -+ M - L), the canonical
%(E)
morphism S_(F")(L) — Ker(F(j)) is a deflation.
(al) Let M - L and M’ < L be deflations of an object L of C'y, and let

M'LM
N e
L

be a commutative diagram (— a morphism of deflations). This diagram extends to a

morphism of the corresponding conflations

1% ’

N/ ]_) M/

— L
f’l cart lf lidL (2)
j

N — M — L

Since ¢/ = eo f, it follows from 2.3.4.1 that the left square of (2) is cartesian.
For an arbitrary functor C'x L, Oy, the diagram (2) gives rise to the commutative
diagram

3 F(') F(e')

Ker(F(j’)) —— F(N') —— F(M') —— F(L)
~ l cart v l l id l id
Ker(a) & N F(M") ﬂ F(L) (3)
ﬂz gbl cart lF(f) Jz’d
) : F(j) F(e)
Ker(F(j)) —— FN) —— F(M) — F(L)

where the lower middle square is cartesian which implies (by 2.3.3) that ¢ is an iso-
morphism; the morphism v is uniquely determined by the equalities ¢ oy = F(f’) and
F()') = a0, and the left upper square is cartesian due to the latter equality (see 2.3.4.1).

(a2) Suppose now that the morphism M’ L, M in the diagram (2) (and (3)) is a
deflation and the functor F is right ’exact’. Since the left square of the diagram (2) is
cartesian, the morphism v in (3) is a deflation. Therefore, since the left upper square in
(3) is cartesian, the arrow 7 is a deflation; or, what is the same, the canonical morphism
Ker(F(j')) — Ker(F(j)) (equal to the composition ¢ o7) is a deflation.

(a3) Notice that S_(F)(L) is isomorphic to the limit of Ker(F(¢(e’'))), where ¢’ runs
through the (filtered) diagram €x /M of refinements of the deflation M —— L. That is
S_(F) = lim Ker(F(¢(toe))), where t runs through the deflations of M (and morphisms
of this diagram are also deflations).
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20(E)
Thus, the canonical morphism S_(F')(L) — Ker(F(j)) is the limit of a filtered

system of deflations. Therefore, by hypothesis, it is a deflation.

(b) For any conflation E = (N SRENY LR L) of the right exact category (Cx,€x),
the canonical morphism S_(F)(M) — Ker(do(E)) is a deflation. In fact, let

v l cart l t id (4)

t l cart l t 1d

be a commutative diagram whose rows are conflations and the morphisms t and t' are
deflations. By 2.3.4.1 (or 2.3.4.3) that the two lower left squares of (4) are cartesian. In
particular, the arrows t' and t are deflations. It follows from 2.3.4.2(b) that the upper two

arrows of the left column of (4) form a conflation; i.e. N” £, N’ is the kernel of ¥'. The
diagram (4) yeilds the commutative diagram

. F(") F(e)
Ker(F(j")) ——  F(N") —— FM")  —— F(M)

cart  F(¥) l l id l F(e)

- _ F(') F(¢)
Ker(F(j') —— NF(N’) — F(M") — F(L)

F(') F(e')

Ker(F(')) —— F(N) —— F(M) — F(I)
FQ) l l F(t) l id
. F(i) F(e)
Ker(F(j)) —— F(N) —— F(M) — F(L)

Since the functor F' is weakly right ’exact’, the diagram (5) is decomposed into the
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diagram

Ker(F(")) ——  F(N")

Y1 l cart Yo l

. F('”) F(e”)
Ker(s) —— Ker(FF) —b F(M")  —2 F(M)

a@l cart eﬁ/ lm lF@
~ - F(i') F(&)
Ker(F()) —— F(N) —5 F(M") —— F(L) (6)
5 l F(T) l l F(t) l id
. F () F(e)
Ker(F() ——  F(N) —— F(M) == P(L)
mol JFM lm
Ker(F()) ——  F(N) —% P —% )

where 71, 72 are deflations, ¥ is the kernel (morphism) of F(t'); F(j') oy = F(j”), and
¥ oy, = F(¥). It follows that the two upper left squares of (6) are cartesian. The left
column of the diagram (6) induces, via passing to limit, the sequence of arrows

S_F(M) B Ker(o(E)) —— §_F(L) —— Ker(F(j)) ) F(N)

where €(F'(j)) oo = 09(F), &g oy = S_F(e); o is a deflation by (a) above, and 7 is a
deflation by hypothesis, because it is a filtered limit of deflations. m

3.6. ’Exact’ 0*-functors and universal 0*-functors. Fix right exact categories
(Cx,€x) and (Cy, €y), both with initial objects. A 9*-functor T' = (T;,0;| ¢ > 0) from
(Cx,€x) to Cy is called ’ezact’if for every conflation E = (N - M — L) in (Cx, €x),
the complex

Ta(e) 01(E) T1()) T1(e) 20(E) To ()
- —— T(l) —— Ti(N) — Ti(M) —— Ti(L) —— To(N) —— To(M)

is ’exact’.

3.6.1. Proposition. Let (Cx,€x), (Cy,Ey) be right exact categories. Suppose that
(Cy, €y) satisfies (CES*). Let T = (T;| i > 0) be a universal 0*-functor from (Cx,€x)
to (Cy, €y ). If the functor Ty is right ’exact’, then the universal 0*-functor T is ’exact’.

Proof. 1If T is right ’exact’, then, by 3.5.3, the functor 77 ~ S_(T}) is right ’exact’

and for any conflation E = (N > M — L), the sequence

T1(j) Ty (e) 2 (E) To(j)
1(N) —>T1 ) E— Tl( ) E— To( ) — To(M)

is 'exact’. Since T, 11 = S_(T),), the assertion follows from 3.5.3 by induction. =
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3.6.2. Corollary. Let (Cx,€x) be a right exact category. For each object L of Cx,
the O-functor ExtS (L) = (Exty, (L) | i > 0) is ’exact’.

Suppose that the category Cx is k-linear. Then for each L € ObCx, the O-functor
Exts (L) = (Ext' (L) | i > 0) is ‘ezact’.

Proof. In fact, the 0-functor Ezt$ (L) is universal by definition (see 3.4.1), and the
functor Ezt% (L) = Cx(—, L) is left exact. In particular, it is left ’exact’.

If Cx is a k-linear category, then the universal 0-functors Ext% (L), L € ObCx, with
the values in the category of k-modules (defined in 3.4.2) are ’exact’ by a similar reason. m

3.7. Universal problems for universal 9*- and O0-functors. Fix a right exact
svelte category (Cx,€yx) with an initial object. Let 0*Un(X, €x) denote the category
whose objects are universal 0*-functors from (Cx,€x) to categories Cy (with initial ob-
jects). Let T' be a universal 0*- functor from (Cx, €x) to Cy and T a universal 9*- functor
from (Cx,€x) to Cz. A morphism from T to 7" is a pair (F, ¢), where F is a functor from
Cy to Cz which preserves filtered limits and ¢ is a 9*-functor isomorphism F o T —=» T".
It (F’,¢') is a morphism from 7" to T”, then the composition of (F,¢) and (F’,¢’) is
defined by (F',¢') o (F,¢) = (F' o F, ¢ o F').

We denote by 9*Un.(X, €x) the subcategory of 0*Un(X, €x) whose objects are 0*-
functors from (Cx,€x) to complete (i.e. having limits of small diagrams) categories Cy
and morphisms are pairs (F, ¢) such that the functor F' preserves limits.

Dually, for a left exact category (C'x,Jx) with a final object, we denote by 0Un(X, Jx)
the category whose objects are universal d-functors from (Cx,Jx) to categories with final
object. Given two universal d-functors T and 7" from (C'x, Jx) to respectively Cy and Cyp,
a morphism from 7 to 7" is a pair (F, 1), where F' is a functor from Cy to Cz preserving
filtered colimits and 1) is a functor isomorphism 77 —= F o T. The composition is defined
by (F',4/) o (F.9) = (F' o F, F'tb o).

We denote by dUn®(X, Jx) the subcategory of 0Un(X, Jx) whose objects are d-functors
with values in cocomplete categories and morphisms are pairs (F, 1) such that the functor
F preserves colimits.

3.7.1. Proposition. Let (Cx,&x) be a svelte right exact category with initial objects
and (Cx,Jx) a svelte left exact category with final objects. The categories 0*Un(X, Ex),
O*n (X, €x), 0Un(X,Tx), and OUn (X, Tx) have initial objects.

Proof. (a) We start with the category 04Un®(X,Jx). Consider the Yoneda embedding

hx
Cx —— C%, M+— Cx(—,M).

We denote by Ext% 5 the universal d-functor from (Cx,Jx) to C% such that Exty 5 =
hx. The claim is that Ext% 5, is an initial object of the category dUn® (X, Jx).
In fact, let Cy be a cocomplete category. By [GZ, I1.1.3], the composition with the

Yoneda embedding Cx LEN C% is an equivalence between the category Hom(C%,Cy) of
continuous (that is having a right adjoint, or, equivalently, preserving colimits) functors

C%{ — Cy and the category Hom(Cx, Cy) of functors from Cx to Cy. Let Cx £, Cy be
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an arbitrary functor and C% i Cy the corresponding continuous functor. By definition,

S, F(L) = colim(Cok(F(M — Cok(j)), where L - M runs through inflations of L.
Since F; preserves colimits, it follows from (the dual version of) 3.3.4(a) that Fi o Ext} 5,
is a universal d-functor whose zero component is F, o E:z:tg)e,j36 = F. o hxy = F. Therefore,
by (the dual version of the argument of) 3.3.2, the universal d-functor F; o Ext% 5, is iso-
morphic to S F'. This shows that Ext% 5. is an initial object of the category 0iUn‘(X, Jx).
(b) Let Cx, denote the smallest strictly full subcategory of the category C% containing
all presheaves Ext% 5 (L), L € ObCx, n > 0. The category dUn(X,Tx) has an initial
object which is the corestriction of the d-functor Ext% 5. to the subcategory Cx,.
Indeed, let Cy be a category with a final object and T' = (7},0; | i > 0) a universal 0-
functor from (Cx,Jx) to Cy. Let Oy denote the category of presheaves of sets on Oy (i.e.
functors Cy — Sets) and h$ the (dual) Yoneda functor Cy — Oy, L+ Cy (L, ).
The category C’;ﬁop is cocomplete (and complete) and the functor h{ preserves colimits.
Therefore, by 3.3.4, the composition hy o T is a universal d-functor from (Cx,Jx) to
Cy”". By (a) above, the d-functor h{ o T is the composition of the universal d-functor

Exty 5. from (Cx,Jx) to C% and the unique continuous functor C% <, CY”" such that
G o hx = hy- oTy. Since the functor h§, is fully faithful, this implies that the universal 0-
functor T' = (73,9; | i > 0) is isomorphic to the composition of the corestriction of Ext} 5.

to the subcategory Cx, and a unique functor Cyx, G—> Cy such that the composition
hy- o G4 coincides with the restriction of the functor G to the subcategory Cx, .

(c) The assertions about 0*-functors are obtained via dualization. Essential details are
as follows. Let (Cx, €x) be a right exact category with initial objects. We denote by C
the category of functors Cx — Sets (interpreted as the category of presheaves of sets on
C%) and by h% the (dual) Yoneda functor Cx — CY ', M — C(M, —). Let Extly ¢
denote the universal 9*-functor from (Cx, €x) to Oy such that Ext?x ex) = Nk

Let Cy be a complete category. By the dual version of [GZ, 11.1.3], the composition
with the functor h% is a category equivalence between the category Hom(Cx,Cy ) and the
category Hom*(CY, ", Cy) of functors CY~~ — Cy which have a left adjoint. Let F be
a functor Cx — Cy and F° the corresponding cocontinuous (i.e. having a left adjoint)
functor from C}/(Op to Cy. Since the functor F'° preserves limits, it follows from 3.3.4
(a), that the composition F¢ o E.fEtEX7 €x) is a universal 0*-functor. Its zero component,

Fco Ea:t(()X ex) = F*© o h%, equals to F. Therefore, by 3.3.2, the universal 0*-functor
Fco EthX,Gx) is isomorphic to S® F'. This shows that E“f'tZX,@X) is an initial object of
the category 0*Un(X, €x).

It follows from (b) (by duality) that the corestriction of the 9*-functor Ext?y ¢

to the smallest subcategory of C’)V(Op containing all representable functors and closed un-
der the endofunctor S_ (that is the full subcategory of C’)V(Op generated by the functors
Ewt?X,ex)(L)7 L € ObCx, n > 0) is an initial object of the category 0*Un(X, Ex) of
universal 9*-functors. m

3.7.2. The k-linear version. Fix a right exact k-linear additive category (Cx, €x).
Let 0;4n(X, €x) denote the category whose objects are universal k-linear 9*-functors from
(Cx,€x) to k-linear additive categories Cy. Let T be a universal k-linear 0*- functor
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from (Cx,€x) to Cy and T a universal k-linear §*- functor from (Cx,€x) to Cz. A
morphism from T to 7’ is a pair (F,¢), where F is a k-linear functor from Cy to Cyz
which preserves filtered limits and ¢ is a 9*-functor isomorphism FoT — T". It (F’,¢’)
is a morphism from 7" to 7", then the composition of (F,¢) and (F',¢’) is defined by
(F',¢/) o (F,6) = (F' o F, o F'¢).

We denote by 0;in (X, €x) the subcategory of d;tUn(X, €x) whose objects are k-
linear 9*-functors from (Cx, €x) to complete (i.e. having limits of small diagrams) k-linear
categories C'y and morphisms are pairs (F, ¢) such that the functor F' preserves limits.

Dually, for a left exact additive k-linear category (Cyx,Jx), we denote by Jpin(X, Jx)
the category whose objects are universal k-linear O-functors from (C'x,Jx) to k-linear
additive categories. Given two universal k-linear 0-functors 7" and 7" from (Cx,Jx) to
respectively Cy and Cyz, a morphism from T to 7" is a pair (F,v), where F is a k-
linear functor from Cy to Cyz preserving filtered colimits and ) is a functor isomorphism
T’ =5 F oT. The composition is defined by (F’, ') o (F,4) = (F' o F, F'1 o 4)').

We denote by 0p4Un (X, Jx) the subcategory of dpUn(X, Jx) whose objects are k-linear
O-functors with values in cocomplete categories and morphisms are pairs (F, 1) such that
the functor F' preserves colimits.

3.7.2.1. Proposition. Let (Cx,Ex) be a svelte k-linear right exact category and
(Cx,J%) a svelte k-linear left exact category. The categories Ofin(X, €x), Optn (X, Ex),
Oin(X,Tx), and OpUn®(X,Jx) have initial objects.

Proof. The argument is similar to that of 3.7.1, except for we replace the category
C% (resp. CY) of presheaves of sets on Cx (resp. on C) by the category My(X) (resp.
M. (%°)) of presheaves of k-modules on Cx (resp. on C3¥ = Cyo).

(a) The initial object of the category Opiin®(X,Jx) is the universal k-linear 0-functor
Exty 5, from (Cx,Tx) to the category My (X) of presheaves of k-modules on Cx whose
zero component is the Yoneda embedding Cx — My (X), L +— Cx(—,L).

(b) The initial object of the category Opin(X,Jx) is the corestriction of Exty 5, to
the smallest additive strictly full subcategory of My (X) which contains all presheaves
Eaty 5 (L), L € ObCx, n > 0.

(c) The universal k-linear 9*-functor Ea:th €x) from the right exact k-linear category
(Cx, €x) to the category My (X°) of presheaves of k-modules on Cxo = CY is an initial
object of the category ditn (X, €x).

(d) The corestriction of the 9*-functor &€ thX’GX) to the smallest strictly full additive
subcategory of My (X?°) spanned by the presheaves Sxt’(lx’ex)(L), L € ObCx, n >0, is
an initial object of the category 0iin(X, €x).

The argument is similar to that of 3.7.1. Details are left to the reader. m

3.8. Universal problems for universal ’exact’ 0*- and 0-functors. Fix a right
exact category (C'x,€x) with an initial object. Let 0*U&r(X, €x) denote the category
whose objects are universal 'exact’ 0*-functors T = (7;,0; | i@ > 0) from (Cx,€x) to
right exact categories (Cy, €y ) satisfying (CE5*) (cf. 3.5.1) such that the functor Tj
maps deflations to deflations. Let 7" be a universal ’exact’ 9*- functor from (Cx,&x) to
(Cy, €y) and T a universal ’exact’ §*- functor from (Cx,€x) to (Cz,€z). A morphism
from T to T’ is a pair (F, ¢), where F is a functor from Cy to Cz which preserves filtered

38



limits and conflations, and ¢ is an isomorphism of 0*-functors F o T = T'. Tt (F’,¢’)
is a morphism from 7" to 7", then the composition of (F,¢) and (F’,¢’) is defined by
(F',¢") o (F,p) = (F' o F,¢' o F'¢).

We denote by 0*U€r (X, Ex) the subcategory of 0*U&r(X, €x) whose objects are
O0*-functors from (Cx, €x) to complete right exact categories (Cy, €y ) satisfying (CE5*)
and morphisms are pairs (F, ¢) such that the functor F' preserves limits.

Dually, for a left exact category (Cx, Jx) with a final object, we denote by 0UEr(X, Tx)
the category whose objects are universal ’exact’ d-functors T' = (7;,0; | ¢ > 0) from
(Cx,Tx) to left exact categories satisfying (C'E5) such that the functor Ty maps inflations
to inflations. Given two universal ’exact’ O-functors 7" and 7" from (C'x, Jx) to respectively
(Cy,Jy) and (Cz,TJz), a morphism from T to T” is a pair (F,1)), where F is a functor
from Cy to Cz preserving filtered colimits and conflations and v is a functor isomorphism
T’ —=» F oT. The composition is defined by (F’, ') o (F,4) = (F' o F, F'1 o )').

We denote by 0UEr(X,Tx) the subcategory of OU&r(X,Tx) whose objects are 0O-
functors with values in cocomplete left exact categories (with final objects) satisfying
(CE5) and morphisms are pairs (F, 1) such that the functor F' preserves colimits.

3.8.1. Proposition. Let (Cx, Ex) be a svelte right exact category with initial objects
and (Cx,Jx) a svelte left exact category with final objects. The categories O*UE(X, Ex),
O*UCr (X, Ex), OUC(X,Tx), and OUEL (X, Tx) have initial objects.

Proof. (a) The Yoneda embedding

hx ~
Cx —— C%, L+—L=Cx(—,L)

is a fully faithful left exact functor. Therefore, it maps strict monomorphisms (in particular,
inflations — arrows of Jx) to strict monomorphisms of C'% which happen to be universally
strict. We denote by J% the coarsest left exact structure on C% which contains hx(Jx)
and is closed with respect to inductive colimits.

Since hyx is a left exact functor, it is left ’exact’ functor from the left exact category
(Cx,Jx) to the left exact category (C%,T%). Therefore, by (the dual version of) 3.6.1, the
universal O-functor Ext% 5  from (Cx,Jx) to Cy whose zero component is the Yoneda
embedding hx is an ’exact’ O-functor from (Cx,Jx) to (C%,T%).

The claim is that the universal ’exact’ 0-functor Ext% 5  from (Cx,Jx) to (Cy,J%)
is an initial object of the category OU&r® (X, Jx).

In fact, let (Cz,Tz) be a left exact category such that the category Cy is cocomplete
and F a left 'exact’ functor from (Cx,Jx) to (Cz,Tz). Then the corresponding continuous

functor C{ 7, 0 is an ’exact’ functor from (C%R,3%) to (Cz,T3z).

Since the functor F™* is right exact, it suffices to show that F* maps inflations to
inflations, ie. J4 to Jz. The arrows of J) are obtained from the class of (strict)
monomorphisms hx(Jx) via compositions and push-forwards. The functor F* preserves
push-forwards and (any functor preserves) compositions. Since F' = F™* o hy, the class of
morphisms F*(hx(Jx)) coincides with the class of monomorphisms F'(Jx). Therefore, it
follows from the above description of J% (and the fact that F* preserves push-forwards)
that F*(J%) is contained in Jy.
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(b) The initial object of the category OUEr(X,Tx) is the corestriction of the univer-
sal 0-functor €zt 5 to the smallest strictly full subcategory of Cxg which contains all
sheaves €zt 5 (L), L € ObCx, n > 0.

(¢) The universal 0*-functor GthX,@X) from the right exact category (Cx, €x) to the

category C%, of presheaves of sets on Cxo = O endowed with the coarsest right exact
structure containing the image of €x is an initial object of the category 0*U&r (X, Ex).
(d) The corestriction of the 9*-functor £xtfy » | to the smallest strictly full subcat-
egory of C%, spanned by the presheaves 5”?){,@;{)@)7 L € ObCx, n > 0, is an initial
object of the category 0*U&(X, Ex).
The argument is similar to that of 3.7.1. Details are left to the reader. m

3.8.2. The k-linear version. Fix a right exact k-linear category (Cx, €x). Let
07 3€r (X, €x) denote the category whose objects are universal ’exact’ k-linear 0*-functors
T = (T;,0; | i > 0) from (Cx,€x) to right exact k-linear categories (Cy, €y ) satisfying
(CE5*) such that Ty maps deflations to deflations. Let 7' be a universal ’exact’ k-linear
&*- functor from (Cx,€x) to (Cy,€y) and T a universal ’exact’ k-linear 0*- functor
from (Cx,€x) to (Cz,€z). A morphism from 7" to 7" is a pair (F,¢), where F' is a
k-linear functor from Cy to C'z which preserves filtered limits and conflations, and ¢ is an
isomorphism of 9*-functors F o T — T'. If (F’,¢') is a morphism from 7" to T”, then
the composition of (F,¢) and (F’,¢') is defined by (F’,¢’) o (F,¢) = (F' o F, ¢’ o F'¢).

We denote by 0;U€r (X, €x) the subcategory of 9;U€r(X, €x) whose objects are
O0*-functors from (Cx, €x) to complete right exact categories (Cy, €y ) and morphisms are
pairs (F, ¢) such that the functor F' preserves limits.

Dually, for a left exact k-linear category (Cx,Jx), we denote by OpiU€r(X,Tx) the
category whose objects are universal ’exact’ k-linear 0-functors T' = (7;,9; | i > 0) from
(Cx,Jx) to k-linear left exact categories satisfying (C'E5) such that the functor Ty maps
inflations to inflations. Given two universal ’exact’ k-linear O-functors T' and T’ from
(Cx,Jx) to respectively (Cy,Jy) and (Cz,Tz), a morphism from 7" to T” is a pair (F,v),
where F'is a k-linear functor from Cy to Cyz preserving filtered colimits and conflations and
1 is a functor isomorphism 77 - F'oT'. The composition is defined by (F’,¢’)o (F,¢) =
(F' o F,F' o).

We denote by 0xi€x(X,Tx) the subcategory of Jxi€r(X,Tx) whose objects are k-
linear O-functors with values in cocomplete left exact categories and morphisms are pairs
(F, ) such that the functor F' preserves colimits.

3.8.2.1. Proposition. Let (Cx,Ex) be a svelte k-linear right exact category and
(Cx,3x) a svelte k-linear left exact category. The defined above categories OFUEr(X, Ex),
OUC (X, Ex), 0pU€r(X,Tx), and OpU€r (X, Tx) have initial objects.

Proof. The argument is similar to that of 3.8.1, except for we replace the category
C% (resp. CY) of presheaves of sets on Cx (resp. on C) by the category My(X) (resp.
M. (%°)) of presheaves of k-modules on Cx (resp. on C3¥ = Cyo).

(a) For a svelte k-linear left exact category (Cx,Jx), we denote by Jx j the coarsest
left exact structure on the category My (X) of presheaves of k-modules on Cx closed under

hx,k
inductive colimits and such that the Yoneda embedding C'x M (%) maps inflations
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to inflations (i.e. Jx to Jx ) and is a left exact k-linear functor, hence it is a left ’exact’
functor from (Cx,Jx) to (My(X),J% k). Therefore, by the k-linear version of 3.6.1, the
universal functor £xt5 5 whose zero component is the Yoneda embedding hx  is exact’

If (Cz,37) be a left exact k-linear category such that the category Cy is cocomplete
and F a left ’exact’ k-linear functor from (Cx,Jx) to (Cz,Jz), then the corresponding

continuous functor C% . Cz is an ’exact’ functor from (My,Jx k) to (Cz,Tz).

The argument is similar to that of the corresponding part of 3.8.1.

This implies that the universal k-linear O-functor £xt% 5 from (Cx,Jx) to the left
exact category (My(X),Jx k) is the initial object of the category OpU&r (X, Tx).

(b) The initial object of the category dp{U&€r(X, Tx) is the corestriction of Ext% 5 to
the smallest additive strictly full left exact subcategory of (My(X),Jx ) which contains
all presheaves Ext 5 (L), L € ObCx, n > 0.

(c) It follows from (a) (by duality) that the universal k-linear 9*-functor ETtlx ¢ )
from the right exact k-linear category (Cx,€x) to the category My(X?) of presheaves
of k-modules on Cxo = CF is an ’exact’ universal k-linear 9*-functor from (Cx, €x) to
the right exact category (My(X?), €xo), where €xo is the coarsest right exact structure
on My(X?) such that the Yoneda embedding Cxo — M (X?) maps €x to €xo. This
‘exact’ universal k-linear 0*-functor is an initial object of the category 0;U€r (X, Ex).

(d) The corestriction of the 0*-functor £xt?y &  to the smallest strictly full addi-
tive right exact subcategory of M (X?°) spanned by the presheaves Emt?X’GX)(L), L e
ObCx, n >0, is an initial object of the category 0;u€&x(X, Ex).

Details are left to the reader. m

3.9. Relative satellites. Fix a right exact category (Cs,€g). Fix an object Y
of Cs and consider the right exact category (V\Cs, €y\s), where €y, s denote the right
exact structure on Y\Cg induced by €g.

3.9.1. The 0*-functor FY. For a functor Cg 7, Cz, let .7-"8} denote the composi-

tion of the canonical functor Y\Cs — Cg and Cg 7, Cz. Suppose that the category
C'z has initial objects, kernels of arrows, and limits of filtered systems. Then the functor
FY extends to a (unique up to isomorphism) §*-functor F¥ = (F2,0 | n > 0) from the
right exact category (V\Cs, €y\s) to Cz. If the category Cs has initial objects and ) is
one of them, then the category Y\ Cg is isomorphic to the category C's and the functor F)
is the composition of this isomorphism and the universal 0*-functor F,, where Fy = F.

It follows from the definition of satellites that for every object (V,) fv, V) of the
category Y\Cs, we have

FYWV,&) = Sy(F)(V,&y) = lim Ker(FY [ W 22 W), (1)
e,&y

where p,,, is the canonical projection and the limit is taken by the filtered system of
deflations (W, &) — (V,€y). By (the argument of) 3.3.2, 7 = S}(F) for all n > 0.

3.9.2. The §*-functor F2 . Let Cz be a category with final objects and cok-

ernels of arbitrary morphisms. For any functor Cg Z, Cz, let Fy denote the func-
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tor Y\Cs — Cz which assigns to every object (W, 5 W) the object Cok(F(€))
and acts correspondingly on morphisms. Notice that the functor Fy maps the initial
object (V,idy) of the category Y\Cg to a final object of the category Cz. If, in addi-
tion, the category Cz has initial objects (e.g. it is pointed), kernels of arrows and limits
of filtered systems, then there exists a (unique up to isomorphism) universal 9*-functor
FYts = (FY:€e Y€ | n > 0) such that ]:8;’@6 =Fy.

4. Stable categories of left exact categories.
Suspended categories and cohomological functors.

4.1. Observations. Let (Cx,Jx) be a svelte left exact category with a final object
and Cy a category with a final object y and arbitrary colimits. Then, by the (dual version
of the) argument of 3.3.2, we have an endofunctor S, of the category Hom(Cx,Cy)

of functors from Cx to Cy, together with a cone p 2, Sy, where vy is the constant
functor with the values in the final object y of the category Cy. For any conflation

E=(N -2 M- L) of (Cx,Jx) and any functor Cx L, Cy, we have a commutative
diagram
Fj Fe
F(N) —— FM) —— F(L)
| | oo(®) 0
AN)
y —— SiF(N)

Here S, F(N) = colim(Cok(F (M’ AN ))), where the colimit is taken by the diagram

of all conflations N —— M’ < L (see the argument of 3.3.2). By [GZ, I1.1.3], there is a
natural equivalence between the category Hom(Cx, Cy ) and the category of functors from
Cx and Cy and the category Hom(Cx,Cy) of continuous (i.e. having a right adjoint, or,
equivalently, preserving colimits) functors from C% to Cy. Let F* denote a (determined
uniquely up to isomorphism) continuous functor corresponding to F, i.e. F = F* o hx,
where hx is the Yoneda embedding Cx — C%, M —— M = Cx(—,M). Since the
functor F* preserves colimits, the formula for S; F(N) can be rewritten as follows:

S, F(N) = colim(Cok(F(M' <= N))) = colim(Cok(F*(M' —= N))) o)

= F*(colim(Cok(M' = N))) = F*S,hx(N) = F* Bxtl (N).

’
[4

where colimit is taken by the diagram of all conflations N J M S L
For any presheaf of sets G on Cx, we set

Ox:+(9)(~) = Cx (Baty (-),9). (3)

N Ox
The map G — Ox.(G) extends to an endofunctor C% —x, C%. It follows from the
definition of ©x. (and the Yoneda’s formula) that

Cx (Batk(-),6) = Ox.(9)(-) = C{ (=, 6x.(9)). (4)
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Let Eztl denote the continuous functor C% — C% corresponding to Eztl. It
follows from (4) that C{(Exty(—),G) ~ C%(—,0x.(G)), that is the functor Ox, is a
right adjoint to Extl}. For convenience, we shall write ©% instead of Ext%}.

Taking as F' the Yoneda functor hx (and setting N = hyx (N)), we obtain from the
diagram (1) the diagram

o~ o~

N M = I
| | 20(B) (5)
AN)
r —— O%(N)

Once the functor (:)}— is given, all the information about the universal O-functor
ExtS = (Ext,0; | @ > 0), and, therefore, due to the universality of Ext%, all the
information about all universal 0-functors from the left exact category (Cx,Jx), is con-

tained in the diagrams (5), where N —— M —— L runs through the class of conflations of
(Cx,Jx). R R

In fact, the universal J-functor Ext% is of the form (0% o hx, 0% (0)|n > 0); and
for any functor F' from C'x to a category Cy with colimits and final objects, the universal
O-functor (7;,9; | i > 0) from (Cx,Jx) to Cy with Ty = F' is isomorphic to

F* o Exty = (F*0% o hx, F*0%(20) | n > 0). (6)

4.1.1. Note. If Cx is a pointed category, then the presheaf T = Cx(—, z) is both a

~

AN)
final and an initial object of the category C%. In particular, the morphism 7 —— ©% (N)
in (5) is uniquely defined, hence is not a part of the data. In this case, the data consists
of diagrams

~ o~

o~ ) — ['4 o~ DO(E) o~

N —— M L 0% (N),

where E = (N SRERy LN L) runs through conflations of (Cx,Jx).

4.2. Stable category of a left exact category. Consider the full subcategory
Cx, of the category C'% whose objects are ©%* (M), where M runs through representable
presheaves and n through nonnegative integers. We denote by 6y, the endofunctor

Cx, — Cx, induced by @} It follows that C'yx, is the smallest é\)}—stable strictly full
subcategory of the category C% containing all presheaves M = Cx(—, M), M € ObCx.

p

4.2.1. Triangles. We call the diagram

N — M L 0% (N), (1)

where £ = (N SRRy LN L) is a conflation in (Cx,Jx), a standard triangle.
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A triangle is any diagram in Cx, of the form

N LML 205, (N), (2)
which is isomorphic to a standard triangle. It follows that for every triangle, the diagram

M — L

l l?

T A
r —— O%W)

commutes. Triangles form a category Trx,: morphisms from

j e 0

N M c 0 (N)

to
./ /

j ¢ o’

Nl

are given by commutative diagrams

j 4 0

N — M — L —— Ox(N)

r | g K | ox(n)

j/ 2/ ’

0
N - M - — 5 Oy ( Nl)
The composition is obvious.

4.2.2. The prestable category of a left exact category. Thus, we have obtained
a data (Cx,,(0x,,)),Ttx,). We call this data the prestable category of the left exact
category (Cx,Jx).

4.2.3. The stable category of a left exact category with final objects. Let
(Cx,Jx) be a left exact category with a final object x and (Cx,,0x,,; Ttx,) the asso-
ciated with (C'x,Jx) presuspended category. Let ¥ = ox, be the class of all arrows t of
Cx, such that 0y, (t) is an isomorphism.

We call the quotient category Cx, = E_lC’Xp the stable category of the left exact
category (Cx,Jx). The endofunctor fx, determines a conservative endofunctor 6y, of

p

*

q
the stable category Cx,. The localization functor Cx, —= Cx, maps final objects to final

objects. Let \; denote the image 7 = q7 () — 0x, of the cone ¥ N Ox, -

Finally, we denote by Trx,_ the strictly full subcategory of the category of diagrams
of the form N' — M — L — 0x, (N) generated by g% (Trx, ).

The data (Cx,,0x,,As; Ttx,) will be called the stable category of (Cx,Jx).

4.2.4. Dual notions. If (Cx,€x) is a right exact category with an initial object,
one obtains, dualizing the definitions of 4.2.2 and 4.4.3, the notions of the precostable and
costable category of (Cx, €x).
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4.3. Presuspended categories. Fix a category C'yx with a final object x and a

0
functor Cx RGN x\Cx, or, what is the same, a pair (0x, \), where 0% is an endofunctor

Cx — Cx and )\ is a cone x — 6. We denote by Tty the category whose objects are
all diagrams of the form

N—Lom gV
such that the square
[4
M — L
| |2
AN

commutes. Morphisms from

to
j/ e/ D/

N M P 0% (N")

are triples (N R N ML M L N L') such that the diagram

) e 0

N — M — L —— Ox(N)

r | g K | ox(n)

j/ 2/ ’

?
N S gV
commutes. The composition of morphisms is natural.

4.3.1. Definition. A presuspended category is a triple (Cx, gx, Tty ), where Cx and

gx = (Ox,\) are as above and Tty is a strictly full subcategory of the category Trx whose
objects are called triangles, which satisfies the following conditions:
(PS1) Let Cx, denote the full subcategory of Cx generated by objects N such that

there exists a triangle N' —— M — £ - 6z (N). For every N’ € ObCx,, the diagram

i N
N B ALY

is a triangle.

(PS2) For any triangle N' > M — £ - 0x(N) and any morphism N RNV
with N/ € ObCY%,, there is a triangle N’ oM o S Ox(N”) such that f extends
to a morphism of triangles

3 f7 ,h ! / /
N L M= £ -2 0N) _ el NV Lo M =5 2 25 05 (N)).
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(PS3) For any pair of triangles
N oM 2 2 9e(NV) and N 2 M5 2 0 (V)

and any commutative square .
N —— M
f l l g
i

Nl M/

there exists a morphism £ . £’ such that (f,g,h) is a morphism of triangles, i.e. the
diagram

commutes.
(PS4) For any pair of triangles

NS M-S L 0xN) and M - M = M -5 05(M),

there exists a commutative diagram

N M . v, Ox(N)
1d l x J Y l 1d
N L M’ v—/> L L Ox(N)
s l t Ox(u) (2)
r l r!
0x(v)
0x(M) —— 0z(L)

whose two upper rows and two central columns are triangles.
(PS5) For every triangle N' = M — £ - 02 (N), the sequence

. —— Cx(0x(N),—) —— Cx(L,—) —— Cx(M,—) —— Cx(N,-)

is exact.

4.3.1.1. Remarks. (a) If C'x is an additive category, then three of the axioms above
coincide with the corresponding Verdier’s axioms of triangulated category (under condition
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that Cx, = Cx). Namely, (PS1) coincides with the first half of the axiom (TRI), the axiom
(PS3) coincides with the axiom (TRIII), and (PS4) with (TRIV) (see [Ve2, Ch.II]).

(b) Tt follows from (PS4) that if N'— M — L — 0x(N) is a triangle, then all
three objects, N, M, and L, belong to the subcategory Cyx, .

(c) The axiom (PS2) can be regarded as a base change property, and axiom (PS4)
expresses the stability of triangles under composition. So that the axioms (PS1), (PS2)
and (PS4) say that triangles form a ’'pretopology’ on the subcategory Cx,. The axiom
(PS5) says that this pretopology is subcanonical: the representable presheaves are sheaves.

These interpretations (as well as the axioms themselves) come from the main examples:
prestable and stable categories of a left exact category.

4.3.2. The category of presuspended categories. Let T, Cx = (Cx,0x, A\x;Trx)
and T,Cy = (Cy,0y,\y;Try) be presuspended categories. A triangle functor from
T, Cx to T Cy is a pair (F, ¢), where F is a functor Cx — Cg which maps initial object
to an initial object and ¢ is a functor isomorphism F' o §x — 60 o F' such that for every
triangle N - M - £ % 0x(N) of T, Cx, the sequence

F) 2% vy 2 pey Y gy r )

is a triangle of T, Cy. The composition of triangle functors is defined naturally:
(G,9) o (F,¢) = (GoF,¢pF o Go).

Let (F,¢) and (F',¢') be triangle functors from T_Cx to T_Cg. A morphism from
(F,¢) to (F',¢") is given by a functor morphism F X, F’ such that the diagram

¢
GQOF e Foex

op) | | A0

’

¢
9@ oFf —— F/OQ;{

commutes. The composition is the compsition of the functor morphisms.
Altogether gives the definition of a bicategory PB&€at formed by svelte presuspended
categories, triangle functors as 1-morphisms and morphisms between them as 2-morphisms.
As usual, the term “category PCat” means that we forget about 2-morphisms.
Dualizing (i.e. inverting all arrows in the constructions above), we obtain the bicat-
egory P°Cat formed by precosuspended svelte categories as objects, triangular functors as
1-morphisms, and morphisms between them as 2-morphisms.

4.4. Quasi-suspended categories. We call a presuspended category (Cx, 0x, A; Ttyx)
quasi-suspended if the functor 0% is conservative. We denote by G€at the full subcategory
of the category P€at whose objects are quasi-suspended svelte categories.

Let (Cx,0x,A; Trx) be a presuspended category and ¥ = Xy, the class of all arrows
s of the category Cx such that 0x(s) is an isomorphism. Let Oy denote the endofunctor
of the quotient category £ ~!Cyx uniquely determined by the equality ©x o g% = g% o x,
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where g% denotes the localization functor Cx — Y~ 'Cx. Notice that the functor g%

maps final objects to final objects. Let X denote the morphism g% (z) — ©x induced by

a5 () ~
z 2 0% (that is by q%(z) = g% 0 0x = Ox o q%) and Try the essential image of Try.

Then the data (X~ 1Cx, Ox, X; Trx) is a quasi-suspended category.
The constructed above map

(Cx, 0%, X Tex) — (2710%, Ox, \; Trx)

extends to a functor Pat . &¢at which is a left adjoint to the inclusion functor

&eCat 2 P&at. The natural triangle (localization) functors

*

(Cx, 0%, X Ttx) ——s (710, O, A; Trx)

form an adjunction arrow Idgpeqs — J«J*. The other adjunction arrow is identical.

4.5. The stable category of a left exact category with final objects. Let
(Cx,Jx) be a left exact category with a final object x and (Cx,,0x,,); Trx,) the as-
sociated with (C'x,Jx) presuspended category. We call the category E_lCXp the stable
category of the left exact category (Cx,Jx). The corresponding quasi-suspended category

(Z_lcxp ,Ox,,\; Trx, ) will be called the stable quasi-suspended category of (Cx,Jx).

4.5.1. Proposition. Let (Cx,Tx) be a left exact category with final objects. Suppose
that (Cx,Jx) has enough pointed (i.e. having a morphism from a final object) injectives.
Then the stable quasi-suspended category of (Cx,JTx) is naturally equivalent to its weak
stable category.

Proof. 1t is easy to see that the natural functor Cx — Y~ 'Cx factors through the
weak stable category of (Cx,Jx). The claim is that the corresponding (unique) functor
from the weak stable category of (Cx,Jx) to ¥71Cx is a category equivalence. m

4.6. Homology and homotopy of ’spaces’.

4.6.1. Homology of ’spaces’ with coefficients in a right exact category. Let
Cx be a svelte category and (Cz, €z) a svelte right exact category with colimits and initial
objects. We denote by C¢(z x) the category of functors Cx — C=z.

We define the zero homology group of a ’space’ X with coefficients in C'x 7, Cz by

Hy(X,F) = colim F. The higher homology groups, H,, (X, F), are values at F of satellites
H (X7_)
of the functor Cg(z x) >, C'z with respect to the (object-wise) right exact structure

G,V)(Z,X) induced by Qfg (Cf K26)
Thus, we have a universal 9*-functor

Ho(X,—)=(H,(X,—), 0, | n>0)
from the right exact category of coefficients (Cy(z x), €g(z,x)) to (Cz,€z).
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4.6.1.1. Proposition. Suppose that the right exact category (Cz,€z) satisfies
(CE5*). Then the universal O*-functor He(X, —) is ’exact’.

Proof. Let J. denote the canonical embedding of the category Cz into the category
Cy(z,x) = Hom(Cx,Cz) which assigns to every object M of the category Cz the con-
stant functor mapping all arrows of Cx to idy;. The functor J,. has a left adjoint, J*,
which assigns to every functor Cxy — C'z its colimit and to every functor morphism the
corresponding morphism of colimits. The composition J*J. is (isomorphic to) the identi-
cal functor; i.e. J* is a (continuous) localization functor. The functor J, is exact, hence
‘exact’, for any category C'x. The functor J* is right exact (in particular right ’exact’),
because it has a right adjoint. The assertion follows now from 3.6.1. m

4.6.1.2. Note. There is a natural equivalence between the category of local systems
of abelian groups on the classifying topological space B(X) of a category Cx and the
morphism inverting functors from C'x to Z — mod. If F is a morphism inverting functor
Cx — Z — mod and Lz the corresponding local system, then the homology groups
H, (X, F) are naturally isomorphic to the homology groups H,,(B(X), £#) of the classifying
space B(X) with coefficients in the local coefficient system Lz (cf. [Q, Section 1].

4.6.2. The ’space’ of paths of a ’space’. Let Pa, be the functor from Cat to
the category of diagrams of sets of the form A = B which assigns to each category Cx

the diagram HomC'xy —Z ObCx, where s maps an arrow to its source and t to its target.

The functor Pa, has a left adjoint, Pa*, which assigns to each diagram T = (T} = Tp)

e(X)
the category Pa*(T) of paths of T. The adjunction morphism Pa*Pa,(Cx) —— Cx is

a functor which is identical on objects and mapping each path of arrows
My — My — ... — M,

to its composition M; — M,.
We denote by PBa(X) the ’space’ represented by the category Pa*Pa.(Cx) and call

it the ’space’ of paths of the ’space’ X. The map X —— Pa(X) extends to an endo-
e(X)”
functor, Pa, of the category |Cat|°. The adjunction morphism Pa*Pa,(Cx) —— Cx is
e(X)
interpreted as an inverse image functor of a morphism of ’spaces’” X —— Pa(X). The

morphisms € = (¢(X) | X € Ob|Cat|?) form a functor morphism Id|cq¢e — Pa.

4.6.2.1. The ’space’ of paths and the loop ’space’ of a pointed ’space’.
Consider the pointed category |Cat|®/x associated with the category of ’spaces’ |Cat|;
Here z is the initial object of |Cat|® represented by the category with one (identical)
morphism. By C1.5, a choice of a pseudo-functor

Cf.g
Cat|]” —— Cat®, X +— Cx, fr— [ (9f) —— f*g",

induces an equivalence between the category |Cat|®/x and the category |Cat| whose
objects are pairs (X,9Ox), where Ox € ObCyx; morphisms from (X,Ox) to (Y,Oy)
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are pairs (f,¢), where f is a morphism of ’spaces’ X — Y and ¢ is an isomorphism

(f:¢) (9:¢)
[*(Oy) — Ox. The composition of (X,Ox) —— (Y, Oy) o, (Z,97z) is the mor-

phism (go f,¢ o f*(¢) ocsq).
The endofunctor Pa of |Cat|® induces an endofunctor Pa, of |Cat| which assigns
to each pointed ’space’ (X, Ox) the pointed ’space’ (Pa(X), Ox) of paths of (X,Dx). It
e(X)

follows that the canonical morphism X —— Pa(X) is a morphism of pointed ’spaces’
(XvDX) - ‘Baw{XaDX) = (‘Ba(X),Dx)
It follows from C1.5.1 that the category representing the cokernel of the canonical

()
morphism (X, Ox) -, Pa, (X, Ox) is the subcategory of the category Cypq(x) whose

objects are isomorphic to O x and morphisms are paths of arrows M; — ... — M,
whose composition is an isomorphism. This category is equivalent to its full subcategory
Ca(x,0x) of Cpacx) which has one object, Ox.

We call the ’space’” Q(X, O x) represented by the latter category the loop ’space’ of
the pointed ’space’ (X, O x).

4.6.2.2. Left exact structures on the category of pointed ’spaces’. Let &7
be the class of all split epimorphisms of diagrams A = B. By 2.6.3.2, the class Pa, 1 (&5P!)
is a right exact structure on the category of swelte pointed categories. This right exact
structure determines a left exact structure Jo on the category |Cat|? of pointed ’spaces’,

so that (|Cat|?,Jo) is a Karoubian left exact category. Each path 'space’ (PBa(X),Ox) is
an injective object of (|Cat|?,Jo), and the canonical morphism (X, O x) S (Pa(X),Ox)

belongs to Jo. The fact that every epimorphism of diagrams of the form A = B splits
implies that the class Jo consists of all morphisms (X,9Ox) —— (V,9y) of the pointed
‘spaces’ such that the image of j* is naturally equivalent to the category C'x.

4.6.3. The first homotopy group of a pointed ’space’. Given a svelte category
Cx, we denote by Cg(x) the groupoid obtained from Cx by localization at Hom(Cx ). The
map G which assigns to each object (X, Ox) of the category |Cat|S the pair (G(X),Ox)
(we identify objects of Cg(x) with objects of Cx) is naturally extended to a functor from
|Cat|? to its full subcategory Gr¢ generated by objects (Y, Oy ) such that Cy is a groupoid.
This functor is a left adjoint to the inclusion functor G2 — |Cat|S.

4.6.3.1. Definition. The fundamental group m (X,Dx) of the pointed ’space’
(X,9Ox) is the group Cgx)(Ox,Ox) of the automorphisms of the object Ox of the
groupoid Cgx) associated with the category Cx. (see [GZ, 11.6.2]).

By [Q, Proposition 1], the group m (X, 9 x) is isomorphic to the fundamental group
m (B(X),Ox) of the pointed classifying space (B(X), O x) of the category Cx.

4.6.4. Higher homotopy groups of a pointed ’space’. The map which assigns
to every pointed ’space; (X,Dyx) its fundamental group m(X,9Ox) is a functor from
(|Cat|2)°P to the category Z —mod of abelian groups. The functor m; maps every inflation
to an epimorphism and every conflation (X,Ox) — (Y,Oy) — (Z,907) to an exact
sequence of abelian groups 71(Z,97) — (Y, Oy ) — 71 (X, Ox). Therefore, by 3.3.2,
the universal 0*-functor me = (7,0, | n > 1) from (|Cat|%,Jo)? to Z — mod is ’exact’.
We call 7, (X, Ox) the n-th homotopy group of the pointed 'space’ (X, Ox).
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4.6.4.1. Proposition. For any pointed ‘space’ (X,Dx) and any n > 1, there is a
natural isomorphism m,11(X,Ox) ~ m, (X, Ox)).

Proof. This follows from the long exact sequence

A 7Tn+1<q3a(X,Dx)) Wn(mCl(X,Dx)) —_— ...

|

7Tn+1(X,Dx) - Wn(Q<X79X))

corresponding to the (functorial) conflation (X,Ox) — Pa(X,Ox) — QX,Ox) of
pointed ’spaces’ and the fact that the ’space’ (Pa(X),Ox) is an injective object of the
pointed left exact category (|Cat|2,J0)°?, hence 7, (Pa(X),Ox)=0forn>1. m

5. Projectives and injectives.
Fix a right exact category (Cx, €x).

5.1. Lemma. The following conditions on an object P of Cx are equivalent:
(a) Every deflation M — P splits.

(b) For every deflation M —*5 N and a morphism P 4, N, there exists a morphism
P L5 M such that f =eog.

Proof. Obviously, (b) = (a): it suffices to take f = id,.
(a) = (b). Since deflations are stable under any base change, there is a cartesian
square

’

M — M
e l cart l e
f
P — N

whose left vertical arrow is a deflation. By (a), it splits; i.e. there is a morphism P M
such that ¢’ o g = id,. Therefore, eo (f'og) =(¢eo f')og=(foe)og=f. m

5.2. Projectives. Let (Cx,€x) be a right exact category. We call an object P
of C'x a projective object of (Cx, &x), if it satisfies the equivalent conditions of 5.1. We
denote by Pg, the full subcategory of C'x generated by projective objects.

5.2.1. Example. Let (Cx, €x) be a right exact category whose deflations are split.
Then every object of C'x is a projective object of (Cx, €x).

5.3. Right exact categories with enough projectives. We say that (Cx,&x)
has enough projectives if for every object N of C'x there exists a deflation P — N, where
P is a projective object.

5.3.1. Proposition. Let (Cx,€x) and (Cy,Ey) be right exact categories, and let

Cy EAR Cx be a functor having a right adjoint, f.. If the functor f. maps deflations to
deflations (e.qg. it is right weakly ’exact’), then f* maps projectives to projectives.
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Proof. Let P be a projective object of (Cy, €y) and M —— f*(P) a deflation. Then,
fe(e)
by hypothesis, f.(M) —— f.f*(P) is a deflation. Since P is a projective object, there
exists an arrow P — f*(M) such that the diagram
P

< f*(e)\n(P) @
fe(M) —— fof*(P)

commutes (here n(P) is an adjunction arrow). Then the composition f*(P) M of
(v (M)
f*(P) —— f*f«(M) and the adjunction morphism f*f.(M) —— M splits the deflation

M — f*(P). This follows from the commutativity of the diagram

f*(P)
f*(t)/ \f*n(P)
T fe(e)
(M) ——"—— f*£.f*(P) 2)
=(a) | | = (p)
M ————— f*(P)

and the equality ef* o f*n = Ids~. =

5.3.2. Proposition. Let (Cx,€x) and (Cy,Ey) be right exact categories, and let
Cy EAR Cx be a functor having a right adjoint, f.. Suppose that €y consists of all
split epimorphisms of Cy and the functor f. maps deflations to deflations (that is split
epimorphisms) and reflects deflations (i.e. if fi(t) is a split epimorphism, then t is a
deflation). Then (Cx,€x) has enough projectives.

Proof. Since €y consists of split epimorphisms, all objects of C'y are projective.

Therefore, by 5.3.1, every object of the form f*(N), N € ObCy, is projective. For every

(M)
object M of C'x the adjunction morphism f*f,(M) - M is a deflation, because the

morphism f.e(M) is a split epimorphism, hence, by hypothesis, it belongs to €y . =
5.4. Right exact structure with a given class of projectives. Let Cx be a

category and B a class of objects of C'x. Let &(J3) denote the class of all arrows M NS

Cx(f,P)
of C'x such that Cx (P, M) = Cx (P, L) is surjective and for any morphism N - L,

there exists a pull-back of f along g.
5.4.1. Lemma. The class €(P) is the class of covers of a Grothendieck pretopology.

Proof. Obviously, the class €(*) contains all isomorphisms and is closed under com-
positions. By assumption, for any morphism M Y Lof ¢(*B) and an arbitrary morphism
N L L of Cx, there exists a cartesian square

M2
I l cart
N

g

(3)

N S
-~
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The functor C'x (P, —) preserves cartesian squares for any object P of Cx. In particular,
the image

/

M L. M
t l cart l t (4)

N s L
of (3) is a cartesian square. If P belongs to B, then its right vertical of (4) is surjective,

hence its left vertical arrow is surjective too. Tbis shows the pull-back M —5 N of the
morphism t belongs to (). =

5.4.2. Proposition. Let Cx be a category. For any class of objects P of the

category Cx, the class of morphisms €5 (B) o EX N E(P) is the finest among the right

exact structures €x on Cx such that all objects of B are projectives of (Cx,Ex).

Proof. Recall that €% is the finest right exact structure on Cl; it consists of all
universal strict epimorphisms of C'x. The intersection of Grothendieck pretopologies is
a Grothendieck pretopology. Since it is contained in €%, it is a left exact structure.
Evidently, any right exact structure €x such that all objects of ¥ are projectives of

(Cx,€x), is coarser than €5 (P). m

5.5. Right exact categories of modules over monads. Fix a category Cy such

that the class infl of split epimorphisms of Cy is stable under base change. Equivalently,

for each split epimorphism M Y5 L and for an arbitrary morphism N oL of the

category Cy, there exists a cartesian square

— f
M — M
I l cart l t
f
N —— L

(whose left vertical arrow is split, because t is split). So that (Cy, 6;}71) is a right exact
category. Let F = (F,u) be a monad on the category Cy. Set Cx = F — mod (i.e.
X = Sp(F/Y) — the spectrum of the monad F) and denote by f, the forgetful functor
Cx — Cy. Weset €x = f 1(€§}Dl). Since f. preserves and reflects limits (in particular,
pullbacks), the arrows of €x are covers of a pretopology, i.e. (Cx,€x) is a right exact

category. The functor f, has a left adjoint, V' EiR (F(V),u(V)), and all together satisfy the
conditions of 5.3.2. Therefore, (Cx, €x) has enough projectives. Explicitely, it follows from
(the argument of) 5.3.2 that objects f*(V) = (F(V),u(V)) are projectives of (Cx, &x)

for all V' € ObCy, and for every F-module M = (M, ¢), the action F(M) £, M can be
regarded as a canonical deflation from a projective object:

F7F (M) = (F(M), p(M)) = M.

5.5.1. Proposition. Suppose that (Cy, infl) 1s a Karoubian right exact category
(i.e. Cy is a Karoubian category and split epimorphisms are stable under base change).
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Then for every monad F = (F, ) on Cy, the right exact category (F — mod, €x), where
Ex s the induced by in/pl right exact structure, is Karoubian.

Proof. (a) The forgetful functor F —mod ELR Cy reflects and preserves limits; in par-
ticular, it reflects and preserves pull-backs. Therefore, the stability of split epimorphisms
of C'y under base change implies the same property of split epimorphisms of F — mod.

(b) It remains to show that F — mod is a Karoubian category. Let M = (M, )

be an F-module and p an idempotent M — M. Since Cy is a Karoubian category,

f«(p)
the idempotent f,(M) = M —— M splits. By 1.5.1, the latter is equivalent to the

idM
existence of the kernel of the pair of arrows M —— M. Since the forgetful functor f,
Fx(p)

reflects and preserves limits, in particular kernels of pairs of arrows, there exists the kernel

idM

of pair of arrows M < M; i.e. the idempotent p splits. m
p

5.5.2. Corollary. Let G = (G,9) be a comonad on a Karoubian category Cx.
Suppose that class jifl of split monomorphisms in Cx is stable under cobase change (i.e.

Ji?l is a left exact structure on Cx ). Let Jy be the preimage of Ji?l in the category
Cy = G —comod of G-comodules. Then (Cy,Ty) is a Karoubian left exact category having
enough injectives.

Proof. The assertion is dual to that of 5.5.1. Futher on, we need details which are
as follows. Let Cy be the category G — comod of G-comodules with the exact structure
induced by the forgetful functor

g*
Cy =G — comod —— Cx.
Its right adjoint

Cx —— Cy = G — comod, M — (G(M),5(M)), (1)

maps every object M of the category C'x to an Ey-injective object. If the category Cx is
Karoubian, then, for every object M = (M, M - G(M)), the adjunction morphism

M —— g.g" (M) = (G(M), (M) (2)

is an inflation of G-comodules (see the argument of the dual assertion 5.5.1). m

5.5.3. Corollary. Under the conditions of 5.5.2, an object M = (M,v) of the cate-
gory Cy of G-comodules is Ty -injective iff the adjunction morphism M —— (G(M),§(M))
splits (as a morphism of G-comodules).

5.5.4. Proposition. Suppose that C'x is a Karoubian category whose split epimor-
phisms (resp. split monomorphisms) are stable under base (resp. cobase) change. Let
F = (F,un) be a continuous monad on Cx (i.e. the functor F' has a right adjoint) and
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f« the forgetful functor F — mod — Cx. Set Cx = F — mod, Ex = f*_l((’fifl), and
Jx = f*_l(Jifl). Then (Cyx,€x) is a right eract category with enough projectives and
(Cx,T%) is a left exact category with enough injectives.

Proof. If the monad F = (F, p) is continuous, i.e. the functor F' has a right adjoint,

F', then (and only then) the forgetful functor F — mod = Cx ELNYG 'x has a right adjoint,
f', such that F' = f,f'. Thus, we have the comonad F' = (F',§) corresponding to the
pair of adjoint functors f,, f' and an isomorphism of categories

<1>
F —mod —— F' — comod

which assigns to every F-module (M, F(M) £, M) the F'-comodule (M, M £, F'(M))
determined (uniquely up to isomorphism) by adjunction. It follows that the diagram

@
F —mod —— F'— comod

N /9" (3)
Cx

commutes. By 5.5.1, the category Cx = F — mod has enough €x-injectives. By 5.5.2,
the category Cy = F' — comod has enough Jy-injectives. The functor ® in (3) is an
isomorphism of exact categories, hence the assertion. m

5.6. Coeffaceable functors, universal 0*-functors, and projectives. Let
(Cx,€x) be a right exact category and Cy a category with an initial object. We call

a functor C'x i Cy coeffaceable, or €x-coeffaceable, if for any object L of Cx, there
exists a deflation M —— L such that F (t) is a trivial morphism.

5.6.1. Coeffaceble functors and projectives. If a functor Cx £, Cy is €Ex-
coeffaceable, then the morphism F'(t) is trivial for any projective deflation t, and F' maps
every projective object of (Cx, €x) to an initial object of Cy-.

In fact, a projective deflation M Y5 L factors through any other deflation of L; and,
by hypothesis, there exists a deflation M —— L such that F(e) is trivial. Therefore, the
morphism F'(t) is trivial. An object M is projective iff id,, is a projective deflation; and
the triviality of F'(id,,) means precisely that F'(M) is an initial object.

So that if the right exact category (C'x, €x) has enough projective deflations (resp.
enough projectives), then a functor Cx L, Cy is @x-coeffaceable iff F (e) is trivial for
any projective deflation ¢ (resp. F'(M) is an initial object for every projective object M).

5.6.2. Universal 0*-functors and pointed projectives. Let Cz be a category
with initial objects. We call an object M of C'z pointed if there are morphisms from M to
initial objects, or, equivalently, a unique morphism from an initial object to M is split.

5.6.2.1. Proposition. Let (Cx,€x) be a right exact category with initial objects
and T = (T;,0; | i > 0) a universal O*-functor from (Cx,&x) to Cy. Then T;(P) is an
wnatial object for any pointed projective object P and for all i > 1.
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Proof. Let F denote the functor 7;, i > 0. By 3.3.2, T;4; ~ S_(F)(P). Let x be
an initial object of C'x and P a projective object of (Cx,€x) such that there exists a
morphism P — x, then T;11(P) ~ S_(F')(P) is an initial object.

‘ d
In fact, consider the conflation x 7, p % P If there exists a morphism P — x,

then the unique arrow z L, Pisa split monomorphism. Therefore F(i,) is a (split)
monomorphism. By 2.1.1, the latter implies that Ker(F'(i,)) is an initial object. Since

the object P is projective, any deflation M —— P is split; i.e. there exists a morphism

of deflations (P e, P) = (M -5 P). This implies that the canonical morphism
S_(F)(L) — Ker(F(t(e)) factors through the morphism Ker(F(i,)) — Ker(F((e))
determined by the morphism of deflations u. Since Ker(F(i,)) = y is an initial object
of the category Cy, it follows that the morphism Ker(F(i,)) — Ker(F(t(e)) is unique
(in particular, it does not depend on the choice of the section P —— M). Therefore, the
canonical morphism S_(F)(L) — Ker(F(i,)) =y is an isomorphism. m

5.6.2.2. Corollary. Let (Cx,€x) be a right exact category with initial objects and
T = (T;,0; | 1 > 0) a universal O*-functor from (Cx,&x) to Cy. Suppose that (Cx,Ex)
has enough projectives and projectives of (Cx,Ex) are pointed objects. Then the functors
T; are coeffaceable for all i > 1.

Proof. The assertion follows from 5.6.2.1 and 5.6.1. =

5.6.3. Proposition. Let (Cx,€x) and (Cyz,€z) be right exact categories and

Cy EAR Cx a functor having a right adjoint f.. Suppose that f* maps deflations of

e(M)
the form N — f.(M) to deflations and the adjunction arrow f*f.(M) —— M is a

deflation for all M (which is the case if any morphism t of Cx such that f.(t) is a split
epimorphism belongs to €x ). Let (Cz, €z) have enough projectives, and all projectives are
pointed objects. Then each projective of (Cx,€x) is a pointed object.

If, in addition, f. maps deflations to deflations, then (Cx, €x) has enough projectives.

Proof. (a) Let M be an object of Cx. Since (Cz, €z) has enough projectives, there

exists a deflation P —— f«(M), where Pisa projective object. By hypothesis, the mor-
phisms
o IO e(M)
P — M) — M (1)

are deflations. If the object M is projective, their composition is a split epimorphism; i.e.

it has a section M — F*(P). By hypothesis, there exists a morphism P —— z, where z is
an initial object of C'z. Since the functor f* has a right adjoint, f*(z) is an initial object

fr(v)e¢
of the category Cx, and we have a morphism M —— f*(z).

(b) If, in addition, the functor f, maps deflations to deflations, then, by 5.3.1, its left
adjoint f* maps projectives to projectives. So that the composition of the arrows (1) is a
deflation with a projective domain. m

5.6.4. Note. The conditions of 5.6.3 can be replaced by the requirement that if
N — f.(M) is a deflation, then the corresponding morphism f*(N) — M is a deflation.
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This requirement follows from the conditions of 5.6.3, because the morphism f*(N) — M

corresponding to N —— f, (M) is the composition of f*(t) and the adjunction arrow
e(M
prrn =,

5.6.5. Example. Let (Cx,€x) be the category Algy of associative k-algebras en-
dowed with the canonical (that is the finest) right exact structure. This means that class
€ x of deflations coincides with the class of all are strict epimorphisms of k-algebras. Let
(Cy,€y) be the category of k-modules with the canonical exact structure, and f, the
forgetful functor Algr, — k — mod. Its left adjoint, f* preserves strict epimorphisms, and
the functor f. preserves and reflects deflations; i.e. a k-algebra morphism ¢ is a strict epi-
morphism iff f,(¢) is an epimorphism. In particular, the adjunction arrow f*f.(A) — A
is a strict epimorphism for all A. By 5.6.3, (Cx, €x) has enough projectives and each
projective has a morphism to the initial object k; that is each projective has a structure
of an augmented k-algebra.

5.6.6. Proposition. Let (Cx,€x) and (Cy, €y ) be right exact categories with initial
objects; and let T = (T;,0;| i > 0) be an ’exact’ O*-functor from (Cx,Ex) to (Cy, Ey).
If the functors T; are €x-coeffaceable for i > 1, then T is a universal O*-functor.

Proof. Let T" = (T],9,| i > 0) be another 0*-functor from (Cx,Ex) to Cy and fy a

1?7V
functor morphism Tj; — Tj. Fix an object L of Cx. Let N — M - L be a conflation
such that Tj(e) factors through the initial object y of Cy. Then we have a commutative
diagram

, T (e) , o’ , Ty () , Ty (e) ,
Tl(M) - Tl(L) - T()(N) - TO(M) - Tf(

L)
(V) | | foan) (L) (1)
T1(e) 0 To(j) To(e)

Since the lower row of (1) is an ’exact’ sequence and T} (e) factors through the initial object

y, the sequence
) To(j)

fi(L)
is ’exact’. Therefore, there exists a unique morphism 77 (L) LT (L) such that the
diagram
o/ T5(3)

(L) —— Ty(N) —— To(M)
(L) | fo(v) | | o)
0 To(j)

(L) — To(N) —— To(M)

commutes. By a standard argument, it follows from the uniqueness of f;(L) and the
fact that the family of the deflations of L is filtered (since pull-backs of deflations are
deflations) that the morphism f; (L) does not depend on a choice of the conflation and the
family f1 = (f1(L) | L € ObCx) is a functor morphism 7] — T} compatible with the
connecting morphisms 9y, 0(. =
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5.6.6.1. Note. If a right exact category (Cx, €x) has enough projectives and each
projective is a pointed object, then, by 5.6.2.2, for any universal 0*-functor T, the functors
T; are €x-coeffaceable for ¢ > 1.

5.6.7. Proposition. Let (Cx,€x), (Cy,€Ey), and (Cz, Ez) be right exact categories.
Suppose that (Cx,€x) has enough projectives and Cy has kernels of all morphisms. If
T = (T;| © > 0) is a universal, ’exact’ 0*-functor from (Cx,€x) to (Cy,&y) and F a
functor from (Cy, €y) to (Cz, €z) which respects conflations, then the composition FoT =
(FoT;|li>0)is a universal ’exact’ 0*-functor.

Proof. Since T is a universal 0*-functor, it follows from 5.6.2.2 that the functors
T; are €x-coeffaceable for all ¢ > 1. Moreover, because C'x has enough projectives, the
coeffaceability of T; means precisely that T;(L) = 0 for any projective object L of (Cx, €x).
Therefore, F' o T;(L) = 0 for all ¢ > 1, i.e. the 0*-functor F' o T is €x-effaceable. Since
by hypothesis, T" is an ’exact’ 0*-functor and F is an ’exact’ functor, their composition,
FoT,is an ’exact’ 0*-functor. By 5.6.6(a), it is universal. m

5.6.8. A remark about (co)effaceable functors. Let Cx be a category with
initial objects and B its subcategory. We say that an object M of C'x is right (resp. left)
orthogonal to B if for every N € ObBB, there are only trivial morphisms from N to M (resp.
from M to N). We denote by B+ (resp. +B) the full subcategory of Cx generated by
objects right (resp. left) orthogonal to B.

Let (Cx,€x) and (Cy, €y) be right exact categories, and let y be an initial object of
the category Cy. The category Hom(Cx,Cy) of functors from Cx to Cy has an initial
object, which is the constant functor with values in y. Let Rex((Cx,€x), (Cy, Ey)) be
the full subcategory of Hom(Cx,Cy) whose objects are right ’exact’ functors. And let
Eff°((Cx,€Ex),Cy) denote the full subcategory of Hom(Cx,Cy) generated by coefface-
able functors from (Cx,&x) to Cy.

5.6.8.1. Proposition. Let (Cx,Ex) be a svelt right exact category with enough
projectives and (Cy, €y) a right exact category with an initial object y. Suppose that Cy
18 a category with kernels of morphisms and the unique morphism from the initial object y of
Cy are monomorphisms. Then Eff°((Cx,€x),Cy) is right orthogonal to the subcategory
generated by all functors Cx — Cy which map deflations to strict epimorphisms.

Proof. Let F € ObEff°((Cx,€x),Cy); and let G %, F be a functor morphism,
where G is a functor which maps deflations to strict epimorphisms. Since (Cx, €x) has

enough projectives, for each object L of C'x, there exists a deflation P — L such that P
is a projective object. Then we have a commutative diagram

G(P) ﬂ F(P)

G(e) J J F(e)
o(L)
G(L) —— F(L)
with F'(P) being an initial object of Cy; so that the composition ¢(L) o G(e) is a trivial
morphism. By 2.1.2, all morphisms from initial objects are monomorphisms iff for any
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morphism M ., N the kernel morphism Ker(f) — M is a monomorphism. Since G(¢)
is a strict epimorphism and the kernel morphism Ker(¢(L)) — G(L) is a monomorphism,
it follows from 2.3.4.4 that ¢(L) is a trivial morphism. =

5.6.8.2. Proposition. Let (Cx,&x) be a svelt right exact pointed category with
enough projectives, and let (Cy,&y) be the category of pointed sets with the canonical

exact structure. Then a functor Cx £, Cy s coeffaceable iff it is a right orthogonal to
the subcategory Rex((Cx, €x), (Cy, Ey)) of right ’exact’ functors from (Cx,Ex) to Cy.

Proof. The fact that coeffaceable functors to Cy are right orthogonal to right ’exact’
functors follows from 5.6.8.1, because right ’exact’ functors map deflations to deflations,
and deflations are strict epimorphisms.

Conversely, let a functor Cx i Cy be right orthogonal to all right ’exact’ functors
from (Cx,&x) to Cy. Notice that for any projective object P of (Cx, €x), the functor
P = Cx(P,—) is ’exact’, in particular it is right ’exact’. By the (dual version of) Yoneda
lemma, Hom(P,F) ~ F(P). Since, by hypothesis, Hom(P, F) consists of the trivial
morphism, F'(P) is trivial for all projective objects P of (Cx,€x). Since (Cx,€x) has
enough projectives, this means precisely that I is a coeffaceable functor. m

The k-linear version of 5.6.8.2 is as follows.

5.6.8.3. Proposition. Let (Cx,€x) be a svelt right exact k-linear category with

enough projectives. A k-linear functor Cx Lk — mod s coeffaceable iff it is right
orthogonal to the subcategory Rexy((Cx, Ex), k —mod) of right ’exact’ k-linear functors
from (Cx,€x) to k — mod.

Proof. The argument is similar to that of 5.6.8.2. m

6. Left exact categories of ’spaces’.

We start with studying left exact stuctures formed by localizations of ’spaces’ repre-
sented by svelte categories. Then the obtained facts are used to define natural left exact
structures on the category of ’spaces’ represented by right exact categories.

The following proposition is a refinement of [R1, 1.4.1].

6.1. Proposition. Let Z L X -4 Y be morphisms of ’spaces’ such that q (i.e. its

. . q* . . .
inverse image functor Cy — Cx ) is a localization. Then

(a) The canonical morphism Z —— ZHY is a localization.

fra
(b) If q is a continuous localization, then q is a continuous localization.

(c) If ¥y = {s € HomCy | ¢*(s) is invertible} is a left (resp. right) multiplicative
system, then Efqv* has the same property.

Proof. Let X denote the ’space’ Z H Y. The category Cx is Cy H Cy. Recall that
Ia I*.9*
objects of Cy H Cy are triples (L, M;¢), where L € ObCz, M € ObCy, and ¢ is an

f*.9*
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isomorphism f*(L) = ¢*(M). A morphism (L, M;¢) — (L', M';¢’) is given by a pair
of arrows, L — L' and M NV , such that the diagram

qa*(B)
(M) —— q"(M')

commutes. The composition of morphisms is defined naturally.

The (canonical) inverse image Cyx -, Oy of the coprojection Z - ¥ maps each

(s,1)
object (L, M:;¢) to L and each morphism (L, M;¢) —— (L', M’;¢') to L = L'. Tt

(s,t)
follows that the class E;* consists of all morphisms (L, M; ¢) N (L', M’;¢") such that

$ is an isomorphism, hence t € X-.

(a) Since ¢* is a localication, for any L € ObCy, there exists M € ObCy such that

there is an isomorphism f*(L) 2, q*(M). The map L — (L, M;¢) (- a choice for each

L of an object M and isomorphism ¢) extends uniquely to a functor Cy; — 22*1 Cx which
q
is quasi-inverse to the canonical functor Ea?*le —— Cy, (L,M;¢) — L.

(b) Suppose that ¢ is a continuous localization; i.e. the localization functor ¢* has
a right adjoint, ¢.. Fix adjunction arrows Idc, 1 q.q¢* and ¢*q. —— Idc,, . Since ¢*

is a localization, € is an isomorphism. Therefore, we have a functor Cy 2+, Cx which
maps any object L of Cz to the object (L, q.f*(L);ef*(L)) of the category C'x and any

morphism L 5, I’ to the morphism (&, g. f*(§)) of Cx.
The functor ¢, is a right adjoint to the projection ¢*. The adjunction morphism
Idc, — q.q* assigns to each object (L, M; ¢) of the category Cx the morphism

(idz ) ) .
(La M; (b) - (L7 Q*f (L)7 Ef (L));
N -1
where M -2 ¢« f*(L) denote the morphism conjugate to ¢*(M) ¢ f*(L). The ad-
junction arrow ¢*q. — Idc, is the identical morphism. The latter implies that ¢* is a
localization functor.

(c) Suppose that X, = {s € HomCy | ¢*(s) is invertible} is a left multiplicative

(s,t)
system. Let (L, M;¢) —— (L', M’;¢") be a morphism of Eg* (that is L — L' is an

) ) (&) . . .
isomorphism) and (L, M; ¢) —— (L"”, M";¢") an arbitrary morphism of Cx. The claim

is that there exists a commutative diagram

&)
(L M;¢) — (L', M";¢")

(5,9 | | ) (1)

(5/7 /) ~ T
(L, M3 ¢') —5 (L, M;9)
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in Cy whose right vertical arrow belongs to Z;*.

In fact, since M LNVl belongs to ¥4+« and X4« is a left multiplicative system, there
exists a commutative diagram

M # M//

do

M’LJ/\Z

in Cy such that t' € ¥,«. Setting L=1L" s =idy, and ¢ = q*(t) o ¢", we obtain the

required commutative diagram (1).

(s,t)
(c1) Suppose that (L, M;¢) —— (L', M’;¢’) is a morphism of E;* which equal-

(a,)
izes a pair of arrows (L', M’';¢’) . (L",M";¢"). Then there exists a morphism
(&)
(s',¢) ~ — ~
(L', M";¢") —— (L,M;¢) of Zg* which equalizes this pair of arrows.

In fact, since s is an isomorphism, the equality («, 3)o(s,t) = (§,7)o(s, t) implies that
a = ¢. Since X4+ is a left multiplicative system, the equality ot = yot (and the fact that

t € 3,+) implies the existence of a morphism M" 4 Min Y4+ such that o f =t o~.

Taking L = L", &' = idy», and ¢ = ¢*(t) o ¢, we obtain the required morphism of Dt

(¢’) Suppose that ¥+ is stable under the base change. Then E;}; has the same property.

(s,1)
In fact, let a morphism (L', M’;¢’) =, (L, M;¢) of Cx belong to Z}qv and let

! ", 411 (&) . . . .
(L",M";¢") —— (L, M;¢) be an arbitrary morphism of C'x. Then there exists a com-

mutative diagram .
(L, M; ¢) St (L', M'; ")
(s',¢) | | 59 (2)
w59 < (L M)
in C'y whose left vertical arrow belongs to Eg*.

Since M’ — M belongs to Y, and X4« is a left multiplicative system, there exists a
commutative diagram

Mo
—
¢ l J ¢
M L M

in Cy such that t' € ¥,«. Setting L=1L" s =idy, and ¢ = ¢*(t)"! 0 ¢", we obtain
o — ~ (s't)

a morphism (L, M;¢) —— (L"”,M";¢") which belongs to E;*. Set ¢ =s ' o0& The

claim is that the pair (¢/,+) is a morphism from (L, M:; ¢) to (L', M';¢') which makes
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the diagram (2) commute. By definition, (¢/,') being a morphism from (L, M;¢) to
(L', M’; ¢") means the commutativity of the diagram

~ (&)
r@
o | |
—~ ")

which amounts to the equalities
() od (t) o d" =q () od=¢"o [ (&) = o f7(s)7 o f7(&). (3)

It follows from the equality to~’ = yot' that ¢*(y') o ¢*(t')~! = ¢*(t) "L 0 ¢* (7). On the
other hand, the fact that (s,t) is a morphism from (L', M’;¢") to (L, M;¢) means that
q*(t)og’ = ¢po f*(s), or, equivalently, ¢’ o f*(s) ™! = ¢*(t) "L o¢. Therefore, (3) is equivalent
to the equality ¢*(t)™1 o ¢*(7) 0 ¢” = ¢*(t) L o po f*(£), or ¢*(7) 0 ¢" = po f*(£). The
latter equality expresses the fact that (£,v) is a morphism from (L, M"; ¢") to (L, M; ¢);
hence (3) holds. The commutativity of the diagram (2) follows directly from the definition
of the morphism (¢’,~/).
(c”) Let ¥4« have the property:

(#) if an arrow M’ —Y M belongs to Y+ and equalizes a pair of arrows M" 3 M’,

then there exists a morphism M" M in Y4+ which equalizes this pair of arrows.

(s,t)
Then Efqv* has the same property; that is if (L', M'; ¢') —— (L, M; ¢) is a morphism
(a0.8)
s

of Z;* which equalizes a pair of arrows (L”, M"; ¢") (L', M’;¢), then there exists
(&
- — ~  (s,t)
a morphism (L, M;¢) —— (L, M";¢") of Efqv* which equalizes this pair of arrows.
In fact, since s is an isomorphism, the equality (s,t)o(«, 5) = (s,t) o (&, ) implies that
a = . Since X4+ is a right multiplicative system, the equality to 8 = to~ (and the fact
that t € X4+ ) implies the existence of a morphism A" S Min Y4+ such that o8 =t oy.
Taking L = L”, §' = idp», and ¢ = ¢*(t')~! o ¢”, we obtain an object (L, M;¢) and a
-~ — ~ (¢,t)
morphism (L, M;¢) —— (L”, M";¢") which belongs to Eg* and equalizes the pair of
(e,)
arrows (L", M"; ¢") (L', M';¢).
(&)
If follows from (c’) and (c¢”) above that 3. is a right multiplicative system if ¥+ is

a right multiplicative system. m

6.2. Corollary. Let Z X Ly e morphisms of ‘spaces’ such that q is a

localization, and let Z AN H Y be a canonical morphism. Suppose the category Cy has
Ia

62



finite limits (resp. finite colimits). Then q* is a left (resp. right) exact localization, if the
localization q* is left (resp. right) exact.

Proof. By 6.1(a), ¢* is a localization functor.

Suppose that the category Cy has finite limits and the localization functor Cy q—*> Cx
is left exact. Then it follows from [GZ, 1.3.4] that X,» = {s € HomCy | ¢*(s) is invertible}
is a right multiplicative system. The latter implies, by 6.1(c), that Efqv* is a right multi-

plicative system. Therefore, by [GZ, 1.3.1], the localization functor ¢* is left exact. m

The following assertion is a refinement of [R1, 1.4.2].

6.3. Proposition. Let X L7 LY be morphisms of ’spaces’ such that p* and q*
are localization functors. Then the square

4 B — Y

pl lpl

x -2 x[Jy
p,q

18 cartesian.

Proof. Let X «— W — Y be morphisms of ’spaces’ such that ¢; o u = py o v.

In other words, there exists an isomorphism u* o ¢} Yoo p;. Let M 5 M’ be

any morphism of ¥ . Since p* is a localization functor, there exists L € ObCx and
(idL,S)

an isomorphism p*(L) N q*(M). We have a morphism (L, M;¢) —— (L, M’';¢") of

the category Cyx, where ¢/ = ¢*(s)¢ and X denotes the ’space’ X HY represented by
P:q

the category Cyx = Cx H Cy. By the definition of the canonical functors ¢ and pj,

p*,q*

we have ¢ (idy,s) = idp and pj(idp,s) = s. Therefore, v*(s) = v* o pj(idr,s) and

u* o qi(idr,s) = u*(idy) = idy,«(ry. Since there is an isomorphism, u* o ¢} vt o pi, we

have a commutative diagram

(L, M;¢)
u* (L) —— v*(M)
idl lv*(s)
Y(L,M";9")
wr(p) ML )

whose horizontal arrows are isomorphisms, hence v*(s) is an isomorphism. Thus, v* maps
arrows of X « to isomorphisms. Since ¢* is a localization, there exists a unique functor

Cy —— Cyw such that v* = 7" o ¢*; that is the morphism v is uniquely represented as the
composition g o w. Similarly, the morphism u is represented as the composition p o u for a
unique u. The equality ¢ 0w = p; o v can be now rewritten as (¢ op)ou = (p;oq)ov =
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(g1 o p) o v, which means that u* o (q; op)* =~ v* o (¢1 op)*. By 6.1(a), the functors ¢ and
pi are localizations, hence (g1 o p)* = (p1 0 ¢)* ~ ¢* o p} is a localization. Therefore the
isomorphism @* o (g1 o p)* ~ ¥* o (g1 o p)* implies (is equivalent to) that v* is isomorphic
to u*, thatisu ="7v. m

6.4. Left exact structures on the category of ’spaces’. Let £ denote the
class of all localizations of ’spaces’ (i.e. morphisms whose inverse image functors are

localizations). We denote by £, (resp. £.) the class of localizations X — Y of ’spaces’
such that ¥« = {s € HomCy | ¢*(s) is invertible} is a left (resp. right) multiplicative
system. We denote by £, the intersection of £, and £, (i.e. the class of localizations ¢
such that ¥« is a multiplicative system) and by £° the class of continuous (i.e. having a
direct image functor) localizations of ’spaces’. Finally, we set £ = £°N £,; i.e. £{ is the

class of continuous localizations X —— Y such that 24+ is a multiplicative system.

6.4.1. Proposition. FEach of the classes of morphisms £, £¢, £¢, L, £°, and £
are structures of a left exact category on the category |Cat|® of ’spaces’.

Proof. Tt is immediate that each of these classes is closed under composition and
contains all isomorphisms of the category |Cat|®. It follows from 6.1 that each of the
classes is stable under cobase change. In other words, the arrows of each class can be
regarded as cocovers of a copretopology. It remains to show that these copretopologies are
subcanonical. Since £ is the finest copretopology, it suffices to show that £ is subcanonical.

The copretopology £ being subcanonical means precisely that for any localization
X -4, Y, the square

X . vy

Ql lch

y 2. Y[[v
q,9

is cartesian. But, this follows from 6.3. =

6.5. Observation. Each object of the left exact category (|Cat|?, £°) is injective.
In fact, a ’space’ X is an injective object of (|Cat|?, £°) iff each morphism X — Y
is split; i.e. there is a morphism Y —'% X such that to q = tdx. Since the morphism

q is continuous, it has a direct image functor, q., which is fully faithful, because ¢* is a
localization functor. The latter means precisely that the adjunction arrow ¢*q. — Idc, is

an isomorphism. Therefore, the morphism Y Y, X whose inverse image functor coincides
with ¢, satisfies the equality to ¢ = idx.

6.6. Relative ’spaces’. The category |Cat|® has canonical initial object represented
by the category with one object and one morphism, but does not have final objects (since
we do not allow empty categories). In particular, the notion of the cokernel of a morphism
is not defined in |Cat|®. So that we cannot apply to |Cat|® the theory of derived functors
(satellites) sketched in Section 3. The category of relative ’spaces’ (i.e. ’spaces’ over a
given ’space’) has both final objects and cokernels of arbitrary morphisms.
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Fix a ’space’ S. The category |Cat|°/S has a natural final object — (5,idg), and

cokernels of morphisms. The cokernel of a morphism (X, g) 7, (Y,h) of 'spaces’ over

S is the pair (YHS, 77,), where YHS ", S s the unique arrow determined by the

I 19
commutative square

s Mg

The canonical inverse image functor h* of the morphism h maps every object M of the
category Cg to the object (h*(M),M; f*h*(M) = g*(M)) of the category Cy H Cs
g
representing the ’space’ Y H S.
I

6.6.1. Lemma. Let Cx be a category and V its object. Any left exact structure Jx
on Cx induces a left exact structure, Ix /V on the category Cx V.

Proof. By the definition of Jx /V, a morphism (L, ) 1, (L', &) of Cx/V belongs to

Jx /V iff the morphism L Ny belongs to Jx. We leave to the reader the verifying that
Jx/V is a left exact structure on Cx /V. m

In particular, each left exact structure from the list of 7.4.1 induces a left exact
structure on the category |Cat|®/S.

6.7. Left exact structures on the category of k-’spaces’. Fix a commutative
associative unital ring k. Recall that k-’spaces’are 'spaces’ represented by k-linear additive
categories. They are objects of the category |Caty|® whose arrows X — Y are represented
by isomorphism classes of k-linear functors Cy — Cx. The category |Caty|° is pointed:

its zero object is represented by the zero category. Every morphism X Ty of |Caty|®
has a canonical cokernel Y —— Cok(f), where Ccok(y) is the subcategory Ker(f*) of Cy
(= the full subcategory generated by all objects L such that f*(L) = 0) and ¢* is the
inclusion functor Ker(f*) — Cy.

Each of the left exact structures £, £¢, £, £, £°, and £{ on the category |Cat|® of
'spaces’ (see 6.4) induces a left exact structure on the category |Caty|® of k-spaces. Thus,
we have left exact structures £(k), £¢(k), £:(k), Lc(k), £°(k), and £{(k) on |Caty|®.

6.8. Left exact structures on the category of right (or left) exact ’spaces’.
A right exact ’space’ is a pair (X, €x), where X is a ’space’ and €x is a right exact
structure on the category C'x. We denote by Esp, the category whose objects are right
exact ’spaces’ (X, €x) and morphisms from (X, €x) to (Y, €y ) are given by morphisms

X Ly of ‘spaces’ whose inverse image functor, f*, is ’exact’; i.e. f* maps deflations to
deflations and preserves pull-backs of deflations.

Dually, a left exact ‘space’is a pair (Y, Jy ), where (Cy, Jy) is a left exact category. We
denote by €sp, the category whose objects are left exact 'spaces’ (Y, Jy ) and morphisms
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(Y,Jy) — (Z,3z) are given by morphisms ¥ — Z whose inverse image functors are
‘coexact’, which means that they preserve arbitrary push-forwards of inflations.

6.8.1. Note. The categories Esp, and Esp, are naturally isomorphic to each other:
the isomorphism is given by the dualization functor (X, €x) —— (X, €¥). Therefore
every assertion about the category Esp, of right exact 'spaces’ translates into an assertion
about the category €sp, of left exact ’spaces’ and vice versa.

6.8.2. Proposition. The category Esp,. has fibered coproducts.

Proof. Let (X, €x) i (Z,€z) <, (Y, €y ) be morphisms of €sp,; and let X denote
the ’space’ XHY, ie. Cx =Cx H Cy. Let Ex denote the class of all morphisms

fiq f*.9*

(&) / Y 3 / 2l /N
(L,M;¢p) —— (L', M’';¢") of Cx such that L — L’ belongs to €x and M — M’ is

an arrow of €y . The claim is that €y is a right exact structure on Cx and (X, €y) is a
coproduct (X, €x) H(Y, €y ) of right exact ’spaces’.

Ig
It is immediate that €y contains all isomorphisms and is closed under composition. Let

&) (a,8)
(L, M; o) LN (L', M';¢") be a morphism of €%, and let (L, M";¢") —— (L', M'; ¢’)

be an arbitrary morphism of Cy. Since the inverse image functors f* and g* preserve cor-
responding deflations and their pull-backs and &, ~ are deflations, the isomorphisms ¢, ¢/,

and ¢ induce an isomorphism f*(L) 2, g*(M), where L = L H L" and M = M H M".
£ v,8
It is easy to see that the square
~ T ((X/7ﬁ/)
N<L7M;¢) - (L7M7¢)
€9 | | € (1)
a’ﬁ
(L//7 MI/; ¢//) ( ) (L/’ MI; gZ)/)

is cartesian, £ € €x, and § € €y. Therefore, (E, v) € €x.
If (o, B) = (§,7), then the square (1) is cocartesian, because the squares

’ ’

I — L ]TJ/ — M
l e wm A
'3 vy
L —— L' M — M

are (both cartesian and) cocartesian. Altogether shows that the arrows of €x are covers
of a subcanonical pretopology; i.e. €x is a structure of a right exact category on Cx. m

6.8.3. Canonical left exact structures on the category €sp.. Let £., denote
the class of all morphisms (X, €x) =, (Y, €y ) of right exact ’spaces’ such that ¢* is a
localization functor and each arrow of €x is isomorphic to an arrow ¢*(¢) for some ¢ € €y
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If 34+ is a left or right multiplicative system, then this condition means that Ex is
the smallest right exact structure containing ¢*(€y ).

6.8.3.1. Proposition. The class £.s is a left exact structure on the category Esp,
of right exact ‘spaces’.

Proof. The class £, contains, obviously, all isomorphisms, and it is easy to see that
it is closed under composition. It remains to show that £, is stable under cobase change
and its arrows are cocovers of a subcanonical copretopology.

Let (X, €x) — (Y, €y) be a morphism of £, and (X, €x) 1, (Z,€z) an arbitrary

morphism. The claim is that the canonical morphism Z —% Z H Y belongs to £.s.

fa
Consider the corresponding cartesian (in pseudo-categorical sense) square of right

exact categories:
.

p

(Cx,€x) —— (Cyv,¢€&y)
- K o

f*
(Cz,€z) —— (Cx,€x)

where X = Z H Y; that is Cx = Cy H Cy. Recall that the functor ¢* maps each object
fa I*q*

(L, M; @) of the category Cx to the object L of Cz and each morphism (§,7) to {. By

6.1(a), ¢* is a localization functor (because ¢* is a localization functor).

Let L — L' be an arrow of €. Then f*(e) is a morphism of €x. Since X %Y is

a morphism of £, there exists a morphism M L M of ¢y and a commutative diagram

whose vertical arrows are isomorphisms. By the definition of the right exact category
(Cx, €x), this means that (e,t) is a morphism (L, M;v¢) —— (L', M';4)’) of C'x which
belongs to €x. The localization functor ¢* maps it to e. Thus, €, = ¢*(€x), hence g € €.
This shows that £, is stable under cobase change.

It remains to verify that for every morphism (X, €x) — (Y, €y) of £ the square

(Cy,Ey) —— (Cv,¢Ey)
P | | o (3)
(Cy,€y) —— (Cx,€x)

is cocartesian. Here Cy = Cy H Cy.

q*,q*
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Consider a quasi-commutative diagram

*

(Cy,Ey) Gy ey)
3 l l v* (4)

*

(Cy, &y) — (Cw, Ew)

of ’exact’ functors. Since, by 6.3, that the square

*

Py
Cy —— Cy

pzl lq*

*

qu—>CX

is cocartesian, there exists a unique up to isomorphism functor Cx 0, Cw such that
v* ~ w*q* ~ u*. The claim is that w* is an ’exact’ functor from (Cx, €x) to (Cw, Ew ).
Since q € £,s, every morphism of €x is isomorphic to a morphism of ¢*(€y ) and v* maps
¢y to €. Therefore w* maps Ex to €y . The fact that ¢* and v* ~ w*q¢* are ’exact’
functors implies that the functor w* is ’exact’. m

6.8.3.2. Corollary. Fach of the classes of morphisms of ’spaces’ £¢, £, L, L£°,
and L5 (cf. 6.4, 6.4.1) induces a structure of a left exact category on the category €sp, of
right exact ‘spaces’.

Proof. The class £y induces the class £}° of morphisms of the category €sp. formed

by all arrows (X, €x) — (Y, &y) from £, such that the morphism of ’spaces’ X —— Y

belongs to £¢. Similarly, we define the classes £5°, £, £¢., and L¢3 m

6.8.3.3. The left exact structure £g;. For a right exact ’space’ (X, €x), let
Sq(X, €x) denote the class of all cartesian squares in the category C'x some of the arrows
of which (at least two) belong to €x.

The class £¢f consists of all morphisms (X, €x) LN (Y, €y) of right exact ’spaces’

such that its inverse image functor, q*, is equivalent to a localization functor and each
square of Sq(X, €x) is isomorphic to some square of q*(Sq(Y, Ey)).

6.8.3.4. Proposition. The class £.3 is a left exact structure on the category €sp,
of right exact ’spaces’ which is coarser than L£.s and finer than £°.

Proof. The argument is left to the reader. m

6.9. Relative right exact ’spaces’. The category €sp, of right exact ’spaces’ has
initial objects and no final object. Final objects appear if we fix a right exact ’space’
S = (S, €s) and consider the category €sp./S instead of Esp,. The category €sp,/S has
a natural final object and cokernels of all morphisms. It also inherits left exact structures
from €sp,, in particular those defined above (see 6.8.3.2). Therefore, our theory of derived
functors (satellites) can be applied to functors from Esp,./S.
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6.10. The category of right exact k-’spaces’. For a commutative unital ring k&,
we denote by €sp} the category whose objects are right exact 'spaces’ (X, €x) such that
Cx is a k-linear additive category and morphisms are morphisms of right exact ’spaces’
whose inverse image functors are k-linear.

Each of the left exact structures £.4, £5%, £2%, £, £ and £:5 induces a left exact
structure on the category €spj. of right exact k-’spaces’. We denote them by respectively

Les(k), £5°(k), L (k), £°(k), L(k), and Lei' (k).

6.11. The path ’space’ of a right exact ’space’. Fix a right exact svelte category
(Cx,€x). Let Cx be the quotient of the category Cypq(x) of paths of the category C'x by

the relations s oﬁfi = fot, where

~ f

N — M
t l cart l 5
f

N —— L

runs through cartesian squares in C'xy whose vertical arrows belong to €x. In particular,
ObCx = ObC'x. We denote by €5 the image in Cyx of all paths of morphisms of €x and
by Pa(X, Ex) the pair (X, Ex).

6.11.1. Proposition. Let (Cx,€x) be a svelte right exact category and (X, &Ex) =
Pa(X, Ex) (see above).

(a) The class of morphisms €x is a Tight exact structure on the category Cx.

*

(b) The canonical functor Copa(x) BN Cx (identical on objects and mapping paths

*

of arrows to their composition) factors uniquely through a functor Cx X, Cx which

p
is an inverse image functor of a morphism (X, €x) 7, (X, €x) that belongs to L¢3 .

(¢) The right exact ’space’ (X,€x) is an injective object of a left exact category
(€spe, £55)-

Proof. (a) It follows (from the fact that the composition of cartesian squares is a
cartesian square) that €x is a right exact structure on Cx.
E*
(b) The functor Cyq(x) — . Oy is (equivalent to) a localization functor which

factors uniquely through C' =, Cx. Therefore, p% is (equivalent to) a localization
functor. It follows from definitions that p% maps cartesian squares with deflations among
their arrows to cartesian squares of the same type. Moreover, all cartesian squares with

this property are obtained this way. Therefore, the morphism (X, €x) X, (X, €x) belongs
to the class £57.

c) Let ,€z) — (Y, &y ) be a morphism o an ,Ez) — ,Ex) an ar-
Let (2,8z) - (Y, ¢y) b hism of £8° and (Z,€z) —— (X, ¢

bitrary morphism.The claim is that there exists a morphism (Y, €y) — (¥, €x) of right
exact ’spaces’ such that f = yogq.

*

(cl) Let (Cy, €y) LN (Cz,€z) and (Cx, €x) AR (Cz, €z) be inverse image functors
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of respectively q and f. Consider the standard cartesian square

*

q
(Cy,&y) —— (Cx,¢€x)

i | | 7

*

q
(Cy,Ey) —— (Cz,€z)

of right exact categories. By 6.8.3.4, the morphism (X, €x) 4, (9, €y) represented by

the functor q* belongs to £55- Moreover, the functor Cy A, Oy is surjective.
In fact, q being a morphism of £5§ implies that every square O of Sq(Z, €z) is isomor-
phic to q*(0) for some O € Sq(Y, €y ). In particular, every morphism of Cz is isomorphic

to the image of some arrow of Cy. Thus, for any morphism M L of Cx, there is a

commutative diagram
. £ (£) .
M) —— (L)
o | 2| v

) 2 g

whose vertical arrows are isomorphisms. In other words, the pair (§,7) is a morphism
(M,V;¢) — (L, W; ) of the category Cy, and § = q*(&, 7).

(c2) The functor q* maps Sq(2), €y) onto Sq(X, Ex).

(c3) Given a class of arrows § in HomCy, we denote by Rs the class of all pairs
of arrows M = L which are equalized by an arrow N — M from S. If S contains
all identical morphisms, closed under composition, and filtered, i.e. every pair of arrows
L — M «— N of § can be completed to a commutative square

f jj
N — M
whose arrows belong to §, then R is an equivalence relation.
(c4) In particular, Ry, . Is an equivalence relation, because g+ is a right multiplicative
system. For every L € ObCy, we denote by €y 1, the class of all deflations of L. For each

L € ObCy, we choose representatives of equivalence classes with respect to Ry, . of arrows
toL. m

6.12. Complements.

6.12.1. The left exact structure £&. Fix a right exact category (Cx, €x). We say
that a class ¥ of deflations is €x -saturated if it is the intersection of a saturated system
of arrows of C'x and €x.

6.12.1.1. Lemma. Let 3 be an €x-saturated class of deflations. Then X is a right
multiplicative system iff it is stable under base change.
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Proof. Let ¥ be an €x-saturated system of deflations. In particular, it contains all
isomorphisms of C'x and is closed under compositions.

If ¥ is stable under base change, it is a right multiplicative system.

Conversely, if ¥ is a right multiplicative system, then, by [GZ, 1.3.1], the localization

functor Cx —— Y~ 1Cy is right exact. In particular, it maps all cartesian squares of C'x
to cartesian squares of X !Cx. Since €x is stable under base change, every diagram

M =5 L L N with s € €x can be completed to a cartesian square

N —ou
tl ls (1)
N 7

and t € €x. If s € 3, then the localization g* maps (1) to a cartesian square whose right
vertical arrow, q*(s), is an isomorphism. Therefore its left vertical arrow is an isomorphism.
Since ¥ is €x-saturated, this implies that t € 3. =m

We denote by ST M, (X, Ex) the preorder (under the inclusion) of all &x-saturated
right multiplicative systems X of €x having the following property:
(#) If the right horizontal arrows in the commutative diagram

’
Py ~

./K/lv_>/\/l;>£

Tl ls 15’
P1
_ N 4
M x;, M ., M —— L
P2

are deflations, the pairs of arrows are kernel pairs of these deflations and two left vertical
arrows belong to X, then the remaining vertical arrow belongs to .

6.12.1.2. Proposition. (a) For any morphism (Y, Ey) —— (X, €x) of the category
Esp. of right exact ‘spaces’, the intersection Lg- (| €x = {t € Ex | q*(t) is invertible}
belongs to S*M. (X, Ex).

(b) For any ¥ € S* M. (X, €x), the localization functor Cx - L~1Cx = Cx is an
inverse image functor of a morphism (X, €) N (X, €x) of €sp.. As usual, € denote

the finest right exact structure on Cx.

Proof. (a) By definition of morphisms of the category &sp,, its inverse image func-
tor maps pull-backs of deflations to pull-backs of deflations. Therefore the intersection
Y- €Ex = {t € €x | q*(t) is invertible } is (by definition) saturated and stable under
base change. The property (#) follows from the ’exactness’ of the localization functor q*.

(b) Let ¥ € S*M, (X, Ex). Since ¥ is a right multiplicative system, the localization

functor Cy —— X~1Cx = Cx is left exact. In particular, it maps all cartesian squares to
cartesian squares. It remains to show that it maps deflations to strict epimorphisms.
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P1
Let M —— L be a morphism of €x and M x; M —— M its kernel pair. Let

P2
/ P1
q (M) <, q*(N) be a morphism which equalizes the pair q*(M x;, M —= M). Since ¥
po
is a right multiplicative system, the morphism &’ is the composition q*(£)q*(s) ™! for some
morphisms M —— M SN , where s € X. Thus we have a diagram

ux uz

M1 E— MXLM — MQ

tll cart  p1 ll p2  cart l t
Mo M M
whose both squares are cartesian, all arrows are deflations, and all horizontal arrows belong

to Y. Therefore, there exists a cartesian square

’
0y

Mv—> ./\/lg

o) l cart l Uy

Uy

M1 — M x L M
whose all arrows belong to 3. Altogether leads to a commutative diagram

’
P -

M M —
7
?l ls lﬁl

P1
 —

4
MxgM . M —— L
P2
whose rows are exact diagrams and two (left) vertical arrows belong to 3. Therefore, the
remaining vertical arrow belongs to X. The localization functor ¢* maps the compositions
€op) and £op), to the same arrow. This means precisely that there exists a morphism A € 3

such that {opl ol = Eophol (cf. [GZ, 1.2.2]). Since all morphisms of 3 are epimorphisms,

P/

— 1
the latter equality implies that the morphism £ equalizes the pair M — M. Therefore,

"5
it factors uniquely through the morphism M —— £; ie. & = E o¢. The pair of arrows

L < £ -5 N determines a unique morphism q*(L) — ¢q*(N) whose composition with
q*(e¢) equals to ¢'. m

We denote by £& the class of all morphisms (X, €x) —— (Y, €y) whose inverse image

functor is equivalent to the localization functor at a system which belongs to S* M. (X, €x).

6.12.1.3. Proposition. The class of morphisms £& is a left exact structure on the
category €sp, of right exact ’spaces’.

Proof. The class of morphisms £& contains all isomorphisms and is closed under
compositions and cobase change. m
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7. K-theory of right exact ’spaces’.

7.1. The functor K.

7.1.1. The group Zy|Cx|. For a svelte category Cx, we denote by |Cx| the set of
isomorphism classes of objects of C'x, by Z|Cx| the free abelian group generated by |Cx|,
and by Zo(Cx) the subgroup of Z|Cx| generated by differences [M] — [N] for all arrows
M — N of the category Cx. Here [M] denotes the isomorphism class of an object M.

7.1.2. Proposition. (a) The maps X — Z|Cx| and X —— Zo(Cx) extend natu-
rally to presheaves of Z-modules on the category of ’spaces’ |Cat|® (i.e. to functors from
(|Cat|®)°P to Z — mod).

(b) If the category Cx has an initial (resp. final) object x, then Zo(Cx) is the sub-
group of Z|Cx| generated by differences [M| — [z], where [M] runs through the set |Cx| of
isomorphism classes of objects of Cx.

Proof. The argument is left to the reader. m

7.1.3. Remarks. (a) Evidently, there are natural isomorphisms Z|Cx | ~ Z|C{¥| and
Zo(Cx) ~ Zo(CP).

(b) Let Zo(Cx) be regarded as a groupoid with one object, e. Then the map which
assigns to every object of Cx the object e and to any morphism M — N of Cx the
difference [M] — [N] is a functor from Cx to the groupoid Zy(Cx).

7.1.4. The group K; of a right exact ’space’. Let (X,€x) be a right exact
'space’.  We denote by Ko(X,&x) the quotient of the group Zo|Cx| by the subgroup
generated by the expressions [M'] — [M] + [L] — [N] for all cartesian squares

whose vertical arrows are deflations.
We call Ko(X,€x) the group Ky of the right exact ’space’ (X, €x).

7.1.4.1. Example: the group K, of a ’space’. Any ’space’ X is identified with
the trivial right exact ’space’ (X, Iso(Cx)). We set Ko(X) = Ko(X,Iso(Cx)). That is
Ky(X) coincides with the group Zo(Cx).

7.1.5. Proposition. (a) The map (X,€x) — Ko(X, Ex) extends to a contravari-
ant functor, Kg, from the category €sp. of right exact ’spaces’ (cf. 6.8) to the category
Z — mod of abelian groups.

(b) Let (X, €x) 4, (Y, &y) be a morphism of €sp, having the following property:

(1) if M" and L' are non-isomorphic objects of Cx which can be connected by non-
oriented sequence of arrows (i.e. they belong to one connected component of the associated

groupoid), then there exist objects M and L of Cy which have the same property and such
that f*(M) ~ M', f*(L)~ L.
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Then
Ko(f)
Ko(Y,€y) —— Ko(X, €x)
18 a group epimorphism. In particular, the functor Ko maps ’exact’ localizations to epi-
morphisms.

Proof. (a) Let (X, €x) and (Y, €y) be right exact ’spaces’ and (Cy, €y) EAN (Cx,€x)
an ’exact’ functor. Then f* induces a morphism

Ko(f)
KoY, €y) —— Kyo(X, €x)

uniquely determined by the commutativity of the diagram

Zo(f™)
Zo(Cy) —— Zo(Cx)
Py l l pPx (1)

Ko(f)
Ko(Y,¢y) —— Ko(X,¢€x)

of Z-modules. Here Zo(f*) denotes the morphism of abelian groups induced by the functor
f*. The vertical arrows, py and px, are natural epimorphisms.

(b) Suppose that (X, €x) 7, (Y, €y ) is a morphism of €sp, having the property (}).

Zo(f™)
Then Zo(Cy) i Zo(Cx) is a group epimorphism. Thus, Ko(f) o py = px o Zo(f*) is

an epimorphism, which implies that Ky(f) is an epimorphism. =

7.1.5.1. Corollary. Let (X, €&x) 7, (Y, &y ) be a morphism of €sp, whose inverse
image functor, f*, induces a surjective map |Cy| — |Cx| of isomorphism classes of
objects. If the groupoid associated with the category Cy is connected, then Ko(f) is a
surjective map. In particular, Ko(f) is surjective if the category Cy has initial or final
objects.

Proof. The assertion follows from 7.1.5(b). m

7.1.5.2. Corollary. For any ’exact’ localization (X,€x) —— (Y,&y) (i.e. q* is
equivalent to a localization functor), the map Koy(q) is an epimorphism.

Proof. 1f q* is equivalent to a localization functor, then each object of C'x is isomorphic
to an object of q*(Cy ) and any morphism q*(M) — ¢*(L) is the composition of the form
q*(sn) Lo q*(fu)o -+ 0q*(s1) "t o q*(f1) for some chain of arrows

M2 e vy S I & = I

In particular, the condition () of 7.1.5(b) holds. m

7.1.6. Proposition. Let (X, €x) be a right exact ’space’ such that the category Cx
has initial objects. Then the group Ko(X,&x) is the quotient of the free abelian group
Z|Cx| generated by the isomorphism classes of objects of Cx by the subgroup generated by
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[M] — [L] — [N] for all conflations N — M — L and the isomorphism class of initial
objects of C'x .

Proof. (a) The expressions [M]| — [L] — [N], where N £, M - L runs through
conflations of (Cx, €yx), are among the relations because each of them corresponds to a

cartesian square
N —

EJ cartgf
M — L

where x is an initial object of Cx.

(b) On the other hand, let

— ['4

M —
1! l cart

M —

(1)

~
—

be a cartesian square whose horizontal arrows are deflations. Therefore we have a commu-
tative diagram

—~ ¢ ~

N —— M — L
Z‘dl f’l cart lf
N — M

whose rows are conflations. The rows give relations [M | — [L] — [N] and [M] — [L] — [N].

Their difference, [M]— [M]+[L] — [L], is the relation corresponding to the cartesian square
(1). Hence the assertion. m

7.1.7. The categories €sp}’ and Espi. Let €spl’ denote the category whose
objects are right exact 'spaces’ (X, €x) such that C'x has initial objects; and morphisms

(X,€x) — (Y, €&y) are given by morphisms of ’spaces’ X L, ¥ whose inverse image
functors preserve conflations. In particular, they map initial objects to initial objects.
We denote by Esp; the subcategory of Esp, whose objects are right exact ’spaces’
(Cx, €x) such that the category C'x has initial objects and morphisms are defined by the
requirement that their inverse image functor maps initial objects to initial objects.
It follows that Esp; is a subcategory of the category €sp”. The k-linear versions of
these categories coincide.

7.1.8. Proposition. (a) The map (X,€x) — Ko(X, Ex) extends to a contravari-
ant functor, K\, from the category €spy’ to the category Z — mod of abelian groups.

(b) Let (X, €x) 7, (Y, &y ) be a morphism of €sp such that f* induces a surjective
map |Cy| — |Cx| of the isomorphism classes of objects. Then

Ko’ (f)
Ky(Y,¢y) — Ky (X, €x)
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1s a group epimorphism. In particular, the functor Ko maps ’exact’ localizations to epi-
morphisms.

Proof. The assertions follow from 7.1.6. m

7.2. The relative functors Ky and their derived functors. Fix a right exact

K,
‘space’ Y = (Y, &y)). The functor (Esp,)°P — Z — mod induces a functor

Ky

(Espe/ V)P —— Z — mod

defined by

KY(X,6) = K¥ (X, X 5 ¥) = Cok(Ko(y) . Ko())

and acting correspondingly on morphisms.

The main advantage of the functor Kg’ is that its domain, the category €sp./) has
a final object, cokernels of morphisms, and natural left exact structures induced by left
exact structures on €sp.. Fix a left exact structure J on Esp, (say, one of those defined in
6.8.3.2) and denote by Jy the left exact structure on €sp,/) induced by J. Notice that,
since the category Z — mod is complete (and cocomplete), there is a well defined satellite
endofunctor of Hom((€sp./Y)?,Z — mod), F —— S5, F. So that for every functor F
from (€sp./Y)°P to Z — mod, there is a unique up to isomorphism universal 0*-functor
(SgyF,Di | i >0).

In particular, there is a universal contravariant §*-functor K"7 = (K270, | i > 0)
from the right exact category (&€sp./),Ty) of right exact ’spaces’ over ) to the category
Z — mod of abelian groups; that is Kiy’j = S%yKSj’j for all ¢ > 0.

We call the groups Kiy J(X,€) universal K-groups of the right exact ’space’ (X, €)
over ) with respect to the left exact structure J.

7.3. ’Exactness’ properties. In general, the 0*-functor K7 is not ’exact’. The
purpose of this section is to find some natural left exact structures J on the category
Esp, /Y of right exact ’spaces’ over ) and its subcategory Esp? /Y (cf. 7.1.7) for which the
O*-functor K37 is ’exact’.

7.3.1. Proposition. Let (X,&) -5 (X', ¢&') be a morphism of the category Esp./Y
such that X —— X’ belongs to £es (cf. 6.8.3) and has the following property:

(#) if M == L is a morphism of Cx: such that q*(s) is invertible, then the element

Ko(eq)
[M] — [L] of the group Ko(X") belongs to the image of the map Ko(X") - Ko(X'),

where (X', &) iR (X", €") is the cokernel of the morphism (X, &) —— (X', ¢').
Suppose, in addition, that one of the following two conditions holds:

(i) the category Cx: has an initial object;
(ii) for any pair of arrows N Sy M, of the category Cx, such that q*(s) is
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invertible, there exists a commutative square

=

F
—_
!

R —

= ;22

~ —
o

such that q*(t) is invertible.
Then for every conflation (X,&) —— (X', &) iR (X" &") of the left exact category
(€sp./YV,Ty) the sequence

Vi1 e K (cq) V! ¢ K (a) y
Ky (X", &") —— Ky (X',§) —— Ky (X,§) —— 0

of morphisms of abelian groups is exact.
y K@
Proof. (a) The map Ky (X', ¢") —— Ky (X, §) is surjective, because, by 7.1.5.2, the

, Ko(q) . L.
map Ko(X',Ex/) —— Ko(X,Ex) is surjective.

(b) Fix a cokernel (X’,&") =% (X", €") of (X,€) -5 (X’,¢') and its inverse image

functor C'x» BLNYG) x. Notice that the condition (#) is equivalent to the condition

(#) If M and L are objects of C'xs such that ¢*(M) ~ ¢*(L), then [M] — [L] belongs
to Im(Ko(cq)).

Obviously, (#’) implies (#). On the other hand, since ¢* is a localization functor, the
existence of an isomorphism between ¢* (M) and ¢*(L) is equivalent to the existence of a
diagram

M—M — My+— ... «— M, — L

whose arrows belong to ¥« = {s € HomCx- | ¢*(s) is invertible}, which shows that (#)
implies the condition (#’).
(b1l) The condition (#’) is equivalent to the condition

Zo(a")
(#”) The kernel of the morphism Zy(C'x/) A Zy(Cx) is contained in the subgroup

Im(Zo(c;)) + Ker(px/) of the abelian group ZoCx).

Here px- is the canonical epimorphism Z(Cx/) — Ko(X').

In fact, the condition (#’) follows from (#”): it suffices to apply (#”) to the elements
of Ker(Zo(q*)) of the form [M] — [L].

An element z = Z A [M] of the abelian group Zo(Cx/) can be written as

[M]e[Cx/|
Z Z A [M]. It follows that the element z belongs to Ker(Zo(q*))
Ne|Cx|{[M]l|lg*(M)]=N}
iff Z A =0 for each N € |Cx|. It follows from the condition (#’) that
{IM]lg(M)]=N}
Z Am)[M]  belongs to the subgroup Im(Zo(c;)) + Ker(px) of the group

{IM][g~ (M)]=N}

7



Zo(Cx/) whenever Z A = 0. Therefore, each element of Ker(Zo(q*)) be-

{[M][[g*(M)]=N}
longs to the subgroup I'm(Zo(c;)) + Ker(px).

(c) Consider the commutative diagram

0 0 0

l l

£(cq) £(q)
Ker(pxn) —— Ker(px:) —— Ker(px)
jX"l J'X/J l ix
Zo(cq) Zo(q")
ZO(CX”) E— Zo(OX/) E— Zo(Cx) (1)

KO(Cq) KO(q)
Ko(xn) 0 gy 2 gx)
0 0

with exact columns.

R(q) . .
(c1) The map Ker(px:) —— Ker(px) is surjective.

In fact, by hypothesis, the localization X’ —— X belongs to £.s; that is each morphism
of €x is isomorphic to an arrow of ¢*(&x-).

(i) Suppose that the category Cx: has initial objects. Since ¢ is a morphism of the
category €sp,, its inverse image functor, ¢*, maps initial objects to initial objects (in
particular, the category C'x has initial objects, which is also a consequence of ¢* being
a localization functor) and conflations to conflations. Therefore, any conflation of the
right exact category (Cx,€x) is isomorphic to ¢*(N — M — L) for some conflation
N — M — L of the right exact category (Cx/,&x/). So that the subgroup Ker(px)
is generated by the elements R(q)([M] — [N] — [L]), where N — M — L runs through

R(a)
conflations of (Cx, €x), whence the surjectivity of Ker(px:) —— Ker(px).

(ii) Suppose now that the condition (ii) holds. The claim is that, in this case, every
cartesian square in C'xy whose vertical arrows are deflations is isomorphic to to the image
of a cartesian square in C'x, with the same property.

Since each arrow of €x is isomorphic to an arrow of ¢*(€x) and ¢* is a localization
functor, every cartesian square in C'y is isomorphic to the cartesian square of the form

~(M) I

)
u l cart l q*(¢) (2)
!
¢*(N) —— ¢ (L)
where ¢ € €x,. The functor ¢* being a localization implies that the morphism f is the
composition

¢ (fa)a*(sn) ™" -0 @ (f2)a" (s2) " " (f1)g" (s1) 7"
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By the condition (2), there exists a commutatative square

- A
N1—>L

o s

1
N1 — L1

such that ¢*(t;) is an isomorphism. Therefore, ¢*(f1)g*(s1)~* = ¢*(t,)~' f1, which implies
that f = q¢*(fu)a*(sn)™ % ... ¢*(f2)q" (t1s2)"1q¢*(f1). Continuing this process, we obtain

morphisms N & N L5 L such that q*(t) is an isomorphism and f = ¢*(t)"l¢*(f").

Since the morphism ¢ in the diagram (2) is a deflation, there is a cartesian square

Since the functor ¢* is ’exact’ it maps this cartesian square to a cartesian square which is
(thanks to the iniversal property of cartesian squares) isomorphic to the square (2).

This shows that the subgroup Ker(px) is generated by the elements K(q)([M']—[M]+
[L] — [N]) for all cartesian squares

R(q)
whose vertical arrows are deflations. Hence the surjectivity of Ker(px/) —— Ker(px).

(c2) There is the inclusion Ker(Ko(q)) € Im(Ko(cq)).

Indeed, let z € Ko(X'), and let 2’ be an element of Zy(C'x/) such that px/(z’) = z. The
element z belongs to Ker(Ky(q)) iff the element Zy(qg*)(2") belongs to Ker(px). Thanks
to the surjectivity of (q) (argued in (cl)), there is an element 2z in Ker(px/) such that
R(q)(2") =Zo(q*)(2"). Therefore, Zo(q*)(z' — 2") = 0.

By the property (#”), which is equivalent to the property (#) of the proposition

Zo(q")
(see (bl) above), the kernel of the morphism Zg(Cx-) A Zo(Cx) is contained in the

subgroup I'm(Zo(c;)) + Ker(px:) of the abelian group Zo(Cx-). So that
2 e 2"+ Im(Zo(cy)) + Ker(px:) € Im(Zo(c;)) + Ker(px).
Therefore, = = px:(/) € px (Tm(Zo(c}))) € Im(Koca)):
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(c3) It follows from the commutative diagram

Ko(q)
Ko(X") —5  Ko(Y)

Ko(cq) | | Kol®)

Ko(q) A(q)
Ko(X') —— Ko(X) ——  KY(X,&) = Cok(K(¢))

that the inclusion Ker(Ko(q)) € Im(Ko(cq)) implies the exactness of the sequence

Kolca) A@)Ko(a)
Ko(X") — Kox)) 200 KY(X,6) —— 0

which, in turn, implies the exactness of the sequence

Vi e K (cq) A% 1ol K (a) A%
Ky (X", ¢") —— Ky (X',¢§) —— Ky (X,§) —— 0

as claimed. m

7.3.2. Proposition. The class £, of all morphisms (X, &) 4, (X', &) of Esp. /Y
such that X = X' belongs to £.s and satisfies the condition (#) of 7.3.1, is a left exact
structure on the category €sp. /).

Proof. 1t is clear that £2, contains all isomorphisms. We need to show that it is stable
under cobase change and closed under compositions.

(i) Let (X,€) - (X’,€') be a morphism of £, and (X, ¢) 1, (Z,¢) an arbitrary
morphism of Esp./Y. We have a quasi-commutative diagram

CZ// —_— Cy
c;l cart l ¢*
CZ// —_— CZ/ —_— CZ
i |2 i*| et | (3)
CX// —_— OX/ —_— CX
C;T cart T &*
OX// —_— Oy

whose right squares are cartesian and (therefore) the left vertical arrow is a category

(s,t)
equivalence. A morphism (M, L; ¢) —— (M’, L’; ¢') belongs to ¥, iff t is an isomorphism

and, therefore, M —— M’ belongs to Y4+. Since we are looking at isomorphism classes of

objects, we can and will assume that L = L’ and t is the identity morphism.
By the condition (#) of 7.3.1, the fact that s € X, implies that [M] — [M’'] €

c *
Zo(c;). The composition of Cz» —= Cyz with the isomorphism Cx~ I, Cyz» maps
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each object (M, K; q*(M) Y £*(K)) of Cx» to the object (M, (*(K);q* (M) = §¢*(K))

of the category Cz/. Therefore, the inclusion [M] — [M'] € Zo(c}) 1mphes the inclusion
(M, L; ¢)] = [(M", L; ¢')] € Zo(cy).

(i) Let (X,€) —— (X, ¢&x) and (X,€x) — (Z,£z) be morphisms of £.. The claim
is that their composition, (X,&) - (Z,£z), belongs to £Y too; that is the localization

X%z (which belongs to £.s) satisfies the property (#) of 7.3.1. We have the quasi-
commutative diagram

Cz/// —_— CY
C:ql cart l f};//
2 q Ap
CZN/ _ CZ// _ C}:// I— CY
Zl c;pl cart l Cp cart l ¢* (4)
‘3 a* P
CX” _— CZ _— Cx E— CX
Cq T cart T Ex
CX// —_— CY

with cartesian squares as indicated. To this diagram, there corresponds the commutative
diagram
id
ZO(CX”) e ZO(CX”)
Zo(8*) | Zo(s) |
Zo(cqyp) Zo((ap)™)
ZO(CZ”) %ﬂ’ Zo(CZ) O—) (CX (5)
Zo(7;) | Zo(a") | |

Zo(cy) Zo(p™)
Zo(Cxr) —— Zo(Cx) —— Zo(Cx)

=Y

(
of abelian groups with surjective vertical arrows Zo(vy) and Zo(q*). Here the functor

C*
(* is the composition of the equivalence Cx» — Czw and the functor Cyzm 2 Cyn
(see the diagram (4)). Let 2 € Ker(Zo(cyp)), or, equivalently, Zo(q*)(2) € Ker(Zo(p*)).

Since (X,&) — (X,&x) belongs to £2, it follows from the condition (#) of 7.3.1 that
Ker(Zo(p*)) € Im(Zo(cy)) (see the argument of 7.3.1). Since Zo(;) is an epimorphism,
there exists an element b € Zo(Czr) such that z — Zo(cg,)(b) € Ker(Zo(q*). Since q
satisfies the condition (#) of 7.3.1, Ker(Zo(q*)) € Im(Zo(cy)), and it follows from the
upper square of (5) that Im(Zo(c;)) € Im(Zo(c;,)). All together implies that z is an
element of Im(Zo(c;,)); i-e. the condition (#) holds. This shows that the composition

(X,€&) —— (Z,£7) belongs to the class £2,

(iii) The argument above proves that £e5 is the class of covers of a copretopology. This
copretopology is subcanonical (i.e. it is a left exact structure on the category €sp./)),
because the copretopology £.s on €sp, is subcanonical. m
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7.3.2.1. Proposition. The class £, . of all morphisms (X,€) - (X', &) og £,

such that the functor Cx, —— Cx satisfies the condition (ii) of 7.3.1, is a left exact
structure on the category €sp. /).

es,T

Proof. The assertion follows from 7.3.2 and the part (c) of the argument of 6.1. m

7.3.3. Proposition. Let Y = (Y, &y ) be a right exact ’space’, and let T be a left exact
structure on the category Esp. /Y which is coarser than Ees ¢ (cf- 7.3.2). Then the universal

O*-functor KY = (K,0; | i > 0) from the left exact category (Qfspt/y Jy) to the category

Z—mod of abelian groups is ’exact’; i.e. for any conflation (X,§) — (X',&') — LR (X", &),
the associated long sequence

K (q) Y ottt Ky (cq) Vot K3 (q) 3
.. — K (Xf)—>K (X",¢") — Ky (X', f)—>KO(X,f)—>O

18 exact.

Proof. Since the left exact structure Jy is coarser than 225, it satisfies the condition

(#) of 7.3.1. Therefore, by 7.3.1, for any conflation (X, &) —— (X', &) — (X", ¢") of the
left exact category (Qfspt /Y, Jy), the sequence

Ké’(cq) KY (q)
KY(X", &) —— KY(X', &) —— KJ(X,£) —— 0

of Z-modules is exact. Therefore, by 3.6.1, the universal 9*-functor KY = (K},0;| i > 0)
from (Esp’/Y,Ty) to Z —mod is 'exact’. m

It is convenient to have the following generalization of the previous assertion.

7.3.4. Proposition. Let Y = (Y,&y) be a right exact 'space’, (Cs,Ts) be a left
exact category, and § a functor Cs — Qfﬁpr/y which maps conflations of (Cs,Js) to
conflations of the left exact category (€sp./Y, LY, ). Then there exists a (unique up to
isomorphism) universal 8* -functor K&'S = (K6 2, | i > 0) from the right exact category
(Cs,T)°P to Z — mod whose zero component, KO , 1s the composition of the functor

S
CP —— @sp./YV°P and the functor Ky .
The O*-functor K$S is exact’.

Proof. The existence of the 9*-functor K follows, by 3.3.2, from the completeness
(— existence of limits of small diagrams) of the category Z — mod of abelian groups. The
main thrust of the proposition is in the ’exactness’ of K, 53

By hypothesis, the functor § maps conflations to conflations. Therefore, it follows
from 7.3.1 that for any conflation X — X’ — X’ of the left exact category (Cs,Js),
the sequence of abelian groups KOG’S(%”) — Kés’%(%’) — K(SS,%(%) — 0 is exact. By
3.6.1, this implies the ’exactness’ of the 0*-functor KY. m

7.4. The ’absolute’ case. Let |Cat,|® denote the subcategory of the category
|Cat]® of 'spaces’ whose objects are ’spaces’ represented by ’spaces’ with initial objects
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and morphisms are those morphisms of ’spaces’ whose inverse image functor maps initial
objects to initial objects. The category |Cat.|° is pointed: it has a canonical zero (that is
both initial and final) object, x, which is represented by the category with one (identical)
morphism. Thus, the final objects of the category |Cat|® of all ’spaces’ are zero objects of
the subcategory |Cat.|°.

Each morphism X 15V of the category |Cat,|® has a cokernel, Y e (), where
the category Ce(s) representing the ’space’ C(f) is the kernel Ker(f*) of the functor f*.
By definition, Ker(§*) is the full subcategory of the category Cy generated by all objects
of C'y which the functor f* maps to initial objects. The inverse image functor ¢ of the
canonical morphism ¢ is the natural embedding Ker(f*) — Cy.

The category €sp; formed by right exact ’spaces’ with initial objects and morphisms
whose inverse image functor is ’exact’ and maps initial objects to initial objects (cf. 7.1.7),
is pointed and the forgetfull functor

A~k

Cspt s |Cat,]®, (X, Ex)— X,

is a left adjoint to the canonical full embedding |Cat.,|° LN ¢sp? which assigns to every
'space’ X the right exact category (X, Iso(Cx)). Both functors, J* and J., map zero
objects to zero objects.

Let = be a zero object of the category €spy¥. Then €sp}/x is naturally isomorphic to
Espr and K§ = K.

7.4.1. The left exact structure £;,. We denote by £;, the canonical left exact
structure £7;; it does not depend on the choice of the zero object z. It follows from
the definitions above that £*, consists of all morphisms (X, €x) —— (Y, &y) having the
following properties:

(a) Cy —— Cyx is a localization functor (which is ’exact’ and maps initial objects to
initial objects), and every arrow of €x is isomorphic to an arrow of q*(&y ).

(b) If M - M’ is an arrow of Cy such that q*(s) is an isomorphism, then [M]—[M’]
is an element of KerKy(q*)|.

7.4.2. Proposition. Let (Cs,Ts) be a left exact category, and let § be a functor
Cs — €sp? which maps conflations of (Cs,Js) to conflations of the left exact category
(Esp, £F.). Let G be a functor from (€Esp¥)°P to a category Cz with limits of small’ filtered
systems and initial objects. Then

(a) There exists a universal 8*-functor Go® = (G'5,0; | i > 0) from (Cs,Ts) to

op

C'z whose zero component, KOG’S, is the composition of the functor C& S—> (Esp)oP
and the functor G.

(b) If (Cz,€2) is a right exact category and the functor G is left ’exact’, then the O*-
functor GS*S is ‘exact’. In particular, the 8*-functor Ge = (Gi,0; | i >0) from (Esp¥, £7,)
to (Cz,€z) is ’exact’.

Proof. The assertion is a special case of 7.3.4. m
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7.4.2.1. Corollary. Let (Cs,Jg) be a left exact category, and Cg S, Esp?
a functor which maps conflations of (Cs,Js) to conflations of the left exact category
(Esp*, £+.). Then there exists a (unique up to isomorphism) universal 0% -functor K$S =
(Kf’g,ﬁi | i > 0) from (Cs,Ts)°P to Z — mod whose zero component, K(?’g, is the com-

op

§
position of the functor C¥ —— (€sp})°? and the functor K.
The 0*-functor K& is “exact’. In particular, the 0*-functor Ky = (K;,05] i > 0)
from (Esp¥, £5.) to Z — mod is ’exact’.

7.4.3. The class of morphisms £&. We denote by £% the class of all morphisms
(X, €x) -5 (Y, €y) of £%, such that Cok(q) is a zero object, or, equivalently, Ker(q*) is
a trivial category. It follows that £& consists of all morphisms (X, €x) —— (Y, €y) such
that )

(a) Cy = Cx is an exact’ localization functor with a trivial kernel, and every arrow
of €x is isomorphic to an arrow of q*(&y ).

(b) If g*(M - M') is an isomorphism, then [M] = [M'] in Ky(Y).

7.4.4. Proposition. The class £& is a left exact structure on the category €sp: of
right exact ‘spaces’ with initial objects.

Proof. The assertion is a special (dual) case of 5.3.7.1. =

7.4.5. Proposition. Let (Cs,Js) be a left exact category, § a functor Ces — Esp’
which maps conflations of (Cs,Js) to conflations of the left exact category (Espi, L£%,),
and K& = (KZ-G’S,D@- | i > 0) a universal 0*-functor from (Cs,JIg)°P to Z — mod whose

op

§
zero component, KSS’S, is the composition of C& —— (€spf)°? and Ko (cf. 7.4.2.1).
If X . Yisa morphism of Js with trivial cokernel, then the morphisms
&.5

i

K>S (Y) —— K7S(x)

are isomorphisms for all i > 0.

Proof. Let 3@ denote the class of all morphisms of Jg having a trivial cokernel. By
(the dual version of) 3.3.7.1, the class JZ is a left exact structure on the category Cs.

Since the functor Cg 3, ¢spr maps conflations to conflations, it maps final objects
of the category Cs to zero objects of €spy. In particular, § maps morphisms of Jg
to morphisms of £&. By 7.4.2.1, the 9*-functor is ’exact’, so that for any conflation

X -5 A 5% X" the sequence

KSS (cq) KS¥(q)
Sy L kS¥ay 1 KS¥ () —— 0

is exact. If g € J2, then Kés’g(/\?”) = Ko(F(X")) = 0. So that in this case the morphism
Ko % (a)

KSB’S(X') KSS’S(X) is an isomorphism. The assertion follows now from 5.3.7.2. m
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7.4.6. Corollary. For every morphism (X, €x) —— (X', €x:) of £& the correspond-
mg map
, Ki(q)
Ki(X', €x) —— Ki(X, €x)
18 an isomorphism for all i > 0.

7.5. Universal K-theory of abelian categories. Let €sp] denote the category
whose objects are 'spaces’ X represented by k-linear abelian categories and morphisms

X v are represented by k-linear exact functors.
There is a natural functor

Copl — Eop: (1)

which assigns to each object X of the category €spf the right exact (actually, exact) ’space’

(X, €%), where €5 is the canonical (i.e. the finest) right exact structure on the category

Cx, and maps each morphism X ¥ to the morphism (X, ) 4, (Y, €5t) of right

exact 'spaces’. One can see that the functor § maps the zero object of the category Espj.
(represented by the zero category) to a zero object of the category Esp;.

7.5.1. Proposition. Let Cx and Cy be k-linear abelian categories endowed with

the canonical exact structure. Any exact localization functor Cy A, oy satisfies the
conditions (a) and (b) of 7.4.1.

Proof. In fact, each morphism q*(M) N q*(N) is of the form q*(h)q*(s)~! for some

morphisms M’ " N and M’ -5+ M such that q*(s) is invertible. The morphism A is a
(unique) composition joe, where j is a monomorphism and ¢ is an epimorphism. Since the

functor q* is exact, q*(j) is a monomorphism and q*(e) is an epimorphism. Therefore, R is
an epimorphism iff q*(j) is an isomorphism. This shows that the condition (a) holds.

Let M — M’ be a morphism and
0 — Ker(s) — M - M’ — Cok(s) — 0

the associated with s exact sequence. Representing s as the composition, joe, of a monomor-
phism j and an epimorphism ¢, we obtain two short exact sequences,

0— Ker(s) — M N —0 and 0— N —— M’ — Cok(s) — 0,

hence [M] = [Ker(s)|+[N] and [M'] = [N]+[Cok(s)], or [M'] = [M]+ [Ker(s)]—[Cok(s)]
in Ko(Y). It follows from the exactness of the functor q* that the morphism q*(s) is an
isomorphism iff Ker(s) and Cok(s) are objects of the category Ker(q*). Therefore, in this
case, it follows that [M'] = [M] modulo Z|Ker(q*)| in Ko(Y). m

7.5.2. Proposition. (a) The class £* of all morphisms X Ly of the category

Espy such that Cy L, Cx is a localization functor is a left ezact structure on Esp?.
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§
(b) The functor Espf —— €sp} is an ’exact’ functor from the left exact category
(Espd, £9) to the left exact category (Espk, £F.). Moreover, £ = F1(£%,), that is the left
exact structure £ is induced by the left exact structure £}, via the functor §.

Proof. (i) The category €spj has push-forwards.

In fact, for any pair of arrows X J 7 %y of Espy, consider the cartesian (in the
pseudo-categorical sense) square

*

p:
Cx —— Cx

P | | £ @)

Oy —1 Oy

of inverse image functors. One can see from the description of the category C'x and functors
p] and p3 that Cyx is a k-linear abelian category and the functors p] and p5 are k-linear and
exact, because f* and g* have this property. Since the square (2) is cartesian in pseudo-
categorical sense, it is cartesian in the category formed by k-linear abelian categories and
k-linear exact functors. Therefore, the corresponding commutative square of ’spaces’

f

7 — X
gl lpl
p2
Y — X

is cocartesian.

(ii) It follows from the construction of push-forwards in Esp{ that the functor §
preserves cocartesian squares. It is clear that F1(£%,) C £% On the other hand, by
7.5.1, the functor § maps morphisms of £% (- exact localizations) to morphisms of £,.
Therefore £* = F~1(L%,). Since the functor § maps cocartesian squares to cocartesian
squares, it follows that £% is a left exact structure on the category Espf. m

7.5.3. The Grothendieck functor. The composition K of the functor

op

(Espf)? —— (Esp?)?P

K*
and the functor (Esp})°P — s Z — mod assigns to each object X of the category Espf
the abelian group KJ (X, %) which coincides with the Grothendieck group of the abelian
category Cx. We call K§ the Grothendieck functor.

7.5.4. Proposition. There exists a universal 0*-functor K¢ = (K£,08 | i > 0) from
the right exact category (€spf, £2)°F to the category Z — mod whose zero component is the

Grothendieck functor Ko. The universal 0*-functor K2 is ’exact’; that is for any exact
localization X — X', the canonical long sequence

K (q) 04 (q) K (cq) K§(q)
L KH(X) /5 KHX") /5 KHX') —— K§(X) ——0 (3)
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18 exact.

Proof. By 7.5.2(b), the functor Espf L Esp? is an ’exact’ functor from the left
exact category (€spy, £%) to the left exact category (€spy, £7,) which maps the zero object
of the category €sp{ (- the ’space’ represented by the zero category) to a zero object of
the category €sp;. Therefore, § maps conflations to conflations.

The assertion follows now from 7.4.2.1 applied to the functor §. m

7.5.5. The universal 0*-functor K¢ and the Quillen’s K-theory. For a ’space’
X represented by a svelte k-linear abelian category Cx, we denote by K,LQ(X ) the i-th
Quillen’s K-group of the category Cx. For each i > 0, the map X —— K2(X) extends

naturally to a functor
KQ

(Esp®)? — 7 — mod

It follows from the Quillen’s localization theorem [Q, 5.5] that for any exact localization

2
q / . . . . Is) 0; (a) Ie) 17
X — X' and each i > 0, there exists a connecting morphism K;1,(X) —— Kj(X"),

where Cx» = Ker(q*), such that the sequence

K2(q) 02 (q) K2 (cq) K2 (q)
S K x) 2 KR(x) 8 KR(X)) 4= K2(X) —— 0  (4)

is exact. It follows (from the proof of the Quillen’s localization theorem) that the con-
necting morphisms 92(q), ¢ > 0, depend functorially on the localization morphism q. In
other words, K2 = (K2,02 | i > 0) is an ’exact’ 9*-functor from the left exact category
(Espf, £4)°P to the category Z — mod of abelian groups.

Naturally, we call the 9*-functor K2 the Quillen’s K-functor.

Since K§ = (K&,0% | ¢ > 0) is a universal 9*-functor from (&spf, £2)°P to Z — mod,
the identical isomorphism K(? — K extends uniquely to a 0*-functor morphism

o2

K8 . Ko, (5)

7.5.6. Remark. There is a canonical functorial morphism of the universal determi-
nant group K{¢(X) (introduced by Bass [Ba, p. 389]) to the Quillen’s K2 (X). If X is
affine, i.e. Cx is the category of modules over a ring, this morphism is an isomorphism.
It is known [Ger, 5.2] that if C'x is the category of coherent sheaves on the complete non-
singular curve of genus 1 over C, then K{¢*(X) — K}(X) is not a monomorphism. In
particular, the composition K{¢(X) — K&(X) of the morphism K{(X) — K (X)

Q
and the canonical morphism K(X) <p1—(X)> K{(X) is not a monomorphism.

7.6. Universal K-theory of k-linear right exact categories. Let €sp;. denote the
category whose objects are right exact 'spaces’ (X, €x ), where the ’space’ X is represented
by a k-linear svelte additive category and morphisms (X, €x) — (Y, &y) are given by

. f . . .
morphisms of ’spaces’” X — Y whose inverse image functors are k-linear ’exact’ functors.
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By 1.4, the ’exactness’ of a morphism f means precisely that its inverse image functor, f*,
maps conflations to conflations.
There is a natural functor

S
Esp, —— Csp; (1)

which maps objects and morphisms of the category €sp; to the corresponding objects and
morphisms of the category Esp?.

S
7.6.1. Proposition. The functor Esp; —— Espl preserves cocartesian squares
and maps the zero object of the category Esp;. to the zero object of the category €spy.

Proof. The argument is similar to that of 7.5.2(b). Details are left to the reader. m

7.6.2. Corollary. The class of morphisms £5, = F1(L£%,) is a left exact structure
on the category Esp}, and §, is an ‘exact’ functor from the left exact category (€spj, £})
to the left exact category (€sp, L£F,).

Proof. Since the functor §. preserves cocartesian squares, the preimage F.!(7) of
any copretopology 7 on €spy is a copretopology on the category €sp;. In particular,
£ = FH(Lr,) is the class of cocovers of a copretopology. The copretopology £F is
subcanonical, i.e. £} is a left exact structure on the category Espj.

It follows from the definition of the functor § that a morphism (X, €x) —— (Y, €y)
of Esp}. is a localization iff §.(q) is a localization. In particular, £ consists of localiza-
tions. The copretopology £; is subcanonical iff for any morphism (X, €x) LN (Y, €y ) the

cocartesian square

(Xa eX) L (Ya QEY)

a| | b 2)

(Y7 QEY) L (%, QE:{)

is cartesian, or, equivalently, the diagram

— (3)

(X, €x) —— (Y, &) . (X, €x)

b2

is exact. The claim is that, indeed, the diagram (3) is exact.

In fact, let (Z,€&z) 7, (Y, €y ) be a morphism which equalizes the pair of arrows
p

1
(Y,&y) —— (X, €&x). Since the functor §, transforms (2) into a cartesian square, there
b2

exists a unique morphism §.(Z, €z) R S (X, €x) such that §.(q) o h = §.(f). It follows
that the inverse image h* of h is a k-linear functor C'x — Cz. Therefore h is the image
of (a uniquely determined) morphism (Z,&;) — (X, €x), hence the morphism f factors

uniquely through (X, €x) —— (Y, ¢y).
7.6.3. The functor K. We denote by K§ the composition of the functor

op

3
(Esp},)? ——— (Esp;)P
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*

and the functor (Esp})°P — s Z— mod.

7.6.4. Proposition. There exists a universal 0*-functor K{ = (K},0} | i > 0) from
the right exact category (Espj, L£)°P to the category Z — mod whose zero component is

the functor K§. The universal O*-functor K, is ‘exact’; that is for any exact localization

(X, €x) 4, (X', €x/) which belongs to £, the canonical long sequence

K5 (q) K (cq) HO)
KH(X.€y) —— KX, €x) —— KNX" Exr) —— ...
o5 (a) j (4)
, K§(cq) , K§(a)
KS(X ,GX“) — KS(X,@X/) E— KS(X, @X) EE— 0
18 exact.

S
Proof. The functor €sp;, —— Esp is an 'exact’ functor from the left exact category
(Esp}, £F) to the left exact category (€spy, £, ) which maps the zero object of the category
Esp;. (— the 'space’ represented by the zero category) to a zero object of the category Esp;.
Therefore, § maps conflations to conflations. It remains to apply 7.4.2.1. =
7.6.5. Proposition. Let (Cx,€x) be a right exact k-linear additive category,

(Cx.,€x,) the associated exact k-linear category, and (Cx,€x) =, (Cx,,€x,) the
canonical fully faithful ’exact’ universal functor (see 2.6.1) regarded as an inverse image
functor of a morphism (X., €x,) LN (X, €x).
Ko(vx)
The map Ko(X, €x) itk Ko(X,,€x,) is a group epimorphism.
Proof. The assertion follows from the description of the exact category (Cx,,€x,)
(see the argument of 2.6.1). Details are left to the reader. m

7.6.6. The category of exact k-’spaces’ and Grothendieck-Quillen functor.
Let €spj. denote the full subcategory of the category €spj whose objects are pairs (X, €x)
such that (Cx,&x) is an exact k-linear category.

A~k

3

It follows from 2.6.1 that the inclusion functor, €sp;, —— Esp}. has a right adjoint, J.
which assigns to each right exact k-space (X, €x) the associated exact k-space (X, €x, ).
The adjunction arrow J*J. — Idespr assigns to each object (X, €x) of Esp; the mor-

phism (X,, €x,) =, (X, €x) (see 7.6.5). The adjunction morphism Idgsp: — J«J* is
the identity morphism.

3.
Thus, Esp; —— €Esp; is a localization functor. According to 7.6.5, the functor

(Esp})oP — " Z—mod factors through the localization functor

~Op

Jx
(Espp)”" —— (Espj)"

That is the functor K is isomorphic to the composition K¢ o J3¥, where K¢ denote the
restriction of K to the subcategory (&€sp$)°P, i.e. the composition Ko 3*".
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For each exact k-space (X, €x), the group K§(X, €x) coincides with the Grothendieck
group K of the exact category (Cx,€x) as it was defined by Quillen [Q].

7.6.7. Proposition. The restriction £° of the left exact structure £ on €spj, to the
subcategory €spy is a left exact structure on Espy..
3*
Proof. The inclusion functor €sp; —— Esp; preserves all colimits; in particular,
it preserves cocartesian squares. The latter implies that £° = 3*_1(1?) is a left exact
structure on €sp;.. m

In particular, we have a universal 0*-functor K¢ = (K¢,0f | i > 0) from (Esp§,, £¢)°P
to Z — mod.

7.6.8. Remarks on K-theory of k-linear exact categories. The category Esp;.
of exact k-spaces has an automorphism ® which assigns to each ’space’ (X, €x) the dual
‘space’ (X, €x ) represented by the opposite exact category (Cx, €x)°P.

7.6.8.1. Proposition. Let F' be a contravariant functor from the category €sp; of
exact k-’spaces’ to a category Cz with filtered limits. If for each ’space’ (X, €x), there
is an isomorphism F(X,€x) ~ F((X,€x)°) functorial in (X, Ex), then the universal
O*-functor SE°F is isomorphic to its composition with the duality automorphism © of the
category €spy .

Proof. The argument is left to the reader. m

7.6.8.2. Corollary. There is a natural isomorphism of universal 0*-functors

K:~K:oD.

Proof. In fact, Ko(X, €x) is naturally isomorphic to Ko((X, €x)?), because the (iden-
tical) isomorphism ObC'x —— Ob(C'{¥) implies a canonical isomorphism Z|Cx| ~ Z|C¥|,
relations defining K correspond to conflations, and the dualization functor ® induces an
isomorphism between the corresponding categories of conflations. m

7.7. Digression: non-additive exact categories.

7.7.1. Definition. We call a right exact category (Cx, €x) (and the corresponding
right exact ’space’ (X, €x)) an ezxact category (resp. an ezact ’space’), if the Yoneda
embedding induces an equivalence of (Cx, €x) with a fully exact subcategory of the right
exact category (Cx,, €°) of sheaves on (Cx, €x).

Let €sp. denote the full subcategory of the category €sp. of right exact ’spaces’
generated by exact ’spaces’.

7.7.2. Proposition. The inclusion functor Esp, SR Esp, has a right adjoint.

Proof. This right adjoint, J., assigns to each right exact ’space’ (X, €x) the ’space’
(Xe, €x, ), where Cx, is the smallest fully exact subcategory of the right exact category
of sheaves on (C'x, €x) endowed with the induced right exact structure. m
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7.8. Reduction by resolution.

7.8.1. Proposition. Let (Cx,Ex) be a right exact category with initial objects and
Cy 1ts fully exact subcategory such that

(a) If M' — M — M" is a conflation with M € ObCy, then M’ € ObCy .

(b) For any M" € ObCx, there exists a deflation M — M" with M € ObCy .
Then the morphism KoY, €y ) — Ko(X, Ex) is an isomorphism.

Proof. Let (Cz, €z) <= (Cy, €y) be an ’exact’ functor. Then we have a commutative
diagram

e

CZ]—>CZ

S »

Cy—>CX

where Cy J, C'x is the inclusion functor and the category C'z is defined as follows.
Its objects are triples (M", M;t), where M"” € ObCx, M € ObCyz, and t is a deflation
i*q* (M) — M"). Morphisms are defined naturally. The functor ;* maps each object L
of Cz to (*q*(L), L;id) and acts correspondingly on morphisms. The functor p* is the
projection (M", M;t) — M". The right exact structures on C'x and Cy induce a right
exact structure €z on Cz such that all functors of the diagram (1) become ’exact’.

It follows from the condition (b) that if the functor ¢* is essentially surjective on

objects, then the functor Cz . Cx has the same property. If g¢* is an inverse image

functor of a morphism of £7,, then same holds for p*.

Ko(j)
It follows from the conditions (a) and (b) that the map Ky(Y, €y) % Ko(X, €x)

is surjective. In fact, let N — M —— L be conflation in C'x. Thanks to the condition
(b), it can be inserted into a commutative diagram

M — M — L

| e |

M — L

where all arrows are deflations, the square is cartesian, and £, M are objects of the
subcategory Cy. Therefore, we obtain a commutative diagram

N — M — [
v 5
| | |
N — M —— L

whose rows and columns are conflations. Therefore,
[M] = [L] = [N] = ([M] = [£] = [M]) = (IM] = [£] - [V]).
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It follows from the condition (a) (applied to the columns of the diagram (2)) that
two upper rows of (2) are conflations in (Cy,€y). Since the kernel of the map Ko(j)
consists of combinations (with coefficients in Z) of the expressions [M] — [L] — [N], where
N — M — L runs through conflations of (Cx, €x), it follows that these combinations
are equal to zero. m

7.8.1.1. Note. The first part of the argument of 7.8.1 shows that if Cy is a fully
exact subcategory of a right exact category (Cx, €x ) satisfying the condition (b) and Fj is
a functor from Esp:? to a category with filtered limits such that Fy(Y, €y ) — Fy(X, Ex)
is an isomorphism, then S™ Fy (Y, €y) — S™ Fy(X, €x) is an isomorphism for all n > 0.

The condition (a) was used only in the proof that Ky(Y,€y) — Ko(X,€x) is an
isomorphism.

7.8.2. Proposition. Let (Cx,€x) and (Cz,€z) be right exact categories with initial
objects and T = (T;,9; | i > 0) an ’exact’ 0*-functor from (Cx,€x) to (Cz,&z). Let Cy
be the full subcategory of Cx generated by T-acyclic objects (that is objects V' such that
T;(V) is an initial object of Cz for i > 1). Assume that for every M € ObCx, there is
a deflation P — M with P € ObCy, and that T, (M) is an initial object of Cz for n
sufficiently large. Then the natural map Ko(Y, €y ) — Ko(X, Ex) is an isomorphism.

Proof. Let Cy, denote the full subcategory of the category C'x generated by all objects
M such that T;(M) is an initial object of C'z for i > n.

(i) All the subcategories Cy;, are fully exact.

Indeed, if N — M — L is a conflation in (Cx, €x) such that N and L are objects
of the subcategory Cy, , then, thanks to the ’exactness’ of the 9*-functor 7', we have an
exact sequence

. — Ty (L) — T (N) — T, (M) — T (L) — ...

If m > n, then the objects T,,(/N) and T,,(L) are initial. Since the kernel of a
morphism of an object M to an initial object is isomorphic to M, it follows that T, (M)
is an initial object.

(ii) Let N — M — L be a conflation in (Cx, €x) such that M € ObCy, and
L € ObCy,,,. Then N is an object of Cy;, .

In fact, we have an ’exact’ sequence

which yields the ’exact’ sequence z — T,,(N) — z for all m > n, where z is an
initial object of the category C'z. Therefore, T,,(N) is an initial object for m > n.

(iii) This shows that the subcategory Cly, of the right exact category (Cy,,,, ¢y, ;)
satisfies the condition (a) of 7.8.1. The condition (b) of 7.8.1 holds, because Cy = Cy, C
Cy, and, by hypothesis, for every M € ObC'x, there exists a deflation P — M with P €
ObCy . Applying 7.8.1, we obtain that the natural map Ke(Y,, €y, ) — Ke¢(Ynt1, Cy,

)

n+1

is an isomorphism for all n > 1. Since, by hypothesis, C'x = U Cy,,, the isomorphisms
n>1

Ko(Yn, €y, ) = Ko(Ynt1,€y,,,) imply that the natural map Ko(Y, ¢y) — Ko(X, Ex)

is an isomorphism. =
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7.8.3. Proposition. Let (Cx,&x) be a right exact category with initial objects; and
let

i ’
By Qy

Ker(f') —— Ker(f) —— Ker(f")

¢ e | e

Ker(ay) L Ay 2, AY (3)
fxl f J l JZ
B2 az
Ker(ag) —— As - Al

be a commutative diagram (determined by its lower right square) such that Ker(€") and
Ker(B2) are trivial. Then

(a) The upper row of (3) is ’exact’, and the morphism (3] is the kernel of o).

(b) Suppose, in addition, that the arrows f', ay and ag in (8) are deflations and
(Cx, €x) has the following property:

(#) If M = N is a deflation and M 2~ M an idempotent morphism (i.e. p*> =p)
which has a kernel and such that the composition ¢ o p is a trivial morphism, then the

P
composition of the canonical morphism Ker(p) —— M and M —5 N is a deflation.
Then the upper row of (3) is a conflation.

Proof. (a) It follows from C1.5.1 that the upper row of (3) is ’exact’. It follows from
ﬁ/
the argument of C1.5.1 that the morphism Ker(f’) — K er(f) is the kernel morphism

of Ker(f) — Ker(f").
(b) The following argument is an appropriate modification of the proof the ’snake’
lemma C1.5.2.

(b1) We have a commutative diagram

A —— Ker(f"ay) —— Ker(f")
id l E”l cart l 4
Ker(a) L Ker(asf) L A BN AY (4)
1 2 1 1
id l h l cart f l l "
Ker(ay) AN Ker(as) SN As =, Al

with cartesian squares as indicated. It follows (from the left lower cartesian square of (4))
that Ker(h) is naturally isomorphic to Ker(f).
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(b2) Since the upper right square of (4) is cartesian, we have a commutative diagram

t(ay) -
Ker(a) AN Ker(f"a;) =4 —— Ker(f")

id l E"l cart l ¢

B1 o
Ker(ay) —— Ay _ Al (5)
f/l f l l J
B2 Qs
Ker(ag) —— As — Al

(b3) Since Ker(ay) oK er(as) is a deflation, there exists a cartesian square

M — 4
pl cart lh (6)

’

Ker(ay) —— Ker(as)

whose upper horizontal arrow, -, is also a deflation.
The commutative diagram (5) shows, among other things, that the arrow f’ factors

through h (see the diagram (4)), there exists a splitting, Ker(a;) — M, of the morphism

p. Set p = s op. The morphism M —- M is an idempotent which has the same kernel as
p, because s is a monomorphism.
(b4) Let M - Ker(f”) denote the composition of the deflations M —- A; and

A 2 Ker(f"). The composition ¢ o p is trivial.
In fact, p op = @3 oy osop, and, by the origin of the morphism s, the composition
vos coincides with €(arp); so that @op = (a1 o 8(a1)) op which shows the triviality of pop.
(b5) Suppose that the condition (#) holds. Then the triviality of ¢ o p implies that

t(p)
the composition ¢ with the canonical morphism Ker(p) —— M is a deflation. It follows

from the commutative diagram

Keq“(p) L) Ker(h) — KeT(f)

l l o

M SN A, —  Ker(f") (7)
p l cart l h
f/

Ker(ay) —— Ker(ag)

t(p)
that the composition of Ker(p) —— M with M — Ker(f") equals to the composition
of Ker(f) —% Ker(f") with an isomorphism Ker(p) — Ker(f). Therefore, the mor-

phism Ker(f) &, Ker(f") is a deflation. Together with (a) above, this means that the
upper row of the diagram (3) is a conflation. m
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7.8.4. Proposition. Let (Cx, €x) be a right exact category with initial objects having
the property (#) of 7.8.3. Let Cy be a fully exact subcategory of a right exact category
(Cx, €x) which has the following properties:

(a) If N — M — L is a conflation in (Cx,€x) and N, M are objects of Cy, then
L belongs to Cy too.

(b) For any deflation M — L with L € ObCy, there exist a deflation M — L with
M € ObCy and a morphism M — M such that the diagram

M

7N
M ——- L

commutes.
(c) If P, M are objects of Cy and P — x is a morphism to initial object, then
PIIM exists (in Cx) and the sequence P — PJ[M — M (where the left arrow

18 the canonical coprojection and the right arrow corresponds to the M 2 M and the
composition of P — x — M) is a conflation.

Let Cy,, be a full subcategory of Cx generated by all objects L having a Cy -resolution
of the length < n. And set Cy_ = |J,;>0Cv,- Then Cy, is a fully exact subcategory of
(Cx,€x) for alln < oo and the natural morphisms

Ko(Y,Ey) =5 K (Y1, Cy) = ... =5 Ko(Yy, €y) = Ke(Yao, €y )

are isomorphisms for all n > 0.

Proof. Let N — M — L be a conflation in (Cx, €x). Then for any integer n > 0,
we have

(i) IfLe ObCyn+1 and M € ObCyn, then N € ObCyn

(ii) If N and L are objects of Cy, , ,, then M is an object of Cy, _, .

(iii) If M and L are objects of Cy, _,, then NNV is an object of Cy, _, .

It suffices to prove the assertion for n = 0.

(i) Since L € ObCl,, there exists a conflation P — P — L, where P and P’ are
objects of Cy. Thus, we have a commutative diagram

|

|
N — P —
N

id

o

~

—_

1d l cart

_ M —

te—g —'9
>

whose rows and columns are conflations. Here z is an initial object of the category Cx.
Since M and P’ belong to Cy and Cy is a fully exact subcategory of (Cx, €x), in partic-

ular, it is closed under extensions, the object P belongs to Cy. Since P and P are objects
of Cy, it follows from the condition (a) that N € ObCy .
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(ii) Since L € ObCly,, there exists a deflation P — L with P € ObCy. Applying (b)
to the deflation P — P in (3), we obtain a deflation M — P such that M € ObCy
and the composition M — L factors through the deflation M — L (see (8)). Since

N € ObCly,, there exists a conflation P’ — P — N where P and P are objects of Cy.
Thus, we obtain a commutative diagram

P — M — P
| ! |
P — PIM — M 9)
| | |
N — M — L

whose two lower rows and the left and the right columns are conflations. By 7.8.3(b), the
upper row of (9) is a conflation too. Applying (i) to the right column of (9), we obtain
that P” € ObCy. This implies that M € ObCy, whence M € ObCl;, .

(iii) Since M € ObCly,, there is a commutative diagram

id A
PP — PP —

oL
| e | |

N — M —

whose rows and columns are conflations. Here x is an initial object of C'x and A is a unique
morphism P’ — x determined by the fact that P/ — K is the kernel of K — N. Since
L € ObCy,, applying (i) to the middle row, we obtain that K € ObCy. So, N € ObCy . =

7.8.5. Proposition. Let (Cx, €x) be a right exact category with initial objects having
the property (#) of 7.8.3. Let Cy be a fully exact subcategory of a right exact category
(Cx,€x) satisfying the conditions (a) and (c) of 7.8.4. Let M — M — M" be a
conflation in (Cx,€x), and let P' — M', P — M" be Cy-resolutions of the length
n > 1. Suppose that resolution P — M’ is projective. Then there exists a Cy -resolution
P — M of the length n such that P; = P/ P! for all i > 1 and the splitting ’exact’
sequence P’ — P — P is an ’exact’ sequence of complexes.

Proof. We have the diagram

P4 Py

| |

M/ - M - M//

whose row is a conflation and vertical arrows are deflations. Since, by hypothesis, P{ is
a projective object of (Cx,€x) and M — M" is a deflation, the right vertical arrow,
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Py — M", factors through M — M". Therefore (like in the argument 7.8.4(ii)), we
obtain a commutative diagram

Ker(e)) —— Ker(e) —— Ker(¢")

| | |

P — PP — R

‘| | Le

M/ N M - M//

By 7.8.3(b), the upper row of this diagram is a conflation, which allows to repeat the step

with the diagram
P; Py

Ker(¢')) —— Ker(e) —— Ker(e")
whose vertical arrows are deflations; etc.. m
7.9. Characteristic ’exact’ filtrations and sequences.

7.9.1. The right exact ’spaces’ (X,,, €x, ). For a right exact exact 'space’ (X, €x),
let C'x, be the category whose objects are sequences M,, — M,_1 — ... — My of n
morphisms of Ex, n > 1, and morphisms between sequences are commutative diagrams

M, —— M, —— ... —— M,
fa | fa1] | o
M —— ), — ... —— M
Notice that if x is an initial object of the category C'x, then x — ... — x is an

initial object of Cx,, .
We denote by €y, the class of all morphisms (f;) of the category Cx, such that
fi € €x forall 0 <i<n.

7.9.1.1. Proposition. (a) The pair (Cx, ,€x, ) is a right exact category.

(b) The map which assigns to each right exact ‘space’ (X, Ex) the right exact ’space’
(X, €x,, ) extends naturally to an ’exact’ endofunctor of the left exact category (€sp,., Les)
of right ’exact’ ‘spaces’ which induces an ’exact’ endofunctor P, of its exact subcategory
(€spr, £5,)-

Proof. The argument is left to the reader. m
7.9.2. Proposition. (Additivity of ’characteristic’ filtrations) Let (Cx,€x) and

Cy, &y ) be right exact categories with initial objects and f* tn, * ot LA ey
’ g g ] n n—1 0

sequence of deflations of ’exact’ functors from (Cx, €x) to (Cy, Ey) such that the functors
b = Ker(t)) are ’ezact’ for all 1 <i <n. Then K(fn) = Ko(fo) + Z Ko ().
1<i<n

Proof. (a) For 1 < i < n, let p;i denote the functor Cy;, — Cy which assigns to

every object M = (M,, = ... =5 M) of Cy, the object M; and to every morphism
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f = (fm) the morphism f;. The assignment to any object M = (M, - ... 25 M)

. : . t
of Cy, of Cy, the deflation M; . M;_; is a functor morphism Py, — py,_q- Let

yv.; denote the kernel of tY, i.e. is the functor Cy, — Cy that assigns to an object

M = (M, LN EN My) the kernel of M; . M;_;. Thus, we obtain a diagram

* * *
Y,n Y,n—1 e Y,1
| | 2 | ()
Y Y
* n * * 1 *
Pyvn — Pyn—1 — -+ — Py1 — Pypo

of functors from Cy, to Cy whose horizontal arrows are deflations.

The functors py-; ; and £y, map initial objects to initial objects and pull-backs of
deflations to pull-backs of deflations; i.e. they are inverse image functors of morphisms
of the category €spi. These morphisms depend functorially on the right exact ’space’
(Y, €y ), that is they form functor morphisms

pi . €, .
Pn —— Idespr, 0<i<mn, and P, —— Idgspr, 1<i<n.

These morphisms induce morphisms

Ko () Ko (pi)
o e © — °

of 0*-functors. The claim is that the morphism K,(p,) coincides with the morphism
Ko(po) + Y Ka(ti).
1<i<n
In fact, the zero components of these morphisms coincide. Since K, is a universal
0*-functor, this implies that the entire morphisms coincide with each other.
(b) The argument above proves, in a functorial way, the assertion 7.9.2 for the special

Y Y
case of the sequence of deflations py S, Y1 — - — Py -, pyo- of ‘exact’
functors from Cy, to Cy. That is
Ku(pyn) = Ko(pyo) + > Ke(ty). (2)

1<i<n

Consider now the general case.

. t th—1 t
A sequence of deflations f} — f* ;, == ... — f§ of ’exact’ functors from

IS
(Cx,€x) to (Cy, Ey) defines an ’exact’ functor (Cx,Ex) —— (Cy,, €y, ). The kernels
t* = Ker(t;) map initial objects to initial objects. The fact that they are ’exact’ (which
is equivalent to the condition that they map deflations to deflations) means that they

are inverse image functors of morphisms of €sp}, hence the morphisms K, (¢;) are well
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defined. Therefore, the morphism Ko (fo) + Z Ko () from Ko(X,€x) to K¢(Y, Ey) is
1<i<n
well defined. One can see that

Ko(fn) = Ko(py,n) 0 Ko(fn) and
Eo(fo)+ Y Ku(t) = (Kalpyo) + > Ka(ty,)) 0 Ku(fn)

1<i<n 1<i<n

So that the assertion follows from the equality (2). m

7.9.3. Corollary. Let (Cx,€x) and (Cy,Ey) be right exact categories with initial
objects and g* — f* — h* a conflation of ’exact’ functors from (Cx,&€x) to (Cy, Ey).
Then Ko(f) = Keo(g) + Ko(h).

7.9.4. Corollary. (Additivity for ’characteristic’ ’exact’ sequences) Let
fo =1 — o — 1 — 1

be an ’exact’ sequence of ‘exact’ functors from (Cx,€x) to (Cy,€y) which map initial

objects to initial objects. Suppose that 1 — i is a deflation and f;, — fi_; is the kernel

of ¥ _1 — f_5. Then the morphism Z (—1)'K4(f;) from Ko(X, €Ex) to Ko(Y, Cy) is
0<i<n

equal to zero.

Proof. The assertion follows from 7.9.3 by induction.

A more conceptual proof goes along the lines of the argument of 7.9.2. Namely, we
assign to each right exact category (Cy, €y) the right exact category (Cyg, €y.) whose
objects are ’exact’ sequences £ = (L, — L,y — ... — L1 — L), where L; — Ly
is a deflation and L,, — L,,_1 is the kernel of L,, 1 — L,,_o. This assignment defines
an endofunctor P!, of the category Esp; of right exact ’spaces’ with initial objects, and
maps £ —— L; determine morphisms ‘B;, — Idgsp:. The rest of the argument is left to
the reader. m

7.10. Complements.

7.10.1. Another description of the functor K,. Fix a right exact category
(Cx,€x). Let Cg(x ¢y denote the category having the same objects as Cx and with
morphisms defined as follows. For any pair M, L of objects, consider all diagrams (if

any) of the form M «— L L, where ¢ is a deflation and f an arbitrary morphism
of C'x. We consider isomorphisms between such diagrams of the form (idy;, ¢,idr) and
define morphisms from M to L as isomorphism classes of these diagrams. The composition

of the morphisms N AN S Moand M <~ M L Lis the morphism represented by
the pair (toe, f og’) in the diagram

N 2o L
?l cart le

N 2. M

o

M



with cartesian square. If the category Cx is svelte (i.e. it represents a ’space’), then
Cy(x,ex) is a well defined svelte category.

There is a canonical functor C'x RNy 2(X,¢&x) Which is identical on objects and maps

each morphism M L. L to the morphism represented by the diagram M LN YNy
Let C|g,| denote the subcategory of Cx formed by all deflations. The map which

assigns to every morphism M —— N of €x the morphism of C' ¢(x,ex) represented by the

: *
diagram N «—— M 4 M is a functor C‘Oé’x‘ = Ce(x,ex)-

Let G(X) denote the group Z|Cx| which is identified with the corresponding groupoid
with one object. Let px denote the map HomCg(x e ) — G(X) which assigns to a

morphism [N «— M R L] represented by the diagram N «— M L I the element
[M] — [N] of the group G(X). We have a (non-commutative) diagram

Hom?C(x, ey) = G(X) x G(X)
| |+ (1)

Px

HO?TLC/Q(X’@X) —_— Q(X)

where Hom?C'y stands for the class of composable morphisms of the category Cz and the
vertical arrows are compositions. Taking the compositions in the diagram (1), we obtain

a pair of arrows
1LX

Hom?Cg(x ey) %; G(X). (2)

7.10.1.1. Proposition. The cokernel of the pair (2) is (isomorphic to) the group
Ko(X,€x) defined in 7.1.

Proof. The fact follows from the definitions. m

7.10.1.2. Note. The map HomCyg(x ¢ y) X, G(X) is the composition of the map

HomClg(x ¢y) IX, ¢x and the map €y Ax, G(X) which assigns to each deflation M — L
the element [M] — [L] of G(X). One can see that mx o I is the identical map, and the
map Ay is a functor C"Oé’x‘ — G(X).

7.10.1.3. Functorialities. Any ’exact’ functor (Cx,€x) R (Cy, €y ) between

£(f)"
right exact categories induces a functor C¢(x ¢) — Cg(v,¢,) such that the diagram

Ko(X) ——  g(X) ce . Co(x.¢x) S oy
Ko(f) | g7 | | e | [ ®

* *
Ay (693 vy

Ko(Y> — Q(Y) — COp - CE(Y,@y) — Cy



commutes, as well as the diagram

HO’ITLCE(X’@X) W—X> @X

i W | ey (4)
HomClgry ey ) — ¢y

7.10.2. The Q-construction for right exact categories with initial objects.
Let (Cx, €x) be a right exact category with initial objects. We denote by Jx the class of
all inflations of (C'x, €x) (i.e. morphisms which are kernels of deflations) and by J¥ the
smallest subcategory of Cx containing Jx.

We denote by Co(x,ey) the subcategory of the category Cg(x ¢, ) formed by all

morphisms M «— M — L, where (¢ is a deflation and) j € J.
7.10.2.1. Note. If (Cx,€x) is an exact k-linear category, then 3§ = Jx and the

category Cg(x,ex) coincides with the Quillen’s category QCx associated with the exact
category (Cx,€x) (see [Q, p. 102]).

Let

ax

Hom2C’Q(X7@X)—; Q(X) (1)

bx

be the composition of the pair of maps 7.10.1(2) with the embedding

HomQC’Q(X,@X) - HomQCE(X,GSX)'

7.10.2.2. Proposition. The unique map Cok(ax,bx) — Ko(X, Ex) making com-
mute the diagram

ax

HomQCQ(X&;X) N Q(X) E—— Cok(ax,bx)

l i | l

) ——  Ko(X, &)

HomQC’g(xﬁx) g(
v x

1$ a group isomorphism.

Proof. The assertion is a consequence of 7.1.6. m
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8. Infinitesimal ’spaces’.

8.1. The Gabriel multiplication in right exact categories. Fix a right exact
category (Cx, €x) with initial objects. Let T and S be subcategories of the category Cx.
The Gabriel product SeT is the full subcategory of C'x whose objects M fit into a conflation

L2 M- N such that L € ObS and N € ObT.

8.1.1. Proposition. Let (Cx,Ex) be a right exact category with initial objects. For
any subcategories A, B, and D of the category Cx, there is the inclusion

Ae(BeD)C (AeB)eD.

Proof. Let A, B, and D be subcategories of C'x. Let M be an object of A e (B eD);
i.e. there is a conflation L — M — N such that L € ObA and N € ObB eD. The latter
means that there is a conflation Ny — N — Ny with N; € ObB and N, € ObD. Thus,
we have a commutative diagram

L—>M1—>N1

1d l l cart

L — M — N

J( id

NQ —_— N2

whose two upper right square is cartesian, and two upper rows and two right columns are
conflations. So, we have a conflation M; — M — Ns with Ny € ObD and My € ObAeJ5,
hence M is an object of the subcategory (AeB)eD. m

8.1.2. Corollary. Let (Cx,&x) be an exact category. Then the Gabriel multiplica-
tion s associative.

Proof. Let A, B, and D be subcategories of Cx. By 8.1.1, we have the inclusion
Ae (BeD) C (AeB)eD. The opposite inclusion holds by duality, because (A e B)°P =
B°P e AP m

8.2. The infinitesimal neighborhoods of a subcategory. Let (Cx,&x) be a
right exact category with initial objects. We denote by Qx the full subcategory of Cx
generated by all initial objects of C'x. For any subcategory B of C'x, we define subcategories
B™ and B(ny, 0 <n < oo, by setting BO) =0y = Bo), BY =B = By, and

B =BV eB for 2<n<oo; and B> = U B,

n>1

By =BeB;_1) for 2<n<oo; and B = U Bw)

n>1
It follows that B("™) = By for n <2 and, by 8.1.1, B(n) C B™ for 3<n < oo.
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We call the subcategory B™*1) the upper nt" infinitesimal neighborhood of B and the
subcategory By, 1) the lower n'" infinitesimal neighborhood of B. 1t follows that B("+1)
is the strictly full subcategory of C'x generated by all M € ObC'x such that there exists a
sequence of arrows

i1 j2 in

MO —>M1 MnZM

with the property: My € ObB, and for each n > i > 1, there exists a deflation M; —> N;

with N; € ObB such that M;_; 2 M; = N; is a conflation.
Similarly, B, 1) is a strictly full subcategory of C'x generated by all M € ObCx such
that there exists a sequence of deflations

4 €2 el

M=M, —-s ... M, M,

such that M, and Ker(e;) are objects of B for 1 < i < n.

8.2.1. Note. It follows that B C B+ for all n > 0, if B contains an initial
object of the category Cx.

8.3. Fully exact subcategories of a right exact category. Fix a right exact
category (Cx,Ex). A subcategory A of Cx is a fully exact subcategory of (Cx,Ex) if
Ae A=A

8.3.1. Proposition. Let (Cx,Ex) be a right exact category with initial objects. For
any subcategory B of Cx, the subcategory B(>®) is the smallest fully exact subcategory of
(Cx,Ex) containing B.

Proof. Let A be a fully exact subcategory of the right exact category (Cx, €x), i.e.
A= Ae A Then B(®) C A, iff B is a subcategory of A.

On the other hand, it follows from 8.1.1 and the definition of the subcategories B("™)
(see 8.2) that B(™ e B(™) C B(™+7) for any nonnegative integers n and m. In particular,
B(>*) = B(°) ¢ B(>*) that is B(>) is a fully exact subcategory of (Cx,Ex) containing B. m

8.4. Cofiltrations. Fix a right exact category (Cx,&x) with initial objects. A
cofiltration of the length n+1 of an object M is a sequence of deflations

€2 €]

M=M, — ... M, M. (1)

The cofiltration (1) is said to be equivalent to a cofiltration

M=DM, —— ... M, M,

if m = n and there exists a permutation ¢ of {0,...,n} such that Ker(e;) ~ Ker(e,;)
for 1 <¢ <mn and My >~ M.
The following assertion is a version (and a generalization) of Zassenhouse’s lemma.

8.4.1. Proposition. Let (Cx, €x) have the following property:
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(1) for any pair of deflations M N V- My, there is a commutative square

151
M —_— M1

N

p1
M2 —— M3

of deflations such that the unique morphism M — My X, Mo is a deflation.
Then any two cofiltrations of an object M have equivalent refinements.

Proof. Let

en () €1
M=M, — ... —— M; —— My and
—~ en o~ o~
M = M, - M, —— M,

be cofiltrations. If n = 0, then the second cofiltration is a refinement of the first one.

(a) Suppose that n = 1 = m; that is we have a pair of deflations My < M -5 M.
Thanks to the property (), there exists a commutative square

M — M

oD

— Pl
M1 — N

whose all arrows are deflations, and the unique arrow M 23, My = My x NM 1 is a deflation
too. Since the right lower square in the commutative diagram

Ker(¢) —— Ker(py)
& | | &

to €2

Ker(ey) —— My —— M
ZJ e l cart l p1
€ ~ o
Ker(p)) —— M — N

is cartesian, its upper horizontal and left vertical arrows are isomorphisms. This shows
that the cofiltrations

€3 eo p1

M M2 M1 —— N and
€3 ’;2 — P/l
M Moy My —— N

are equivalent to each other.
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(b) Let n> 1 and m = 1. Then, applying (a) to the deflations My <2~ M " M, _,
we obtain a commutative diagram

4 en en

M — M — n—1 —— n—9 My
el l cart l P1
Pl

MI — N

which provides an induction argument.
(c) Finally, (b) provides the main induction step in the general case. Details are left
to the reader. m

8.5. Semitopologizing, topologizing, and thick subcategories of a right
exact category. Fix a right exact category (Cx,Ex) with initial objects.

8.5.1. Definitions. (a) We call a full subcategory 7 of the category Cx semitopol-
ogizing if the following condition holds:

If M = L is an arrow of €x and M € ObT, then L and Ker(e) are objects of 7.

(b) We call a semitopologizing subcategory 7 of the category Cx topologizing if it is
a right exact subcategory of (Cx,€x), that is if

’

N — M
?l le
f
N —— L

is a cartesian square in C'x and the objects M, L, and N belong to the subcategory 7,
then NV is an object of 7.

(c) We call a subcategory 7 of C'x a thick subcategory of (Cx, Ex) if it is topologizing
and fully exact, i.e. 7 o7 =1T.

8.5.2. Proposition. (a) Let (Cx,&x) be a right exact category with initial and
final objects such that all morphisms to final objects are deflations. Than any topologizing
subcategory of (Cx,€x) is closed under finite products.

(b) If Cx is an abelian category and €x is the canonical exact structure on Cx, then
topologizing subcategories of (Cx, Ex) are topologizing subcategories of the abelian category
Cx in the sense of Gabriel [Gab].

Proof. (a) Let 7 be a topologizing subcategory of (Cx,&x). Then, under the as-
sumptions, it is a strictly full subcategory of C'x containing all final objects of C'x. Let
M, N be objects of 7 and x4 a final object of Cx. By hypothesis, the unique morphisms
M — x4 and N — x, are deflations. Therefore, the cartesian square

P
MHN — M

P |

N —  Te
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is contained in 7.

(b) If (Cx, €x) is an abelian category with the canonical structure, then it follows
from (a) above that any topologizing subcategory 7 of (Cx,€x) is closed under finite
(co)products, and if 0 — M’ — M — M"” — 0 is an exact sequence with M € ObT,
then M’ and M" are objects of 7. This means that 7 is a topologizing subcategory of
the abelian category C'x in the sense of Gabriel. On the other hand any topologizing
subcategory of C'x in the sense of Gabriel is closed under any finite limits and colimits
(taken in Cx), in particular, it is closed under arbitrary pull-backs. m

8.5.3. Proposition. Let (Cx,€x) be a k-linear additive right exact category such
that all morphisms to zero objects are deflations.

(a) Any topologizing subcategory of (Cx,&x) is closed under finite products.

(b) If (Cx,€x) is an exact category, then any topologizing subcategory of (Cx, Ex)
is an exact (sub)category.

Proof. (a) This follows from 8.5.2(a).
(b) Fix a topologizing subcategory 7 of an exact k-linear category (Cx,€x). Let

M — M’ —*5 M" be a conflation in 7 and M - L an arbitrary morphism of 7. Since

(Cx,€x) is an exact category, there is cocartesian square

M—j>M’

r] |7 (1)

N — N

whose horizontal arrows are inflations. Notice that the pair of morphisms

(f) EEN
ML N M =NoM N 2)

is a conflation. In fact, the Gabriel-Quillen embedding is ’exact’, hence it sends the cocarte-
sian square (1) to a cocartesian square of the abelian category of sheaves of k-modules on
(Cx,€x). And for abelian categories the fact is easy to check. Since the Gabriel-Quillen
embedding reflects conflations, it follows that (2) is a conflation.

By (a) above, N & M’ € ObT, because N and M’ are objects of 7. Therefore, the
object N’ belongs to 7. m

8.5.4. Proposition. Let (X, €x) g, (Y, €y) be a morphism of the category Esp.
If T is a semitopologizing (resp. topologizing, resp. thick) subcategory of the right exact
category (Cx,€x), then f*il(T) is a semitopologizing (resp. topologizing, resp. thick)
subcategory of (Cy, €y ).

Proof. By the definition of morphisms of €spy, the inverse image functor §* is an
‘exact’ (that is preserving pull-backs of deflations) functor from (Cy,€y) to (Cx,€x)
which maps initial objects to initial objects. The assertion follows from definitions. m
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8.5.5. Proposition. Let

(Z,¢z) . (Y, ¢y)

fl lpl

p2

(X, QEX) — (%, Qfx)

be a cocartesian square in the category €spy, and let Cx,, Cy, be semitopologizing subcat-
egories of resp. (Cx,€x) and (Cy,Ey). Then Cx, = Cx, H Cy, is a semitopologizing
1598
subcategory of (Cx, €x). If the subcategories Cx, and Cy, are topologizing, then Cx, is a
topologizing subcategory of (Cyx, €x).
. . €3%0)

Proof. (a) By 6.8.2, €x consists of all morphisms (M, L;¢) —— (M’,L’; ¢’) of the
category C'x such that £ € €x and v € &y. And Ker(§,v) = (Ker(&), Ker(y); ¢"), where
¢" is a uniquely determined (once Ker(§) and Ker(vy) are fixed) isomorphism. Therefore,
if (M, L; ¢) is an object of Cx, and both categories C'x, and Cy, are semitopological, then
(M',L';¢") and Ker(§,) are objects of Cx,, which shows that Cx, is a semitopological
subcategory of the category Cyx.

(b) Suppose now that Cx, and Cy, are topologizing subcategories of respectively
(Cx,€x) and (Cy,€y). By definition of morphisms of the category €spy, the inverse

image functors Cx AR Cy and Cy 2= Oy are ’exact’; i.e. they preserve pull-backs of

(&)
deflations. This implies that for any deflation (M, L; ¢) =, (M',L’;¢") and an arbitary

_ (. ) _ )
morphism (M",L";¢") —— (M’',L';¢') of the category Cx, there exists a cartesian

square
~  (p2,ph)

(M,L;¢) —— (M,L;9)
(1,71) | | €
(M// L qb”) (@.5) (M/ )z ¢/)
determined uniquely up to isomorphism by the fact that the squares

’

~ D2 — P2

L —— L M —_ M
p1 l l § and  pj l l ¥

L// f L/ M// v M/

are both cartesian. Therefore, if L and L are objects of the topologizing subcategory Cly,,

then L € ObCy,. Similarly, M € ObCx, if M and M" are objects of Cy,. This shows
that C'x, is a topologizing subcategory of (Cx, €x). =

8.6. Another left exact structure £.;, on the category €sp. of right exact
’spaces’. We denote by £, the class of all morphisms (X, €x) —L, (Y, €y) of right exact
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'spaces’ such that ¢* is a localization functor and for each arrow ¢*(L) LA q* (L") of €x,
there exists an arrow L —— L of ¢y and an isomorphism ¢*(L"”) —— ¢*(L') such that
¢/ =s50q"(e).

It follows from this definition that the class £¢sp is contained in £s.

8.6.1. Proposition. The class L5y 15 a left exact structure on the category €sp, of
right exact ‘spaces’.

Proof. The class £¢sp contains, obviously, all isomorphisms, and it is easy to see that
it is closed under composition. It remains to show that £.s, is stable under cobase change
and its arrows are cocovers of a subcanonical copretopology.

Let (X, €x) -5 (Y, @y) be a morphism of Ly and (X, €x) — (Z, €2) an arbitrary

morphism. The claim is that the canonical morphism Z —— Z H Y belongs to Lesp-

I
Consider the corresponding cartesian (in pseudo-categorical sense) square of right

exact categories:

p

(Cx,€x) —— (Cy, &)
q* l l q* (2)

f
(Cz,€z) —— (Cx,€x)

where X = Z H Y; that is Cy = Cy H Cy. Recall that the functor ¢* maps each object

fa I*q*
(L, M; @) of the category Cx to the object L of C'z and each morphism (§,7) to {. By

6.1(a), ¢* is a localization functor (because ¢* is a localization functor).
Let (L, M;¢) and (L', M'; ¢’) be objects of the category Cx; and let

(L M;¢)=L -5 L' = (L, M; ¢) (3)
f*(e)

be an arrow of €. Then f*(L) —— f*(L’) is a morphism of €x. Since the localization
X -4, ¥ belongs to Lesp, there exists a morphism M —£5 M" of &y and an isomorphism

q* (M) 2 (M) such that the diagram
“(e)
0 )
¢ l? Zl Yo
(M) —— ¢ (M)

commutes. This expresses the fact that the pair (¢/,¢) is a morphism from the object
(L, M; ) to the object (L', M";1¢") of the category Cx. The morphism

(ex¢')
(L, M;¢) —— (L', M";9¢)
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is a deflation, because both ¢’ and ¢ are deflations. Finally, ¢*(¢/,¢) = ¢’.

This shows that the class of localizations £, is stable under cobase change; i.e. £.sp
is the class of cocovers of a copretopology. Since the copretopology L.sp is coarser than
Les and L, is subcanonical, it follows that £y is subcanonical too. In other words, £esp
is a left exact structure on the category €sp, of right exact ’spaces’. m

8.6.2. Proposition. Let (X, &x) LN (Y, &y) be a morphism of L£.s satisfying the
following conditions:

(i) Every pair of arrows N «—— M —— L, where ¢ € €y and s € Yoo = {t €
HomCy | q*(t) is invertible}, can be completed to a commutative square

M — L

s | |t

N I
with ¢’ € €y and t € Xy«

1) Every pair of arrows N =M L, wheree € €y ands € Xg+, can be completed
) q
to a commutative square

with ¢/ € €y and t € Xq-.

Then q belongs to the class Lesp.

Proof. Since q € £, for each morphism q*(M) —— gq*(L), there exists a commutative
diagram /
a’(M) —— a'(L)
| |
P -
" (M) —— q°(L)

whose vertical arrows are isomorphisms and t € €y-. Any isomorphism q*(M) — ¢* (]Tj ) is
the composition of morphisms q*(s)*?!, where s € Yq=. Therefore, applying the conditions
(i) and (ii), we obtain, in a finite number of steps, a commutative diagram of the form

in which t' € €x. =
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8.6.3. Proposition. Let Cx be a category with kernel pairs and finite colimits, whose
canonical (i.e. the finest) right exact structure €5 consists of all strict epimorphisms (e.g.
Cx is a quasi-abelian category). Then any right exact and ’‘exact’ localization functor

Cx 2= Oy is an inverse image functor of a morphism (Z, &) - (X, &%) which

belongs to Legp.

Proof. 1t follows that each morphism L L M s the composition of a strict epimor-

phism L X, M, (— the cokernel of the kernel pair of f) and a monomorphism M, YoM,
Being right exact, the localization functor q* maps the strict epimorphism t; to (the cok-
ernel of a pair of arrows, hence) a strict epimorphism and the monomorphism j; to an
isomorphism. This implies, in particular, the condition (ii). Since the category Cx has
finite colimits and the localization functor q* is right exact, the class of morphisms ¥4« is
a left multiplicative system [GZ, 8.3.4]. In particular, the condition (i) holds. =

8.6.4. Note. One can show that the quotient category C'z satisfies the same property:
the class of strict epimorphisms is stable under base change.

8.6.5. The left exact structure £,
the intersection Lesp () L35

8.7. The K-functor ;. Applying 8.4.2.1 to the identical functor
(Espy, £06p) ™ — (Espr, £5)

esp

on the category €sp;. We denote by £

esp

ssp) We obtain the universal 9*-functor

)°P to Z —mod whose zero component coincides with

(i.e. restricting to a coarser left exact structure £
Ks = (Kr,07 | i >0) from (Espy, £

iV esp
*

K
the functor (&Espy)°P — . Z— mod.

8.8. The left exact category of right exact infinitesimal ’spaces’. We define
a right exact infinitesimal ’space’ as a pair ((X,€x),Y), where (Cx, €x) is a right exact
category with initial objects and Cy is a topologizing subcategory of (Cx, €x) such that
Cx = (Cy)(so)- A morphism ((X,€x),Y) — ((X,€%),9) of right exact infinitesimal

‘spaces’ is given by a morphism X 4, X of ’spaces’ whose inverse image functor is ’exact’,
maps initial objects and the subcategory Cy to the subcategory Cy. The composition of
morphisms is given by the composition of the corresponding morphisms of ’spaces’. This
defines the category which we denote by Esp’ .

It follows from this definition that the maps

(X,€x),Y)— (X,€x) and ((X,€x),Y)+— (Y,Cy)

(where €y is the induced right exact structure on Cy) extend naturally to functors re-
spectively

! *

§ §
Espr, —— CEspr  and  Espt —— Espy.
T«
8.8.1. Proposition. The functor Espi —— Esp’ which assigns to each right
exact ‘space’ (X, Ex) the corresponding ’‘trivial’ infinitesimal ’space’, ((X,€x),X) and

acts accordingly on morphisms is left adjoint to the functor § and right adjoint to §*.
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1

g
Proof. The adjunction morphism g, o §' LN desp:_ assigns to each object

id
((X,€x),Y) the morphism ((X,€&x),X) —=, (X,€x),Y). The adjunction arrow
ldgsp: —— § oF,. is the identical morphism.
g

The adjunction morphism Idgsp:. — F«3* assigns to each object ((X,€x),Y)
the morphism ((X,€x),Y) N ((Y,€¢x),Y), where j = jy is the morphism X — Y
whose inverse image functor is the inclusion functor Cy — Cx. The adjunction arrow
§* 8« — Idespr is identical. =

8.8.2. Note. Thanks to the full faithfulness of the functor §,, there is a canonical

p
morphism § AN §* defined as the composition of

! g ! " ! " 77!5_1 ) "
§ — §85 and FEF —— F.
The morphism pz assigns to each infinitesimal right exact ’space’ ((X,€x),Y) the
natural morphism (X, &x) —— (Y, €y) whose inverse image functor is the embedding
Cy I CX.

8.8.3. The class of morphisms £59.. The class £

esp* esp

(X, €x), Xo) —— ((Y,€y),Ys) such that (X,Ex) —— (Y, &y) belongs to £%,, (in

esp

consists of all morphisms

particular, Cy —— Cyx is an ’exact’ localization) and Cly, = q*fl(C’XO).

8.8.3.1. Note. For any morphism ((X, €x), Xo) N (Y, €y), Yp) of £55,,
the inclusion Ker(q*) C Cly,.

In fact, any semitopologizing subcategory of Cx, in particular Cl,, contains the
initial objects of C'x (they are, for instance, kernels of identical morphisms). Therefore,

the equality Cy, = q*fl(C’Xo) implies that Ker(q*) C Cy,.

we have

8.8.4. Proposition. The class of morphisms £,
category Espt_ of right exact infinitesimal ’spaces’.
The functors §' and F* are ‘exact’ functors from the left exact category (€spt,, £25p)

to the left exact category (€spy, £35,)-

Proof. (a) Let ((X,€x),Xo) < ((Z,€2), Zy) - ((Y,€y),Yy) be a pair of mor-

phisms of the category Esp’_. Suppose that the morphism (Z, €;) —— (Y, €y) belongs to

£isp- Then there exists a canonical cocartesian square

1s a left exact structure on the

(Z,€2), Z0) —— ((Y,Ey),Yp)
fl lm
((X,€x),Xo) —— ((%,€x),%0)

where (X, €x) = (X, €x) [[(Y.€y) and X0 = X, [] Yo. Here Xo <% Z; 2% Y; are

»q f07q0
morphisms induced by resp. f and q.

111



It follows from 8.5.5 that Cx, is a topologizing subcategory of the right exact category
(Cx.€x). The claim is that, under the assumptions, (Cx,)(s0) = Cx; ie. ((X,€x),Xo)
is an object of the category €spi_ . In other words, we need to show that each object
(M, L; ¢) of the category Cx = Cx H Cy has a Cx,-cofiltration.

A

Let M =M, == ... 2 M =5 My bea Cx,-cofiltration of the object M.

The functor f* maps this cofiltration to a Cz,-cofiltration

*(en) “(en—1) *(e2) *(e1)
rron=ron) 2 pansy 02T oy T )

of the object f*(M). Since (Z,€z) —= (Y, &y) is a morphism of £.,, and we have an

isomorphism f*(M) 2, q*(L), there exists a deflation L 2, L1 and an isomorphism

an—l
f*(My—1) —— q*(L,,—1) such that the diagram

o o,y
¢ | 2| énr
*(tn)

(L) g (L)

commutes. Continuing this process, we obtain a commutative diagram

f(en) f(en—1) f*(e2) f*(er)

ff(M) —— f(Myy) —— ... —— (M) —— [f"(Mo)

o 1 2| éna 2| o o0
9" (tn) q" (tn—1) q*(t2) q*(t1)

(L) —— 9 (Lp1) —— ... —— g (L)) —— 9q"(Lo)

whose vertical arrows are isomorphisms and horizontal arrows are images of deflations.
Therefore, the diagram (1) encodes a cofiltration

(en,tn) (en—1,tn—1) (e2,t2) (e1,t1)
(M,L;¢p) —— (Mp—1,Lp—1;¢p—1) —— ... —— (M, Ly;¢01) —— (Mo, Lo; ¢o)

of the object (M, L; ¢). This cofiltration is a Cx,-cofiltration.

(emstm)
In fact, the kernel of the morphism (M,,, Ly; ¢m) —— (Mup—1, Lin—1; ¢m—1) is

isomorphic to (Ker(en), Ker(ty,); ¥m), where f*(Ker(en)) Y, q*(Ker(t,)) is a uniquely

determined isomorphism. The kernel Ker(e,,) is an object of Cx, by choice, and Ker(t,,)
is an object of Cy,, because q*(Ker(t,,)) € ObCy, and Cy, = q*_l(C’ZO), because ¢ is a
morphism of £5¢, (cf. 8.8.3).

(b) It follows from the description of cocartesian squares in the category Esp’_ (given
above) that the functor §' preserves push-forwards of morphisms of Loop: that is § s
an ’exact’ functor from the left exact category (€spt ,£30) to the left exact category

(Espy, £5)-
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(c) By 8.8.1, the functor §* has a right adjoint, §., hence it preserves all colimits, in
particular, cocartesian squares; and §* maps inflations to inflations (that is Loop tO Sjsp)‘
Therefore, §* is an ’exact’ functor from (Espl , £2) to (Espy, £1,). m

8.9. Right exact infinitesimal ’spaces’ and derived functors. By 8.8.4, the
canonical functors

! *

K K3
Esp; «—— CEsp. —— CEsp;

defined by §'((X,€x),Y) = (X, €x) and F*((X,€x),Y) = (Y, &y) (cf. 8.8), are ’exact’
functors from the left exact category (&€spf,, £¢5,) to the left exact category (€spy, £5sp)-

Let (Cz,€z) be a right exact category with initial objects and limits of filtered systems.
And let G be a functor (Espy)°? — Cy. Applying Q8.4.2 to G and each of the functors

§' and §*, we obtain two universal 9*-functors, G?l and GT~ from (&sp’_, £2,)°P to Cy

esp
whose zero components are respectively the functors G o and G o F"; that is
G8 (X, €x),Y)=G(X,¢x) and G§ ((X,€x),Y)=G(Y,ey)

for any infinitesimal right exact ’space’ ((X,€x),Y). The canonical functor morphism

P
5 =, §* (see 8.8.2) assigns to each infinitesimal right exact ’space’ ((X,€x),Y)

the morphism (X, €y) — (Y, €y) whose inverse image functor is the inclusion functor

Cy 2> C x, induces a morphism

Gp?' 1op

GoF*" —2 GoF

Thanks to the universality of the *-functor G o §', the latter morphism determines
uniquely a morphism

ps

of universal 9*-functors. Thanks to the universality of the 9*-functors G?! and G3', there

are natural morphisms of 9*-functors

IR (1)

Pe

GyoF —— Gf* and GeoF

such that the diagram
Glp%

GeoF" —— GeoF”
e | | v 2)

3

Gf* e G?I
commutes.
8.9.1. Proposition. Let C'z be a category with initial objects and limits of filtered
systems; and let G be a functor (€spy, £3,,)°? —— Cz. Then the natural morphism

S_GoF" —— 5_(Gog")
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is an isomorphism. Here the functor §' is viewed as a morphism from the left exact category
(€spy,, £55p) to the left exact category (€spy, £, ).

o 1/% !
In particular, the morphism K oF W —— K3 is an isomorphism of 0*-functors.

Proof. (a) Fix an object ((X,€x),Y) of the category €sp’_ . The functor § induces
an isomorphism from the category ((X, €x),Y)\ £, of inflations of ((X, €x),Y’) onto the
category (X, €x)\Ly,, of inflations of the the object (X, €x) = F((X, ex),Y).

In fact, each morphism (X, €x) —— (£, €z) of £{sp) determines uniquely a morphism
(X, €x),Y) -5 ((Z,€z), Zy), where Cz, = q*  (Cy), which belongs to the class Loop-
This correspondence extends (uniquely) to a functor

Y

(X, Cx)\Lhp — (X, €x), VL,

which is inverse to the functor

By

((X7 QSX)? Y)\E’OO - (X7 QSX)\/Q:sp

esp

induced by §'.
(b) By definition of the satellite, we have

S_GoF (X, €x)=5_G((X,€¢x),Y)
— lim (Ker(G((Z2, €z) —% Cok((X, €x) -5 (Z,€2)))),

where (X, €x) —— (2, €z) runs through inflations of (X, €x).
On the other hand,

S (GoF (X, €x),Y) =
lim (Ker(G o ((2,€2) ~% Cok(((X,€x),Y) -5 ((Z,€z2), Zy))) =
lim (Ker(G((2, €z) ~ Cok((X, €x) - (2, €2)))),

where (X, €x),Y) - ((Z,€z), Zy) runs through inflations of (X, €x),Y). It follows
from (a) above that these two limits are identical. m

8.9.2. Constructions related to the functor §*. Fix an object of the category

€spt, and an inflation (i.e. a morphism of £7.,) (Y, €y) ¥, (20, €z,) with an inverse

image functor Cz, LN Cy. Let Cz(,) denote the category whose objects are triples
(M, L;e), where M € ObCx, L € ObCz,, and ¢ is a deflation M — ©*(L). Morphisms
from (M, L;e) to (M',L';¢’) are given by pairs of arrows M -, M’, L - L/ such that
the diagram
4
M —— (L)
¢ | | o)

4

M —— (L)
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commutes. The composition is defined obviously.
p* *
There are natural functors (projections) Cz, «+—— Cz(,) —— Cx defined by

(M, Lie) €2 (M7, L)) = (M -5 M)
p*((M, Lse) €2 (', L5 ¢)) = (L 2 1)

P
The functor p* has a right adjoint, Cz, —— Cz(y,), which assigns to each object

L of the category Cz, the object (p*(L), L;id, (1)) and to each morphism L — I/ the
morphism

. _ (" (1)) . ,
(0" (L), Lyidge(ry) ————— (p"(L'),L’sidg-(rs)).

The adjunction morphism Idc, 1, p.p* assigns to each object (M, L;e) of the

(e,idr)
category Cz(,) the morphism (M, L;e) - (9*(L), L;id,+(r)). The other adjunction

morphism is the identity. The latter implies that the functor p, is fully faithful, or,
equivalently, p* is a localization functor.
It follows from the construction that the diagram

*

CZO p—> Cy

p*l lj*

*

Czipy — Cx

commutes.
(tu)
8.9.2.1. Proposition. The class €z, of all arrows (M, Lye) —— (M',L';¢’) of
the category Cz(y) such that t € Ex and u € €z, is a structure of a right exact category
on Cg(p)

Proof.  Obviously, the class €z, is closed under compositions and contains all
isomorphisms. It remains to show that it is stable by a base change and defines a

(tu)
subcanonical topology. Let (M',L';¢’) —— (M, L;e) be a morphism of €z, and

728 ST/ (f.9) . : : : :
(M" L";¢") —— (M, L;e) an arbitrary morphism. Since t and u are deflations, there

are cartesian squares

’

M t_/> M E # L
f l cart l f and gl cart lg (1)
M m L

whose horizontal arrows are deflations.
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Since p* is an ’exact’ functor (Cz,,&z,) — (Cy, &y ), it maps the right cartesian
square (1) to a cartesian square. So we have a commutative diagram

€3 (]

M _2 M, _ M
ﬁl cart pll cart l e’
e2 ~ p* (1) "
/»42 - g)*(l;) RN 1;” - jV[”
,ﬁgl cart  ©*(q) l cart l o ( l f (2)
, e/ , p"(u) e
M —— (L) — o (L) — M

with cartesian squares as indicated. It follows that all horizontal arrows and upper and

p ~
lower vertical arrows of (2) are deflations. Therefore, the composition M3 o, ©*(L)

is a deflation. On the other hand, it is easy to see that the outer square of (2),

€1¢€3

Mg — My

Pabr | | f

Mo M

is cartesian. Therefore, since the left square (1) is cartesian. there exists a unique isomor-

phism M -2 Ms such that f = p1pac and ' = ereso. We denote by ¢ the composition

M —> *(L) of the isomorphism ¢ and the deflation M3 broee, o*(L). Tt follows from

this argument that (M L; ;¢) is an object of the category Cz () and
— - (f.9)
M, L7) = (ML)
(¢w) | | w 3)
(f.9)
(M",L";¢")y —— (M, L;e)

is a cartesian square in Cz(,,) whose vertical arrows belong €z ().
Thus, €z, is (the class of covers of)) a pretopology. This pretopology is subcanonical;
i.e. for any (t,u) € & Z(p)» the corresponding cartesian square

WEH )
(¢w) | | tw

/A (tu)
(M7L;e) - (M7L;e)
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is cocartesian, because the squares

M t—> M’ Z # L
Afl cart l t and u l cart l u
M — M -t L

are cocartesian. m

8.9.2.2. Lemma. Suppose that any pair N «— M — L of morphisms of Ex can
be completed to a commutative square

M —— L
| |
N —— [

whose arrows are belong to €x. Then the pair ((Cz(p), €z(p)), Cz,), where Cz, is iden-
tified with its image in Cz(y), is an object of the category €spt, of right infinitesimal
"spaces’.

Proof. Let (M, L;e) be any object of Cz(,,), and let

tn t'nfl tl
M =M, — M, My

be a C'y-cofiltration of the object M. By hypothesis, there exists a commutative square

tn
M — Mn—l

| L¢ g
6/
(L) —— L
whose all arrows are deflations. Since (3’ is a deflation p*(L) € ObCy, and Cy is a
topologizing subcategory, of (Cx,€x), L € ObCy. Since Cz, £, Oy is a localization
functor, the object £’ is isomorphic to an object p*(L”) for some L” € ObCz,. The

*
esp-

morphism (Y, €y ) LN (20, €z,) belongs to the class £ Therefore, there exists an

isomorphism @*(L") = ¢*(L,_1) and a deflations L =% L,,_; such that the diagram

Yo ~ KJ* ( L//)
commutes. Combining this with the diagram (4), we obtain the commutative diagram

tn
M — Mn—l

| [enss

©" (vn)
e (L) —— " (Ln-1)
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whose all arrows are deflations. Continuing this process, we obtain a commutative diagram

fn tn—l t1

M — M, —_ ... —— My
4 l l €n—1 l [40)

. ©" (Tn) . ©" (Tn) ©"(71) .

(L) —— " (Lnr) —— ... —— p"(Lo)
which encodes a Cz, -cofiltration
(fn,’Yn) (tnflf}'nfl) (tla’Yl)
(M7L7 e) — (Mn—laLn—l;en—l) A — (M07LO;80)

of the object (M, L;e) in the right exact category (Cz(,), €z()). ®
8.9.3. Proposition. Let ((X,€x),Y) be an object of Espl_. Suppose that the right

exact category (Cx, Ex) satisfies the following conditions:
(a) Any pair of arrows L «— M 7, My of Cx, where ¢ is a deflation, can be
completed to a commutative square

f
M — Ml

e | |« 3)

f
L —_— Ll

where ¢ is a deflation too.
(b) If both morphisms e and f in the condition (a) are deflations, then the morphisms

¢/ and f in the diagram (8) can be chosen to be deflations.

Then the natural morphism
S_G(Y,8y) =5 GoF((X,€x),Y) — S (GoF)((X,€x),Y) (4

s an isomorphism for any functor G from ((’Espgo,ﬁf;’p)of’ to any category C'z with initial
objects and limits of filtered systems.

Here the functor §* is viewed as a morphism from the left exact category (€Esp’_, £25p)
to the left exact category (€spy, £35,)-

Proof. (i) Let Cx denote the category whose objects are triples (M, L;¢), where M €
ObCx, L € ObCy, and ¢ is a deflation M — L. Morphisms (M, L;e) — (M’ L';¢)

are pairs of arrows M 4, M, £ —L5 £ such that the diagram

M —
fl lg
Mo



commutes. The composition is defined naturally.

(tu)
(ii) The class €x of all morphisms of Cx (M, L;e) =, (M, L;¢’) such that both

M -5 M and £ -5 £ are deflations, is a right exact structure on the category Cx.
This fact is a special case of 8.9.2.1.

(iii) The functor Cx LN Cy which maps each object (M, L;e) of Cx to L and each
morphism (f,g) to g is a continuous localization with the canonical right adjoint which
maps each object L of Cy to the object (L, L;idy,).

(iv) Fix an inflation (- a morphism of £7,,) (Y, €y) ¥ (20,€z,) with an inverse

image functor Cz, p—*> Cy. Let Cz A, Cx be the functor which assigns to each
object (M.L;e) of Cz(,,) the object (M, p*(L);e) of the category Cx and to each morphism

(f.9) (f.0"(9))
(M, L5¢) — (M’,£/;¢) the morphism (M, p*(L);e) —— (M, o*(L);¢').

It is easy to see that the square

*

Cs. — s O
p*

e

*

©
z, —— Cy
is cartesian. In particular, since p* and p* are ’exact’ localizations, the functors p* and g*
are "exact’ localizations too.
(v) The functor Cx —— Cx, (M,L;e) — M, is an ’exact’ localization functor

(Cx,€x) — (Cx,€x). In other words, the unique functor $..'Cx T, Cy is an equiva-
lence of categories.

(v’) It follows from the definition of right exact structure on Cx and (the argument
of) 8.9.2.1 that the functor 7* is ’exact’.

(v’) It is easy to verify that the conditions (a) and (b) imply that ¥« is a left
multiplicative system.

(v”?) For each M € ObCx, we choose an object (M, Lys;tys) of the category Cx and
set (M) = (M, Las; tar), where (M, Las;tar) is regarded as an object of the quotient

category Eq_*l Cx. Thanks to the condition (b), for any morphism M N , there exists a
commutative square

f
M — N

| |

F ~
LM—>N

with ¢ € €x. By the condition (b), there exists a commutative square

N—>LN

el t/ | ¢

N —— L
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whose all arrows are deflations. Thus, we have morphisms

(ft'of) L (idne)
(MvLMatM) - (N,[,;te) A (NvLN;tN)

Since the left arrow here belongs to X4+, this pair of morphisms determines a morphism

~ T (f) . _
(M, Lasstar) = (M) —— m(N) = (N, Ln;ty) of ¥, Cx. The map 7, is a functor

Cx — Eq_*l Cx. It follows from the construction that 77, = Idc, . On the other hand, it
follows from the condition (b) that, for each (M, L;¢) € ObCY, there exists an isomorphism
(M, L;e) — m.7*(M, L;e) = (M, Las; tar). Altogether shows that 7, is a quasi-inverse to
the functor 7*.

(vi) The constructions of (iv) and (v) assigns, in a functorial way, to each morphism

(Y, &y) 2 (Z,€z,) of £*

. . . ©
tsp) With an inverse image functor Cz, — Cy two ’exact’

localizations, C'z(y) a4, Cx and Cx N Cx. Their composition, 7*q*, is an inverse
q o)
image functor of an inflation ((X,€x),Y) — ((Zp,€z,),20) of infinitesimal right
exact ’spaces’ which ’lifts’ the deflation (Y, &y) , (20, €z,) of right exact ’spaces’.
(vii) By the argument of 3.3.2 and the observation 8.8.3.1, we have

S_(GoF )X, €x),Y) =limKer(GoF" (X', €x:),Y") =% (X", Exn),Y"))

! c )
=lim Ker(G((Y', €y/) =5 (Y, Eyn)),

where ((X,€x),Y) 2, ((X’,€x/),Y’) runs through the category ((X,€x),Y)\L£2

esp

of inflations of ((X,€x),Y) and (Y, &y) - (Y’,&y/) is the inflation of (Y, &y ) deter-
e
mined by the inflation g. Since the inflation ((X,€x),Y) —— ((2,,€z,),20) (see

(vi) above) induces the same inflation (Y, &y ) LN (Y’, €y/), the arbitrary inflations
of ((X,€x),Y) can be replaced by the inflations of the form g, where p runs through
the category (Y, €y )\L:,, of inflations of the right exact category (Y, €y). But, the limit

esp
of Ker(G((Y’, €y/) LR (Y”,&yn)), where o runs through the category (Y, Cy )\ Ligp 18
isomorphic to S_G(Y, €y ). =

8.9.4. The subcategory of ’spaces’ €sp*. We denote this way the full subcategory
of the category €spy whose objects are right exact ’spaces’ (X, €x) such that C'x has final
objects and all morphisms to final objects are deflations. Thus, we have a left exact
category (&Esp™, Ly5,), where £5, is the restriction to the subcategory €sp”* of the left
exact structure £¢,, on €spt.

We denote by €spS° the full subcategory of the category Espg® of right exact infinites-
imal ’spaces’ generated by all ((X,€x),Y) such that (X, €x) is an object of Esp*. We
denote by £57 the restriction of the left exact structure £3, to the subcategory Esp$.

The functors §,, §*, and §' (cf. 8.8) induce the functors

! *

S 5 5
Esp? —— Espll, Espl —— Esp, and Espll —— Esp ™.
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8.9.5. Proposition. Let C'z be a category with initial objects and limits of filtered

systems; and let G be a functor (€sp™, £5,)°? —— Cyz. Then the natural morphisms

S GoF” —— S (GoF™) and S GoF” —— S (GoF")

are isomorphisms. Here the functors 3§ and 3* are viewed as morphisms from the left
exact category (EspSy, LX) to the left exact category (Esp™, £5,).

Proof. Fix an object ((X,€x),Y) of the category EspX .

(a) By the argument (a) of 8.9.1, the functor §' induces an isomorphism from the
category ((X,€x),Y)\LY of inflations of ((X, €x),Y") onto the category (X, €x)\ L, of
inflations of the object (X, €x) = F'((X, €x),Y), which implies a canonical isomorphism

~\|op

S_G(X,€x) =8_GoF"((X,€x),Y) — S_(GoF")((X,€x),Y).

(b) If ((X, €x),Y) is an object of €spS°, than any pair of arrows L «— M LN of
C'x is a part of the commutative square

RN x.

where x4 is a final object of Cx, hence, by hypothesis, the arrows t;, and ty are deflations.
Therefore, the conditions of 8.9.3 hold, which implies that the canonical morphism

S_G(Y,8y) =S GoF ((X,€x),Y) —— S5_(GoF)((X,€x),Y)

is an isomorphism for any functor G from (&spt_, £

cep)°F to any category C'z with initial
objects and limits of filtered systems. m

8.9.6. Corollary. Let (Cyz, €y) be a right exact category with initial objects and limits
of filtered systems. Then for any universal 0*-functor Go from (Esp™, £5,)P to (Cz, €z),
the compositions G4 © 37 and Ge 0 F*" are universal 8* -functors from (Esp$C, £3°)P to
(Cyz,€z). If the O*-functor G is ’exact’, then the 0*-functors G 0§!op and G4 0 §*°p are
‘exact’.

Proof. The assertion follows from 8.9.4, 5.3.2, and the fact that §! and %* are 'exact’
functors from the left exact category (€sp%, £3°) to the left exact category (Esp™, £5,).
Details are left to the reader. m

A

8.9.7. Corollary. Let G4 be a universal 0*-functor from (€sp™, £5,)° to a category
~.0 pOP <o
Cy . Suppose that the functor G maps a natural morphism §* —— F to an isomorphism.
~.0 G.p%p <o
Then GeoF* ——— GeoF " is an isomorphism of *-functors. In other words, for any
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object ((X,€x),Y) of the category €sp’l, there is a natural isomorphism Go(Y,&y) ——
Go(X,€Ex).

Proof. By 8.9.7, the 0*-functors G, o %*op and G4 o %m are universal. Therefore
a morphism from Ge 0 7 to Ge 0§ is an isomorphism iff its zero component is an
isomorphism, whence the assertion. m

8.9.8. Corollary. Let K} = (K ,0 | ¢ > 0) be the K-functor on the left exact

category (Esp™, £5,) of right exact ’spaces’; that is K is a universal 0*-functor from

(Esp™, £75p)°P whose zero component is (X, Ex) — Ko(X,Ex). Then K} o 37 and

K2 o3 are ‘exact’, universal O*-functors from (Esp, £)°P to Z — mod.
Proof. This is a special case of 8.9.6. m

8.10. The k-linear setting. Instead of the left exact category (&sp., £¢,,) of right
exact 'spaces’, we consider the left exact category (Esp},, £}.) of right exact k-linear ’spaces’

(cf. Q8.6). Here EZ is the left exact structure induced by £F,,; i.e. £F = F (£

top esp), where
S+ is the natural forgetful functor €sp; — Esp..

8.10.1. The left exact category of right exact infinitesimal k-’spaces’. A
right exact infinitesimal k-’space’ is a pair ((X, €x),Y), where (Cx, €x) is a right exact
k-linear category and Cy a topologizing subcategory of (Cx, €x ) such that Cx = (Cy ) (0)-
A morphism from ((X,€x),Y) to ((X,€x),?) is a morphism (X, €x) Z, (X, €x) right
exact k-’spaces’ which maps Y to 9); i.e. f* is a k-linear ’exact’ functor from (Cx, €x) to
(Cx, €x) such that f*(Cy) C Cy. This defines a category denoted by €spg. The left
exact structure £, on €spr induces (via the forgetful functor Cspr,——Cspr, a left
exact structure, £29, on Esp .

We denote by §, . the embedding €spj, — Esp2, which assigns to each object (X, €x)
the object ((X, €x), X) of the category €sp29 . This functor is fully faithful and has a left
adjoint

S*
Esp, —— Espl,  ((X,€x),Y)r— (Y, Ey),
and a right adjoint

S
esp?,ok - @5]32, (<X7 QEX)ay) — (X7 GX)

All three functors, §,«, ), and 31}:7 are ’exact’.

8.10.2. Proposition. Let Cz be a k-linear category with limits of filtered systems;
and let G be a functor (€spy, £})°? —— Cz. Then the natural morphisms

SiGoglkj’p SN S,(Go%ijp) and SLGOSZOP —_— Sf(GOSZOP)

are isomorphisms. Here the functors § and §* are viewed_as morphisms from the left
exact category (€spP, £35) to the left exact category (€spy, £f).

Proof. Fix an object ((X, €x),Y) of the category Esp?s.
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(a) By the (k-linear version of the) argument (a) of 9.9.1, the functor § induces an
isomorphism from the category ((X,€x),Y)\£2, of inflations of ((X,€x),Y’) onto the

esp
category (X, €x)\&%,, of inflations of the the object (X,€x) = §F((X,€x),Y), which
implies a canonical isomorphism

S_G(X,€x)=5_GoF, ((X,€x),Y) —— S_(GoF, )(X,€x),Y).

(b) Similarly, the k-linear version of the arguments of 8.9.5 and 8.9.3 shows that the
canonical morphism S_G o §; —— S_(GoF:") is an isomorphism. m

8.10.3. Corollary. Let (Cyz,€yz) be a k-linear right exact category with limits of

filtered systems. Then for any universal 0*-functor G from (Gspi,fi}g)‘)p to (Cyz,€y),
the compositions G © S!,:p and G4 0 SZOP are universal O*-functors from (Qfﬁpff’k, Sf?k)"p to

(Cyz,€z). If the O*-functor G is ’exact’, then the 0*-functors G o&éﬂop and Ge © SZOP are
’exact’.

Proof. See the argument of 8.9.6. m
8.10.4. Corollary. Let K = (K},0f | i@ > 0) be the K-functor on the left exact
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category (Qisf,z,)é;) of right exact k-linear ’spaces’; that is Ky is a universal 0*-functor
or

from (Esp}, £5)°P whose zero component is (X, Ex) — Ko(X,Ex). Then K{ 0§, and
ICi o SZOP are ‘exact’, universal 0*-functors from (Qfspffk, ff’k)"p to Z — mod.

Proof. This is a special case of 8.10.3. m

8.11. An application to K-functors: devissage.

8.11.1. Proposition. (Devissage for Ky.) Let ((X,€x),Y) be an infinitesimal
‘space’ such that (X, €x) has the following property (which appeared in 8.4.1):

(1) for any pair of deflations M N V- My, there is a commutative square

t
M —_— M1

N

M, LM?,

of deflations such that the unique morphism M — My X, Mo is a deflation.
Then the natural morphism

Ko(Y,€y) —— Ko(X,€Ex) (1)

s an isomorphism.

Proof. Let M be an object of C'x. Since C'x = (Cy)(oo), there exists a Cy-cofiltration

€n € €1

M:Mn —_— ... M1 M(). (2)
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That is the arrows of (2) are deflations such that the object M, and objects Ker(e;) belong
to the subcategory Cy for every 1 < i < n. Since the subcategory Cy is (semi)topological,
any refinement of a Cy-cofiltration is a Cy-cofiltration.
(al) The map
[M] — [Moloy + ) [Ker(e:)]ey (3)

1<i<n
applied to a refinement of the cofiltration (2) gives the same result. Here [N]c, denotes
the image of the object N in Ky(Y').
tm to t1

In fact, for any sequence of deflations M,, — — M; — My, we have a
commutative diagram

tm tm—1 t3 to 151

Ryn —— Rp1 —— ... ——> Ry — R —— =z
l cart l cart ... cart l cart l cart l (4)
tm tm—1 t3 to t1
My —— Mpyqg —— .. —— My —— My —— M

formed by cartesian squares. Here x is an initial object of the category Cx. Since the
‘composition’ of cartesian squares is a cartesian square, it follows that £ = Ker(t;), K2 =
Ker(tity), ... , R, = Ker(tity...t,). Since each square

te
K —— R

||

te

./\/le E— M£—1

of the diagram (4) is cartesian, all morphisms t; are deflations and Ker(t;) ~ Ker(t;) for
all 1 </ < m. Therefore,

[Ker(tity...tn)] = [Rm] = D [Ker(t)] = ) [Ker(t)]. (5)

1<i<n 1<i<n

This shows that the right hand side of (3) remains the same when each of the deflations
¢; is futher decomposed into a sequence of deflations.

(a2) By 8.4.1, any two finite cofiltrations of an object of C'x have equivalent refine-
ments. Together with (al) above, this implies that the map (3) does not depend on the
choice of Cy-cofiltrations of objects. Thus, (3) defines a map, ¥, from the set |Cx| of
isomorphism classes of objects of the category Cx to the group Kj(Y, €y ).

(a3) For any conflation M’ .+ M — M" in (Cx, €x), we have

P([M]) = $([M]) + (M)

Indeed, let M — ... — M, be some Cy-cofiltration of M. By 8.4.1, this cofil-
tration and the cofiltration M —— M” have equivalent refinements which are, forcibly,
Cy-cofiltrations. Consider the obtained this way refinement

en em em €2 €1

M:Mn Mm_le” M1 —>MO
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and the associated commutative diagram

€n en—1 €m

R, —— Rp-1 — ... — x

l cart l cart ... cart l (6)
€n en—1 €m €m—1 €1

M — M,y — ... — M — .. —— M

built of cartesian squares. Here z is an initial object of the category C'x. Since M —— M"
equals to the composition ¢, o ... o e,, it follows from the argument of (al) that &, ~
M' = Ker(e) and the upper row of (6) is a Cy-filtration of the object M’. The latter
implies that

(M) = Y [Ker@loy = ) [Ker(eley

m<i<n m<i<n

(see (5) above). From the lower row, we obtain

@Z([Mﬁ]) = [Mo]cy + Z [Ker(e;)|c, and

Y(IM]) = [Moley + ) [Ker(ed)]oy -

1<i<n

Therefore, ¢([M]) = ¥([M’]) + ¢ ([M"]).
(a4) The map |Cx| 2, Ky(Y, €y ) extends uniquely to a Z-module morphism

Z
Z|Cx| —— Ko(Y, €y). (7)

It follows from (a3) that the morphism (7) factors through a (uniquely determined) Z-

module morphism

Yo
Ko(X,€x) —— KoY, Cy).

The claim is that the morphism 1) is invertible and its inverse is

Ko(j)
KO(Y, @y) R KO(X, @X).

It is immediate that ¢ o Ko(j)) = id, . -
The equality Ky(j) o g = idy (x.e ), 1S also easy to see.: if M is an object of Cx
€1

endowed with a Cy-cofiltration M = M,, - ... =% M; —> My, then

Ko(j) o $o([M]) = Ko(i)([Moley + ) [Ker(ei)loy) = [Mo] + ) [Ker(ei)] = [M].

1<i<n 1<i<n
This proves the assertion. m
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8.11.2. The d*-functor K%. Let £ denote the left exact structure on the category
€sp™ of €sp, (cf. 8.9.4) induced by the (defined in 6.8.3.3) left exact structure £ on the
category €sp. of right exact ’spaces’. Let K;%(X,€x) denote the i-th satellite of the
functor Ky with respect to the left exact structure £5.

8.11.3. Proposition. Let ((X,€x),Y) be an infinitesimal “space’ such that the right
exact ’space’ (X, Ex) has the property (1) of 9.11.1, the category Cx has final objects, and
all morphisms to final objects are deflations. Then the natural morphism

K(Y,8y) —— KJ(X, €x) (8)

s an isomorphism for all i > 0.

Proof. (a) Consider the full subcategory €spr; of the category €sp® of infinitesimal
'spaces’ whose objects are infinitesimal ’spaces’ ((X,€x),Y) such that (X, &x) satisfies
the property (f). The claim is that for any functor G from (Gﬁp;’o,ﬁgﬁlw) to a category
C'z with filtered limits, the satellite of the composition of G with the inclusion functor
€spry — €spy® is naturally isomorphic to the composition of the satellite of G with the
inclusion functor.

In fact, it is easy to see that if the right exact ’space’ (X, €x) has the property (1),
then this property holds for the right exact ’space’ Pa(X, Ex) of paths of (X, &Ex). By
6.11.1, Pa(X, Ex) is an injective object of the left exact category (€sp.,Lf;) and the
canonical morphism (X, €x) — Pa(X, Ex) is an inflation.

(b) One can check that 8.9.5 (hence its corollary 8.9.6) remains true, when the left
exact structure £, is replaced by the left exact structure on €sp* induced by £eg-

(c) The assertion follows now from (a) above, 8.11.1, and 8.9.6. =
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Complementary facts.
C1. Complements on kernels and cokernels.

C1.1. Kernels of morphisms of ’spaces’. The category |Cat|® of ’spaces’ has an
initial object x represented by the category with one object and one (identical) morphism.
By [KR, 2.2], the category |Cat|® has small limits (and colimits). In particular, any

morphism of |Cat|® has a kernel. The kernel of a morphism X Loy of |Cat|® can be
explicitly described as follows.

Let Cy EAR Cx be an inverse image functor of f. For any two objects L, M of
the category Cx, we denote by J¢(L,M) the set of all arrows L — M which factor
through an object of the subcategory f*(Cy). The class J; of arrows of C'x obtained this
way is a two-sided ideal; i.e. it is closed under compositions on both sides with arbitrary
arrows of C'y. We denote by Cx, the quotient of the category Cx by the ideal Jy; that
is ObCx, = ObCx, Cx,(L,M) = Cx(L,M)/3;(L, M) for all objects L, M, and the
compostion is induced by the composition in C'x. Each object M of the image of the
subcategory f*(Cy) in Cx, has the property that Cx (L, M) and Cx, (M, L) consist of at
most one arrow. This allows to define a category C sy by replacing the image of f*(Cy)
by one object z and one morphism, id.. (i.e. ObCk sy = ObCx/f*(Cy)). If objects L and
M are not equal to z, then we set Cg()(L, M) = Cx, (L, M). The set Cg s (L, 2) (resp.
Crk(f)(2z, M)) consists of one element iff there exists a morphism from L to an object of
f*(Cy) (resp. from an object of f*(Cy) to M); otherwise, it is empty.

We denote by £(f)* the natural projection Cx — Cpg y). Thus, we have a commu-

tative square of functors

()"
Cr(py «— OCx

7 | [
c, —— Cy

where 77 maps the unique object of C, to z. This square corresponds to a cartesian square

K

™ £ ff

—>Y

c(f)
of morphisms of ’spaces’; i.e. the morphism K(f) —— X is the kernel of X Ly,

Similarly to Sets, the category |Cat|® has a unique final object represented by the
empty category. Since there are no functors from non-empy categories to the empty cate-
gory, the cokernel of any morphism of |Cat|® is the unique morphism to the final object.

C1.2. Kernels and cokernels of morphisms of relative objects. Fix an object
V of a category Cx and consider the category Cx/V. This category has a final object,
(V,idy ), so we can discuss cokernels of its morphisms. Notice that the forgetful functor
Cx/V — Cx is exact, in particular, it preserves push-forwards. Therefore, the kernel
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of a morphism (M, g) 1, (N, h) exists iff a push-forward NH V= NHV exists and is
M fr9
equal to (N [V, 1), where N[V - V is determined by N - V.
M M

C1.2.1. Kernels. If the category Cx has an initial object z, then (z,z — V) is an
initial object of the category Cx/V. The forgetful functor C'x /V — Cx preserves pull-
backs; in particular, it preserves kernels of morphisms. So that the kernel of a morphism

e(f)
(M, g) 7, (N, h) exists iff the kernel Ker(f) —— M of M LN exists; and it is equal
e(f)
to (Ker(f),got(f)) —— (M,g).
C1.3. Application: cokernels of morphisms of relative ’spaces’. Fix a ’space’
S and consider the category |Cat|®/S of ’spaces’ over S. According to C1.2, the cokernel

of a morphism (X, g) 7, (Y, h) of ’spaces’ over § is the pair (Cok(f),?z), where Coonf)
is the pull-back (in the pseudo-categorical sense) of the pair of inverse image functors

Cs g, Cx R Cy. That is objects of the category Ccop(y) are triples (M, N; ¢), where
M € ObCs, N € ObCy and ¢ an isomorphism ¢*(M) — f*(N). Morphisms from
(M,N;$) to (M',N';¢') are given by a pair of arrows M —— M’', N — N’ such that
the square
* g*(u) * /
g M) —— g" (M)
6 1 1K
ffIN) —— fT(V)

commutes. The functor Cs ——— Ccop(y) Which assigns to every object L of the category
Cs the object (¢* (L), h*(L);1(L)), where 9 is an isomorphism g* —— f*h*, is an inverse

image functor of the morphism h.

C1.4. Categories with initial objects and associated pointed categories. Let
Cx be a category with an initial object, z. Then the category Cx, = Cx/x is a pointed
category with a zero object (z,1id,).

C1.4.1. Example: augmented monads. Let Cx be the category Mon(X) of
monads on the category C'x. The category C'x has a canonical initial object x which is
the identical monad (Idc,,id). The category Cx, coincides with the category Mon™(X)
of augmented monads. Its objects are pairs (F,¢), where F = (F, ) is a monad on Cx
and € is a monad morphism F — (Idc,,id) called an augmentation morphism. One
can see that a functor morphism F —— Idc, is an augmentation morphism iff (M, e(M))
is an F-module morphism for every M € ObCx. In other words, there is a bijective

correspondence between augmentation morphisms and sections Cx —— F — mod of the
fx

forgetful functor F — mod —— C'x.
C1.5. Pointed category of ’spaces’. Consider first a simpler case — the category
Cat®P. It has an initial object, x, which is represented by the category with one object and
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one (identical) morphism. The associated pointed category Cat®?/x is equivalent to the
category whose objects are pairs (X, Ox), where X is a ’space’ and Ox an object of the
category C'x representing X. Morphisms from (X, Ox) to (Y, Oy ) are pairs (f*, ¢), where
f* is a functor Cy — Cx and ¢ is an isomorphism f*(Oy) — Ox. The composition of
(f*.9) (g"%) L . » . . .

(X,0x) —— (Y, 0y) —— (Z,0%z) is given by (g*,%) o (f*,¢) = (f* 0 g*, ¢ o f*(¥)).

The pointed category |Cat|®/x associated with the category of ’spaces’ |Cat|® admits
a similar realization after fixing a pseudo-functor

Cf.g
Cat|]” —— Cat®, X s Cx, fr— [ (9f) —— f*g",

— a section of the natural projection C'at®? — |Cat|°. Namely, it is equivalent to a category
|Clat|S whose objects are (as above) pairs (X, Ox), where Ox € ObCx, morphisms from
(X,0x) to (Y, Oy) are pairs (f, ), where f is a morphism of ’spaces’ X — Y and ¢ is an

. . " (f:¢) (9,¥)
isomorphism f*(Oy) — Ox. The composition of (X,0x) —— (Y, 0y) —— (Z,0%)

is the morphism (go f,¢ o f*(¢) ocsg).

C1.5.1. Cokernels of morphisims. One can deduce from the description of coker-

nels in C1.3 in terms of the realization of the category |Cat|? given above, that the cokernel

(f,9) (c()¥)
of a morphism (X, Ox) —— (Y, Oy ) is isomorphic to (Y, Oy) ikt (€(f), O¢(y)), where

Ce(y) is a subcategory of Cy whose objects are M € ObCy such that f*(M) ~ Oy and
morphisms are all arrows between these objects which f* transforms into isomorphisms.
The ’structure’ object Og sy coincides with Oy; the inverse image functor of ¢(f) is the
inclusion functor Cg sy — Cy; and the isomorphism 1 is identical.

C1.6. The category of k-’spaces’. We call ’spaces’ represented by k-linear additive
categories k-spaces. We denote by |Caty|® the category whose objects are k-’spaces’ and
morphisms X — Y are isomorphism classes of k-linear functors C'yy — C'x. The category
|Caty|° is pointed: its zero object is represented by the zero category. It is easy to see that

every morphism X L. ¥ has a canonical cokernel Y — Cok(f), where Ccop(y) is the
subcategory Ker(f*) of Cy (— the full subcategory generated by all objects L such that
f*(L) =0) and ¢* is the inclusion functor Ker(f*) — Cy-.

e(f)
The kernel Ker(f) —— X of f admits a simple description which is a linear version

of the one in C1.1. Namely, Ck.,(s) is the quotient of the category Cx by the ideal J
formed by all morphisms of C'x which factor through objects of f*(Cy ). The inverse image
of €(f)* is the canonical projection Cx — Cx /Jy.

C1.6.1. k-’Spaces’ over Sp(k). Consider now the full subcategory |Cat[g,, of
the category of k-’spaces’ over the affine scheme Sp(k) whose objects are pairs (X, f)

where X -1 Sp(k) is continuous (i.e. f* has a right adjoint, f.). This category admits
a realization in the style of C1.5. Namely, it is equvalent to the category whose objects
are pairs (X, Ox), where X is a k-’space’ and Ox is an object of the category Cx such
that there exist infinite coproducts of copies of Ox and cokernels of morphisms between
these coproducts. Morphisms from (X,Ox) to (Y,Oy) are pairs (f,¢), where f* is a
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k-linear functor Cy — Cx and ¢ an isomorphism f*(Oy) — Ox. The composition is
defined as in C1.5 (see [KR, 4.5]). By C1.2, kernels of morphisms (as well as other limits)

(f:¢)
are inherited from |Catg|°. That is the kernel of a morphism (X,O0x) —— (Y, Oy) is

(e(f),id)
the morphism (Ker(f), Oker(r)) —— (X,Ox), where Cker(r) = Cx /Ty, €(f)" is the

canonical projection Cx — Cx /Jy, and Ok, (y) is the image of Ox.

(c(f)¥)
The cokernel (Y, Oy ) kbl (€f,0¢,) of (f,¢) is described following C1.3. Objects

of the category Ce¢, are triples (M, N; ¢), where M € ObCy, N € Obk —mod, and « is an
isomorphism f*(M) — ~*(N). Here v* is a functor k — mod — Cx which maps k to
Ox and preserves colimits (which determines v* uniquely up to isomorphism). Morphisms

are defined as in C1.3. The structure object Og¢, is (Oy, k, ¢). The inverse image functor
¢(f)* of ¢(f) is the projection (M, N;a) — M.

C1.7. The (bi)categories Cat, and Caty. Let Cat, denote the category whose
objects are pairs (Cx,z), where Cx is a category and x its initial object; morphisms

(Cx,x) — (Cy,y) are pairs (F, ¢), where F' is a functor Cx — Cy and ¢ a morphism

. , (F.) (@) _
F(x) — y. The composition of two morphisms, Cx,x) —— (Cy,y) —— (Cgz, 2), is

given by (G,7) o (F,¢) = (G o F,y 0 G(9)).
(F.9)
Every morphism Cyx,z) —— (Cy,y) defines a functor Cx, SN Cy, between the

corresponding pointed categories, and the map (F,¢) — Fy respects compositions and
maps identical morphisms to identical functors; i.e. the correspondence

(Cx,z) — Cx,, (F,¢) — Fy

is a functor, J., from the category Cat, onto the full subcategory Cat, of Cat whose ob-

jects are pointed categories. The functor J, is a right adjoint to the functor Caty SN Cat,

which assigns to each pointed category C'x an object (C'x,x) of the category Cat, and to

(F.9)
every functor C'x ., Oy between pointed categories the morphism Cx,z) —— (Cy, y)

~

in which the arrow F(z) _®, y is uniquely defined. The adjunction arrow I dcat,, 2, T J*
assigns to each pointed category Cx the natural isomorphism Cx —— Cx_ (where z is
the zero object of Cx involved in the definition of J*). The other adjunction arrow,
3*3+ — Idcay, , assigns to each object (Cy,y) of Cat, the forgetful functor Cy, — Cy.
Notice by passing that the image of this forgetful functor is the full subcategory of Cy

generated by all objects having a morphism to an initial object.

C1.8. Induced right exact structures. A pretopology 7 on Cx induces a pre-
topology 7 on the category Cx /V for any V' € ObCx; hence T induces a pretopology 7,
on Cx, . In particular, a structure €x of a right exact category on Cx induces a struc-
ture €x_ of a right exact category on Cx,. If (Cx,&x) has enough projectives, then
(Cx,,€x,) has enough projectives. Finally, if the class QS;?Z of split epimorphisms of C'x
is stable under base change, then the class infml of split epimorphisms of C'x_ has this
property.
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C1.9. Monads on categories with an initial object and monads on corre-
sponding pointed categories.

C1.9.1. Definition. Fix an object (Cx,x) of the category Cat,. A monad on
(Cx,x) as a pair(F,¢), where F = (F,u) is a monad on Cx and F(z) %, & is an
F-module structure on the initial object x.

We denote by Mon(Cx,z) the category whose objects are monads on (Cx,z); mor-

phisms from (F, ¢) to (F',¢') are monad morphisms F —2» F’ such that ¢ = ¢’ o g(x).

C1.9.2. Lemma. FEvery monad (F,¢) on (Cx,z) defines a monad Fy = (Fp, f14)
on the corresponding pointed category Cx,. The map (F,¢) — Fy extends to an isomor-
phism between the category Mon(Cx,x) of monads on Cx, and the category Mon(Cx, )
of monads on Cx, .

Proof is left to the reader. m

C1.9.3. A remark on augmented monads. Every augmented monad (F,¢) on
the category C'x (see C1.4.1) defines a monad (F,e(x)) on (Cx,x), hence a monad on the
associated pointed category Cx,. The map (F,e¢) — (F,e(z)) is functorial; so that we
have functors

E)ﬁonJr(C’X) — Sﬁon(C’X, 33) - ?)ﬁon(C’XI).

On the other hand, it is easy to see that there is a natural isomorphism between
the category Mon™ (Cx) of augmented monads on Cx and the category Mon™ (Cx, ) of
augmented monads on the pointed category Cx, .

C2. Diagram chasing.

C2.1. Proposition. Let (Cx,€x) be a right exact category with an initial object
and kernels of morphisms; and let

T

!

Ker(f') —— Ker(f) —— Ker(f")

v| | | v (1)

A P
7 l F l l 7
r oA, P4,

be a commutative diagram whose two lower rows and the right column are ’exact’. Then

! ’

(0%
its upper row, Ker(f') — Ker(f) — Ker(f"), is ’exact’.
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Proof. Let x be an initial object of Cx; and let Ker(f2) = x. The diagram (1) gives
rise to the comutative diagram

/ . /
€ ~ N ag

Ker(f) —— Ker(f) —— Ker(f) —— Ker(f")

¥/ l cart ,Evl cart ¢ l l ¢

Al RGN Ker(ay) _r, Ay LN AY (1.1)
/ rl 7
/| I
id 2 a2
A, L Ker(an) =4y, 24, 2L

where ¢; is a deflation, j; o e = (31, jj o] = (1, and A P, Ay is the kernel of as. The

’

claim is that the morphism Ker(f) K er(a}) is a deflation.
By 2.3.4.1 (or 2.3.4.3), the upper left square of (1.1) is cartesian, because the left

[4
lower horizontal arrow is identical. Since A} — K er(aq) is a deflation, this implies

that Ker(f') LN Ker(f) is a deflation.

Since Ker((3) is trivial, it follows from 2.3.4.3 (applied to the middle section of the
diagram (1.1)) that the upper middle square of (1.1) is cartesian.

7

~ j o
Notice that Ker(f) — Ker(f) is the kernel of Ker(f) — Ker(f").

¢
In fact, by hypothesis, the kernel of Ker(f"”) —— A/ is trivial. Therefore, by 3.3.4.3,
the right square of the commutative diagram

i1

Ker(o)) —— Ker(f) O‘—/1> Ker(f")
E’l cart ¢ l l ¢’
Ay

i1

Ker(ay) —— - AY

is cartesian (whenever Ker(o]) exists). Therefore, by the universality of cartesian squares,

there is a natural isomorphism Ker(f) = Ker(a)). m

The following assertion is a non-additive verstion of the ’snake lemma’. Its proof is
not reduced to the element-wise diagram chasing, like the argument of the classical 'snake
lemma’. Therefore, it requires more elaboration than its abelian prototype.

C2.2. Proposition (’snake lemma’). Let (Cx,€x) be a right exact category with
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an nitial object x; and let
x

!

Ker(f') —— Ker(f) —— Ker(f")

v| t| L

B1 o
/1 SN Ay —1> A'l’ (2)
i 7| |7
r — AR FO R
e/l o l l o/
/ fs “3 "

be a commutative diagram whose vertical columns and middle rows are ’exact’, the arrows

12

ay, ¢, e, ¢ are deflations, and the kernel of Ker(f") —— AY is trivial.

(a) Suppose that each deflation of (Cx,€x) is isomorphic to its coimage and the
unique arrow x — A% is a monomorphism. Then there ezists a natural morphism
Ker(f") - A% such that the sequence

B )
Ker(f') —— Ker(f) —— Ker(f")

l 0 (3)

B
Al P Ay oA
: , P ay
is a complex. Moreover, its subsequences Ker(f') —— Ker(f) —— Ker(f") and
0 B
Ker(f") Af * . A3 are ‘ezact’.

(b) Suppose, in addition, that
(b1) €x is saturated in the following sense: if Aos is a deflation and s is a deflation,
then X is a deflation;
(b2) the following condition holds:

(#) If M = N is a deflation and M -2~ M an idempotent morphism (i.e. p*> = p) which
has a kernel and such that the composition eop s a trivial morphism, then the composition

P
of the canonical morphism Ker(p) —— M and M — N s a deflation.
Then the entire sequence (3) is ‘exact’.

Proof. (i) Since «; is a deflation, there exists a cartesian square

i, Ker(f")

¢ l cart l v

aq
A — A
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where & is a deflation too. It follows from 2.3.4.1 that A; = Ker(aaf) = Ker(f" o).
This is seen from the commutative diagram

~ id @
Ay —— Ker(f"ay) N Ker(f")
id l I l cart l ¢’
iz «
Ker(asf) —— Ay — A
h l cart f J l 1 (4)
B2 asg
Al —_— A, — Al
e/l ¢ l l o/l
AL N As LA

with cartesian squares as indicated.

(ii) By 2.3.3, we have a commutative diagram

t(ay) ~

Ker(a;) —— A . Ker(f")
Zl E”l cart l ¢’
g(a) (e3}
Ker(oy) — A —— AY

whose (rows are conflations and the) left vertical arrow is an isomorphism. Thus, we obtain
a commutative diagram

t(ar) ~ i
Ker(ay) — Ay —— Ker(f")

1 T E"l cart l ¢’

A A

| /| | (5)
A, P4, 2y

‘| | IS
a4 L

Since the second row of the diagram (2) is ’exact’, the morphism e; is a deflation.

(iii) Combining the diagram (4) with (the left upper corner of) (5), we obtain a
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commutative diagram

e1 t(a1) ay

Al ——  Ker(an) —— Ker(f'an) —— Ker(f")
E(&l)l I l cart l ¢
?/ a1
Ker(aof) —— Ay — A
h l cart f l l & (6)
B2 Qg
Al — Ag — Al
e/l o l l o/
Bs a
Al — As Al

Whereg"oé(&l)oel = (31. Therefore, Bo0(hot(ay)oe;) = fo(%”o?(&l)oel) = fof3y = Baof’.
Since the left middle square of (6) is cartesian, this implies that h o &(a1) o e; = f.

Therefore, ¢’ o ho(ay) o ey = ¢’ o f’ is a trivial morphism.

(iv) Notice that, by 2.1.2, the kernel morphism Ker(¢’ o ho t(a;))——Ker(ay) is a
monomorphism, because A5 has a morphism to z, hence x — A} is a (split) monomor-
phism. Since ¢ is a deflation, in particular a strict epimorphism, it follows from 2.3.4.4 that
the composition (¢’oh)ot(ay) is trivial. By hypothesis, a; (being a deflation) is isomorphic
to the coimage morphism, i.e. Ker(f"”) is naturally isomorphic to Coim(ay). Therefore,
the morphism ¢’ o h factors through aq, i.e. ¢/ o h = 0o a;. Since a; is a deflation, in

particular an epimorphism, the latter equality determines the morphism Ker(f") LN Al
uniquely.

/7 /7

3 «
(v) By C2.1, the sequence Ker(f’) — Ker(f) — Ker(f") is exact’.

/

o 0
(vi) The composition of Ker(f) — Ker(f") and Ker(f") —— A% is trivial.
In fact, the diagram (6) induces a commutative diagram

~

A Ker(h) —— Ker(f) —— Ker(f")
ell E(h)l : l l %
t(a1) I a1
Ker(a;) —— Ker(aaf) —— Ay — AY
h l cart f l l 1 (7)
B2 o2
Al — As — Al
e/l o l l o
AL 4

where the isomorphism Ker(h) — Ker(f) is due the fact that the left middle square of
the diagram (7) is cartesian. We can and will assume that this isomorphism is identical.

ah t(h)
The morphism Ker(f) —— Ker(f") is the composition of Ker(f) —— Ker(asf) and
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Ker(asf) SN Ker(f"). Therefore, 9o a)j = doa; ot(h) = ¢ ohot(h), which shows
that the composition 9 o ] is trivial, because already the composition h o ¢(h) is trivial.
(vii) The argument above can be summarized in the commutative diagram

Al Ker(f) SN Ker(d)
o | ~ | &) | €@
Ker(ay) ﬂ Ker(asf) =, K(f") (8)
| | s
e(e’) ¢/
Ker(e') —— Al — Al

4
where Ker(a;) — K er(¢’) is a deflation. Taking into consideration the cartesian square

M ., Ker(d)

wl |t 9)

Ker(asf) ——  K(f")

we extend (8) to the commutative diagram

Ker(f) SN Ker(h) 7, Ker(d)

id l e(h) l
- ¢(h)
A Ker(h) —— M ——  Ker(d)
ell E(?L)J 1 cart l £(0) (10)

Ker(d) —— M Ker(oof) 2 K(f)

M
egl h l cart h l l 0
id e(e’) e
Ker(¢)) —— Ker(e) —— AS — Al
where g ot(h) =t(h), and ot = &(ay).

Since the square (9) is cartesian and a; is a deflation, its pull-back, 7, is a deflation
too. Notice that the commutativity of the left lower square and the fact that e, is a strict
epimorphism imply that A is a strict epimorphism.

Consider the cartesian square

l h (11)

Al —— Ker(¢)
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where e3 = ¢z 0 ¢;. Since e3 is a deflation, the arTow /\/l . M is a deflation. Since
hotioe, = e3, the projection p has a splitting, 4] —— /\/l i.e. pos =id. Set p=sop and
p = yoeh. It follows that M 25 Mis an idempotent (— a projector), ¢ is a deflation, the
composition pop = Jo(ehos)op = 7o (€1 0ey)op is trivial, because ¢(d)oyot; = ayot(ay)

is trivial and Ker(9) E(—D> K(f") is a monomorphism. The latter follows from the fact
that A5 has a morphism to x, hence the unique arrow x — Aj is a (split) monomorphism.

Since the square (11) is cartesian, it follows from 2.3.4.1 that Ker(p) is naturally
isomorphic to Ker(ﬁ) = Ker(f). And, by 2.3.4.3, Ker(p) is naturally isomorphic to
Ker(p), because p = s o p and s is a monomorphism.

Thus, Ker(p) is naturally isomorphic to Ker(f).

(viii) Suppose that the condition (#) of the proposition holds. Then the composition of

Ker(p) — Mand M -2 K er( ) is a deflation; hence the composition of the morphisms

e(h)
Ker(f) —— M and M ., Ker(0d) (i.e. the morphism Ker(f) LN Ker(d) in the
diagram (10)) is a deflation.

£(B3)
(ix) The claim is that ? is the composition of the morphism Ker(f3s) — A% and

’

a deflation Ker(f") —— Ker(f3). Since a; is a deflation, it suffices to prove a similar
assertion for 9 oay = ¢’ o h.
We have a commutative diagram

B AN Ay M A
t;, l cart l ty l t’
53 A
B ——  Ker(e) ——  Ker(e")
0 J cart J £(e) l £(e”) (12)
Bt P AY
?’l cart e’l l ¢ l e”
€(B3) B a
Ker(ﬁg)) —3> Ag —3> Az e Ag

where f = €(e) oty, f” = £(¢”) ot” and the remaining new arrows are determined by
the commutativity of the diagram (12) and by being a part of a cartesian square. By
hypothesis, the columns of the diagram (2) are ’exact’; in particular, the morphism t; is a
deflation. Therefore, the morphism B ", Bis a deflation. Being the composition of two
cartesian diagrams, the diagram

/E//

B — A
wothl l?(e)otf:f

B
A A,
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is cartesian, as well as the diagram

11

Ker(asf) —— Ay
g L1

B
Al A

Therefore, they are isomorphic to each other. So, we can and will assume that B =
Ker(asf) and h =1 o ty,. It follows from (the left part of) the diagram (12) that

¢oh=c¢otpoty, =83)0 (¢ oty),

that is e o h is the composition of Ker(fs) ﬂ A% and the deflation ¢ o t,.

(x) The composition aso (5 is trivial by 2.3.4.4, because the composition agofzoe’ =
¢’ o g 0 By is trivial, x — AY is a monomorphism (by hypothesis), and ¢’ is a deflation,
hence a strict epimorphism. The claim is that, if (Cx, €x) has the propery (#), then the

B £
morphism A’ =, Aj is the composition of the kernel morphism Ker(as) 2, AY and

t
a deflation A% —, Ker(as).
Since in the upper right square of the diagram (12), the arrows o, t”, and ty are defla-

A
tions, the forth arrow, Ker(e) —— Ker(e”), is a deflation too (due to the saturatedness
condition (bl)). Consider the commutative diagram

Ker(e) —— Ker(e¢")

nl lid

5 E— D ——  Ker(¢")
A l ) l cart l (e (13)
/ & Pa 2 "
5 — 9] - Ay N A2
e’l u J cart e l l e’
, ts t(as) as 9
Ay, —— Ker(ag) —— As — A5

where (3, 00 = €(e), (ot = fo.
The upper left corner of the commutative diagram (13) gives rise to the commutative
diagram

t P2

A, — D —  Ker(e)
N l cart A l cart l A (14)
t! 2
A, 2 P Ker(@)

whose both squares are cartesian. Since A is a deflation, all vertical arrows of (14) are

~ )
deflations, as well as the arrows po and ps. The morphism Ker(e¢) —— © determines a
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5 ~ ~
splitting Ker(e) . D of the projection ps. Let ps denote the composition s o po. It
follows that py is an idempotent ® — % and the composition

tlag)o (woX)ops =cofyo(Noss) oy =cofhonopy = (eot(c)) ops

is trivial. Therefore, (uo X) ops is trivial. The kernel of the idempotent ps is isomorphic to
the kernel of py. Since the right square of (14) is cartesian, there is a natural isomorphism
Ker(ps) ~ Ker(p2). It follows from the right cartesian square of (13) that there is a
natural isomorphism Ker(ps) ~ Ker(as) = Aj.

If the right exact category (Cx, €x) has the property (#), then the above implies that

uot/,

the morphism A — 2 Ker(as) is a deflation. Since uot; = t3oe¢’ and ¢’ is a deflation,
t
the morphism Aj —, Ker(as) is a deflation. =

C2.3. Remarks about conditions of the ’snake lemma’. Fix a right exact
category (Cx, €x). The main condition of the ’snake lemma’ C2.2, the one which garantees

the existence of the connecting morphism 9, is that each deflation M —— N is isomorphic

to its coimage morphism M & Coim(e) = M/Ker(e).

If the category Cx is additive, then every strict epimorphism which has a kernel, in
particular, every deflation, is isomorphic to its coimage morphism.

The latter property holds in many non-additive categories, for instance in the category
Algy, of unital associative k-algebras (see 2.3.5.3).

Similarly, the property

(#) If M = N is a deflation and M L M an idempotent morphism (i.e. p> =p)
which has a kernel and such that the composition ¢ o p is a trivial morphism, then the

p
composition of the canonical morphism Ker(p) —— M and the deflation M —~> Nisa
deflation.

which ensures ’exactness’ of the ’snake’ sequence (3) holds in any additive category.
In fact, if the category Cx is additive, then the existence of the kernel of p means
precisely that the idempotent ¢ = id,, — p is splittable; i.e. M %, M is the composition

t(p)
of Ker(p) —— M and a (strict) epimorphism M —— Ker(p) such that to€(p) = id. The
condition eop is trivial (that is eop = 0) is equivalent to the equalities ¢ = eog = (eot(p))ot
which imply (under saturatedness condition, cf. C2.2(b1)) that e o £(p) is a deflation.

C2.3.1. Example. The property (#) holds in the category Algy. In fact, let
A -2, B be a strict algebra epimorphism, and A %, A an idempotent endomorphism
such that the composition ¢ o p is a trivial morphism; that it equals to the composition of
an augmentation morphism A —— k and the k-algebra structure k 2. B. In particular,

A=k® A, where A, = K(r) is the kernel of the augmentation 7 in the usual sense.

On the other hand, Ker(p) = k ® K(p), and, since p o p = p and the ideal K (p) def

{y € A | p(y) = 0} coincides {z —p(x) | x € A}. Similarly, Ker(pop) = k® K(¢op), and
it follows that K(pop) = A;.
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Every element z of A is uniquely represented as A - 14 + z1, where 14 is the unit
element of the algebra A and x4 € A;. Therefore, x — p(x) = 4 — p(z4) and

e(p-la+ (@ —p@)) =p-1p+ @@ —plzg)) = p- 1 +p(@y) = o(p-1a+24).

Since pu € k and x4 € A, are arbitrary and ¢ is a strict epimorphism (that is a surjective
map), this shows that ¢ o €(p) is a strict epimorphism.

C3. Localizations of exact categories and (co)quasi-suspended categories.
t-Structures.

C3.1. Remarks on localizations. Let Cx 7, Cyz be a functor. Suppose that the
category Cz is cocomplete, i.e. it has colimits of arbitrary small diagrams (equivalently,
it has infinite coproducts and cokernels of pairs of arrows). By [GZ, II.1], the functor u*

equals to the composition of the Yoneda embedding Cx Ix, @ x of the category C'x into
the category Cx of presheaves of sets on C'x and a continuous (that is having a right

adjoint) functor C x — C. Since every presheaf of sets on a category is a colimit of a
canonical diagram of representable presheaves and the functor u* preserves colimits, it is
determined uniquely up to isomorphism.

. q* . . . .
In particular, every functor C'x — Cy gives rise to a commutative diagram

*

CXq—>C'Y

hxl l hy (1)

~
*

an_)CY

with a continuous functor ¢* determined by the commutativity of (1) uniquely up to
isomorphism.

C3.1.1. Lemma. (a) The functor

~

Cy ——Cx, F+— Fog, (2)

is a canonical right adjoint to q*.
(b) If the functor q* has a right adjoint q., then the diagram

CX — Cy

hxl l hy (1)

~ qx ~

CX — Cy
quasi-commutes.
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Proof. (a) Recall that the functor g* is determined uniquely up to isomorphism by the
equality ¢*(hy (L)) = hy (¢*(L)) for all L € ObCx. For every L € ObCx and F € ObCy,

we have
Cx (hx (L), F o ¢*) ~ F(¢*(L)) =~ Cy (hy (¢* (L)), F) ~ Cy (¢* (hy (L)), F).

Since all isomorphisms here are functorial, it follows that the functor (2) is a right
adjoint to ¢*.
(b) For any L € ObCy,

G(hy (L)) = hy (L) o ¢" = Cy(q"(=), L) = Cx (=, 4. (L)) = hx (g«(L)),

hence the assertion. =

C3.1.1.1. Corollary. For every functor Cx —— Cy, the functor §. has a right
adjoint, ¢'. In particular, G, is exact.

Proof. The fact follows from C3.1.1(a). =

C3.1.2. Proposition. If Cx —— Cy is a localization, then the continuous functor
q* in (1) is a localization too.

~
~

s -~ . . . o aj
Proof. The functor Cx 4, Cy is decomposed into a localization Cx L Cy at

Yo = {s € HomCx | ¢*(s) is invertible} and a conservative functor Cz —< Cy. Since

q* is a localization and the composition é\{ o hx makes invertible all arrows of ¥« = {s €

HomCx | q*(s) is invertible}, there exists a unique functor Cy 2, Cy such that the
diagram

*

C'Xq—>CY

x| | v @

~
*

dy
Cx —— (g
commutes. The localization ¢ is continuous, i.e. it has a right adjoint which is, forcibly,
a fully faithful functor. Therefore, by [GZ, 1.1.4], the category Cz has limits and colimits

of arbitrary (small) diagrams. Therefore, the functor Cy 2, Cy is the composition of the

Yoneda imbedding Cy Py, éy and a continuous functor CA'y X, C'z; the latter is defined
uniquely up to isomorphism. Thus, we have the equalities

Z]\;‘ohx:\Ifoq*:\Il/ohyoq*:\P’oa*th:(\D/oa:)o’q\?th

) (3)

ISk

(@t oV )ohyog* :Z_f:o\lloq*:f_f:oa?ohxzfj*ohx:hyoq
The equality g ohx = (V' 0q;) o g o hx implies, thanks to the continuity of the functors

U’ o q* and @;" and the universal properties of the localization Ef;, that the composition
U’ o ¢ is isomorphic to the identity functor.
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Similarly, thanks to the universal properties of the localization ¢*, the isomorphism
(@ o V') o hy oq* =~ hy oq¢* implies that (¢ o U') o hy ~ hy. Since the functor ¢ o ¥’
is continuous and every presheaf of sets on Cy is a colimit of a (canonical) diagram of
representable presheaves, it follows from the latter isomorphism that the composition goW’
is isomorphic to the identical functor. All together shows that ¢ and ¥’ are mutually
quasi-inverse category equivalences. m

C3.1.3. Note. Suppose that Cx and Cy are k-linear categories and Cx —— Cy
a k-linear functor. If the category Cy is cocomplete, then it follows from the assertion
[GZ, 11.1] mentioned above that there exists a unique up to isomorphism continuous func-

tor My(X) 2 Cy such that ¢* = §* o hx. Here, as above, M (X) is the category
of k-presheaves on the category C'x. This establishes an equivalence between the cate-
gory Homy(Cx,Cy) of k-linear functors Cx — Cy and the category Homs,(Cx,Cy) of
continuous k-linear functors My (X) — Cy.

If a k-linear functor Cx —— Cy is equivalent to a localization functor (i.e. it is the

composition of the locahzatlon functor at X, et {s € HomCx | ¢*(s) is invertible} and

a category equivalence Z‘q Cx — Cy), then the argument of C3.1.1 with the categories
of presheaves of sets replaced by the categories of k-presheaves shows that the natural

extension My, (X) <5 M, (Y) is equivalent to a continuous localization.

C3.2. Right weakly ’exact’ functors and ’exact’ localizations. Let (Cx,Ex)
and (Cy, 5y) be exact categories. A right weakly exact functor (Cx,Ex) — (Cy,Ey)isa

functor C'y ~—— Cy such that for every conflation L —— M —— N, there is a commutative

diagram
" () " (e)
(L) —— ¢*(M) —— ¢"(N)
N S
Ly

i’ @” (e)
in which ¢’ is a deflation and L, S ©*(M) —— ¢*(N) is a conflation.

Recall that the Gabriel-Quillen embedding C'x Ix, Cx, is the composition of the
Yoneda embedding Cx Lx, M},(X) and the sheafification functor My (X) —% Cx

¢

C3.2.1. Proposition. Let (Cx,Ex) and (Cy,Ey) be exact k-linear categories and
(Cx,Ex) AN (Cy, &) a right ’exact’ k-linear functor.

*

. . . . . . ¥
(a) There is a unique up to isomorphism continuous k-linear functor Cx, —— Cy,
such that the diagram

*

Cx —— Cy
N
Cx

(p*
commutes. Here the vertical arrows are the Gabriel-Quillen embeddings.

e CYG
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(b) If the functor Cx £, Cy is a localization, then the functor Cx, LN Cy, is a
localization.
(c) Suppose that the following condition holds: for every L € ObC'x and every deflation

N % ©*(L), there ezist a deflation M Y L and a commutative diagram

g

¢*(M) —— N
e\ e
©*(L)

Then a right adjoint Cy, RAN Cx. to the functor &* has a right adjoint, $'. In
particular, the functor ¢, is exact.

Proof. (a) Objects of the category C'x, — k-sheaves on the pretopology (Cx, €x), are
naturally identified with right ’exact’ k-linear functors from C'x to the abelian category

M (X)°P. Therefore, since the functor C'x 2, Oy is right ’exact’, the composition with

it maps Cy, to Cx.. By C3.1.1, we can (and will) assume that the functor My (Y) 2=

M (X) is given by F —— F o ¢*. Thus, we have a commutative diagram

~

Mi(X) ' My(Y)

‘b T T qy =

© %
Ox. ' Oy,

whose vertical arrows are inclusion functors. This diagram yields, by adjunction, a quasi-
commutative diagram

*

Mip(X)  —— My(Y)
T | | a5 (1)

*

(2]
CX@ —_— C’yE

where the vertical arrows are sheafification functors. The sheafification functors are exact
localizations. An isomorphism qj ¢* ~ ¢*q% implies that ¢* ~ q} @*qx., because the
adjunction arrow Idc,, — qxqx. is an isomorphism. Together with the isomorphism
qyP" ~ $*q%, this implies that the canonical morphism q3@* — q3 @ qx.q% is an

isomorphism. The claim is that the functor @, def 0% P«qy« is a right adjoint to ¢*. In
fact, the composition of morphisms

Idcye = qyqys — Gy P« Ay — 9y Puldx+qx P qys — P+

and
P P == Ax P Ay dy Puldxs — XD Pulx« — AxAxs — ldcy,

are adjunction arrows.
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(b) By C3.1.1 (and C3.1.2), the continuous functor My (X) 2= My (Y) is a localiza-
tion. Thus, the three arrows of the quasi-commutaive diagram (1) are localizations, hence
the forth one, ©*, is a localization.

(c) The condition (c) means that for every L € ObCy and every presheaf F' of k-
modules on Cy, the value of the associated sheaf qx (F') at ¢*(L) can be computed using

only deflations (— covers) of the form ¢*(M 4 L), where M —Y5 L is a deflation. This
implies that the diagram

~

Mi(X) 2= My(Y)
q&l lqix (1)

P
— Cy,

Cx

[

quasi-commutes. Therefore, by the argument similar to (a) above, the functor q% 3'qx. is
a right adjoint to Q.. m

C3.3. Example. Suppose that C'x is a k-linear category with the smallest exact
structure (given by split conflations). Then any k-linear functor (in particular, any right

or left ’exact’ k-linear functor) Cx BN Cy is ’exact’. The category Cx, coincides with
the category My (X) of k-presheaves on C'x, and the functor

*

)
CX@ = Mk(X) - CY@

~
*

is isomorphic to the composition of the functor My (X) BRAEN M (Y') and the sheafifica-

tion functor My (Y") -, Cy, . Therefore, a right adjoint @, to ¢* is isomorphic to the
composition @,qy«, which is not, usually, an exact functor.

C3.3.1. Example. Let (Cx,Ex) be an exact k-linear category. Suppose that Cy
is an additive k-linear category endowed with the smallest exact structure, &7 ! Then a
functor Cx ~— Cly is right ’exact’ functor from (Cx,Ex) to (C’X,Sf,pl) iff it maps every
deflation of the exact category (Cx, Ex) to a split epimorphism (i.e. a coretraction). Notice
that the condition (c) of C3.2.1 holds because every deflation in Cy splits. Therefore, by
(3.2.1(c), the functor , has a right adjoint, &'

If the exact structure on (Cx,Ex) is also the smallest one (i.e. Ex = 5§fl), then
Cx, = Mi(X) and Cy, = My(Y); i.e. in this case ¢* = ¢* and, therefore, a right
adjoint to the functor @, coincides with &'

C3.4. Remark. Let (Cx,Ex) and (Cy,Ey) be exact categories. If Cy N Cx is
an arbitrary functor, one can still define functors

~ ~ ~

® P @
C’yG CX@ C’yE —_— CX@
by the formulas
~% K Nk ~ kA ~I *
P" =dxP qyss Px = Ay Pulxs; @ = X P Ay (2)
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The functors @*, @, and @' might be regarded as derived functors of respectively
", P«, and @' (this viewpoint is discussed in Section D).

C3.5. Proposition. Let (Cx,Ex) and (Cy,Ey) be exact k-linear categories and

(Cx,Ex) L= (Cy,Ey) a right ’exact’ k-linear functor. Suppose that ©* is a localization
functor. Then ¢* is ’exact’ iff the class of arrows X - = {s € HomCx | ¢*(s) is an
isomorphism} satisfies the following condition:

(#) If the rows of a commutative diagram

r — M — N

| | | o)

r —— M — N

are conflations and any two of its vertical arrows belong to ¥,-, then the remaining arrow
belongs to X .

Proof. (i) Consider first the case when ¢* is the identical functor. Let

) — L ——s M —s N — 0

| | | (3

o — ) — M — N —— 0

be a commutative diagram in Cy such that L — M — N and L' — M’ — N’ are
conflations. If two of the three vertical arrows are isomorphisms, then the third arrow is
an isomorphism as well.

In fact, the Gabriel-Quillen embedding transforms the diagram (2) into a commutative
diagram with exact rows. If two of the vertical arrows of such diagram are isomorphisms,
then the third one is an isomorphism. The Gabriel-Quillen embedding is a fully faithful
functor, in particular, it is conservative. Therefore, all vertical arrows in the original
diagram are isomorphisms.

(i) Suppose that the functor Cx “— Cy is ’exact’; i.e. it maps conflations to confla-
tions. In particular, ¢* maps a diagram (2) with two arrows from X+ to a diagram whose
rows are conflations and two vertical arrows are isomorphisms. By (i) above, the third
arrow is an isomorphism too; i.e. all vertical arrows of the diagram (2) belong to X«.

(iif) Suppose now that Cx ~— Cy is a localization functor which is right ’exact’ and
satisfies the condition (#). The claim is that the functor ¢* is ’exact’.

Let L - M — N be a conflation in C'x. The functor ¢* being right ’exact’ means
that there is a commutative diagram
©" () @ (e)
(L) —— ¢" (M) —— ¢"(N)
N S (4)

L
~ “(e)
such that L — ©*(M) R ©*(N) is a conflation in Cy and ¢ € €y. Since ¢
localization, we can and will assume that L = ¢*(L’) for some L' € ObCx. Let j’ be the

. et o (s)
composition of arrows ¢*(L') —— ¢*(M;) and ¢*(M;) —— ¢*(M) for some s € X+.

*is a

145



Consider the cocartesian square

M — N

s | |+ (4)

el

M1 —_— N1

By hypothesis, ¢; is a deflation and ¢* maps (4) to a cocartesian square. The square (4)
is embedded into a commutative diagram
j e
L —— M —— N

s”l s l l s' (5)

j1 e1
5L — M — M

whose rows are deflations. Since the vertical arrows s, s’ in (5) belong to ¥+, the remain-
ing vertical arrow, s”, belongs to X,-.

The equality ¢*(e; 0j”) = 0 means that ¢; 0j” ot = 0 for some t € X,-. Therefore we
have a commutative diagram

L — M —— N
Sul l s J o
Ll J—1> Ml L) Nl (6)

with a uniquely defined L” -2~ L. Thus, we have a commutative diagram
" ()
(L) —— ¢*(L1) .
e\, ¢*(9) (7)

where the arrow es is the composition of the deflation ¢*(L) — ©*(L) and the isomor-
QD*(SN)71 QO*(SN)

phism ¢*(L') —— ¢*(L"”). Since ¢*(L) —— ¢*(Ly) is an isomorphism, it follows

from the commutativity of (7) that the arrow e is a retraction; in particular it is a strict

monomorphism. On the other hand, ¢s is a deflation, hence an epimorphism. Therefore, ¢

is an isomorphism, which implies that the deflation ¢’ in the diagram (4) is an isomorphism.

Therefore, ¢* maps the deflation L < M —— N to a deflation. =

C3.5.1. Corollary. Let (Cx,Ex) and (Cy,Ey) be exact categories and Cx £, Cy
a left ’exact’ functor. Suppose that ¢* is a localization functor. Then the functor ¢* is
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‘ezact’ iff the class of arrows ¥,« = {s € HomCx | ¢*(s) is an isomorphism} satisfies the

condition (#) of C3.5.
Proof. The assertion is dual to that of C3.5. m

C3.6. Proposition. Let (Cx,Ex) and (Cy,Ey) be exact categories, Cx <, Cy an
‘exact’ functor, and
¢*
Cx O C@
PN P

its canonical decomposition into a localization and a conservative functor. The functors
@% and ¢ are ’exact’.

Proof. We call a pair of arrows L — M — N in Z;}C’x a conflation if it is
isomorphic to the image of a conflation of Cx. We leave to the reader verifying that this
defines a structure of an exact category on the quotient category Z;}C’x. It follows that
the functors ¢ and ¢ are ’exact’. m

C3.7. Proposition. Let (Cyx,Ex) be an exact svelte category, S a family of arrows of
Cx; and let Exs((Cx,Ex), —)) be the pseudo-functor which assigns to every exact category
(Cy,Ep) the category of ’exact’ functors from (Cx,Ex) to (Cy,Ey) mapping every arrow
of S to an isomorphism. The pseudo-functor Exs((Cx,Ex), —) is representable.

Proof. Let §g be the family of all ’exact’ functors which map S to isomorphisms,
and let S denote the family of all arrows which are transformed into isomorphisms by all
functors from §g. Since the category Cy is svelte, there exists a subset 2 of Fg such that
the family of all arrows of C'x made invertible by functors of € coincides with S.

The product of any set of exact categories is an exact category. In particular, the
product Cx,, of targets of functors of €2 is an exact category and the canonical functor

Cx Lo, Cx, is an ’exact’ functor. By C3.6, the functor Fy factors through an ’exact’

F
localization Cx —7, Cg-15. The ’exact’ functor Fg is the universal arrow representing
the pseudo-functor Exg5((Cx,Ex),—). m

By the reason of C4.3.4, we need versions of the facts above for exact categories with
actions.

C3.7.1. Proposition. Let (Cx,Ex) be an exact Z, -category, S a family of ar-
rows of Cx; and let Exs((Cx,Ex),—)) be the pseudo-functor which assigns to every ex-
act Z-category (Cy, Ey) the category of ‘exact’ Z -functors from (Cx,Ex) to (Cy,Ey)
mapping every arrow of S to an isomorphism. The pseudo-functor Exs((Cx,Ex), —) is
representable.

C3.8. Multiplicative systems in quasi-(co)suspended categories. Fix a quasi-
cosuspended category _Cx = (Cx,0x,Trx). We call a class 3 of arrows of Cx a multi-
plicative system of the quasi-cosuspended category ¥_Cly if it is fx-invariant, closed under
composition, contains all isomorphisms, and satisfies the following condition:
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(L1) for every pair of triangles
Ox(L) N LM Lo n and 0x@) 2N Lo L

and a commutative diagram
M L L
t l l S
M’ f—/> L

where s and t are elements of 3, there exists a morphism N — N’ in ¥ such that (u, t, s)
is a morphism of triangles, i.e. the diagram

g f

HX(L) L s

N M
0x(s) u l t l l s

/7 ’

o (L) —— N o o
commutes.

We denote by SM _(X) the preorder (with respect to the inclusion) of all multiplicative
systems and by SM? (X) the preorder of saturated multiplicative systems of the quasi-
cosuspended category T_Cly.

Recall that a multiplicative system > in C%x is saturated iff the following condition
holds: if a, B, v are arrows of C'x such that the compositions a8 and (v belong to X,
then 5 € ¥ (equivalently, all three arrows belong to X).

C3.8.1. PI‘OpOSitiOH. (CL) Let C{_Cg = (C%,ex,TTx) and S_C@ = (C@,H@,TT@)

be quasi-cosuspended categories and T_Cx £, T _Cy a triangle functor. The family of

arrows Yp = {s € HomCx | F(s) is invertible} is a saturated multiplicative system in
T_Cx.
(b) Let T_Cx = (Cx,0x,Trx) be a quasi-cosuspended category, (Cz,E7) an exact

category and ¥_Cx N (Cz,E2) a homological functor. Then
Yo, ={s € HomCx | HO%(s) is invertible for all n > 0}

s a saturated multiplicative system in T_Cx.

Proof. (a) For any functor F', the family ¥ is closed under composition and contains
all isomorphisms. The Ox-invariance of X and the property (L1) follow from the axioms
of quasi-cosuspended categories.

(b) The system X g, is closed under composition, contains all isomorphisms, and is
Ox-invariant by construction. It remains to verify the property (L1). Let

Ox(L) >N 2 M oL and 0x@) 2N LM L1
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be a pair of triangles and

M — L
tl ls
f/

M — L

a commutative diagram with s and ¢ elements of ¥y .. By the property (S3) of quasi-

cosuspended categories, there exists a morphism N — N’ in ¥ such that (u,t,s) is a
morphism of triangles, i.e. the diagram

g f

—_—

N M
w| t] | s (1)

N/ L) M/ . L/

0x(s)

v
Ox(L) ——
D/
Ox(L) ——
commutes. Let H denote the composition of the homological functor Cy A, Cyz with
the Gabriel-Quillen embedding Cz — C'z,, we obtain for every nonnegative integer n a
commutative diagram

— HO% (0) HO% (9) HOY (f)
HOY (L) —— HOY(N) —— HO (M) —  HO%(L)
HOR () |1 HO% () | HO% (1) | 2| 0% (s)
HO% (2') HO% (g') HO% (')

HOG (L) ——  HOR(N') ——  HOR(M!)  —— HO%(L)

(2)
in the abelian category Cz, whose rows are exact sequences and three of the for vertical
arrows are isomorphisms. Therefore the fourth vertical arrow, H6% (u) is an isomorphism
for all n > 0; i.e. u belongs to Xy, . m

C3.8.2. Proposition. (a) Let T_Cx = (Cx,0x,Trx) and T_Cy = (Cy, by, Try)
be quasi-cosuspended categories. Every triangle functor T_Cx —— T_Cy is uniquely
represented as the composition of a triangle localization ¥_Cx — T_Cx, and a con-

F.
servative triangle functor T_Cx, —— T_Cy.
(b) Let ¥_Cyx = (Cx,0x,Tryx) be a quasi-cosuspended category and (Cz,Ez) an exact

H
category. Every homological functor T_Cyx —— (Cz,E7) is uniquely represented as the
H,
composition of a triangle localization T_Cy —— T_Cx, and a conservative homological
H,
functor T_Cx, —— (Cz,Ez).

Proof. Let ¥ denote the multiplicative system X of C3.8.1(a), or X ¢, of C3.8.1(b).
Then the quotient category Y ~1Cy is an additive k-linear category having a unique struc-
ture (0, Trs-1x) of a quasi-cosuspended category such that the localization functor

*

55 _1
C}j — ) Cx = Cz—lx
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is a strict triangle functor. Here strict means that the quasi-cosuspension functor = Os—1x
is uniquely determined by the equality 6 o ¢5, = g5, 0 0x, and T'rg,_, . is the class of all

sequences §(L) — N — M — L in Cx-1x which are isomorphic to the images of
triangles of T'rx by the localization functor ¢5,. Details are left to the reader. m

C3.8.3. Proposition. Let T_Cx = (Cx,0x,%Try) be a svelte quasi-cosuspended
category, S a family of arrows of the category Cx, and Trs(¥_Cx,—) the pseudo-functor
which assigns to every quasi-cosuspended category T_Cg the category of all triangular
functors F' from _Cx to T_Cg transforming all arrows of S into isomorphisms. The
pseudo-functor Trg(T_Cx,—) is representable.

Proof. Let §g be the family of all triangular functors which map S to isomorphisms,
and let S denote the family of arrows which are transformed into isomorphisms by all
functors from §g. Since the category Cy is svelte, there exists a subset 2 of Fg such that
the family of all arrows of C'x made invertible by functors of € coincides with S.

The product of any set of quasi-cosuspended categories is a quasi-cosuspended cat-
egory. In particular, the product Cx, of targets of functors of €2 is a quasi-cosuspended

category and the canonical functor Cy fa, Cx,, is a triangle functor. By C3.8.2, the func-

F
tor Fq factors through a triangle localization T_Cx SREN; Cg-1%. The triangle functor
Fg is the universal arrow representing the pseudo-functor Trg(¥_Cx,—). m

C3.9. Triangle subcategories. A full subcategory B of the category Cy is called
a triangle subcategory of € _Cy if it is fx-stable and has the following property: any
morphism M L, L of B is embedded into a triangle

0x(L) N Lm Lo L

such that N € ObB.
A full triangle subcategory B of T_Cy is called a thick triangle subcategory if it is

closed under extensions, i.e. if 6x(L) N LML isa triangle with L and N
objects of B, then M belongs to B.

C3.9.1. Saturated triangle subcategories. A full triangle subcategory B of a
quasi-cosuspended category T_C'yx is called saturated if it coincides with its Karoubian
envelope in ¥_Cl; i.e. any retract of an object of B is an object of B.

Evidently, every thick triangle subcategory of T_Cy is saturated.

It is known that the converse is true if T_C'y is a triangulated category: a full triangle
subcategory of a triangulated category is thick iff it is saturated.

C3.10. Triangle subcategories and multiplicative systems. Let T_Cy =
(Cx,0x,Trx) be a quasi-cosuspended k-linear category; and let B be its triangle subcat-

egory. Let X(B) denote the family of all arrows N —L M of the category Cx such that
there exists a triangle 6x(L) SN S M L L with L e ObB. Set

Yo(B) ={s € HomCx | 0"(s) € ¥X(B) for some n > 0}.
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C3.10.1. Proposition. Let B be a full triangle subcategory of a quasi-cosuspended
category ¥_Cx = (Cx,0x,Trx). Then the class ¥ (B) is a multiplicative system. It is
saturated iff the subcategory B is saturated.

Proof. 1t follows from the definitions of ¥(B) and ¥, (B) that both systems are
fx-stable and contain all isomorphisms. m

For a full triangle subcategory B of the quasi-cosuspended category T_C'yx, we set
C}j/B = E(B)_lox.
C3.10.2. Proposition. Let T_Cx and T_Cy be quasi-cosuspended categories, and

let €_Cx £, T_Cy be a triangle functor. Then

(a) Ker(F) is a thick triangle subcategory of ¥ _Cx;

(b) 0x(Xr) C X(Ker(F)) C Xp. In particular, ¥p = X(Ker(F)) if the quasi-
cosuspension Ox is a conservative functor.

Proof. (a) If 6x(L) PN LML isa triangle in C'x with L and N objects
of Ker(F), then the functor F' maps it to the triangle 0 — 0 — F(M) — 0, hence
F(M)=0.

(b) Let N —Y M be a morphism of Y(F); i.e. there exists a triangle

0x(L) 2o N Lo
with L € ObKer(F). The functor F' maps it to the triangle

F(t)

0— F(N)— F(M)—0

which means, precisely, that F(¢) is an isomorphism. This shows that X(Ker(F)) C Xp.

Conversely, let M —>» L be a morphism of ¥ and 6x(L) PN LML a
triangle. The functor F' maps it to the triangle

s FOx(M) = Fox(L) "M p(v) 29 P = F(L).

Therefore, FO%(N) = 0 for all n > 0. This shows that 0%(s) € X(Ker(F)) forn>1. =
C3.11. Coaisles and t-structures in a quasi-cosuspended category.
C3.11.1. Coaisles in a quasi-cosuspended category. Let T_Cyx = (Cx,0x,Trx)

be a quasi-cosuspended category. Its thick triangle subcategory U is called a coaisle if the

inclusion functor U 2= Cx has a left adjoint, j*.

C3.11.2. Proposition [KeV1]. Let T_Cx = (Cx,0x,Trx) be a triangulated k-
linear category (i.e. the quasi-cosuspension Ox is an auto-equivalence). Then a strictly

full subcategory U of C'x s a coaisle iff it is Ox-stable and for each M € ObCx, there is a

triangle
Ox(MY) — My — M — MY, (1)
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where MY is an object of U and M.y, is an object of “U. The triangle (1) is unique up to
1somorphism.

Proof. Suppose U is a coaisle in T_Cly, i.e. it is fx-stable and the inclusion functor
U L Cx has a left adjoint, j*. Fix an adjunction morphism Idc, 1 3,j*. Then we
have, for any M € ObC'x, a triangle

. o(M) t(M) n(M) .
0" (M) = 0x(MY) —— Moy = R(M) — M 5 " (M) = MY (2)

Since, by hypothesis, j* is a triangle functor, its application to the triangle (2) produces a
triangle in the quasi-cosuspended category T_U. Since j*n is an isomorphism, j*(&(M)) =
0, i.e. K(M) = M.y belongs to the kernel of the localization functor j*. It is easy to see
that Ker(j*) coincides with 1.

Conversely, suppose that for every M € ObCx, there exists a triangle (1) with MY €
ObU and M.y € Ob Y. =

C3.11.2. Cores of t-structures. The core of a t-structure U —= Cx is the subcat-
egory U N +0x(U).

C4. Cohomological functors on suspended categories.
Universal cohomological and homological functors.

See preliminaries on exact and (co)suspended categories in Appendix K.

Categories (suspended, cosuspended, exact) and functors of this section are k-linear
for some fixed commutative unital ring k.

C4.1. k-Presheaves on a k-linear Z,-category. Fix a k-linear Z,-category

*

(Cx,0x). Let My(X) — My (%) denote the continuous (i.e. having a right adjoint)

0
extension of the functor Cy BN Cx. This extension is determined uniquely up to
isomorphism by the quasi-commutativity of the diagram

9
Cx —— Cx

hx | | hx

*

Mp(X) —— M%)

where hx is the Yoneda embedding.

Let O, be a right adjoint to ©%. Notice that the projective objects of the category
M (%) are direct summands of coproducts of representable presheaves. Since ©% maps
representable presheaves to representable objects and preserves arbitrary coproducts, it
maps projective objects of My (X) to projective objects. Therefore, thanks to the fact
that the category My (X) has enough projectives, the functor O, is exact.

C4.1.1. Note. Whenever it is convenient, we shall identify a k-linear Z. -category
(Cx,0x) with the equivalent to it full subcategory of the Z-category (My(X), ©%) gen-
erated by representable presheaves.
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C4.2. Cohomological and homological functors. Let T, Cx = (Cx, Qx,ft;) be
a suspended category and (Cz,Ez) an exact category. A functor Cy 2, Cy is called a

cohomological functor on T Cx with valuesin (Cz,Ez) (and we write T, Cx 2, (Cz,E2)),
if for any triangle L — M — N — 0x(L), the sequence

(L) — (M) — P(N) — ®(0x(L)) — ®(0x(M)) — ... (1)

is ’exact’ and for any morphism L LM of Cx, there exists a kernel of ®(f) and the
canonical monomorphism Ker(®(f)) — ®(L) is an inflation.
Dually, if _Cx = (Cx, 0%, Tty) is a cosuspended category, then a functor C'x =z, Cy

is called a homological functor T_Cx 2, (Cz,Ez) if the dual functor CFF o C? is

cohomological. In other words, for any triangle 6x(N) — L — M — N, the sequence
is ’exact’ and for any morphism L LM of Cx, there exists a cokernel of ¥(f) and the
canonical epimorphism V(M) — Cok(V(f)) is a deflation in (Cyz, Ez).

C4.2.1. Example. Let T_Cx = (Cx,0x,%Try) be a k-linear cosuspended category.
Then for every W € ObC'x, the sequence

2

is exact. This means precisely that the Yoneda embedding

h
Ox —— My(X), M — Cx(—, M),

is a homological functor.
Let $,Cx = (ng,@x,itg) be a suspended category. For every object V of Cy and
every triangle L — M — N — 60x(L), the sequence

Cx(L,V) e Cx(M,V) e Cx(N,V) e« Cx(0x(L), V) — Cx(0x(M),V) — )
3

is exact. In other words, the functor h$ dual to the Yoneda embedding
C¥ —— Mp(X°), M+— Cx(M,—),
is a cohomological functor.

C4.3. Universal homological functors.

C4.3.1. The category Cx_ . For any k-linear category Cx, let C'x_ denote the full
subcategory of the category My (X) of k-presheaves on C'x whose objects are k-presheaves
having a left resolution formed by representable presheaves.
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C4.3.2. Proposition. (a) The subcategory Cx, is closed under extensions; i.e. Cx,
is an exact subcategory of the abelian category My (X). In particular, Cx, is an additive
k-linear category.

(b) Suppose that the category Cx is Karoubian. Let

00— M —M-—M'-—0

be an exact sequence in My(X). If two of the objects M', M, M" belong to the subcategory
Cx,, then the third object belongs to Cx, .
(b1) More generally, if Cx is Karoubian and

0O—M, — M, 41— ...— My — M; —0

is an exact sequence in My (X) with at least n—1 objects from the subcategory Cx_, then
the remaining object belongs to Cx .

Proof. (a) Let 0 — M’ — M — M" — 0 be an exact sequence in My (X). Let
P'" — M’ and P” — M" be projective resolutions. Then, by [Ba, 1.6.7], there exists
a differential on the graded object P = P’ @& P” such that the splitting exact sequence
0 — PP — P — P” — 0is an exact sequence of complexes which are resolutions of
the exact sequence 0 — M’ — M — M" — 0. If the complexes P’ and P” are formed
by representable presheaves, then P is a complex of representable presheaves, hence M is
an object of the subcategory Cx, .

(b) The assertion (b) follows from [Ba, 1.6.8] and (b1) is a special case of [Ba, 1.6.9]. m

C4.3.3. Lemma. IfT_Cx = (Cx,0x,%ty) is a cosuspended category, then objects
of Cx, are all objects M of My (X) such that there exists an exact sequence
M1 — MO — M — 0,

where My and M, are representable presheaves.

Proof. In fact, let M, 7, My — M — 0 be such an exact sequence. Since My and

M, are representable, there exists a triangle O% (M) e, Mo 9, M, S, My which gives
rise to a resolution

N 0% (f) . 0 g f e
. — 0% (M) —— O%x(My) —— My —— My —— My —— M

of the object M. m
C4.3.4. Proposition. Let T_Cx = (Cx,0x,%ry) be a cosuspended category. Then

9 h
the corestriction Cx 7, Cx, of the Yoneda embedding Cx N M. (X) to the subcat-
egory Cx, s a universal homological functor in the following sense: for any exact category

(Cz,Ez) and a homological functor €_Cx —— (Cyz,Ez), there exists a unique up to

isomorphism ’‘exact’ functor (Cx_,Ex,) — (Cz,Ez) such that H ~ Hq 0 Hx.
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0
The category Cx, has a unique up to isomorphism Z. -category structure Cx e, Cx,
such that the functor $x is a Zy-functor (Cx,0x) — (Cx,,0x,)-

Proof. (a) Fix an exact category (Cz,Ez) with the class of deflations €. Let q%
denote the Gabriel-Quillen embedding C'z — C'z, . Since Cz, is a Grothendieck category,

in particular it is cocomplete (i.e. closed under colimits), any functor Cx LR Cy gives a
rise to a quasi-commutative diagram

H
Cx —— (g

he | | a2 M

*

H
Mk(%) E— CZ@

in which the functor H* has a right adjoint, H,. Since the functor H* preserves colimits of
small diagrams (thanks to the existence of a right adjoint) and every object of the category
Mp(X) is a colimit of a small diagram of representable presheaves, H* is determined
uniquely up to isomorphism by the quasi-commutativity of the diagram (1).

If Cx n, Cyz is a homological functor ¥_Cx — (Cz,Ez), then the composition

J
of H and Cy Az, Cz, is a homological functor, because the functor q is ’exact’ and
homological functors are stable under the composition with ’exact’ functors.
(b) The diagram (1) induces the quasi-commutative diagram

H
Cx —— (g

f)ael J qy (2)

a

C}ja —_— CZ@

The claim is that the functor H} (- the restriction of the functor H* to Cx_) is ’exact’.

In fact, let M’ — M — M" be a conflation in C%,. Since the functor H* is right
exact, the sequence H*(M') — H*(M) — H*(M") — 0 is exact. It remains to show
that H*(M') — H*(M) is a monomorphism.

Let Pj L, Py “+ M’ — 0 and P} L, W £ M" — 0 be exact sequences in

Cx, such that the objects P/, P/, i = 0,1, are representable. The morphisms P} 7, P

(3

17

and P/’ L, o, can be inserted into triangles resp. ©%(F) SNy S Ny 4 Z, P and

2 g”’ il . . .
O%(F)) — Py — P{" — Py which give rise to the complexes

0% (') o / r
P =(... — O%(P)) —— O%x(R) P, P P
and
o (f”) 7" 77 f//
P = (. —— OR(P)) = O%(RY) —— Py —— P —— )
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By (the argument of) C4.3.2(a), there is a commutative diagram

O — P — P — P — 0
e/l o l l o (3)
O — M — M — M —— 0

/7 11
(& e

in which P’ == M’, P = M", and P - M are projective resolutions and
0—P —P—P' —0

is an exact sequence of projective complexes. Since H* o hx is a cohomological functor,
the complexes H*(P’) and H*(P") are exact. Together with the exactness of the sequence

0 — H*(P') — H*(P) — H*(P") — 0

this implies the exactness of the complex H*(P). Now it follows from the commutative
diagram

0 —  HP) — H*(P) —— H*P") —— 0
() | He(e) | | Heen
0 — H (M) —— H* (M) —— H*(M") — 0

that H*(M') — H*(M) is a monomorphism; hence the sequence
0— H(M') — H" (M) — H"(M") — 0

is exact.
(c) There is a unique up to isomorphism functor Cx, KNV 7 such that HZ ~ q3 o H,.
The functor H, is an ’exact’ functor (Cx,,Ex,) — (Cz,Ez).

Let M be an object of Cx_, and let P, 4, Py = M — 0 be an exact sequence
with representable objects Py and P;. Since H is a homological functor, there exists a
cokernel of the morphism H(f). We set Hq(M) = Cok(H(f)). Since the functor H* is

right exact, it maps P; N Py = M — 0 to an exact sequence. Therefore, because

J
the Gabriel-Quillen embedding (C'z,Ez) Az, (Cze,E2,) 1s an 'exact’ functor, we have an

isomorphism g% (Hq(M)) ~ H*(M). Since the functor q3 is fully faithful, it follows that
the object Hq (M) is defined uniquely up to isomorphism. By a standard argument, once
the objects Hq(M) and Hq(N) are fixed, any morphism M —2» N determines uniquely a
morphism Hq (M) — Hq(N).

The ’exactness’ of H, follows from the isomorphism H: ~ q3 oH,, because the functor
H: is ’exact’ (by (b) above) and the functor q3 reflects ’exactness’: if L' — L — L is
a sequence in Cz such that the sequence 0 — g% (L) — q3(L) — q% (L") — 0 is
exact, then L' — L — L” is a conflation.

(d) The isomorphism H ~ q30H, implies that q0(Hq09x) =~ HioHx ~ q30H. Since
the functor q% is fully faithful, it follows that H ~ H, o Hx. It follows from the definition
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of the exact category Cx, and the exactness of the functor H, that it is determined by
the isomorphism H ~ H, o Hx uniquely up to isomorphism.

*

(e) The extension My (X) O M (X) of the functor Cx LER Cx maps representable

presheaves to representable presheaves and has a right adjoint functor. In particular,

% is a right exact functor, and it maps an exact sequence P, — Py — M — 0 in

M (X) with representable presheaves P; and P, to an exact sequence of the same type.
By C4.3.3, this implies that the subcategory Cx, is ©%-stable. Therefore, ©% induces a

0
functor Cx, e, Cx, such that the diagram

0
Cx —— Cx

9 | | 9=

O0x,
Cxa — Cxa

quasi-commutes, i.e. Hx is a Zy-functor (Cx,0x) — (Cx,,0x,). =

C4.3.5. Remarks. (a) The universal property described in C4.3.4 determines the

exact category (Cx,_,Ex,) and the functor Cx Dx, Cx, uniquely up to equivalence.

(b) It follows from the definition of the category Cx, that its projective objects are
retracts of representable presheaves. In particular, if the category Cy is Karoubian, then
every projective object of the exact category Cx, is isomorphic to an object of the form

Hx (M) for some M € ObCyx. In other words, the canonical embedding Cx EN Cx,
induces an equivalence between C'x and the full subcategory of the category C'x, generated
by all projective objects of C'x,.

The following proposition is a cosuspended version of Theorem 2.2.1 in [Ve2].

C4.3.6. Proposition. The map which assigns to each cosuspended category T_Cyx =
(Cx,0x,%ry) the exact category Cx, is functorial in the following sense: to every triangle

functor d = (®,¢) from a cosuspended category T_Cx to a cosuspended category T_Cy,

there corresponds an ’‘exact’ Z -functor (Cx,,Ex,) — (Cy.,E9.) which maps pro-
jectives to projectives. The functor ®, is determined uniquely up to isomorphism by the
quasi-commutativity of the diagram

o
Cge E— C@

ﬁxl l Ny (1)

Cy ——— Cy

a

Proof. (a) Since ® = (®, ¢) is a triangle functor and 9y is a homological functor, the
composition, g o P is a homological functor. By the universal property of the homological

functor Cx 25 Cx, (see C4.3.4), there exists a unique (up to isomorphism) exact functor

o
Cx, —— Cy, such that the diagram (1) quasi-commutes. The quasi-commutativity of
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the diagram (1) implies that (T)a maps representable presheaves to representable presheaves.
Since projective objects of the categories C'x, and Cyg, are all possible retracts (direct

summands) of representable presheaves, it follows that ®, maps projectives to projectives.

The isomorphism ® o 6y 2, g o ® induces an isomorphism ®, o O% Pe, @% o P,
where ©% is the endofunctor C'x, — Cx, induced by ©%. So that the pair (®q, ¢q) is a
Z-functor (Cx,,0%) — (Cx,,0%) and the diagram (1) is a diagram of Z_-functors. m

Let T_Cx be a cosuspended category and (Cz,Ez) an exact category. We denote by
¢r((Cx,,E€x,),(Cz,E7)) the category whose objects are ’exact’ functors from (Cx,,Ex,)
to (Cz,€z) and morphisms are morphisms of functors. Let Hom(Cx,Cyz) denote the
category whose objects are functors from Cx to C'z and morphisms are morphisms of
functors.

9
C4.3.7. Proposition. The composition with the functor Cx =, Cx, defines a
fully faithful functor

sz((cfa ) g%a)a (CZ; EZ)) - Hom(oi"a CZ)

which induces an equivalence of the category €r((Cx,,Ex,),(Cz,Ez)) with the full subcat-
egory of Hom(Cx,Cyz) generated by homological functors.

Proof. The assertion is a corollary of (actually, it is equivalent to) C4.3.4. m

C4.3.8. Triangle functors. Let T_Cx = (Cx,0x,%Try) and T_Cy = (Cy, Oy, Try)

be cosuspended categories, and let P = (®, ¢) be a triangle functor T_Cyx — T_Cy. Then
we have a quasi-commutative diagram of Z, -categories and Z, -functors

Hx Qxa

(Cx,0x) —— (Cx,,0x,) —— (Cxe,Oxe)

@ | | @ | @2 (1)

Ny Qy,
(Cy,by) —— (Cy,,0p,) —— (Cye,Oge)
in which Qx, and Qg , are Gabriel-Quillen embeddings, the functor ®, is exact, and the
functor @3 has a right adjoint, ®¢., which is an exact functor.

C4.4. The category Cx _ and abelianization of triangulated categories. Fix a
k-linear cosuspended category T_Cx = (Cx,0x,%ty). We denote by Cx,, the strictly full
subcategory of the category My (X) of k-presheaves on C'x whose objects are (isomorphic
to) images of morphisms between representable presheaves. In other words, an object of
M (%) belongs to Cx,, iff it is a subobject and a quotient object of some representable
presheaves. An immediate consequence of this description is that the category Cyx, 1is
Karoubian. It is easy to show that the subcategory Cx , is closed under finite coproducts
in My(X); i.e. Cx,, is an additive subcategory of My (X).

Notice that C'x, is a subcategory of C'x_. In fact, by the definition of the subcategory
Cx,,, for every its object M, there exist an epimorphism M — M and a monomorphism

M - Ly, where M, and Lg are representable presheaves. There is a triangle

0 g joe

©%(Lo) M, My Lyg.
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Since this triangle is an exact sequence, we have an exact sequence
g [4
My, — My — M — 0

with My, M; representable presheaves. By C4.3.3, M is an object of Cx .
It follows that an object of C'x, belongs to the subcategory Cx, iff it is a subobject
of a representable presheaf.

C4.4.1. Proposition. (a) The subcategory Cx ., is ©%-stable.
(b) For every morphism « of Cx, , the kernel and cokernel of ©%(a) belong to the
subcategory Cx ..

Proof. (i) Let K —°+ K’ be morphism of Cx_; i.e. there exist M —» L and M’ - L/
such that K = Im(f), K’ = Im(f’), and presheaves M and M’ are representable. Let
OL(L) 5 N -4 M L L and ©5(L) 25 N 25 M’ L I/ be triangles. Then there
is a commutative diagram

@;(f) h g e j
0xM) — ©O%x(L) —— N — M — K —— L

HEV & | | & | & | o

* / @;(f/) * / h' / g/ / : / j/ /
oxM) — oe3xl)) — N — M — K —— L

(7)
constructed as follows. The arrow M - M’ is due to the fact that M is a projective

object of M (X) and M’ ', K’ is an epimorphism. Similarly, the morphism N RENY Y/

exists because the sequence N 2 M’ - K’ is exact and the object N is projective. By
the property (SP2), the sequences

—0%(f) h
0% (M) —— 0% (L) N—M
and
—05(f") W /
oL (M) — o%(L)) N LM

are triangles. By (SP3), there exists a morphism ©% (L) Lo, ©%(L') such that the diagram

-0%(f) h g
@;(M) _— @;(L) — 5 N — s M

0% (&1) l £ l l &2 l &1
—0%(f") h' g
oxyw'y ——r oeyl) — N —— M

commutes. Therefore, the diagram (7) commutes.
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(ii) Since the functor ©% is right exact, the arrows % (e) and ©%(¢’) in the commu-
tative diagram

0% (9) 0% (e) 0% () h
03(N) —= e3(M)  ——  ex(K) —— () —— N
0x(&) | | oxe) 0x(a) | & | | &
©%(9") 0% (¢) ©%(") X

O%(N') —— %M — OLK') — ©O3lL) — N
(8)
are epimorphisms. It follows from the exactness of the rows in (7) that the arrows 0% (j)
and O%(j’) are monomorphisms.

An argument similar to that of [Ve2, 3.2.5] applied to the commutative diagram (7)
shows that the kernel and cokernel of the morphism 0% («) belong to the subcategory Cx . .
Since « is an arbitrary morphism of C'x_, it follows, in particular, that the subcategory Cx
is ©%-stable; i.e. it has a natural structure of a Z,-category and the Yoneda embedding
induces a Z,-functor (Cx,0) — (Cx,,0%). =

C4.4.2. Note. Since the Yoneda functor Cy Dz, M (X) takes values in Cx_, the

Z.-category (Cx, ,©x, ) has enough projectives. It follows that the 'translation’ functor

Oxy
Cx,, — Cx,, induced by ©% maps projectives to projectives.

C4.4.3. Proposition. Suppose that the cosuspension functor Cy bz, Cyx is a cate-
gory equivalence, i.e. T_Cx = (Cx,0x,%ry) is a triangulated category. Then Cx, is an
abelian category which coincides with Cx .

Proof. If the suspension functor Cy bz, Cy is a category equivalence, then its ex-
tension O% is a category equivalence. In this case, it follows from C4.4.1(ii) that the
subcategory Cx  contains kernels and cokernels of all its morphisms, hence Cx  is an
abelian subcategory of My (X). Since every object of the category Cx, is the cokernel
of a morphism between representable objects, it follows that Cx, C Cx . Therefore
Cx,=0Cx, . =

C4.4.4. Note. Proposition C4.4.3 together with 3.2.4 and 5.2.6 recover, in particular,
the ’abelianization’ theory for triangulated categories [Ve2, 11.3].

C4.5. Triangulation and abelianization of cosuspended categories.

C4.5.1. Inverting endofunctors. A Z-category (Cx,0x) is called strict if the
endofunctor fx is an auto-morphism of the category Cx.

There is a standard construction which assigns to each Z,-category (Cx,0x) a strict
Z-category (Cx,,0x.). Objects of the category Cx, are pairs (n, M), where n € Z and
M € ObC%. Morphisms are defined by

Cx, ((s, M), (t, N)) & colim, > Cx (0% (M), 021 (N)). (1)

The composition is determined by the compositions
Cx(0% " (L), 0% *(M)) x Cx (0% (M), 0% "(N)) —— Cx (03" (L), 0% (V).
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The functor 0 is defined on objects by 0x_(s, M) = (s—1, M). It follows from (1) above
that there is a natural isomorphism

st((va)v (t,N)) — 0355 (QXs (S,M),@XE (tv N)) = Cfs((‘s - 17M)7 (t - 17N))7

which is the action of x, on morphisms.

®
There is a functor Cx =, Cx, which maps an object M of C'x to the object (0, M)
and a morphism M — N to its image in

Cx,((0,M), (0,N)) = colim Cx (6% (M), 0 (N)).

The morphism

stocl)x(M):(—l,M) E— (I)ggoegg(M):(O,egg(M))

is the image of the identical morphism 0x (M) — 0x(M).
Let Z, — Cat), denote the category of svelte k-linear Z-categories, and let Z — Caty
denote its full subcategory generated by k-linear strict Z-categories.

C4.5.1.1. Proposition. The map which assigns to a Z -category (Cyx,0x) the strict
3*
Z-category (Cx,,0x,) extends to a functor Z, — Caty, —— 7Z — €aty, which is a left
T
adjoint to the inclusion functor Z — Caty, —— Zi — Caty.

(®x,0x)
Proof. The morphisms (Cyx, 0x) =7 (Cx,,0x,) defined above form an adjunc-
tion morphism from identical functor on Z — Cat; to the composition J,J*. The second

adjunction morphism is a natural isomorphism. m

C4.5.2. Cosuspended categories and strict triangulated categories. The
construction of C4.5.1 extends to a functor from the category of cosuspended categories to
the category of strict triangulated categories. Recall that a triangulated category TCx =
(Cx,0x,Try) is strict if fx is an auto-morphism of the category Cyx.

C4.5.2.1. Proposition [KeV]. To any cosuspended category T_Cx = (Cx,0x,T7r%),
there corresponds a strict triangulated category T_Cx, and a triangle functor

(q>f 7(10}: )
T_Cr — 5 T O,

such that for every triangulated category TCy, the functor
Tty (T_Cx,, TCy) —— Tty (T_Cx, TCy) (1)
of composition with (Px,px) is an equivalence of categories.
(a) If Cq is a strict triangulated category, then (1) is an isomorphism of categories.

(b) If _Cx is a triangulated category, then (®Px,px) is a triangle equivalence.
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Proof. By C4.5.1, objects of the category T_Cyx, are pairs (n, M), where n € Z and
M € ObC%. The triangles are sequences

Ox,(r,L)=(r—-1,L) — (t, N) — (s, M) — (r, L)
associated to sequences
0x0% (L) — 0% (N) — 03 *(M) — 05 "(L)

such that ((—1)"w,v,u) is a triangle. m
Let ¥_Caty, (resp. Tr€aty) denote the category whose objects are svelte cosuspended
(resp. svelte triangulated strict) k-linear categories and morphisms are triangle functors.

C4.5.3. Proposition. The map which assigns to each cosuspended category the

t Ak

corresponding strict triangulated category extends to a functor T_Caty —— TrCaty, which
18 a left adjoint to the inclusion functor.

Proof. See C4.5.1.1. m
C4.5.4. Proposition. Let ¥ _Cyx be a cosuspended k-linear category. The functor

Zy — Caty, —— Z — Caty, maps the natural embedding Cx,, — Cx, of Z-categories
to an equivalence between abelian strict Z-categories.

Proof. It follows from the construction of the functor J* that it is compatible with

t A~k

the ’triangularization’ functor ¥_Caty, % TrCaty, of C4.5.3. The constructions of the
categories C'x, and Cx_ are also compatible with the functors triangularization functor and
the functor J*. By C4.4.3, the categories C'x,, and Cx, coincide if T_Cyx is a triangulated
category, hence the assertion. m

C4.6. Complements.

C4.6.0. Exact categories and exact categories with enough projectives. Let
(Cx, €x) be an exact category and C,, its full subcategory generated by all objects M of
C'x such that there exists a deflation P — M, where P is a projective object of (Cx, €x).
It follows from (the argument of) C4.3.2 that the subcategory Cx,, is fully ezact (i.e. it
is closed under extensions). In particular, it is an exact subcategory of (Cx,€x). By
construction, this exact subcategory, (Cx,,, €x,, ), has enough projectives.

Let €at,, denote the bicategory of exact categories (whose 1-morphisms are ’exact’
functors) and (’lat?‘; its full subcategory generated by exact categories with enough projec-
tives. The map which assigns to every exact category (Cx, €x) its fully exact subcategory
(Cxy, €xy ) extends to a 2-functor from Cat,; to (’latg which is left adjoint to the inclusion

functor Cathy — Cate, (in the 2-categorical sense).
C4.6.1. Costable categories in terms of complexes. Let (Cx, €x) be an exact
category. Consider the full subcategory Cp,x of the homotopy category H(Cx) whose

objects are acyclic complexes P = (... A, b 4, P o, Py — M — 0) such that
objects P;, i« > 0, are projective.
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The category Cp,x has a natural Z,-action given by the ’translation’ functor 6_
which assigns to every object P = (... 2, P, N P, o, Py — M — 0) the object

0_(P) = (... = P, %% P 2% Cok(dy) — 0).

C4.6.1.1. Lemma. Let (Cx,Ex) be an exact category with enough projectives. Then
the costable category Cs_x of Cx is Z4-equivalent to the category Cp,x -

Proof. The equivalence is given by the functor Cp,x — Cs_x which assigns to
every object P = (... Gz, b, &, P o, Py — M — 0) of Cp,x the (image in Cs_x

of the) cokernel of Py o, Py. The quasi-inverse functor assigns to each object M of Cg_ x
(the image in C'p, x of) its projective resolution (... — P, — P} — Py — M — 0).

It follows from the definitions that both functors are compatible with the Z -actions
on the respective categories. m

C4.6.2. Homological dimension.

C4.6.2.1. Proposition. Let (Cx,Ex) be an exact category with enough projectives,

T Cs_x = (Cs_x,0,%Tvs_x) its costable cosuspended category, and Cx Bx, Cs_x the
canonical projection.
(a) The following condition on an object M of Cx are equivalent:
(al) hd(M) < n;
(a2) 6™ (Px(M)) = 0.
(b) An object M of Cx is projective iff its image in the costable category is zero.

Proof. Consider first the case n = 0. Then the condition (al) means that the object
M is projective. The condition (a2) reads: the image of M in the costable category is
zero. The implication (a) = (b) follows from the definition of the costable category.

On the other hand, the image of M in the costable category is zero iff the image of the
identical morphism d,, is zero. The latter means that id,, factors through a projective
object, i.e. M is a retract of a projective object, hence it is projective.

Suppose now that n > 1. Let (... N P, o, Py — M) Dbe a projective resolu-
tion of the object M. By the definition of the cosuspension 6, there is an isomorphism
O(Bx(M)) ~ Bx(im(dy)). Therefore, 8" (Px (M)) ~ Px(im(d,—1). The homological
dimension of M is less or equal to n iff im(d,_1) is a projective object, or, equivalently,
‘BX(im(dn_l) =0.m

C4.6.2.1.1. Corollary. Let (Cx,Ex) be an exact category with enough projectives.
The following conditions are equivalent:

(a) hd(Cx,Sx) < n,

(b) 6™ = 0.

In particular, hd(Cx,Ex) = 0 iff the costable category of (Cx,Ex) is trivial.

C4.6.2.2. Homological dimension of objects of a cosuspended category. Let
T_Cx = (Cx,0x,%ry) be a cosuspended category. We say that an object M of Cx has
homological dimension n if ”(M) = 0 and §"~1(M) # 0. In particular, an object of Cx
is of homological dimension zero iff it is zero.
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C4.6.2.3. Proposition. Let T_Cx = (Cx,0x,%ty) be a cosuspended category.

(a) The full subcategory Cx, ., of the category Cx generated by the objects of finite
homological dimension is a thick cosuspended subcategory of T_Cx.

(b) The subcategory Cx,  is contained in the kernel of the canonical "triangulariza-
tion” functor T_Cx —3 T _Cx@ (see C4.5.2.1.)

Proof. (a) Recall that a full cosuspended subcategory B of _Cx is called a thick

cosuspended subcategory if it is closed under extensions, i.e. if 0x(L) SN IR ANy )
is a triangle and L and N are objects of B, then M is an object of B too.

By K8.4(b), for every triangle 0x(L) — N —— M - L, the sequence of repre-
sentable functors

Cx(*,’w) Cx(*,’l)) Cx(*,u)
co. —— Cx(—,0x(L)) —— Cx(—,N) —— Cx(—,M) —— Cx(—,L)

is exact. In particular, there is an exact sequence of representable functors
oo Cx(=, B3 (N)) —— C(—, 03 (M) —— Cx(—,03(L) —— ... (1)

for every positive integer n. If the objects L and N have finite homological dimension, i.e.
9% (L)) and 0%(N)) are zero objects for some n, then it follows from the exactness of the
sequence (1) that 0%(M)) = 0.

(b) Triangulated categories are precisely cosuspended categories whose cosuspension
functor is an auto-equivalence. Therefore, every nonzero object of a triangulated category
has an infinite homological dimension. m

C4.6.2.4. Homological dimension of a cosuspended category. Homological di-
mension of the cosuspended category T_C'x is, by definition, the supremum of homological
dimensions of its objects. In particular, hd(Cx) < n for some finite n iff 6% = 0.

C4.6.3. The stable and costable categories of an arbitrary exact category.
Let (Cx,Ex) be an exact category with the class of deflations (resp. inflations) €x (resp.

J
My). Let Cx Ax, Cx, be the Gabriel-Quillen embedding. Since Cx, is a Grothendieck
category, it has enough injectives. In particular, C'x, has the stable suspended category
(Cs.xe)Ox¢,Trs, x, ) With infinite coproducts and products.

The composition of the Gabriel-Quillen embedding and the projection Cx, — Cs, x,
gives a functor Cy — Cgs, x,.. We call the stable category of the exact category Cx the
triple (Cz, x,0©x,Trg, x), where Cg, x is the smallest © x,-invariant full subcategory of
Cs_ x. containing the image of C'x, O is the endofunctor of Cs, x induced by Ox,, and
Trg, x is the class of all triangles from %t x, which belong to the subcategory Cs, x.

One can see that (Cs, x,0x,%rg, x) is a full suspended subcategory of the sus-
pended category (Cs, x.,0Ox,). If the exact category Cx has enough injectives, then the
suspended category (Cs, x,©x) is equivalent to the stable category of C'x defined earlier.

The costable category (Cx_x,0x,Ttx_x) of the exact category Cx is defined dually.

C4.6.4. Canonical resolutions.
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C4.6.4.1. The resolution of a cosuspended category. Let T_Cyx = (Cx, 0x,Ttx)
be a cosuspended category. The universal homological functor is the full embedding the

Z.,-categories (Cx,0x) R (Cx,,0Ox,) which realizes Cx as a subcategory of the full
sucategory of Cx_ generated by projective objects of (Cx_,Ex,). Since the exact category
Cx, has enough projectives, its costable category Cs_x, is (the underlying category of)
a cosuspended category with the cosuspension functor ;. Since the functor ©x, maps
projectives to projectives, it induces an endofunctor 6; on the costable category Cs x,.
It follows from the exactness of the functor Oy that 6, 0 0y >~ 03 00,; i.e. Czx, is a
cosuspended Z -category. In particular, it is a Z x Z, -category. The canonical universal
homological functor embeds the cosuspended Z -category C's_x, into an exact Z4 X Z -
category C(s_x,),, etc.. As a result of this procedure, we obtain a sequence of categories
and functors

Dx Fx, D, %an
Cx —— Cx, — Cxy —— Cxy, —5 . "
mxa,nfl ﬁxn gpxu,n j-;an—}-l
an Cxa,n an+1 tt

where Xy, = (Xn)a, Xny1 =6_%4, for n>0 and X, = X.

It follows that X, is represented by a cosuspended Z'-category (hence a Z:L_’Ll—
category), X4, is represented by an exact Z’}fl—category; and the universal homological
functor §, and the canonical projections ‘Bxu’n are Z'-functors. All exact categories
(Cxq.n»€x,.,,) have enough projectives.

For every exact category (Cx,Ex) with enough projectives, let ®x denote the com-

position of the projection C'x Px, Cs_ x to the costable category and the universal homo-

Nes_x
logical functor Cs_ x —— Cs_x,.

Set @, =9, 0P, - Then we have a sequence of functors
Dy ¢xa éxml ¢fa2
Cx —— Cx, —= Cr,y — Croy — ... o)
q)xu,n72 cpxu,nfl éxa,n (Ijxa,n+1

(I{mnfl CZ{ Cmen+1

a,n

in which the composition of any two consecutive arrows equals to zero. The kernel of the
®
Xa,n
functor Cx,, —— Cx, .., coincides with the full subcategory of the category Cx, ,
generated by all its projective objects. It coincides with the Karoubian envelope in Cx_ ,

of the image of the functor <I>jECl L

C4.6.4.2. The resolution of an exact category with enough projectives.
Let (Cx,Ex) be an exact category with enough projectives. Let Cpx denote the full
subcategory of the category C'x generated by all projectives of (Cx,Ex). Then we have a
sequence

RX mX f’xo ‘nxa,o “6:{1
Cpx — Cx —— (Zxo —_— (zfuﬁ B (1&1 E— CZan .. (3)
mxa,n—l f’xn mxa,n ﬁanrl
U Cr, — 5 Ox,, — O, —
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where Xp = 6_X, i.e. Cx, is the costable category of the exact category (Cx,Ex), and
the rest is defined as in (1) above. Again, one can ignore the intermediate cosuspended
categories and obtain a complex of exact categories

" > [ [

X X Xa,0 Xa,1
C’PX — CX —_— C:{a,o —_— Cxa,l —_— ... (4)
q>xa,n—1 Cbxa,n @xa,n—}-l q)xu,n—b—Z
Cxa,n Ciu,n-&—l C}:a,n+2

C4.6.4.3. Note. If T_Cx = (Cx,0x,%rx) is a triangulated category (i.e. fx is
an auto-equivalence), then all the cosuspended Z -categories T_Cx, = (Cx,,0x,,%tx,, )
constructed above are triangulated Z"-categories and all exact Z'/ -categories Cx, , are
abelian Z"-categories.

C5. The weak costable category of a right exact category.

C5.1. Definition. Let (Cx, €x) be a right exact category such that the category Cx
has an initial object, z. We denote by Pr(X, €x) the full subcategory of C'x whose objects
are projectives. Let Sx denote the class of all arrows ¢; in the commutative diagram

Ker(¢) —— P M
tll l to l ZdM
{3(2) [4
Ker(¢)) —— V — M

where ¢, ¢’ are deflations, ¢y (hence t1) are split epimorphisms, and P (hence V) is an
object of Pr(X,Ex). Let Sx be the smallest saturated system containing §X and all
deflations P — P’ with P and P’ in (X, €x). We call the quotient category Sy'Cx
the weak costable category of the right exact category (Cx, €x) and denote it by Cs_x.

C5.1.1. Proposition. Let (Cx, &Ex) be a right exact category with initial objects and
enough projectives. For any object N of the costable category, let 0% (N) denote the image
in Cs_x of Ker(e), where P — N is a deflation with P projective (we identify objects of
Cs_x with objects of Cx ). The object 8% (N) is determined uniquely up to isomorphism.
The map N —— 0% (N) extends to a functor Cs_x — Cs_x.

Proof. Let P! = N <— P be deflations with P’ and P” projective objects. Since
(Cx, €x) has enough projectives, there exists (by the argument C5.3.1(a)) a commutative
diagram



whose arrows are deflations and the object P is projective. Therefore, we have a commu-
tative diagram

Ker(¢) —— P —— N
t’lT T # T idy
Ker(e) . P e—”> N
t | 4 | i
Ker(e") E—”> P e—”> N

Since t(, and t{j are deflations to projective objects, they are split epimorphisms. Therefore,
t} and t7 are split epimorphisms, i.e. they belong to Sx (cf. 2.5).

Consider a diagram N Sy LV , where ¢’ is a deflation. Then we have a commu-
tative diagram

E(O’) o
Ker(oc) —— P — N
f |t | ian
t(e)
Ker(e) —e> N ., N (1)
fi | o |/
{’(e') e/
Ker(¢) — M  —— L

in which the right lower square is cartesian, the morphism f; is uniquely determined by the

choice of fy (hence both fy and f; are determined by f uniquely up to isomorphism), to

is a deflation, and t; is (a deflation) uniquely determined by ty;. Applying the localization
q*

Cx 2% Cs_ x, we obtain morphisms

" o a5, (t) . sy (f1) . )
0% (N) = a5, (Ker(0)) —— ds, (Ker(e)) —— qs, (Ker(¢)). (2)

The only choice in this construction is that of the deflation P LIRS [ = ARLINE)
another choice, then there exists a commutative square

17
50

P// RN P
tgl l t
P’ 0, Nn

whose arrows are deflations and the object P” is a projective. Therefore, t) and s{ are
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split deflations, and we have a commutative diagram

E(O’l) o'/

Ker(o') —— P’ —— N
s T 50 T idn
t(a’) o' (3)
Ker(¢") —— P’ —— N
t/@ l { l idy
E(O’) lo
Ker(c) —— P — N

whose vertical arrows belong to Sx, i.e. their images in the costable category are isomor-
phisms. This implies that the composition 0% (N) — g5, (Ker(e')) of morphisms of (2)

does not depend on the choice of the deflation P o, o, Taking M projective, we obtain a

0x (f)
morphism 6% (N) = 0% (L) which is uniquely defined once the choice of objects 0% (V)

and 0% (L) is fixed. m

C5.2. The weak cosuspension functor. Let (Cx,€x) be a right exact category
with enough projectives and initial objects. Let Cs_x its cosuspended category. The
ow
functor Cs_x =, Cs_x defined in C5.1.1 is called the weak cosuspension functor.
Notice that the weak costable category Cs_x of (Cx, €x) has initial objects. If the
category Cx is pointed, then Cs_x is pointed and the image in Cs_x of each projective

object of (Cx, €x) is a zero object.

C5.2.1. Note. It follows from C6.7.1 that if the category Cx is additive, then the
weak costable category Cs_ x with the weak cosuspension functor 0% is equivalent to the
costable category Cx_ x with the cosuspension functor 6x.

C5.3. Right exact categories of modules over monads and their weak
costable categories. Suppose that C'x is a category with initial objects and such that
the class QS??Z of split epimorphisms of C'x is stable under base change; so that (Cx, infl)
is a right exact category. Let F = (F,u) be a monad on Cx. Set Cyx = F — mod.

Let Cx ELN Cx be the forgetful functor, f* its canonical left adjoint, and e the stan-
dard adjunction morphism f*f, — Idc,. We denote by €x the right exact structure
on C% induced by @_S;fl via the forgetful functor f.. By 5.5, (Cx, &%) is a right exact
category with enough projectives: all modules of the form (F(L),u(L)), L € ObCx, are

projective objects of (Cx,€x), and every module M = (M,¢) has a canonical deflation

e(M)

We denote by Qz the kernel of the adjunction morphism f*f, —— I dc, and call it
the functor of Kdhler differentials.

C5.3.1. Standard triangles. Let M = (M,&n) and £ = (L,&¢) be F-modules

fx(e)
and M — £ a deflation (i.e. the epimorphism M —— L splits). Then we have a
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commutative diagram

Qr(L)

o | |t | e (4)
Ker(e)
which contains (and defines) the standard triangle

Qr(L) 2, Ker(e) N M ——r (5)

corresponding to the deflation M —— L.
The image of (5) in the weak costable category Cs_ x is a standard triangle of Cs_ x.

C5.4. Example: right exact categories of unital algebras. Let C'x be the
category Algy of associative unital k-algebras. The category C'x has an initial object —
the k-algebra k, and the associated pointed category Cx, is the category of augmented
k-algebras.

C5.4.1. The functor of Kahler differentials. Kahler differentials appear when
we have a pair of adjoint functors Cx ELR Cy e x. Presently, the role of the category

Cy is played by the category of k-modules. The forgetful functor Algy Tk — mod
has a canonical left adjoint f* which assigns to every k-module M the tensor algebra
T (M) = D, M®™. Therefore, the class of all split k-module epimorphisms induces via
f« a structure €x of a right exact category on Cx = Algs. In this case, the tensor algebra
[*(M) = Ti(M) is a projective object of (Cx, &€x) for every k-module M; and for every
k-algebra A, the adjunction morphism

e(A)
FT1(A) = Ti(f(A) — 4,

(determined by the k-algebra structure and the multiplication f,(A)®k f«(A) — f«(A) in
A) is a canonical projective deflation. By definition, the functor 2 of Kdhler differentials
assigns to each k-algebra A the kernel of the adjunction morphism €(A), which coincides
with the augmented k-algebra k & Q; (A), where Q) (A) is the kernel K(g(A)) of the
algebra morphism ¢(A) in the usual sense (i.e. in the category of non-unital algebras).

C5.4.2. The functor of non-additive Kahler differentials. The category Algx
has small products and kernels of pairs of arrows A = B, hence it has limits of arbitrary
small diagrams. As any functor having a left adjoint, the forgetful functor Algy I k—mod
preserves limits. In particular, f, preserves pull-backs and, therefore, kernel pairs of algebra
morphisms. Therefore, each k-algebra morphism A —“, B has a canonical kernel pair

AxpA :1 A. Using the fact that A x g A is computed as the pull-back of k-modules, we

P2

can represent A xp A as the k-module f.(A) @ K(f«(¢)) with the multiplication induced
by the isomorphism

fo(A) & Ker(fu(9)) — fu(A) xp.m) [+(A), @y — (v.2+y).
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That is the multiplication is given by the formula (a ® b)(a’ ®b) = aad’ ® (ab’ + ba’ + bb').
We denote this algebra by A#K ().

Applying this to the adjunction arrow f*f, — Idc, , we obtain a canonical isomor-
phism between the functor O of non-additive Kéhler differentials and f* f*#ﬂ;, where

£(4)
Q. (A) is the kernel of the algebra morphism T} (f«(A)) —— A in the category of non-
unital k-algebras (cf. C5.4.1). Thus, for every k-algebra A, we have a commutative diagram

similar to the one in the additive case:
t(e)
1>

EoQi(4) = QA) T Tu(fu(4) —— A

Tkl jkl lid l@'d (6)
Te(f(A)HU(A) = O(A) T T(f(4) —— A

A2
Here 0 = 0x(A) is the ’zero’ morphism — the composition of the augmentation morphism
Ok (A) — k and the k-algebra structure k — Ty (f(4)).
The morphism ji (hence ji) becomes an isomorphism in the costable category.

C5.4.3. Another canonical right exact structure. Let €% denote the class
of all strict epimorphisms of k-algebras. The class €% is stable under base change, i.e.
(Cx,€x) is a right exact category. For every projective k-module V', the tensor algebra

Ty (V) is a projective object of (Cx, €% ), because the forgetful functor Alg Lk —mod
is exact (hence it maps strict epimorphisms to epimorphisms of k-modules). By 5.3.1, its
left adjoint f* maps projectives of k — mod to projectives of (Cx, €% ). That is for every
projective k-module V' the tensor algebra T} (V') of V is a projective object of (Cx, €%).
Since the adjunction arrow f*f, —— I dc is a strict epimorphism and k —mod has enough
projectives, the right exact category (Cx, €% ) has enough projectives: for any k-algebra
A, there exists a strict k-algebra epimorphism T} (V) — A for some projective k-module
V. By 2.2.1, the kernel Ker(e) coincides with the augmented k-algebra k @ K (e), where
K(e) is the kernel of ¢ in the usual sense — a two-sided ideal in T} (V).

C5.4.4. Remarks. (a) The forgetful functor Algs I, k — mod is conservative and
preserves cokernels of pairs of arrows. Therefore, by Beck’s Theorem, there is a canonical
equivalence (in this case, an isomorphism) between the category Algy and the category
F — mod of modules over the monad F = (f.f*, u) = (Tk(—), p) associated with the pair
of adjoint functors f., f* and the adjunction morphism f*f. — Id Algy, -

(b) Consider the category Af fr = Alg;” of affine (noncommutative) k-schemes. Right
exact structures on Algy define left exact structures on Af fr and vice versa. Inflations
in Af fi corresponding strict epimorphisms of algebras are precisely closed immersions of
(noncommutative) affine schemes.

(c) The example C5.4 is generalized to algebras in an additive monoidal category.

C5.5. The left exact category of comodules over a comonad and its weak
stable category. Fix a comonad G = (G, J) on a category C'x with final objects and split

monomorphisms stable under cobase change; i.e. (Cx, Jifl) is a left exact category.
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C5.5.1. The suspension functor. Let G, denote the functor Cy — Cy which
assigns to every G-comodule M = (M, v) the cokernel of the adjunction morphism

M —— g.g" (M) = (G(M),5(M))

(see 5.5.2(2)). The functor Gy is a canonical suspension functor on the category Cy =
G — comod = (P\G) — comod which induces a suspension functor on the stable category
S;Cy of the exact category (Cy,Ey).

C5.5.2. Lemma. A morphism M 2, M’ of Cy becomes a trivial morphism in
the stable category T, Cy iff it factors through an adjunction arrow (3); i.e. there ezists a

commutative diagram

MLM’

v\, Jh
g«9* (M)
for some morphism g.g*(M) = (G(M),d(M)) SN M.

Proof. By definition of the stable category, the image of an arrow M 2 M of Cy in
the stable category 7. Cy is trivial iff it factors through an Ey-injective object . By 5.5.3,

the adjunction arrow N' — g.g*(N) splits. Therefore, the arrow M %, M’ becomes
trivial in the stable category iff it factors through a morphism M — ¢, (V) for an object
N of Cx. Every such arrow factors through the adjunction morphism M — g,g*(M);
hence the assertion. m

C5.5.3. Standard triangles. For any conflation £ T M- Nin Cy =G —
comod, the standard triangle

LM N-G,(L)
is defined via a commutative diagram

M SN

[ I )

7]7(5) Aw(ﬁ)
—— G(L) —— G+(L)

idp

—n0

[

A
where G = g.¢g* and G —> G, is the canonical deflation. The morphism ~ in (1) exists
by the Ey-injectivity of G(L). The morphism A 2, G+ (L) is uniquely determined by the
choice of v (because ¢ is an epimorphism). The image of 9 in the stable category 7 Cy
does not depend on the choice of .

C5.6. Frobenious morphisms of ’spaces’ and Frobenious monads. Let Y .
X be a continuous morphism of ’spaces’ with an inverse image functor f* and a direct image
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functor f.. We say that f is a Frobenious morphism if there exists an auto-equivalence ¥
of the category Cx such that the composition f* o W is a right adjoint to fi.

It is clear that every isomorphism is a Frobenious morphism and the composition of
Frobenious morphisms is a Frobenious morphism.

It follows that every Frobenious morphism Y Jox with a conservative direct image
functor is affine. Therefore, the category Cy can be identified with the category F — mod
of modules over the monad F = (F,u) on a category Cx associated with the pair of
adjoint functors f*, f.. Conversely, we call a monad F on the category Cx a Frobenious

monad if the forgetful functor F —mod — Cy is a direct image functor of a Frobenious

morphism; i.e. there exists an equivalence C'x 2. 'x such that the functor

ox 2 F o mod, Vs (F(T(V)), u(T(V)),

is a right adjoint to the forgetful functor f.. In particular, the monad F is continuous.

C5.6.1. Proposition. Let F be a Frobenious monad on a category Cx such that
(Cx, @ifl) is a right exact category. Then the right exact category (Cx,€x), where Cx is
the categor F — mod of F-modules and Ex is a right exact structure induced by QE;?I, 5 a

Frobenious category.

Proof. Let f,. denote the forgetful functor F — mod — C'x and f* its canonical left
adjoint. Let ¥ be a functor Cx — Cx such that the composition f' = f* o ¥ is a right
adjoint to f.. Then every injective object of the category F —mod is a retract of an object
of the form f*(¥(V)) for some V € ObCx. On the other hand, every projective object of
F —mod is a retract of an object of the form f*(L) for some L € ObC'x. Therefore, every
injective F-module is projective. If the functor ¥ is an auto-equivalence, then f* ~ f'oW*,
where U* is a quasi-inverse to . That the functor f'oW is a left adjoint to f.. By duality,
it follows from the argument above that every projective object of F — mod is injective. m

C5.7. The costable category associated with an augmented monad. Let F =
(F, 1) be an augmented monad on a k-linear additive category Cx; i.e. F = Idc, @ Fy.
The category F — mod of F-modules is isomorphic to the category F, — mod; of F,-
actions. Recall that the objects of F —mod; are pairs (M, &), where M € ObC'x and € is
a morphism F (M) — M satisfying associativity condition with respect to multiplication
F2 S F,ie Eopy(M)=¢&oFy(€). Morphisms are defined naturally.

Notice that the monad F is continuous (i.e. the functor F' has a right adjoint) iff the
functor F; has a right adjoint.

It follows that Q0 — f* f, factors through the subfunctor F, of f* f. corresponding
to the subsemimonad (F4, u") of F. The full subcategory Tr, of F — mod generated by
all F-modules M such that Qz(M) — F, (M) is an isomorphism (i.e. the action of F
on M is zero) is isomorphic to the category Cx.

C5.7.1. Infinitesimal neighborhoods. Let T( ") denote the n-th infinitesimal
neighborhood of Tx,_, n > 1. It is the full subcategory of f mod generated by modules
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+
M = (M, §) such that the n-th iteration F7 (M) S0, M of the action of Fy on M is zero.

In particular, ngr) =TF,.

Since & is an F-module morphism for any n > 1, an F-module M = (M,§) is
an object of 7. }T iff F'" — Qg, where F'" is the image of the iterated multiplication

FY H—I> F,. One can see that F\" is a two-sided ideal in the monad F. If the quotient
functor F//F" is well defined (which is the case if cokernels of morphisms exist in Cx),
then there is a unique monad structure p,, on the quotient F'/F"* such that the quotient
morphism F' — F/F" is a monad morphism from F to F/F" = (F/F",u,) and
the category 7. }? is equivalent to the category F/F"*-modules. Clearly, F/F;" is an
augmented monad: F/F" ~ Idc, ® F /F".

It follows from the preceeding discussion that Fﬁn_l)/ FI' = Qppn — Fy JF.
In particular, Qf/FJ-rz = Fy/F2.

C5.7.2. Free actions. Let C'x be a k-linear category with the exact structure
£%Pl: and let £ be a k-linear endofunctor on Cx. Consider the category £ — act whose
objects are pairs (M, ¢), where M € ObC'x and & is a morphism £(M) — M. Morphisms
between actions are defined in a standard way. We endow £ — act with the exact structure

induced by the forgetful functor £ — act ELN Cx. If Cx has countable coproducts and
the functor £ preserves countable coproducts, then the category £ — act is isomorphic
to T(£) — mod, where T(£) = (T(£), ) is a free monad generated by the endofunctor
£ ie. T(L) = @p>0L™ and p is the multiplication defined by the identical morphisms
Lo &M — g™ nom > 0.

The category C'x is isomorphic to the full subcategory 7¢ of £ — act generated by zero
actions. The n-th infinitesimal neighborhood of 7g is the full subcategory 7, S(n) of £ — act

generated by all actions (M, §) such that the n-th iteration £"(M) L, M of the action

¢ is zero. The category Tém_l) is equivalent to the category Tg ,, — mod of modules over
the monad Tg,, = (T¢ n, pin), where T, = @ £™ and the multiplication defined by
0<m<n

morphisms £F o £™ — £kt 0 < k,m < n, which are identical if k¥ +m < n and zero
otherwise.

It follows from C5.7.1 that £" — Q. — Tg,n ot @ £m.

1<m<n

In particular, Qr, , = £. Here £ denotes the functor £ —act — £ —act which assigns

to an object (M, ) the object (£(M), £(€)) and acts on morphisms accordingly.

C5.7.2.1. Projectives and injectives of an infinitesimal neighborhood. Pro-
jective objects of the category 7, Q(nH) = Tg ,, — mod are retracts of relatively free objects.
The latter are Tg ,,-modules of the form Tg ,,(V), V € ObCx.

Suppose that £ has a right adjoint functor, £,. Then the functor T, = @ £

0<m<n
has a right adjoint equal to Té}n = @ £ that is Tg, is a continuous monad.
0<m<n
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Therefore, by G1.4, the injective objects of T¢ ,, —mod are retracts of Tg ,-modules of the
form T’ ,(V) = (Tg ,(V), m(V)), V € ObCx.

C5.7.2.2. Proposition. Suppose that £ is an autoequivalence of the category Cx .
Then TS("JFI) =Tg , —mod is a Frobenius category.

Proof. 1t suffices to show that Tg , is a Frobenious monad. An adjunction arrow
Lo £, — Ide, induces a canonical morphism from Te ,,(£7(V)) to the injective object
’]I‘!Sm(V). If £ is an autoequivalence, then this canonical morphism is an isomorphism. m

C5.7.3. Example. Let C'x be the product of Z copies of a k-linear category Cy; i.e.
objects of C'x are sequences M = (M;| i € Z) of objects of Cy. Let £ be the translation
functor: £(M); = M;_1. Objects of the category £ — act of £-actions are arbitrary

dn n dp— . n

sequences of arrows (... —= M, 4, n, M, == ...). Objects of the subcategory ’TS( )
are sequences such that the composition of any n consecutive arrows is zero. In particular,
’]:3(2) coincides with the category of complexes on Cy and its subcategory 7¢ = Tél) is the
category of complexes with zero differential. By C5.7.2.2, 7, E(n) is a Frobenious category for
every n. Therefore, its costable category is triangulated. Notice that the costable category

of 7T, 2(2) coincides with the homotopy category of unbounded complexes.
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Appendix K. Exact categories
and their (co)stable categories.

K1. Exact categories. We follow here the approach of B. Keller [Kel]. For the
convenience of applications, we consider mostly k-linear categories and k-linear functors,
where k is a commutative associative unital ring. For a k-linear category C'x, we denote
by My (X) the category of k-linear functors C'¥’ — k — mod and will call it the category
of k-presheaves on Cx.

K1.1. Definition. Let Cx be a k-linear category and £x a class of pairs of morphisms

L - M % N of Cx such that the sequence 0 — L - M — N — 0 is exact (i.c.
j is a kernel of ¢ and ¢ a cokernel of j). The elements of Ex are called conflations. The

morphism ¢ (resp. j) of a conflation L - M —= N is called a deflation (vesp. inflation).
The pair (Cx,Ex) is called an exact category if Ex is closed under isomorphisms and the
following conditions hold.

(Ex0) idy is a deflation.

(Ex1) The composition of two deflations is a deflation.

(Ex2) For every diagram M’ Ay i L, where ¢ is a deflation, there is a cartesian

square
o

r |/
L

where ¢’ is a deflation. ‘
(Ex2°P) For every diagram M’ NEAN /g I L, where j is an inflation, there is a

cocartesian square
L/
] [
L

where j’ is an inflation.
For an exact category (Cx,Ex), we denote by €x the class of all deflations and by
My the class of all inflations of (Cx,Ex).

K1.2. Remarks.

K1.2.1. Applying (Ex2) to (Ex0), we obtain that id,, is a deflation for every M €
ObCx. Thus, axioms (Ex0), (Ex1), (Ex2) mean simply that the class €x of deflations
forms a right multiplicative system, or, what is the same, a pretopology on Cx. The
invariance of £x under isomorphisms implies that all isomorphisms of C'x are deflations.

The fact that all arrows of Ex are strict epimorphisms means precisely that the
pretopology €x on Cx is subcanonical, i.e. every representable presheaf of sets on Cy is
a sheaf on (Cx, €x). Thus, one can start from a class €x of arrows of C'x which forms a
subcanonical pretopology (equivalently, it is a right multiplicative system formed by strict
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epimorphisms) and define M x as kernels of arrows of x. The only remaining requirement
is the axiom (Ex°P) — the invariance of the class My of inflations under a cobase change.

This shows, in particular, that the first three axioms make sense in any category and
the last axiom, (Ex2°P), makes sense in any pointed category.

The fact that all identical morphisms are deflations implies that arrows 0 — M
are inflations for all objects M of Cx. Applying the axiom (Ex2°P) to arbitrary pair of
inflations L «— 0 — M, we obtain the existence of coproducts of any two objects; i.e.
the category Cx is additive.

K1.2.2. Quillen’s original definition of an exact category contains some additional
axioms. B. Keller showed that they follow from the axioms (Ex0) — (Ex2) and (Ex2°P) (cf.
[Kel, Appendix A]). Moreover, he observes (in [Kel, A.2]) that the axiom (Ex2) follows
from (Ex2°P) and a weaker version of (Ex2):

(Ex2’) For every diagram M’ Ay i L, where ¢ is a deflation, there is a commu-
tative square

where ¢’ is a deflation.
Quillen’s description of exact categories is self-dual which implies self-duality of Keller’s
axioms: if (Cx,Ex) is an exact category, then (CY,EY) is an exact category too.

K1.2.3. In the axioms (Ex2) and (Ex2°), the conditions ”there exists a cartesian
(resp. cocartesian) square” can be replaced by ”for any cartesian (resp. cocartesian)
square”. This implies that for any family {&; | i € J} of exact category structures on an

additive category Cx, the intersection £; = ﬂ &; is a structure of an exact category.
ieJ
K2. Examples of exact categories.

K2.1. The smallest exact structure. For any additive k-linear category Cx, let
E)Sfl denote the class of all split sequences L —— M —— N. Then the pair (C, Ejg’l) is an
exact category. Notice that £ " is the smallest exact structure on Cly.

K2.2. The category of complexes. Let C(A) be the category of complexes of an
additive k-linear category A. Conflations are diagrams L® -— M®* —— N* such that the

diagram L™ I M L Nt s split for every n € Z.

K2.3. Quasi-abelian categories. A quasi-abelian k-linear category is an additive
k-linear category Cx with kernels and cokernels and such that every pullback of a strict
epimorphism is a strict epimorphism, and every pushout of a strict monomorphism is a
strict monomorphism. It follows from definitions that the pair (Cx,&s), where & is the
class of all short exact sequences in Cx, is an exact category.

Every abelian k-linear category is quasi-abelian.
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K2.4. Filtered objects. Let (Cx,Ex) be an exact k-linear category. Objects of the
filtered category §(Cx,Ex) are sequences of inflations

M=(...— My 2 My — ...

such that M, = 0 for n < 0 and j,, are isomorphisms for m > 0. Morphisms of filtered
objects are defined in a natural way (componentwise). Conflations are sequences of two
morphisms whose components belong to Ex.

If (Cx,Ex) is a quasi-abelian category, then the filtered category §F(Cx,Ex) is quasi-
abelian too.

K2.5. The category of Banach spaces. Let Cx be the category of complex

Banach spaces. A sequence of morphisms L —— M —— N is a conflation if it is an
exact sequence of complex vector spaces. Thus defined exact category of Banach spaces
is quasi-abelian. In fact, a morphism of Banach spaces is a strict epimorphism iff it is an
epimorphism of vector spaces.

K2.6. Categories of functors. Let (Cx, x) be an exact k-linear category and Cy
a category. The category Hom(Cyz,Cx) of functors from Cy to Cx is an exact category:
a sequence F' -5 F -5 F" of functor morphisms is a conflation if

, i(M) e(M)

is a conflation for every object M of Cy.

K3. ’Exact’ functors. Let (Cx,Ex) and (Cy,Ey) be exact k-linear categories.

A k-linear functor Cx +, Cy is called ’exact’ if it maps conflations to conflations. We
denote by ExCaty, the category whose objects are exact k-linear categories and morphisms
‘exact’ k-linear functors.

K3.1. Example. Let Cx and Cy be additive k-linear categories. Every k-linear
functor Cx —— Cy is an 'exact’ functor (Cx, &Y N (Cy, &P (see K2.1). The map
which assigns to an additive k-linear category Cx the exact category (Cx,EY l) and to
a k-linear functor the corresponding ’exact’ functor is a full embedding of the category
Addy, of additive k-linear categories and k-linear functors to the category ExCaty, of exact

k-linear categories and ’exact’ k-linear functors. This embedding is a left adjoint to the
forgetful functor ExCat;, — Addy.

K3.2. Example: ’exact’ functors from a quasi-abelian category. Let (Cx,Ex)
and (Cy,Ey) be exact k-linear categories. If (Cx,Ex) is quasi-abelian, then a k-linear

functor C'x £, Cy is an ’exact’ functor from (Cx,Ex) to (Cy,Ey) iff it preserves finite
limits and colimits. In other words, ’exact’ functors in this case are precisely exact functors.

K4. Right and left ’exact’ functors. Let (Cx,Ex) and (Cy, ) be exact k-linear

categories. A k-linear functor Cyx x, Cy is called right ’exact’ if it maps deflations to
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deflations and for any deflation M —— N of (Cx,Ex), the functor F maps the canonical

N 4
diagram M xy M , M —— N to an exact diagram.

P2

Left ’exact’ functors (Cx,Ex) — (Cy,Ey) are defined dually.

K4.1. Remark. Taking as C'y the abelian category k — mod®° with the canonical
exact structure, one can see that right ’exact’ functors from (Cx,Ex) to (Cy,Ey) are,

precisely, sheaves of k-modules on the pretopology (Cx, €x). They also can be viewed as

left "exact’ functors from (Cx,Ex )P (CL,EF) to k — mod.

K4.2. Proposition. Let (Cx,Ex) and (Cy,Ey) be exact k-linear categories and

Cx £, Cy a k-linear functor which maps deflations to deflations and for every deflation
M -+ N of (Cx,Ex) the canonical morphism

F(MXNM) —>F(M) XF(N)F(M)

is a deflation of (Cy,Ey). Then F is right ’exact’.

Proof. The condition that the pretopology (Cy, €y ) is subcanonical means precisely
that for every deflation K — L, the diagram K x; K T K — L is exact. Since the
functor F' maps deflations to deflations, the diagram

F(M) xp(ny F(M) ___, F(M) —— F(N)

is exact for every deflation M — N of (Cx,Ex). Since by hypothesis, the canonical
morphism

is exact, this implies the exactness of the diagram

e

F(M xy M) —__ F(M) —— F(N).

That is F' is a right ’exact’ functor. m
K4.3. Proposition. Let (Cx,Ex) and (Cy,Ey) be exact k-linear categories and

(Cx,Ex) —— (Cy, &) a k-linear functor. The following conditions are equivalent:

(a) ©* is right ’exact’;

(b) for any conflation L > M 5 N, the sequence

. e () e (e)
¢ (L) —— ¢" (M) —— ¢"(N) —— 0 (1)

s ‘exact’.

(c) the functor ¢* maps deflations to deflations and @, : § — § o ©* maps sheaves
of k-modules to sheaves of k-modules.
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Proof. (a) < (b). For any conflation L . M - N, we have a commutative
diagram

Ker(ps) L
.| I
MxyM . M —— N
which induces a commutative diagram

Ker(ps) - L

| Db 2)

MxyM 2 M S, N

Since ¢ o p; = ¢ o py, the morphism p; — po is the composition j o v for a uniquely defined
morphism ~. It follows from the diagram (2) and the monomorphness of j that v is a
split epimorphism. In particular, v € €x. Since 7y is a split epimorphism, ¢*(y) has this
property. Therefore the sequence (1) is exact iff the sequence

©*(37) v (e)
P (M xy M) —— ¢*(M) —— ¢"(N) —— 0 (3)

is exact. The exactness of the sequence (3) is equivalent to the exactness of the diagram

»*(p1)

. s »*(e) .
(M xy M) 5 ¢"(M) —— ¢©"(N).
p*(p2)

(b) = (¢). (i) The equivalence of (a) and (b) applied to presheaves of k-modules (i.e.
Cy is the category k — mod°? with the canonical exact structure), gives a description of
sheaves of k-modules on the pretopology (C'x, €x): a presheaf § of k-modules is a sheaf iff
for any conflation L — M — N, the sequence 0 — F(N) — F(M) — F(L) is exact.

(ii) It follows that the sequence 0 — F(N) — F(M) — F(L) is exact for any
‘exact’ sequence L—M-—N—0and any sheaf of k-modules §. In fact, the sequence
L — M — N — 0 being exact means that the morphism L — M is the composition
of a deflation L — L and an inflation L — M such that L — M —— N is a conflation.
By (i) above, the latter implies that the sequence 0 — F(N) — F(M) — F(L) is exact
and the arrow F(L) — F(L) is a monomorphism for any sheaf § of k-modules. Therefore

the sequence 0 — F(N) — F(M) — F(L) is exact.

(iii) Let now § be a sheaf of k-modules on (Cy, €y ). If (Cx,Ex) ., (Cy,E) isa
right ’exact’ functor and L — M — N is a conflation in (Cx,Ex), then the sequence
©*(L) — ¢*(M) — ¢*(N) — 0 is ’exact’, hence the sequence

0 — " (N) — F" (M) — Fe* (L) (4)

179



is exact. By (ii), this means that F¢* is a sheaf on (Cx, €x).

(¢) = (b). It follows from (ii) above that the condition (c) means precisely that the
diagram (4) is exact for any conflation L — M — N and any sheaf of k-modules §. In
particular, since every representable presheaf is a sheaf, (4) is exact for every representable
presheaf, or, equivalently, the diagram

P (L) — ¢"(M) — ¢ (N) — 0

1s exact. m

K4.4. Corollary. Let (Cx,Ex) and (Cy,Ey) be exact k-linear categories.

(a) A functor Cx L Cy is ‘exact’ iff it is both left and right ’exact’.
(b) A presheaf F' of k-modules on (Cx,Ex) is a sheaf iff the sequence

0— F(N)— F(M)— F(L)

is exact for any conflation L — M — N in (Cx,Ex).

Proof. (a) By K4.3, the functor ¢* is both right and left ’exact’ iff for any conflation
L — M — N in (Cx,Ex), the sequences

0 (L) — ¢"(M) — ¢"(N) — 0 and 0-— ¢*(L) — ¢" (M) — ¢*(N)

are exact, i.e. p*(L) — ¢*(M) — ¢*(IN) is a conflation.
(b) The assertion is proved in the argument of K4.3. It is, also, a formal consequence
of K4.1 and K4.3. =

K4.5. Remark: right ’exact’ functors between pretopologies. The assertion
K4.3(c) suggests the following

K4.5.1. Definition. Let (Cx,Tx) and (Cy, Ty ) be pretopologies. We call a functor

Cx - Cy a right ‘ezact’ functor from (Cx,%Tx) to (Cy,%y) if it maps elements of covers
to elements of covers and induces a functor between the categories of sheaves.

K5. Fully exact subcategories of exact categories. Gabriel-Quillen embed-
ding. Let (Cx,Ex) be an exact category. A full subcategory B of Cx is called a fully
exact subcategory of (Cx,Ex) if it is closed under extensions; i.e. if objects L and N in a
conflation L — M — N belong to B, then M is an object of B too.

K5.1. Proposition. Let (Cx,Ex) be an exact category and B a fully exact subcate-
gory of Cx. Then Ex induces on B a structure of an exact category.

Proof. The condition ’B is closed under extensions’ means that for any conflation
L -2 M —5 N such that L and N are objects of B, the object M is isomorphic to an
object of B. Let L - M —> N be a conflation of &g (i.e. a conflation of £x which
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is a diagram in B), and let N’ . N be an arbitrary morphism of B. Then we have a
commutative diagram

L/ L) M/ e—/> NI
v l L1 o
L Y~ M 5 N
whose rows are conflations and the right square is cartesian. It is not difficult to see
that the left vertical arrow g in (1) is an isomorphism. Since the subcategory B is closed
under extensions, this implies that M’ is isomorphic to an object of B. Hence, the class of
deflations &g is invariant under base change (axiom (Ex2)). Thus, £z has properties (Ex0),
(Ex1), (Ex2). The remaining property, (Ex2°P), follows from the fact that everything here
is selfdual. m

A category Cx is called swvelte if it is equivalent to a small category.

K5.2. Theorem (Gabriel-Quillen embedding). Let (Cx,Ex) be a svelte exact k-
linear category. Then there exist a Grothendieck k-linear category Cy and an ’exact’
fully faithful k-linear functor (Cx,Ex) — (Cy,Ey) which induces an equivalence between
(Cx,Ex) and a full subcategory of Cy closed under extensions.

Proof. Notice that the category My (X) of k-presheaves on Cx is a Grothendieck
category (it has a generator because the category Cx is svelte and the category My (X) has
infinite coproducts). Let Cx, denote the category of sheaves of k-modules on the presite
(Cx,€x). By K4.1, Cx, is a full subcategory of My (X) whose objects are left ’exact’
functors (Cx,Ex)°? — k — mod (or right ’exact’ functors from (Cx,Ex) to k — mod°?;
see K4.4(b)). The inclusion functor Cx, — M (X) has a left adjoint — the sheafification
functor My (X) — Cx,, which is exact; i.e. Cx, is (equivalent to) a quotient category
of the Grothendieck category My (X) by a Serre subcategory, S¢. Therefore, Cx, is a
Grothendieck category itself. Since the pretopology €x on Cx is subcanonical (see K1.2.1),
the Yoneda embedding induces an equivalence between the exact category (Cx,Ex) and
a full subcategory of Cx,. It remains to show that this full subcategory is closed under

extensions and the embedding C'x X, ¢ X, 1s an ’exact’ functor which reflects conflations.
(i) The Yoneda embedding Cx — My (X) is a left exact functor, and the sheafifi-

cation functor My (X) — Cx, is exact. Therefore, their composition Cx RE Cx, is a
left exact functor; in particular, it is left 'exact’. The claim is that the functor j% is right
‘exact’; i.e. j% maps every deflation to an epimorphism of the category Cx,.

In fact, let M — N be a deflation and M xy M —— M — N the associated exact
diagram. The Yoneda embedding maps this diagram to the diagram

MxsM — M— N, (2)

where M = Cx(—, M). For any presheaf § of k-modules, the functor M (X)(—,§) maps
the diagram (2) to the diagram isomorphic to

F(N) — F(M) — F(M xny M).
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which is exact if § is a sheaf on (Cx, €x). This shows that for every sheaf §, the functor
Cx,.(—,§) maps the diagram (2) to an exact diagram. Therefore the diagram (2) viewed
as a diagram in the category of sheaves, is exact.

(i) Let N € ObCx and § —— N a morphism of sheaves on (Cx, €x). Regarding
as a presheaf morphism, we represent it as the composition of the presheaf epimorphism
§ — Im(y) and the embedding Im(y) — N. It follows from the exactness of the
sheafification functor that 7 is a sheaf epimorphism iff the sheafification functor maps the
embedding I'm(y) < N to an isomorphism; i.e. Im(y) — N is a refinement of N in
the topology associated with the pretopology €x. The latter means that there exists a

deflation M’ - N such that the image of ¢ is contained in Im(y), i.e. M =5 N is

the composition of a morphism M’ — Im(v) and the embedding Im(y) — N. Since
representable functors are projective objects in My (X), the morphism v’ factors through
the presheaf epimorphism § — I'm(y). Thus, we obtain a commutative diagram

-~

~

A

(3)

(o4
cq —)
=)=
2

Suppose that the kernel of v is representable by an object L, and let L’ I M’ be

the kernel of M’ < N. Then the diagram (3) extends to a commutative diagram

/ 7

0 —s L/ —— M . N —— 0
al lv Jid (4)
~ A % ~
0O —— L —— F — N — 0

(iii) Applying (Ex2°P) to the innflation L’ I M’ and the arrow L <« L/ , we obtain
a commutative diagram

./ ’

r - m . N
ul cocart lu’ lz’d (5)

whose left square is cocartesian and both rows are conflations (cf. C5.3.3).
(iv) The Yoneda functor assigns to the diagram (5) the commutative diagram

0O —— % ]—> M\' e—> N — 0
u l l ' l id (5)
0 —— L % ]\/4\ ; N — 0
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whose rows are (by (i) and (iii) above) exact sequences in the category of sheaves. The
latter implies that the left square of the diagram (5) is cocartesian.
In fact, let

N
j —~
/ M/
| v
j

—— g

)
) )

be a cocartesian square. Applying the argument of (iii) above, we obtain the commutative
diagram

PN
7 -

0 —— I BN M —— N —— 0
2| L
0 —— L % g ., N — 0

with exact rows. Therefore, the canonical morphism G —2 M gives rise to the commutative
diagram

0 —— L LN g SN N — 0
id | | g | id (©)
0 —— E e ]/\4\ e ]/\\7 — 0

of sheaves on (C'x, €x) with exact rows, which shows that G 9. M is an isomorphism.

o~

(v) The commutative diagrams (4) and (5) give rise to the commutative diagram of
sheaves

0O —— E ; ]/\Z ;> ]v — 0
zdl lt l@'d (7)
~ A % ~
0O —— L — F —— N — 0

with exact rows, which implies that M -% Fisan isomorphism.

(vi) By (iii) above, L -+ M —*» N is a conflation. Therefore, the isomorphism (7)
shows also that the functor j% reflects conflations: if 0 — L5 M- N —0isan

exact sequence of sheaves on (Cy, €x), then £L — M —=+ N is a conflation. m

K5.2.1. Note. The canonical embedding Cx x, Cx, of (the argument of) K5.2 is
called the Gabriel-Quillen embedding.

K5.3. Sheafification functor and effaceable presheaves. Recall a standard

construction of a sheafification functor My (X) 2Ny Xe-
Let ‘Hx denote the functor My (X) — My (X) which assigns to every presheaf I of
k-modules the presheaf Hx (F') defined by

Hx (F)(N) = colim(Ker(F(M)—ZF(M xy M))) (8)
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where colimit is taken by the diagram €x(N) of deflations M — N. The morphisms

e (N)
F(N) — Ker(F(M)==F(M x x M) determine a morphism F(N) —— Hx (F)(N) for

every N € ObCx which is functorial in N; i.e. it defines a functor morphism F % Hx (F).
The function F'+—— 7p is a functor morphism Id 4, (x) s Hx (F).

A presheaf F on (Cx,€x) is a monopresheaf if for every deflation M —— N, the

morphism F(N) O g (M) is a monomorphism. There are the following facts:

(a) A presheaf of k-modules F' is a monopresheaf (resp. a sheaf) iff the canonical
morphism F -5 Hx (F) is a monomorphism (resp. an isomorphism).

(b) The functor H x maps every presheaf of k-modules F' to a monopresheaf and every
monopresheaf to a sheaf.

It follows that the functor H% maps presheaves to sheaves and its corestriction to the
subcategory Cx, of sheaves of k-modules is isomorphic to the sheafification functor t%.
Or, what is the same, H% =~ tx.th.

Another consequence of (a) and (b) is that the kernel of t% coincides with the kernel
of the functor Hx. It follows from the formula (8) that a presheaf F' belongs to the kernel
of Hx iff it is effaceable. The latter means that for every pair (N, &), where N € ObCx
and ¢ is an element of F(N), there exists a deflation M —— N such that F(e)(¢) = 0.

Equivalently, for any object N of C'x and any morphism N-SF , there exists a deflation

M — N such that the composition of M~ N and E equals to zero.

*

Thus, objects of the kernel Sg, of the sheafification functor My (X) X, Cx,. are
precisely effaceable presheaves. Since the functor j% is a flat localization, S¢, is a Serre
subcategory of the category My (X), and the category of sheaves Cx, is equivalent to the
quotient category My (X)/Se, .

K5.4. Proposition. Let (Cx,Ex) and (Cy,Ey) be svelte exact k-linear categories

%)
and (Cx,Ex) —— (Cy,Ey) a right ’exact’ k-linear functor. Then there exists a functor

Cx, ., Cy, such that the diagram

*

CXL)CY

i | | i

Cx

*

@

¢ CY@

quasi commutes, i.e. ©*j% ~ iy ¢*. Here Cx 2x, Cx, and Cy v, Cy, are Gabriel-
Quillen embeddings. The functor ¢* is defined uniquely up to isomorphism and has a right
adjoint, Q.
Proof. (i) If the functor ¢* is right ’exact’, then the functor
Mp(Y) —— Mp(X), Fr—Foy,
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maps sheaves on the pretopology (Cy, €y ) to sheaves on (Cx, €x); in particular, it induces

go
a functor Cy, —— Cx,.
In fact, for any arrow M — N of €x, consider the decomposition

p"(M[[M) —— " (M) ] ¢ (M) ¢" (M) — ¢*(N) (1)
(V)

of the diagram
(M [ M) = " (M) — ¢*(N) (2)

Since the right and the left arrows of the diagram (1) belong to €y, for any sheaf § on
(Cy, €y) the diagram

Fo"(N) —— Je" (M) S §(¢" (M) [] ¢«
p*(N)

is exact and the morphism

is a monomorphism. Therefore, the diagram

T (N) —— Fo" (M) - §e" (M [ M)

is exact. This shows that Fp* is a sheaf on the pretopology (Cx, €x).
(ii) The functor ¢, has a left adjoint, ¢*. It follows that ¢*j% ~j} ¢*. n

K5.4.1. Note. Even if the functor ¢* is ’exact’, the functor Cx, LA Cy, need not
to be (left) exact. For instance, let (Cx,Ex) (resp. (Cy,Ey)) be the exact category of
projective A-modules (resp. B-modules) of finite type, and ¢* the functor M — B®4 M

corresponding to an algebra morphism A — B. Then the category Cx, is naturally

B®
identified with A — mod and the functor ¢* with A — mod 2 B—mod. Therefore, the

functor ¢* is exact iff the algebra morphism A — B turns B into a flat right A-module.

K5.5. The Gabriel-Quillen embedding and the smallest abelianization of
an exact category. Fix an exact k-linear category (Cx,Ex). Con81der the category

A x ¢ whose objects are fully faithful exact k-linear functors (Cx, & <) = (Cy, Sy) such
that C'y is an abelian k-linear category with the canonical exact structure, j* reflects
exact sequences, and C' X 1s closed under extensions 1n C’y A morphism between two such
embeddings, (Cx,Ex) -— (Cy,&y) and (CX,SX) (C’Z,Sz) is a pair (g*, «), where

g* is a functor Cy — Cz and « a functor isomorphism ¢*j* — €*. The composition is
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defined naturally. Let 2% ¢ denote the subcategory of 2 x ¢ whose objects are (Cx, £x) 2
(Cy,Ey) such that the category Cy has small coproducts and morphisms are pairs (g*, a)
such that the functor g* has a right adjoint.

K5.5.1. Proposition. Let (Cx,Ex) be an e:mct k-linear category.

(a) The Gabriel-Quillen embedding (C’X,SX) = (Cxe,Exe), 15 a final object of the
category A ¢. Here Ex, is the canonical exact structure of the abelian category Cx, ,
(b) The category Ux ¢ has an initial object.

Proof. (a) The assertion follows from K5.3.

(b) Let C'x, gy be the smallest full abelian subcategory of the category C'x, containing
(the image of) C'x. Its obJects are kernels and cokernels (taken in Cx, ) of (pairs of) arrows

in Cx. The embedding C'x Ja, Cx,(e) 1s an initial object of the category Ax ¢. =

K5.5.2. Example. If £ = S)Sfl = {split exact sequences}, then Cx, coincides with
the category My (X) of presheaves of k-modules on Cx, hence Cx_(g) is the smallest
abelian subcategory of My (X) containing the image of Cx.

K6. The Karoubian envelope.

K6.1. Proposition (Karoubi). Let Cx be an additive k-linear category.
(a) There exists a Karoubian additive k-linear category Cx,. and a fully faithful k-

ﬁ*
linear functor Cx — Cx, such that any k-linear functor from Cx to any Karoubian

*

k-linear category factors uniquely up to a natural isomorphism through Cx — Cx,. .
(b) Every object of Cx, is a direct summand of an object in R (Cx).

Proof. Objects of the category Cx, are pairs (M,p), where M is an object of the
category Cx and M -2~ M is an idempotent endomorphism, i.e. p? = p. Morphisms
(M,p) — (M "'p’) are morphisms M L M’ such that fr= f p'f. The composition
of (M,p) — (M’,p") and (M’,p) (M",p") is (M,p) 25 (M”,p ). It follows from
this definition that (M, p) == (M,p) is the identical morphism.

The category Cy,. is additive with (M, p)& (M',p') = (M &M’ p@p’), and an object
(M, p) is a direct summand of R (M) = (M, id,,), because

(M,p)® (M,id,, —p) = (M &M,p& (id,, —p)) — (M,id,,).

id
Here the isomorphism corresponds to the identical morphisms M 25 M <2 M.

R*
The functor Cx — Cx, assigns to every object M of Cx the object (M,id,,). It is
fully faithful. A k-linear functor Cx x, Cz to a Karoubian category Cz gives rise to a

functor Cx LNy z which assigns to every object (M, p) of the category Cx, the kernel
of F(id,, — p). It follows that Fx o 8% =~ F. In particular, for every additive functor
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Cx x, Cy, there exists a natural functor C'x L, Cx, such that the diagram
F
Cx —— Cy
8 | | &
CXK E— CXK

quasi-commutes. The map F —— Fj defines a (pseudo) functor from the category of
additive categories to the category of Karoubian categories which is a left adjoint to the
inclusion functor. This implies, in particular, the universal property of the correspondence
C X = C Xp- 1

The category Cx, in K6.1 is called the Karoubian envelope of the category C'x.

K6.2. Proposition. Let (Cx,Ex) be an exact category. The Karoubian envelope
Cx, has a structure of an exact category, Ex, whose conflations are direct summands of
conflations of €.

Proof. Consider the Gabriel-Quillen embedding C'x %, Cx,. The category Cx,

is abelian, hence Karoubian. It follows from K6.1 that the functor j% factors through
R*
Cx —= Cx,, i.e. there exists a canonical morphism Cx, — Cx, which induces an

equivalence between the category Cx, and the full subcategory of C'x, whose objects
are all direct summands of objects of j% (Cx) (see the argument of K6.1). Since the
subcategory j% (Cx) is closed under extensions in Cx,, the image of Cx, in Cx, has the
same property. In fact,let 0 — L — M — N — 0 be an exact sequence in Cx,
such that L @ L' and N & N’ are isomorphic to objects of j% (Cx) for some objects L’
and N’ of Cx,. Since the subcategory j% (Cx) is closed under extensions in C'x, and the
sequence 0 — LHL' — ML &N’ — N&N’' — 0 is exact, the object M @ L' & N’
is isomorphic to an object of j% (Cx ). This shows that M is a direct summand of an object
of j%(Cx) and that any exact sequence 0 — L — M — N — 0 in Cx, whose
objects belong to the image of Cx, is a direct summand of an image of an image of a
sequence in £. The assertion follows now from K5.1. m

K7. Injective and projective objects of an exact category. An object M of
a k-linear exact category (Cx,Ex) is projective if Cx(M,—) is an ’exact’ functor from
(Cx,Ex) to k — mod. Injective objects are defined dually — they correspond to projective
objects of the dual exact category (C¥F,EY).

Let PB(X, Ex) denote the full subcategory of the category C'x generated by projective
objects of (C'x, Ex). It follows that any deflation N — P such that P is a projective object
splits. In particular, the subcategory B(X,Ex) is closed under extensions in (Cx,Ex);
ie. P(X,Ex) is a fully eract subcategory of (Cx,Ex). The exact structure induced on
PB(X, Ex) is the smallest one: it consists of split conflations.

Similarly, the full subcategory J(X, Ex) of Cx generated by injective objects is a fully
exact subcategory of (Cx,Ex).

K7.1. Proposition. Let (Cx,Ex) and (Cy,Ey) be exact k-linear categories and

Cx ELN Cy a k-linear functor having a right adjoint. If f. is an ’exact’ functor from
(Cx,Ex) to (Cy,Ey), then its right adjoint maps injective objects to injective objects.
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Dually, if f« has a left adjoint functor, then the latter maps Ey -projective objects to
Ex -projective objects.

Proof. Let Cy 7, Cx be a right adjoint to the functor f.. For any conflation
E € Ex and any Ey-injective objects M, the sequence Cy (f.(FE), M) is exact, because, by
hypothesis, f. is an ’exact’ functor. Therefore, the sequence Cx (E, f'(M)) is exact, i.e.
f'(M) is an Ex-injective object. m

K7.1.1. Remark. Notice by passing that a right (or left) adjoint to a k-linear functor

is a k-linear functor. In fact, let Cy AN Cx be a right adjoint to a k-linear functor f,.
Then we have a commutative diagram of bifunctors

Cy(— o) e Ox(F () F ()

| 6 | 1.
i

whose right vertical arrow is a k-module morphism because the functor f. is k-linear.
Its left vertical (resp. the lower horizontal) arrow is a k-module morphism because it
is the composition from the left (resp. from the right) with the adjunction morphism
fuft =1 dcy, . The composition of the right vertical and lower horizontal arrow is an
adjunction isomorphism. Since it is a k-module isomorphism, its inverse is a k-module
isomorphism too. Therefore, the upper horizontal arrow is a k-module morphism, which
proves that f'is a k-linear functor.

K7.2. Exact categories with enough projectives or/and injectives. An exact
category (C'x,Ex) has enough projectives (resp. enough injectives) if for every object M
of Cx, there exists a deflation P — M (resp. an inflation M — P), where P is a
projective (resp. injective) object of (Cx,Ex).

K7.2.1. Proposition. Let (Cx,Ex) S, (Cy, &) be an ’exact’ functor which re-

flects inflations and has a right adjoint, Cy AR Cx (resp. a left adjoint). Suppose that Ey
consists of split sequences. Then (Cx,Ex) has enough injective (resp. projective) objects.

Proof. If &y consists of split sequences, then every object of Cy is injective (and

projective). Therefore, by K7.1, every object f'(M), M € ObCy, is Ex-injective. For
n(M)

every M € ObCy, the adjunciton arrow M —— f'f,(M) belongs, by hypothesis, to the

class Mx of inflations of (Cx,Ex), because f.(n(M)) is a split monomorphism. =

K8. Suspended and cosuspended categories. Suspended categories were intro-
duced in [KeV]. In a sequel, we shall mostly use their dual version — cosuspended categories.
They are defined as follows.

K8.1. Definitions. A cosuspended k-linear category is a triple (Cx, 0x,Try ), where

Cx is an additive k-linear category, f0x a k-linear functor Cx — Cx, and Try is a class
of sequences of the form

Ox(L) N - M5 L (1)
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called triangles and satisfying the following axioms:
(SP0) Every sequence of the form (1) isomorphic to a triangle is a triangle.
id
(SP1) For every M € ObC%, the sequence 0 — M —% M — 0 is a triangle.
(SP2) If 0x(L) % N - M % L is a triangle, then

—0x (u) w v

Ox (M) —— 0x(L) N M

is a triangle.
(SP3) Given triangles 0x(L) — N — M -~ L and 0x(L') == N’ = M' *> L'
and morphisms L — L’ and M B M’ such that the square

L —— M

°| L8

/7
u

L/ - M/
commutes, there exists a morphism N 2, N’ such that the diagram

L e—— M «—— N «—— 6L

o | | 5 | | 6x(@)

I M N e ge(L)
commutes.

(SP4) For every pair of morphisms M — L and M’ -+ M, there exists a commu-
tative diagram

L —— M —— N < 9L
1d T T x T Y T 1d
L o 0x(L)

S

id —~

:—’:_/ '
M —— M —— 6x(M)
]

0x(v)
Ox(M) «—— 0x(N)

whose two upper rows and two central columns are triangles.

K8.2. Suspended categories. A suspended k-linear category is defined dually;
ie. it is a triple T, Cx = (C’x,ﬁx,Tr;), where Cyx is an additive k-linear category, fx a
k-linear functor C'y — C'¢, and TT%L is a class of sequences of the form

L% M- N -5 0x(L) (2)
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such that the dual data is a cosuspended category.

K8.3. Triangulated categories and (co)suspended categories. A suspended
category T4 Cx = (Cx,0x,Tr}) (resp. a cosuspended category T_Cx = (Cx,0x,Try)) is
a triangulated category iff the translation functor 6y is an auto-equivalence.

K8.4. Properties of cosuspended and suspended categories. The following
properties of a cosuspended category T_Cx = (Cx,0%,Try)) follow directly from the
axioms:

(a) Every morphism M — L of Cx can be embedded into a triangle

Ox(L) - N - M -5 L.

(b) For every triangle (L) — N —» M - L. the sequence of representable
functors

C}c(—,’u}) C;{(—,’U) C;{(—,u)
e T 035(—7035(L)) —_— C%(—,N) — ng(—,M) —_— Cge(—,L) (3)

is exact. In particular, the compositions u o v, vow, w o Ox(u) are zero morphisms.
(c) If the rows of the commutative diagram

I «— M < N 2 9x(L)

o | s |+ X

/ / /
u

I o M N T gL
are triangles and the two left vertical arrows, a and [, are isomorphisms, then v is an
isomorphism too (see the axiom K8.1 (SP3)).
(d) Direct sum of triangles is a triangle.
(e) If Ox(L) =% N - M % L, is a triangle, then the sequence

Ox(L) % N - M — 0

is split exact iff u = 0.

(f) For an arbitrary choice of triangles starting with u, x and zu in the diagram K8.1
(SP4), there are morphisms y and ¢ such that the second central column is a triangle and
the diagram commutes.

If T_Cx = (Cx,0x%,Try)) is a triangulated category, i.e. the translation functor Ox
is an auto-equivalence, then, in addition, we have the following properties:

(g) A diagram 0x(L) — N — M - L, is a triangle if (by (SP2), iff)

—0x (w) w v

Ox(M) —— 0x(L) N M

is a triangle.
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v

(h) Given triangles Ax(L) -+ N -+ M - L and 0x(L') N M
and morphisms M P M and N 5 N’ such that the square

N — M

vl lﬁ

/7
v

N/ N M/
commutes, there exists a morphism L —— L’ such that the diagram

L — M — N P 0x(L)

o s v [

’ ’ ’
u v

L' e—— M «—— N «—— (L
comimutes.

(i) For every triangle fx(L) — N ——» M — L, the sequence of corepresentable
functors

C%(wv_) C%(vv_) Cx(uv_)
e Cx(0x(L),—) «—— Cx(N,—) «—— Cx(M,—-) «—— Cx(L,—) (3°)

is exact.

K8.5. Triangle functors. Let T_Cx = (Cx,0x,1ry) and T_Cy = (Cy, 0y, Try)
be cosuspended k-linear categories. A triangle k-linear functor from T_Cx to T_Cy is
a pair (F,¢), where F' is a k-linear functor Cx — Cy and ¢ is a functor morphism

g o ' — F o fx such that for every triangle 6x(L) NS5 M-S L oof T_Chx, the
sequence

Oy (F(L)) ~ s P(N) s F(M) —— " F(L)

is a triangle of ¥_Cy. It follows from this condition and the property K8.4(b) (applied
to the case M = 0) that ¢ is invertible. The composition of triangle functors is defined
naturally: (G,¢)o (F,¢) = (Go F,G¢oyF).

If (F,¢) and (F’,¢") are triangle functors from T_Cx to _Cyp. A morphism from

(F,¢) to (F',¢") is given by a functor morphism F’ X, F’ such that the diagram

¢
HQOF —_— FOQ}:

oy | | A0z
/ d)/ /
9@ ol — Fo 0%
commutes. The composition is the compsition of the functor morphisms.
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Altogether gives the definition of a large bicategory ‘/Svtk formed by cosuspended k-
linear categories, triangle k-linear functors as 1-morphisms and morphisms between them
as 2-morphisms. Restricting to svelte cosuspended categories, we obtain the bicategory
Tty .

We denote by TN‘ck (resp. by Try) the full subbicategory of ﬁk whose objects are
triangulated (resp. svelte triangulated) categories.

Finally, dualizing (i.e. inverting all arrows in the constructions above), we obtain the

~—+
large bicategory Tr; of suspended categories and triangular functors and its subbicategory
‘Zt,j whose objects are svelte suspended categories. Thus, we have a diagram of natural
full embeddings

—~+ — —_~—

T, «— Ty, —— T

| | |

Sﬁ — Sty —— T

(F.¢)
K8.6. Triangle equivalences. A triangle k-linear functor T_Cx —— T_Cy is

(G4)
called a triangle equivalence if there exists a triangle functor T_Cy ——— T_Cx such that

the compositions (F, ¢) o (G,1) and (G, ) o (F, ¢) are isomorphic to respective identical
triangle functors.
It follows from K7.1.1 that the quasi-inverse triangle functor (G, ) is k-linear.

K8.6.1. Lemma [Kel]. A triangle k-linear functor (F,¢) is a triangle equivalence
iff ' is an equivalence of the underlying categories.

K9. Stable and costable categories of an exact category. Let Cx be a k-linear
category and B its full subcategory. The class Jp of all arrows of C'x which factor through
some objects of B is an ideal in HomCx. We denote by B\Cx, or by Cp\ x the category
having same objects as Cx; its morphisms are classes of morphisms of C'x modulo the
ideal J3, that is two morphisms with the same source and target are equivalent if their
difference belongs to the ideal J3.

We are particularly interested in this construction when (C'x,Ex) is an exact k-linear
category and B is the fully exact subcategory of Cx generated by £x-projective or Ex-
injective objects of (Cx,Ex). In the first case, we denote the category B\Cx by Cs_x
and will call it the costable category of (Cx,Ex). In the second case, the notation is Cs | x
and the name of this category is the stable category of (Cx,Ex).

K9.1. Example. Let Cx be an additive k-linear category endowed with the smallest
exact structure £37 : (cf. K2.1). Then the correponding costable category is trivial: all its
objects are isomorphic to zero.

K9.2. Exact categories with enough projectives and their costable cate-
gories. Let (Cx,Ex) be an exact k-linear category with enough projectives; i.e. for each
object M of Cx, there exists a deflation P — M, where P is a projective object. Then
the costable category Cs_x of (Cx,Ex) has a natural structure of a cosuspended k-linear
category defined as follows. The endofunctor fs_x assigns to an object M the (image
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in Cg_x of) the kernel of a deflation P — M, where P is a projective object. For

any morphism L LM , the morphism 0g_ x(f) is the image of the morphism A in the
commutative diagram
s x(L) —— P, —— L

a3 N

1 /

bs_x(M) —— Py —— M
A standard argument shows that objects fg_x (L) are determined uniquely up to

isomorphism and the morphism 0s_x(f) is uniquely determined by the choice of the
objects g _x (L) and Og_x(M).

With each conflation N —— M —* L of (Cx,Ex), it is associated a sequence

6} j e
Os_ x(L) N M L

called a standard triangle and determined by a commutative diagram

Os_x(L) L P ; L
I PR
N M

The morphism g here exists thanks to the projectivity of P;. The connecting morphism

o ~
0s_x(L) —— N is, by definition, the image of 0.
Triangles are defined as sequences of the form 6g_x(L’) OLN I
which are isomorphic to a standard triangle.

K9.2.1. Proposition ([KeV]). For any ezxact k-linear category (Cx,Ex) with
enough projectives, the triple T_Cs_x = (Cs_x,0s_x,%ts_x) constructed above is a
cosuspended k-linear category.

If (Cx,Ex) is an exact category with enough injectives, then the dual construction
provides a structure of a suspended category on the stable category Cs, x of (Cx,Ex).

K9.2.2. The case of Frobenius categories. Recall that an exact category
(Cx,Ex) is called a Frobenius category, if it has enough injectives and projectives and
projectives coincide with injectives.

K9.2.1. Proposition. If (Cx,Ex) is a Frobenius category, then its costable co-
suspended category T_Cg_x and (therefore) the stable suspended category T, Cs, x are
triangulated, and are triangular equivalent one to another.

Proof. 1t is easy to check that if (C'x,Ex) is a Frobenius category, then the translation
functor fg_ x is an auto-equivalence of the category C's_ x. The rest follows from this fact.
Details are left to the reader. m
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K9.3. Proposition. Let (Cx,Ex) and (Cy,Ey) be exact k-linear categories with

*

enough projectives. Every ‘exact’ k-linear functor (Cx,Ex) —— (Cy,Ey) which maps
T_f
projectives to projectives induces a triangle k-linear functor T _Cs_x —— T _Cs_y

between the corresponding costable cosuspended categories.
Proof. The argument is left to the reader. m

K9.3.1. Corollary. Let (Cx,Ex) and (Cy,Ey) be exact k-linear categories with
enough projectives and

fr fa
(Cx,Ex) —— (Cy, &) — (Cx,Ex)

a pair of ’exact’ functors such that f* is k-linear and a left adjoint of f.. Then the functor

f* induces a triangle k-linear functor _Cs x —— ST_Cs vy between the corresponding
costable cosuspended categories.

Proof. By K7.1, the functor f* maps projective objects of (Cx,Ex) to projective
objects of (Cy,&y). The assertion follows now from K9.3. m

K10. Complements.

K10.1. Admissible morphisms. Let (Cx,£x) be an exact k-linear category with
the class of inflations M and the class of deflations Ex. We call arrows of MMy o Ex
admissible. In general, the class of admissible morphisms is not closed under composition.

K10.1.1. Lemma. Suppose that for any pair of arrows L JoM T of Mx,
there exists a cartesian square

j//
e

14

M L
i | | (1)
L —— M
Then the class of admissible arrows is closed under composition.
Proof. (i) Notice that if (1) is a cartesian square with j € 9y 3 j', then the remaining
two arrows, )" and j, belong to M x too. In fact, the arrows j” and j are (strict) monomor-

phisms in any category. The Gabriel-Quillen embedding, preserves cartesian squares, maps
arrows of My to monomorphisms, and reflects monomorphisms to arrows of MMy .

(ii) It suffices to show that €x o Mx C Mx o Ex. Let L —1 M be a morphism of
My and M — N a morphism of €x. Then we have a commutative diagram

0 — Ker(®) — L —s M —— 0

i Rl |7 2)

0 — Ker¢) — M —— N —— 0



with exact rows. Its left square is cartesian and formed by arrows of 9x. The morphism

L - M’ is a cokernel of I in particular, belongs to €x. The existence of the right

vertical arrow in (2), M’ SN , follows from the exactness of the rows. Applying the
Gabriel-Quillen embedding, j%. to the diagram (2), we reduce to the case of an abelian
category with the canonical exact structure. One can see that j% (') is a monomorphism.
Therefore, j’ is an arrow of M x. Thus, we obtain the equality e oj = j’ o'e, where )’ € My
ande€ Cx. m

K10.1.2. Remarks. (a) If the condition of K10.1.1 holds, then the dual condition

holds for deflations. In fact, let N’ LM N be a pair of arrows of €x. So that we

have exact sequences 0—L 2 M-*+N —0and 0 — L2 M-+ N —0.
By hypothesis (and the part (i) of the argument above), there is a cartesian square

Z; L

jl/ J/j/
L —— M

with all arrows from 9 x. Since joj” € My, there is an exact sequence

~ joj” e1 ~

0 L M N 0.

By the universal properties of cokernels, there exists a commutative square

M — N

¢ | | e 3)

['4 ~

N  —— N

with arrows ¢’ and ¢ uniquely determined by the equalities ¢’ oe = ¢; = ¢o¢’. Since
¢1 € €y, it follows, by a property of exact categories, that ¢ and ¢ are arrows of Ex. It
is easy to see that the square (3) is cocartesian.

(b) The assumption of K10.1.1 holds for exact categories associated with quasi-abelian
categories (discussed shortly in K10.2 below), because in quasi-abelian categories all fibred
products and coproducts exist, M x is the class of all strict monomorphisms, and a pull-
back of a strict monomorphism is a strict monomorphism.

K10.1.3. Proposition. Suppose the condition of K10.1.1 holds. Then the class of
all admissible morphisms of the exact category (Cx,Ex) forms the largest abelian exract
subcategory, Cx_ (), of (Cx,Ex).

g
Proof. Let M —— N be a pair of morphisms of C'x. Their sum is the composition of
h
the arrows
A gbh tn
M — M®M —— N&N —— N, (4)
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where Ay is the diagonal morphism and +, is the codiagonal morphism. Since the com-
position of Aj; and any of projections M @& M — M is the identical morphism, Ay, € 9.
Dually, +, belongs to €x. If both g and h are admissible arrows, then g & h is admissi-
ble. Therefore, in this case, g + h is the composition of admissible morphisms. Under the
condition of K10.1.1, the composition of admissible morphisms is an admissible morphism.
The subcategory Cx_(g) has same objects as Cx. Therefore, since the category Cx is
additive, Cx,(g) is additive too. It is quasi-abelian, because every admissible morphism
has a kernel and a cokernel. An admissible arrow is a monomorphism iff it belongs to M x.
Since all arrows of M x are strict monomorphisms, an inflation is an epimorphism iff it
is an isomorphism. Altogether means that Cx_(g) is an abelian subcategory. The exact
structure £x induces the canonical exact structure on the subcategory Cx_(g). It follows
that any other abelian exact subcategory of (Cx,Ex) is formed by admissible arrows, i.e.
it is contained in Cx (g). m

K10.1.4. Example: the category of torsion-free objects. Let (Cx,Ex) be an
exact k-linear category. Let 7 be a full subcategory of Cx such that if M’ — M is an
inflation and M € ObT, then M’ is an object of 7 too. In particular, the subcategory 7
is strictly full. Let C'x, denote the full subcategory of C'x generated by all 7 -torsion free
objects; i.e. objects N such that the only inflation L — N with L € Ob7T is zero.

K10.1.4.1. Lemma. Suppose that for any pair L' — L «— L" of inflations of
(Cx,Ex), there exists a pull-back L' x 1 L". Then the subcategory Cx., of T -torsion free
objects is closed under extensions. In particular, Cx ., is an exact subcategory of (Cx,Ex).

Proof. Let M' - M — M" be a conflation with M’ € ObCx.,. Let L — M be
an inflation with L € Ob7. Then we have a commutative diagram
j/ e/
L/ - L - L//

| | | )

M/ ;) M ;) M/l
whose left square is cartesian and the both rows are conflations.

In fact, by K10.1.2(a), all arrows of the left square are inflations. The arrow ¢’ is the
cokernel of j’. Tt follows from the argument of K10.1.3 (or direct application of the Gabriel-
Quillen embedding and the corresponding fact for abelian categories) that the remaining
(right) vertical arrow is an inflation too. Since L’ € ObT and M’ is T-torsion free, it
follows that L’ = 0 therefore ¢’ is an isomorphism. Therefore, if M is also 7-torsion free,
then L” = 0 which implies that L = 0. This shows that if the ends of a conflation are
T -torsion free, same holds for the middle. m

K10.2. Quasi-abelian categories. A quasi-abelian category is an additive category
C'x with kernels and cokernels and such that every pullback of a strict epimorphism is a
strict epimorphism, and every pushout of a strict monomorphism is a strict monomorphism.

It follows from definitions that the pair (Cx, &), where & is the class of all short
exact sequences in C'y, is an exact category.
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Every abelian category is quasi-abelian.

K10.2.1. Proposition. Let C'x be a quasi-abelian category. There exist two canoni-
cal fully faithful functors Cox <« Cx — Cwmx of Cx into abelian categories which preserve
and reflect exactness. Moreover, the category Cx s stable under extensions in these em-
beddings. The category Cx is closed under taking subobjects in Ceox and every object of
Cex is a quotient of an object of Cx. Dually, Cx s closed under taking quotients in Cxx
and every object of Crx 1s a subobject of an object of Cx.

Proof. See [Sch, 1.2.35, 1.2.31]. =

K10.2.2. Quasi-abelian categories and torsion pairs. Let C'x be a quasi-abelian
category, and let (7, F) be a torsion pair in Cx. That is 7 and F are full subcategories
of Cx such that F C 7+ and Cx = T e F. The latter means that every object M of Cx
fits into an exact sequence

0— M 1 M- M'—0 (1)

with M’ € T and M"” € ObF. Notice that the exact sequence (1) is unique up to isomor-
phism. In fact, if N L Misa morphism and N € ObT, then eo f = 0, hence f factors

uniquely through the monomorphism M’ —— M.
This implies, in particular, that 7 is closed under taking quotients (in C'x ) and, dually,
F is closed under taking strict subobjects.

The assignments M —— M’ and M —— M" in (1) extend to functors C'x T T and
Cx T, F which are resp. a right and a left adjoint to the inclusion functors 7° 2z, Cx

and F 2%, Cx. By [GZ, 1], the categories 7 and F have all types of limits and colimits
which exist in the category C'x given by the formulas

Im® = jr,(lim(j7 0 ®)) and colim® = jr.(colim(jzT o D)) (2)

for any small diagram D 2. 7. In particular, 7 has kernels and cokernels given by
Cokert = Cokerc, and Kerr = jr.(Kery). Similarly for F.

A torsion pair (7,F) in Cx is called tilting if every object of Cx is a subobject of
an object of 7. Dually, (7,F) is called a cotilting torsion pair if every object of Cx is a
quotient of an object of F.

K10.2.2.1. Proposition. Let Cx be an additive category. The following conditions
are equivalent.

(a) Cx is quasi-abelian.

(b) There exists a tilting torsion pair (7,F) in an abelian category Cy such that T is
equivalent to C'x .

(c) There exists a cotilting torsion pair (T',F") in an abelian category Cy such that
F' is equivalent to Cx.

Proof. 1t follows from K10.2.1 that Cy = Cxx and Cy = Cgax. See details of the
proof in [BOVdB, B.3]. m
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