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Abstract

It is presented a construction of a fibration on lagrangian tori of
toric Fano varieties, based on considerations of linear subsystems of
divisors of different degrees, which are invariant under the Hamilto-
nian action of certain distinguished functions – symbols. It is shown
that known examples of fibrations (the Clifford fibration, the example
of D. Auroux) are particular cases of the construction. As an applica-
tion one constructs non toric lagrangian fibrations of two dimensional
quadric and the projective space.

Introduction

The lagrangian geometry of algebraic varieties is novadays an important and
interesting problem. An abstract interest to the question which submanifolds
are realized as lagrangian ones with respect to an appropriate Kahler form
of the Hodge type is completed by the specified interest to the same problem
in connection with recently proposed new approaches to Mirror Symmetry
and Geometric Quantization. A programme, proposed by M. Kontsevich and
called Homological Mirror Symmetry suggests certain duality of the derived
categories of sheaves and of lagrangian submanifolds on algebraic varieties –
partners (see [1], [2]). On the other hand, a lagrangian approach to Geometric
Quantization, proposed by A. Tyurin and developed in [3], [4], requires the
solution of the same problem, being applied to any specified algebraic variety.
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Our interest to the lagrangian approach in Geometric Quantization im-
poses the restriction to the case of orientable submanifolds only, therefore
we will speak in what follows about lagrangian tori and their classes modulo
Hamiltonian istopy only. This subject is presented today by a number of
observations and examples. The basic example is given for the case of toric
Fano varieties; for CP2 it is the classical Clifford fibration with the degen-
eration of three lines, whose essence is explained in terms of toric geometry.
Further, in paper [5] one presents first non toric example for CP2 with degen-
eration on a reducible cubic consists of a conic and a line. Beside of this one
refers to a paper of Chekanov and Schlenck about lagrangian tori on CP2,
which is forthcoming but is not published yet.

Intensive studies of the Auroux construction in terms of Hamiltonian
systems lead the authors to another observation which makes it possible to
construct many new examples of lagrangian fibrations of the projective plane
and which can be extended to the higher dimensions and further to the case
of appropriate Fano varieties. The observation itself is rather simple: let one
has on CP2 a Morse real function f and a pencil of curves degree k, such that
the Hamiltonian vector field Xf preserves each curve from the pencil. Then
the chocie of a Morse function on the projective line CP1, parameterizing
the pencil, induces a fibration on CP2, whose generic fiber is lagrangian
torus. This fibration a priori contains singular tori which corresponds to
the isolated critical points of f which do not belong to the base set of the
pencil. The extension to higher dimensions follows the same scheme: let one
has on CPn certain n − 1 Morse functions {f1, ..., fn−1} in involution and
a one dimensional linear subsystem (pencil) in the complete linear system
|kH| of divisors of degree k, such that the Hamiltonian action of each fi
preserves each element of the linear subsystem. Then the choice of a Morse
function h on CP1, parameterizing the pencil, induces a fibration on CPn
without hypersurfaces which corresponds to critical points of function h,
with lagrangian torus as generic fiber. If, moreover, this function h has only
two critical points and the union of these hypersurfaces contains all n − 2 -
planes which form the degeneration set of the polyvector field Xf1∧...∧Xfn−1 ,
then the complement to these hypersurfaces in CPn is completely fibered on
lagrangian tori.

The simplicity of our observation is compensated by difficulties in the
problem of searching desired Morse functions of the projective space, but it
is simplified if one restricts by real functions of special type — the Berezin
symbols. The symbols are the real functions whose Hamiltonian vector fields
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preserve not just the symplectic structure but whole the Kahler structure.
The symbols were introduced by F. Berezin in the quantization problem of
Kahler manifolds as analogies of quantum observables. In the case of CPn
each symbol is given by a self adjoint operator on Cn+1, and a set of n
commuting functionally independent symbols is precisely corresponds to the
choice of a real subtorus in the complex one acting on CPn. In the framework
of toric geometry moment maps are symbols, and at each point below one
could replace ”symbol” by ”moment map”, but in view of further applica-
tions for non toric manifolds we keep the first notion. Restricting ourself
by the considerations of symbols the real Morse functions we simultaneously
simplify the searching problem for linear subsystems which consist of invari-
ant divisors, and the observation itself in the framework of toric geometry
looks as follows: one chooses real n− 1 - and one dimensional subtori in the
complex n -torus and glues these nontoricaly.

The examples, presented in sections 2 and 3 below, possess a mutual
property — we are looking for fibrations on lagrangian tori of a Fano variety
with a canceled element from the anticanonical system. This property is dic-
tated by an interesting conjucture, proposed by D. Auroux in [6]. Namely,
one expects that if a divisor from the anticanonical system, so a cubic curve,
is removed from the projective plane then the resting part can be fibered
on lagrangian tori which are special. Our examples follows the idea of this
conjecture. And although our method of constructing lagrangian submani-
folds doesn’t lead to a construction of a fibration on lagrangian tori of the
projective plane without a smooth cubic curve (or, more generally, a Fano
variety without a smooth element from the anticanonical system), it gives
new non toric examples of lagrangian submanifolds in toric varieties.

Acknowledgements. We would like to thank the Max - Planck - Insti-
tute for Mathematic (Bonn) for the help during the work on the final version
of this text.

1 General construction

Consider CPn, endowed with the standard Fubini – Study metric which in-
duces the standard Kahler form ω. The space C∞(CPn,R) contains a sub-
space of symbols Cq(CPn,R) defined as follows (see [7], [4]): a smooth real
function f , whose Hamiltonian vector field preserves the riemannian metric

LieXfg = 0.
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It’s not hard to see, [7], that in the case of CPn any such function f is
generated by a self adjoint operator F on Cn+1. Under this correspondence
the eigenvectors of F after the projectivization become the critical points of f ,
and the eigenvalues are the critical values. It shows that f is a Morse function
if and only if all the eigenvalues of F are different. Moreover, symbols f1, f2

commute if and only if the corresponding operators F1, F2 do (see [7]). We
will call a symbol degenerated if it has multiple critical values. Below we
will speak about linearly independent symbols.

In terms of symbols the standard Clifford fibration on lagrangian tori of
CPn can be described as follows. Choose in Cq(CPn,R) a maximal commu-
tative subalgebra, generated by symbols f1, ..., fn, and consider the mutual
level sets

T(c1,...,cn) = ∩ni=1{fi = ci}.

Sets of non critical values c1, ..., cn form a convex polytop in Rn, whose facets
carry degenerations of the Clifford fibration — tori of smaller dimensions.

Consider now the complete linear system |kH| of divisors of degree k on
CPn. Any f ∈ Cq(CPn,R) induces a symbol fk on the projective space |kH|.
The critical values of this symbol fk are computed in a simple manner: these
are all possible sums of length k of critical values of our given symbol f .
We are interested in the case when symbol fk is degenerated. Then in |kH|
one has a linear subsystem CPd, consists of invariant with respect to the
Hamiltonian action of fk points. These subsystems are of our interest.

Let’s formulate our main observation:
Theorem 1. Let a set of commuting non degenerated symbols f1, ..., fn−1

preserves the elements of a one dimensional linear subsystem CP1
B with the

base set B in the complete linear system of divisors of certain degree k on
CPn. Then any Morse function h on CP1

B induces an isotropical fibration on
CPn with compact fibers whose generic one is a smooth lagrangian torus.

Proof. Let ∆n ⊂ CPn be the ”degeneration simplex” of the set
{f1, ..., fn−1}, defined as

∆n = {Xf1 ∧ ... ∧Xfn−1 = 0}

which consists of 1
2
(n+ 1)n projective n− 2 - subspaces, spanned on the set

of n+1 mutual critical points of fi. The the invariance of the pencil elements
implies that the base set B of the pencil is contained in ∆n. Moreover, if
the pencil includes singular elements (so reducible divisors or divisors with
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singularities) then all the singularities as well must be contained by ∆n.
Indeed, let an element D ∈ CP1 ⊂ |kH| is reducible so

D = D1 ∪D2, D1 ∩D2 = N 6= ∅.

Then each function fi preserves N , since its preserves both D1 and D2,
therefore the restrictions f1|N , ..., fn−1|N induces a linear independent set of
functions in involution on a symplectic n− 2 - dimensional manifold, and it
implies that N must be contained by ∆n.

Consider the map
φL : CPn −B → CP1,

defined by our pencil. Choose on CP1 a Morse function

h : CP1 → R

with critical points pmax = p1, ....ps = pmin. Then CPn − B carries a set of
functions

f1, ..., fn−1, fn = φ∗Lh,

which commute. Indeed, the map φL is complex and consequently symplectic,
thus the fibers of the map are endowed with a symplectic connection ∇, and
the Hamiltonian vector field of the lifted function φ∗Lh coincides with the
lifting by the connection ∇ of the Hamiltonian vector filed Xh. It shows that
Xψ∗Lh

is symplectically orthogonal to fibers of φL, but by the condition of the
Theorem Xfi is tangent to fibers at each point of CPn − B, which implies
that

ω(Xfi , Xφ∗Lh
) = {fi, ψ∗Lh} = 0

for any i = 1, ..., n− 1 on CPn −B.
Further, denote as Di the fibers of the pencil which correspond to the

critical points of h:
Di = ψ−1

L (pi).

Consider the ”action” map

F = (f1, ..., fn) : CPn −B → Rn. (∗)

Its image ImF ⊂ Rn lies in the direct product

Pn−1 × I, Pn−1 ⊂ Rn−1, I = [minh; maxh] ⊂ R,
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where Pn−1 is a convex polytop, defined as the image of the map

(f1, ..., fn−1) : CPn → Rn−1. (∗∗)

Let us study the fibers of the map. For a set of values (c1, ..., cn), which are
not included by the set

∆n+1 = ImF ∩ ((∂Pn−1 × I) ∪ (∪si=1Pn−1 × [h(pi)])),

the mutual level set
T(c1,...,cn) = {fi = ci}

is a smooth lagrangian torus. Indeed, degenerations of the polyvector field

Xf1 ∧ ...Xfn

on CPn − B form exactly the set ∆h ∪ D1 ∪ ... ∪ Ds, whose image is ∆n+1.
Moreover, for a set of values (c1, ...cn−1), which is not included by ∂Pn−1, the
mutual level set

S(c1,...,cn−1) = {f1 = c1, ..., fn−1 = cn−1}

is a smooth compact manifold of dimension n+1, which does not intersect the
base set B. Thus the function fn is correctly defined as a smooth function on
S(c1,...,cn−1), whose non critical level sets are compact and smooth. Therefore
they are lagrangian tori.

Since ∆n+1 has codimension 1 in ImF the case is generic. In studies of
singular fibers the main question is how to extend the action map (*) to
the base set B. Let PB ⊂ Pn−1 ⊂ Rn−1 be the image of the base set under
the map (**), consists of a set of certain n − 2- dimensional faces of Pn−1.
Then for a set of values (c1, ..., cn−1), belonging to the inner part of PB,
the mutual level set S(c1,...,cn−1) is a smooth isotropical torus of dimension
n = 2. Indeed, over an inner point of PB the rank of the vector system
< Xf1 , ..., Xfn−1 > equals to n − 2, which coincides with the dimension of
the mutual level set, which gives the statement. Our isotropical fibration is
not smooth near B, but however it is correctly defined. Our saddle critical
points of our function h one has singular compact lagrangian tori with self
intersections, and over focal critical points one has isotropical tori of smaller
dimensions. This completes the proof of Theorem 1.

It’s not hard to see that the statement of Theorem 1 remains to be true
for any toric variety if we replace term ”symbol” by more appropriate in toric
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geometry term ”moment map”. As it is shown in subsequent sections the
construction gives non toric lagrangian fibrations of toric Fano varieties.

The most general form of our observation can be given due to a funda-
mental result of S. Donaldson concerning the Lefschetz pencils on symplectic
manifolds with integer symplectic forms, see [8], as follows.

Theorem 2. Let (X,ω) be a simply connected symplectic manifold of
real dimension 2n with integer symplectic form, [ω] ∈ H2(X,Z). Let sections
s1, s2 ∈ Γ(X,Lk) induce a Lefschetz pencil as in [8]. Then any set of first
integrals f1, ..., fn−1, preserving the sections s1, s2 in combination with the
prequantization connection ∇, exploited in [8], such that

∇Xfi
sj = 0, i = 1, ..., n− 1, j = 1, 2,

and any Morse function on the projective line CP1, parameterizing the pen-
cil, induce an isotropical fibration of X, whose generic fiber is a smooth
lagrangian torus.

The proof follows precisely the scheme of the proof of Theorem 1. The
key points are the following. It remains true that the base set of the Lefschetz
pencil

B = (s1)0 ∩ (s2)0

again is contained in the ”degeneration simplex”

∆n = {Xf1 ∧ ... ∧Xfn−1 = 0}.

The map (**) is correctly defined and sends ∆n to the boundary of the
domain Pn−1 ⊂ Rn−1, which is the image of whole X. For a generic set of
values (c1, ..., cn−1 from the inner part of Pn−1 the mutual level set S(c1,...,cn−1)

is a smooth compact manifold. Indeed, all the level sets {fi = ci} are smooth
(since the critical values go to ∂Pn−1) and intersect each other transversally
(since the Hamiltonian vector fields Xfi are linearly independent at each
point of the intersection). Thus the arguments from the proof of Theorem 1
work at this case as well.

2 Examples in dimension 2.

In his batchelor diploma [9] the first author observed an interesting fact: if
a non degenerated symbol f on the projective plane CP2 preserves an irre-
ducible smooth conic Q ⊂ CP2, then it preserves a pencil of conics which
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includes the given one. Due to this one can reproduce the Auroux construc-
tion of non toric lagrangian fibration of CP2 with degeneration at the union
of a conic and a line (see [5]) as follows.

Consider on CP2 a symbol f with critical values (1,−1, 0). Fix the
eigenbasis of the corresponding self adjoint operator in C3 and consider the
corresponding homogeneous coordinates in CP2. Then the pencil of conic
α0z0z1 = α1z

2
2 is an invariant linear subsystem in the complete linear system

|2H| on CP2. The coefficients α0, α1 are homogeneous coordinates on the line
CP1 which parameterized the pencil. Choose the following Morse function
on CP1:

h =
|α0|2

|α0|2 + |aα1 − α0|2
, (1)

where a is a fixed real positive number (compare with [5]). Two its critical
points pmax, pmin with critical values 1 and 0 correspond to non degenerated
conic Q = {z2

2 = az0z1} and double line {z2
2 = 0}. Furthermore, the base set

of the pencil CP1 doesn’t coincide with the set of critical values of f , thus
one has a singular torus T(0,1/2) which is modeled by shrinking a loop to point
on a smooth torus.

Therefore this non toric example of D. Auroux is presented by our con-
struction from section 1.

This example has a simple extension to higher degrees. As it was shown
by the first author in [10], a symbol can not preserve a smooth irreducible
curve of degree greater or equal to 3 in CP2. But it is still possible to consider
a pencil of cuspidal curves of the form

α0z
k
0 + α1z

k−1
1 z2 = 0, (∗)

which are invariant with respect to non degenerated symbol with the critical
values (k− 1, k, 0). The base set of the symbol is the sum of points [0 : 1 : 0]
and [0 : 0 : 1] with multiplicities. The choice of a Morse function on the
line CP1, parameterizing the pencil, makes it possible to construct different
fibrations on tori of CP2. If one takes the Morse function h of the same form,
as it was in the Auroux example, then one gets a lagrangian fibration of CP2

without a reducible curve of degree k+ 1 consists of a line and an irreducible
cuspidal curve of degree k. There is a singular fiber again, which corresponds
to the values

f = k − 1, h = 1/2.
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This singular torus divides the set of smooth fibers on two types — the
Clifford one and the Chekanov one, as it is in the Auroux example from [5].

Let’s consider now the case of non degenerated quadric Q in CP3.
A very simple example of non toric lagrangian fibration ofQ was presented

in [11] and is based on the birational map Q→ CP2 and the Auroux example.
Below this example is generalized by the application of the construction from
section 1.

Consider on CP3 with fixed homogeneous coordinates [z0 : ... : z3] certain
degenerated symbol f with critical values (1,−1, 0, 0) and a non degenerated
quadric given by the equation

Q = {z0z1 + z2z3 = 0}.

It’s easy to see that our quadricQ is invariant with respect to the Hamiltonian
action of f . Therefore the restriction

fQ = f |Q

is a symbol on Q, which is already non degenerated (with isolated critical
points). In the complete linear system of divisors of bi - degree (1, 1) on Q
one has a pencil of hyperplane sections {qα0,α1 ⊂ Q}, given by intersections

qα0,α1 = Q ∩ πα0,α1 ,

where plane πα0,α1 is defined by the equation α0z2 + α1z3 = 0. Each conic
qα0,α1 is invariant with respect to fQ since each plane πα0,α1 is invariant with
respect to symbol f . Thus the choice of a Morse function h on CP1, param-
eterizing the pencil {qα0,α1}, induces a lagrangian fibration of our quadric
Q.

If h has the form (2), then it gives the standard toric fibration with
degeneration on four lines. If one takes h of the form (1) (as in the Auroux
example), it gives non toric fibration from [11] with degeneration on a pair
of lines and a conic which has one isolated singular torus. At the end, if one
takes the function of the form

h =
|α0 + α1|2

|α0|2 + |α1|2
, (3)

then it gives us a non toric fibration on lagrangian tori of the complement
Q− (q1,1 ∪ q1,−1) with two isolated singular fibers.
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3 Examples for CP3.

Using the construction of section 1 one can get non toric lagrangian fibra-
tions of the projective space CP3. Below we place two examples. The first one
presents a lagrangian fibration of the projective space without two smooth
quadrics, and this fibration doesn’t have singular fibers. The second example
is degenerated, it is given by removing from CP3 a plane and a non degen-
erated cubic. Singular tori in this case form a big set, being non isolated.
However this example is useful since it contains deformations of the standard
Clifford fibration of the projective plane.

Let’s fix homogeneous coordinates [z0 : ... : z3] and consider non degener-
ated symbol f with critical values λi at points zi 6= 0, zî = 0. In the complete
linear system of quadrics consider the pencil α0z0z1 + α1z2z3 = 0. Symbol f
preserves the elements of the pencil if and only if the equality holds

λ0 + λ1 = λ2 + λ3.

It’s easy to see that there are two linearly independent non degenerated
symbols which satisfy this condition. For example,

f1 7→ (1,−1, 2,−2), f2 7→ (2,−2,−1, 1).

Now if on the line CP1, parameterizing the pencil, one chooses function h
of the form (2), then one gets the standard Clifford fibration on CP3 with
degeneration on four planes. Consider another function h of the form (3).
Then its critical points pmax, pmin correspond to non degenerated quadrics

Q+ = {z0z1 + z2z3 = 0}, Q− = {z0z1 − z2z3 = 0}.

Note, that the degeneration simplex of the symbols f1, f2 is contained by the
union

∆n−1 = ∆1 ⊂ Q+ ∪Q−.

Indeed, the degeneration simplex consists of six lines, two of which form the
support of the base set of the pencil and the remaining four are divided into
two pairs each of them lies on Q±. It follows that f1, f2 h (3) define a smooth
fibrations on tori of the complement to these two smooth quadrics in CP3.

Next example: consider the pencil of cubic surfaces

CP1 = {α0z
3
0 + α1z1z2z3 = 0}
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in the same coordinates. Consider a pair of symbols: f1 with critical values
(0, 1, 2,−3) and a degenerated symbol f2 with critical values (0, 1, 0,−1)
. It’s not hard to see that both the symbols preserve the elements of the
pencil therefore the choice of a Morse function on CP1 induces a fibration
CP3 without two surfaces h−1(pmax), h

−1(pmin). Function h of the form (2)
gives the standard Clifford fibration, while function h of the form (1) induces
non toric lagrangian fibration on CP3 without plane π0 = {z0 = 0} and
cubic C = {z3

0 + z1z2z3 = 0} (let’s equal the real parameter a in (1) to one
for brevity). Now the degeneration simplex Dn−1 is not contained by the
union π0 ∪C, therefore the induced lagrangian fibration CP3 − (π0 ∪C) has
singular non isolated fibers. For their description it is convenient to make an
additional step. Consider a pencil of projective planes πβ0,β1 passing through
line l = {z0z2 = 0}, such that

π0 = π0,1 ∈ CP1.

It’s easy to see that each plane from the pencil is invariant with respect to
the degenerated symbol f2, therefore the restriction

f2|πβ0,β1 = fβ0,β1

is a symbol on the plane πβ0,β1 . The intersection

C ∩ πβ0,β1 = l ∪Qβ0,β1

is the union of the line l and a smooth conic Qβ0,β1 ⊂ πβ0,β1 except the
boundary cases when βi = 0. If β0 = 0 the conic Qβ0,β1 degenerates to a pair
of lines, when β1 = 0 the conic degenerates to the double line 2l.

It’s not hard to see that the data fβ0,β1 , Qβ0,β1 , l induce a lagrangian fi-
bration of the Auroux type of the plane πβ0,β1 if βi 6= 0. Indeed, the cubic C
and the plane πβ0,β1 both are invariant with respect to the symbol f2, and it
implies that their intersection is invariant with respect to f2 restricted to the
plane πβ0,β1 . This fibration is given by the intersections of the corresponding
lagrangian tori of the fibration of CP3−(π0∪C) with the plane πβ0,β1 . Under
these circumstance 3 - dimensional tori can be reconstructed from these 2-
dimensional tori: the U(1) - action associated to the moment map f1 induces
cyclic motion of points of a non degenerated 2 - torus, such that the union
of the orbits is a 3 - torus. Singular fibers appear if it is taken a singular
2 - torus with singularity at the intersection point of the line z1z3 = 0 and
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the plane πβ0,β1 . In this setup the plane π0,1 is fibered by the Clifford type
fibration, and π1,0 carries a degenerated fibration on lagrangian cilinders of
a projective plane without a single projective line. Therefore the presented
example illustrates the deformations of the Auroux fibration to the standard
Clifford fibration and to the cilindrical one. And the last cilindrical fibration
can be exploited in the framework of the Auroux conjecture as well. The
point is that Auroux would like to use the fact stated in the conjecture for
the following situation: two Fano varieties X1, X2 can be glued along anti-
canonical divisors and then deform to a smooth Calabi – Yau manifold Y .
And doing this one could glue as well special lagrangian fibrations on each
Xi with degenerations on the divisors getting a special lagrangian fibration
of Y . However lagrangian tori on Y can be constructed by gluing of pairs of
lagrangian cilinders, and our last example can be exploited in this way.
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