FORMALITY FOR ALGEBROID STACKS

PAUL BRESSLER, ALEXANDER GOROKHOVSKY, RYSZARD NEST, AND BORIS TSYGAN

ABSTRACT. We extend the formality theorem of M. Kontsevich from deformations of the structure sheaf on a manifold to deformations of gerbes.

1. INTRODUCTION

In the fundamental paper [11] M. Kontsevich showed that the set of equivalence classes of formal deformations the algebra of functions on a manifold is in one-to-one correspondence with the set of equivalence classes of formal Poisson structures on the manifold. This result was obtained as a corollary of the formality of the Hochschild complex of the algebra of functions on the manifold conjectured by M. Kontsevich (cf. [10]) and proven in [11]. Later proofs by a different method were given in [14] and in [5].

In this paper we extend the formality theorem of M. Kontsevich to deformations of gerbes on smooth manifolds, using the method of [5]. Let X be a smooth manifold; we denote by \mathcal{O}_X the sheaf of complex valued C^{∞} functions on X. For a twisted form \mathcal{S} of \mathcal{O}_X regarded as an algebroid stack (see Section 2.5) we denote by $[\mathcal{S}]_{dR} \in H^3_{dR}(X)$ the de Rham class of \mathcal{S} . The main result of this paper establishes an equivalence of 2-groupoid valued functors of Artin \mathbb{C} -algebras between $\mathrm{Def}(\mathcal{S})$ (the formal deformation theory of \mathcal{S} , see [2]) and the Deligne 2-groupoid of Maurer-Cartan elements of L_{∞} -algebra of multivector fields on X twisted by a closed three-form representing $[\mathcal{S}]_{dR}$:

Theorem 6.1. Suppose that S is a twisted form of \mathcal{O}_X . Let H be a closed 3-form on X which represents $[S]_{dR} \in H^3_{dR}(X)$. For any Artin algebra R with maximal ideal \mathfrak{m}_R there is an equivalence of 2-groupoids

$$\mathrm{MC}^2(\mathfrak{s}(\mathcal{O}_X)_H \otimes \mathfrak{m}_R) \cong \mathrm{Def}(\mathcal{S})(R)$$

natural in R.

A. Gorokhovsky was partially supported by NSF grant DMS-0400342. B. Tsygan was partially supported by NSF grant DMS-0605030.

Here, $\mathfrak{s}(\mathcal{O}_X)_H$ denotes the L_{∞} -algebra of multivector fields with the trivial differential, the binary operation given by Schouten bracket, the ternary operation given by H (see 5.3) and all other operations equal to zero. As a corollary of this result we obtain that the isomorphism classes of formal deformations of S are in a bijective correspondence with equivalence classes of the formal *twisted Poisson structures* defined by P. Severa and A. Weinstein in [13].

The proof of the Theorem proceeds along the following lines. As a starting point we use the construction of the Differential Graded Lie Algebra (DGLA) controlling the deformations of S. This construction was obtained in [1, 2]. Next we construct a chain of L_{∞} -quasiisomorphisms between this DGLA and $\mathfrak{s}(\mathcal{O}_X)_H$, using the techniques of [5]. Since L_{∞} -quasi-isomorphisms induce equivalences of respective Deligne groupoids, the result follows.

The paper is organized as follows. Section 2 contains the preliminary material on jets and deformations. Section 3 describes the results on the deformations of algebroid stacks. Section 4 is a short exposition of [5]. Section 5 contains the main technical result of the paper: the construction of the chain of quasi-isomorphisms mentioned above. Finally, in Section 6 the main theorem is deduced from the results of Section 5.

The paper was written while the first author was visiting Max-Plank-Institut für Mathematik, Bonn.

2. Preliminaries

2.1. Notations. Throughout this paper, unless specified otherwise, X will denote a C^{∞} manifold. By \mathcal{O}_X we denote the sheaf of complexvalued C^{∞} functions on X. \mathcal{A}_X^{\bullet} denotes the sheaf of differential forms on X, and \mathcal{T}_X the sheaf of vector fields on X. For a ring K we denote by K^{\times} the group of invertible elements of K.

2.2. Jets. Let $\mathbf{pr}_i: X \times X \to X$, i = 1, 2, denote the projection on the i^{th} factor. Let $\Delta_X: X \to X \times X$ denote the diagonal embedding. Let $\mathcal{I}_X := \ker(\Delta_X^*)$.

For a locally-free \mathcal{O}_X -module of finite rank \mathcal{E} let

$$\begin{split} \mathcal{J}_X^k(\mathcal{E}) &:= (\mathrm{pr}_1)_* \left(\mathcal{O}_{X \times X} / \mathcal{I}_X^{k+1} \otimes_{\mathrm{pr}_2^{-1} \mathcal{O}_X} \mathrm{pr}_2^{-1} \mathcal{E} \right) \ , \\ \mathcal{J}_X^k &:= \mathcal{J}_X^k(\mathcal{O}_X) \ . \end{split}$$

It is clear from the above definition that \mathcal{J}_X^k is, in a natural way, a commutative algebra and $\mathcal{J}_X^k(\mathcal{E})$ is a \mathcal{J}_X^k -module.

Let

$$\mathbf{1}^{(k)} \colon \mathcal{O}_X o \mathcal{J}_X^k$$

denote the composition

$$\mathcal{O}_X \xrightarrow{\operatorname{pr}_1^*} (\operatorname{pr}_1)_* \mathcal{O}_{X \times X} \to \mathcal{J}_X^k$$

In what follows, unless stated explicitly otherwise, we regard $\mathcal{J}_X^k(\mathcal{E})$ as a \mathcal{O}_X -module via the map $\mathbf{1}^{(k)}$.

Let

$$j^k \colon \mathcal{E} \to \mathcal{J}^k_X(\mathcal{E})$$

denote the composition

$$\mathcal{E} \xrightarrow{e \mapsto 1 \otimes e} (\mathrm{pr}_1)_* \mathcal{O}_{X \times X} \otimes_{\mathbb{C}} \mathcal{E} \to \mathcal{J}^k_X(\mathcal{E})$$

The map j^k is not \mathcal{O}_X -linear unless k = 0. For $0 \le k \le l$ the inclusion $\mathcal{I}_X^{l+1} \to \mathcal{I}_X^{k+1}$ induces the surjective map $\pi_{l,k} \colon \mathcal{J}_X^l(\mathcal{E}) \to \mathcal{J}_X^k(\mathcal{E})$. The sheaves $\mathcal{J}_X^k(\mathcal{E}), \ k = 0, 1, \dots$ together with the maps $\pi_{l,k}, \ k \le l$ form an inverse system. Let $\mathcal{J}_X(\mathcal{E}) = \mathcal{J}_X^\infty(\mathcal{E}) := \lim_{k \to \infty} \mathcal{J}_X^k(\mathcal{E})$. Thus, $\mathcal{J}_X(\mathcal{E})$ carries a natural topology.

The maps $\mathbf{1}^{(k)}$ (respectively, j^k), k = 0, 1, 2, ... are compatible with the projections $\pi_{l,k}$, i.e. $\pi_{l,k} \circ \mathbf{1}^{(l)} = \mathbf{1}^{(k)}$ (respectively, $\pi_{l,k} \circ j^l = j^k$). Let $\mathbf{1} := \varprojlim \mathbf{1}^{(k)}, j^{\infty} := \varprojlim j^k$.

Let

$$d_1 \colon \mathcal{O}_{X \times X} \otimes_{\mathrm{pr}_2^{-1} \mathcal{O}_X} \mathrm{pr}_2^{-1} \mathcal{E} \longrightarrow \\ \mathrm{pr}_1^{-1} \mathcal{A}_X^1 \otimes_{\mathrm{pr}_1^{-1} \mathcal{O}_X} \mathcal{O}_{X \times X} \otimes_{\mathrm{pr}_2^{-1} \mathcal{O}_X} \mathrm{pr}_2^{-1} \mathcal{E}$$

denote the exterior derivative along the first factor. It satisfies

$$d_1(\mathcal{I}_X^{k+1} \otimes_{\mathrm{pr}_2^{-1}\mathcal{O}_X} \mathrm{pr}_2^{-1}\mathcal{E}) \subset \mathrm{pr}_1^{-1}\mathcal{A}_X^1 \otimes_{\mathrm{pr}_1^{-1}\mathcal{O}_X} \mathcal{I}_X^k \otimes_{\mathrm{pr}_2^{-1}\mathcal{O}_X} \mathrm{pr}_2^{-1}\mathcal{E}$$

for each k and, therefore, induces the map

$$d_1^{(k)} \colon \mathcal{J}^k(\mathcal{E}) \to \mathcal{A}^1_X \otimes_{\mathcal{O}_X} \mathcal{J}^{k-1}(\mathcal{E})$$

The maps $d_1^{(k)}$ for different values of k are compatible with the maps $\pi_{l,k}$ giving rise to the canonical flat connection

$$\nabla^{can} \colon \mathcal{J}_X(\mathcal{E}) \to \mathcal{A}^1_X \otimes_{\mathcal{O}_X} \mathcal{J}_X(\mathcal{E})$$

2.3. Deligne groupoids. In [4] P. Deligne and, independently, E. Getzler in [8] associated to a nilpotent DGLA \mathfrak{g} concentrated in degrees grater than or equal to -1 the 2-groupoid, referred to as *the Deligne* 2-groupoid and denoted $MC^2(\mathfrak{g})$ in [1], [2] and below. The objects of $MC^2(\mathfrak{g})$ are the Maurer-Cartan elements of \mathfrak{g} . We refer the reader to [8] (as well as to [2]) for a detailed description. The above notion was extended and generalized by E. Getzler in [7] as follows.

To a nilpotent L_{∞} -algebra \mathfrak{g} Getzler associates a (Kan) simplicial set $\gamma_{\bullet}(\mathfrak{g})$ which is functorial for L_{∞} morphisms. If \mathfrak{g} is concentrated in degrees greater than or equal to 1 - l, then the simplicial set $\gamma_{\bullet}(\mathfrak{g})$ is an *l*-dimensional hypergroupoid in the sense of J.W. Duskin (see [6]) by [7], Theorem 5.4.

Suppose that \mathfrak{g} is a nilpotent L_{∞} -algebra concentrated in degrees grater than or equal to -1. Then, according to [6], Theorem 8.6 the simplicial set $\gamma_{\bullet}(\mathfrak{g})$ is the nerve of a bigroupoid, or, a 2-groupoid in our terminology. If \mathfrak{g} is a DGLA concentrated in degrees grater than or equal to -1 this 2-groupoid coincides with $\mathrm{MC}^2(\mathfrak{g})$ of Deligne and Getzler alluded to earlier. We extend our notation to the more general setting of nilpotent L_{∞} -algebras as above and denote by $\mathrm{MC}^2(\mathfrak{g})$ the 2-groupoid furnished by [6], Theorem 8.6.

For an L_{∞} -algebra \mathfrak{g} and a nilpotent commutative algebra \mathfrak{m} the L_{∞} -algebra $\mathfrak{g} \otimes \mathfrak{m}$ is nilpotent, hence the simplicial set $\gamma_{\bullet}(\mathfrak{g} \otimes \mathfrak{m})$ is defined and enjoys the following homotopy invariance property ([7], Proposition 4.9, Corollary 5.11):

Theorem 2.1. Suppose that $f: \mathfrak{g} \to \mathfrak{h}$ is a quasi-isomorphism of L_{∞} algebras and let \mathfrak{m} be a nilpotent commutative algebra. Then the induced map

 $\gamma_{\bullet}(f \otimes \mathrm{Id}) \colon \gamma_{\bullet}(\mathfrak{g} \otimes \mathfrak{m}) \to \gamma_{\bullet}(\mathfrak{h} \otimes \mathfrak{m})$

is a homotopy equivalence.

4

2.4. Algebroid stacks. Here we give a very brief overview, referring the reader to [3, 9] for the details. Let k be a field of characteristic zero, and let R be a commutative k-algebra.

Definition 2.2. A stack in *R*-linear categories C on *X* is an *R*-algebroid stack if it is locally nonempty and locally connected, i.e. satisfies

- (1) any point $x \in X$ has a neighborhood U such that $\mathcal{C}(U)$ is nonempty;
- (2) for any $U \subseteq X$, $x \in U$, $A, B \in \mathcal{C}(U)$ there exits a neighborhood $V \subseteq U$ of x and an isomorphism $A|_V \cong B|_V$.

For a prestack \mathcal{C} we denote by $\widetilde{\mathcal{C}}$ the associated stack.

For a category C denote by iC the subcategory of isomorphisms in C; equivalently, iC is the maximal subgroupoid in C. If C is an algebroid stack then the stack associated to the substack of isomorphisms $i\tilde{C}$ is a gerbe.

For an algebra K we denote by K^+ the linear category with a single object whose endomorphism algebra is K. For a sheaf of algebras \mathcal{K} on X we denote by \mathcal{K}^+ the prestack in linear categories given by $U \mapsto \mathcal{K}(U)^+$. Let $\widetilde{\mathcal{K}^+}$ denote the associated stack. Then, $\widetilde{\mathcal{K}^+}$ is an algebroid stack equivalent to the stack of locally free \mathcal{K}^{op} -modules of rank one.

By a twisted form of \mathcal{K} we mean an algebroid stack locally equivalent to $\widetilde{\mathcal{K}^+}$. It is easy to see that the equivalence classes of twisted forms of \mathcal{K} are bijective correspondence with $H^2(X; Z(\mathcal{K})^{\times})$, where $Z(\mathcal{K})$ denotes the center of \mathcal{K} .

2.5. Twisted forms of \mathcal{O} . Twisted forms of \mathcal{O}_X are in bijective correspondence with \mathcal{O}_X^{\times} -gerbes: if \mathcal{S} is a twisted form of \mathcal{O}_X , the corresponding gerbe is the substack $i\mathcal{S}$ of isomorphisms in \mathcal{S} . We shall not make a distinction between the two notions.

The equivalence classes of twisted forms of \mathcal{O}_X are in bijective correspondence with $H^2(X; \mathcal{O}_X^{\times})$. The composition

$$\mathcal{O}_X^{\times} \to \mathcal{O}_X^{\times}/\mathbb{C}^{\times} \xrightarrow{\log} \mathcal{O}_X/\mathbb{C} \xrightarrow{j^{\infty}} \mathrm{DR}(\mathcal{J}_X/\mathcal{O}_X)$$

induces the map $H^2(X; \mathcal{O}_X^{\times}) \to H^2(X; \operatorname{DR}(\mathcal{J}_X/\mathcal{O}_X)) \cong H^2(\Gamma(X; \mathcal{A}_X^{\bullet} \otimes \mathcal{J}_X/\mathcal{O}_X), \nabla^{can})$. We denote by $[\mathcal{S}]$ the image in the latter space of the class of \mathcal{S} .

The short exact sequence

$$0 \to \mathcal{O}_X \xrightarrow{\mathbf{1}} \mathcal{J}_X \to \mathcal{J}_X / \mathcal{O}_X \to 0$$

gives rise to the short exact sequence of complexes

$$0 \to \Gamma(X; \mathcal{A}_X^{\bullet}) \to \Gamma(X; \mathrm{DR}(\mathcal{J}_X)) \to \Gamma(X; \mathrm{DR}(\mathcal{J}_X/\mathcal{O}_X)) \to 0,$$

hence to the map (connecting homomorphism) $H^2(X; DR(\mathcal{J}_X/\mathcal{O}_X)) \to H^3_{dR}(X)$. Namely, if $B \in \Gamma(X; \mathcal{A}^2_X \otimes \mathcal{J}_X)$ maps to $\overline{B} \in \Gamma(X; \mathcal{A}^2_X \otimes \mathcal{J}_X/\mathcal{O}_X)$ which represents $[\mathcal{S}]$, then there exists a unique $H \in \Gamma(X; \mathcal{A}^3)$ such that $\nabla^{can}B = DR(\mathbf{1})(H)$. The form H is closed and represents the image of the class of \overline{B} under the connecting homomorphism.

Notation. We denote by $[\mathcal{S}]_{dR}$ the image of $[\mathcal{S}]$ under the map

$$H^2(X; \operatorname{DR}(\mathcal{J}_X/\mathcal{O}_X)) \to H^3_{dR}(X).$$

3. Deformations of Algebroid Stacks

3.1. **Deformations of linear stacks.** Here we describe the notion of 2-groupoid of deformations of an algebroid stack. We follow [2] and refer the reader to that paper for all the proofs and additional details.

For an *R*-linear category \mathcal{C} and homomorphism of algebras $R \to S$ we denote by $\mathcal{C} \otimes_R S$ the category with the same objects as \mathcal{C} and morphisms defined by $\operatorname{Hom}_{\mathcal{C}\otimes_R S}(A, B) = \operatorname{Hom}_{\mathcal{C}}(A, B) \otimes_R S$.

For a prestack \mathcal{C} in *R*-linear categories we denote by $\mathcal{C} \otimes_R S$ the prestack associated to the fibered category $U \mapsto \mathcal{C}(U) \otimes_R S$.

Lemma 3.1 ([2], Lemma 4.13). Suppose that \mathcal{A} is a sheaf of *R*-algebras and \mathcal{C} is an *R*-algebroid stack. Then $\widetilde{\mathcal{C} \otimes_R S}$ is an algebroid stack.

Suppose now that C is a stack in k-linear categories on X and R is a commutative Artin k-algebra. We denote by Def(C)(R) the 2-category with

- objects: pairs (\mathcal{B}, ϖ) , where \mathcal{B} is a stack in *R*-linear categories flat over *R* and $\varpi : \widetilde{\mathcal{B} \otimes_R k} \to \mathcal{C}$ is an equivalence of stacks in *k*-linear categories
- 1-morphisms: a 1-morphism $(\mathcal{B}^{(1)}, \varpi^{(1)}) \to (\mathcal{B}^{(2)}, \varpi^{(2)})$ is a pair (F, θ) where $F : \mathcal{B}^{(1)} \to \mathcal{B}^{(2)}$ is a *R*-linear functor and $\theta : \varpi^{(2)} \circ (F \otimes_R k) \to \varpi^{(1)}$ is an isomorphism of functors
- 2-morphisms: a 2-morphism $(F', \theta') \to (F'', \theta'')$ is a morphism of *R*-linear functors $\kappa : F' \to F''$ such that $\theta'' \circ (\mathrm{Id}_{\varpi^{(2)}} \otimes (\kappa \otimes_R k)) = \theta'$

The 2-category $Def(\mathcal{C})(R)$ is a 2-groupoid.

Let \mathcal{B} be a prestack on X in R-linear categories. We say that \mathcal{B} is flat if for any $U \subseteq X$, $A, B \in \mathcal{B}(U)$ the sheaf $\underline{\operatorname{Hom}}_{\mathcal{B}}(A, B)$ is flat (as a sheaf of R-modules).

Lemma 3.2 ([2], Lemma 6.2). Suppose that \mathcal{B} is a flat *R*-linear stack on *X* such that $\widetilde{\mathcal{B}} \otimes_R k$ is an algebroid stack. Then \mathcal{B} is an algebroid stack.

3.2. Deformations of twisted forms of \mathcal{O} . Suppose that \mathcal{S} is a twisted form of \mathcal{O}_X . We will now describe the DGLA controlling the deformations of \mathcal{S} .

The complex $\Gamma(X; DR(C^{\bullet}(\mathcal{J}_X)) = (\Gamma(X; \mathcal{A}_X^{\bullet} \otimes C^{\bullet}(\mathcal{J}_X)), \nabla^{can} + \delta)$ is a differential graded brace algebra in a canonical way. The abelian Lie algebra $\mathcal{J}_X = C^0(\mathcal{J}_X)$ acts on the brace algebra $C^{\bullet}(\mathcal{J}_X)$ by derivations of degree -1 by Gerstenhaber bracket. The above action factors through an action of $\mathcal{J}_X/\mathcal{O}_X$. Therefore, the abelian Lie algebra $\Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X / \mathcal{O}_X)$ acts on the brace algebra $\mathcal{A}_X^{\bullet} \otimes C^{\bullet}(\mathcal{J}_X)$ by derivations of degree +1. Following longstanding tradition, the action of an element *a* is denoted by i_a .

Due to commutativity of \mathcal{J}_X , for any $\omega \in \Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X / \mathcal{O}_X)$ the operation ι_{ω} commutes with the Hochschild differential δ . If, moreover, ω satisfies $\nabla^{can}\omega = 0$, then $\nabla^{can} + \delta + i_{\omega}$ is a square-zero derivation of degree one of the brace structure. We refer to the complex

$$\Gamma(X; \mathsf{DR}(C^{\bullet}(\mathcal{J}_X))_{\omega} := (\Gamma(X; \mathcal{A}_X^{\bullet} \otimes C^{\bullet}(\mathcal{J}_X)), \nabla^{can} + \delta + i_{\omega})$$

as the ω -twist of $\Gamma(X; DR(C^{\bullet}(\mathcal{J}_X)))$.

Let

$$\mathfrak{g}_{\mathrm{DR}}(\mathcal{J})_{\omega} := \Gamma(X; \mathrm{DR}(C^{\bullet}(\mathcal{J}_X))[1])_{\omega}$$

regarded as a DGLA. The following theorem is proved in [2] (Theorem 1 of loc. cit.):

Theorem 3.3. For any Artin algebra R with maximal ideal \mathfrak{m}_R there is an equivalence of 2-groupoids

 $\mathrm{MC}^2(\mathfrak{g}_{\mathrm{DR}}(\mathcal{J}_X)_\omega \otimes \mathfrak{m}_R) \cong \mathrm{Def}(\mathcal{S})(R)$

natural in R.

4. Formality

We give a synopsis of the results of [5] in the notations of loc. cit. Let k be a field of characteristic zero. For a k-cooperad \mathcal{C} and a complex of k-vector spaces V we denote by $\mathbb{F}_{\mathcal{C}}(V)$ the cofree \mathcal{C} -coalgebra on V.

We denote by $\mathbf{e_2}$ the operad governing Gerstenhaber algebras. The latter is Koszul, and we denote by $\mathbf{e_2}^{\vee}$ the dual cooperad.

For an associative k-algebra A the Hochschild complex $C^{\bullet}(A)$ has a canonical structure of a brace algebra, hence a structure of homotopy $\mathbf{e_2}$ -algebra. The latter structure is encoded in a differential (i.e. a coderivation of degree one and square zero) $M \colon \mathbb{F}_{\mathbf{e_2}^{\vee}}(C^{\bullet}(A)) \to \mathbb{F}_{\mathbf{e_2}^{\vee}}(C^{\bullet}(A))[1].$

Suppose from now on that A is regular commutative algebra over a field of characteristic zero (the regularity assumption is not needed for the constructions). Let $V^{\bullet}(A) = \operatorname{Sym}_{A}^{\bullet}(\operatorname{Der}(A)[-1])$ viewed as a complex with trivial differential. In this capacity $V^{\bullet}(A)$ has a canonical structure of an $\mathbf{e_2}$ -algebra which gives rise to the differential $d_{V^{\bullet}(A)}$ on $\mathbb{F}_{\mathbf{e_2}^{\vee}}(V^{\bullet}(A))$; we have: $\mathsf{B}_{\mathbf{e_2}^{\vee}}(V^{\bullet}(A)) = (\mathbb{F}_{\mathbf{e_2}^{\vee}}(V^{\bullet}(A)), d_{V^{\bullet}(A)})$ (see [5], Theorem 1 for notations).

In addition, the authors introduce a sub- $\mathbf{e_2}^{\vee}$ -coalgebra $\Xi(A)$ of both $\mathbb{F}_{\mathbf{e_2}^{\vee}}(C^{\bullet}(A))$ and $\mathbb{F}_{\mathbf{e_2}^{\vee}}(V^{\bullet}(A))$. We denote by $\sigma \colon \Xi(A) \to \mathbb{F}_{\mathbf{e_2}^{\vee}}(C^{\bullet}(A))$ and $\iota \colon \Xi(A) \to \mathbb{F}_{\mathbf{e_2}^{\vee}}(V^{\bullet}(A))$ respective inclusions and identify $\Xi(A)$

with its image under the latter one. By [5], Proposition 7 the differential $d_{V^{\bullet}(A)}$ preserves $\Xi(A)$; we denote by $d_{V^{\bullet}(A)}$ its restriction to $\Xi(A)$. By Theorem 3, loc. cit. the inclusion σ is a morphism of complexes. Hence, we have the following diagram in the category of differential graded $\mathbf{e_2}^{\vee}$ -coalgebras:

(4.0.1)
$$(\mathbb{F}_{\mathbf{e}_{2}^{\vee}}(C^{\bullet}(A)), M) \xleftarrow{\sigma} (\Xi(A), d_{V^{\bullet}(A)}) \xrightarrow{\iota} \mathsf{B}_{\mathbf{e}_{2}^{\vee}}(V^{\bullet}(A))$$

Applying the functor Ω_{e_2} (adjoint to the functor B_{e_2} , see [5], Theorem 1) to (4.0.1) we obtain the diagram

$$(4.0.2) \quad \Omega_{\mathbf{e_2}}(\mathbb{F}_{\mathbf{e_2}^{\vee}}(C^{\bullet}(A)), M) \xleftarrow{\Omega_{\mathbf{e_2}}(\sigma)} \\ \Omega_{\mathbf{e_2}}(\Xi(A), d_{V^{\bullet}(A)}) \xrightarrow{\Omega_{\mathbf{e_2}}(\iota)} \Omega_{\mathbf{e_2}}(\mathsf{B}_{\mathbf{e_2}^{\vee}}(V^{\bullet}(A)))$$

of differential graded **e**₂-algebras. Let $\nu = \eta_{\mathbf{e}_2} \circ \Omega_{\mathbf{e}_2}(\iota)$, where $\eta_{\mathbf{e}_2} : \Omega_{\mathbf{e}_2}(\mathsf{B}_{\mathbf{e}_2^{\vee}}(V^{\bullet}(A))) \to V^{\bullet}(A)$ is the counit of adjunction. Thus, we have the diagram

(4.0.3)
$$\Omega_{\mathbf{e_2}}(\mathbb{F}_{\mathbf{e_2}^{\vee}}(C^{\bullet}(A)), M) \xleftarrow{\Omega_{\mathbf{e_2}}(\sigma)} \Omega_{\mathbf{e_2}}(\Xi(A), d_{V^{\bullet}(A)}) \xrightarrow{\nu} V^{\bullet}(A)$$

of differential graded $\mathbf{e_2}$ -algebras.

8

Theorem 4.1 ([5], Theorem 4). The maps $\Omega_{\mathbf{e}_2}(\sigma)$ and ν are quasiisomorphisms.

Additionally, concerning the DGLA structures relevant to applications to deformation theory, deduced from respective $\mathbf{e_2}$ -algebra structures we have the following result.

Theorem 4.2 ([5], Theorem 2). The DGLA $\Omega_{\mathbf{e}_2}(\mathbb{F}_{\mathbf{e}_2^{\vee}}(C^{\bullet}(A)), M)[1]$ and $C^{\bullet}(A)[1]$ are canonically L_{∞} -quasi-isomorphic.

Corollary 4.3 (Formality). The DGLA $C^{\bullet}(A)[1]$ and $V^{\bullet}(A)[1]$ are L_{∞} -quasi-isomorphic.

4.1. Some (super-)symmetries. For applications to deformation theory of algebroid stacks we will need certain equivariance properties of the maps described in 4.

For $a \in A$ let $i_a \colon C^{\bullet}(A) \to C^{\bullet}(A)[-1]$ denote the adjoint action (in the sense of the Gerstenhaber bracket and the identification $A = C^0(A)$). It is given by the formula

$$i_a D(a_1, \dots, a_n) = \sum_{i=0}^n (-1)^k D(a_1, \dots, a_i, a, a_{k+1}, \dots, a_n).$$

The operation i_a extends uniquely to a coderivation of $\mathbb{F}_{\mathbf{e}_2^{\vee}}(C^{\bullet}(A))$; we denote this extension by i_a as well. Furthermore, the subcoalgebra $\Xi(A)$ is preserved by i_a . Since the operation i_a is a derivation of the cup product as well as of all of the brace operations on $C^{\bullet}(A)$ and the homotopy- $\mathbf{e_2}$ -algebra structure on $C^{\bullet}(A)$ given in terms of the cup product and the brace operations it follows that i_a anti-commutes with the differential M. Hence, the coderivation i_a induces a derivation of the differential graded $\mathbf{e_2}$ -algebra $\Omega_{\mathbf{e_2}}(\mathbb{F}_{\mathbf{e_2}^{\vee}}(C^{\bullet}(A)), M)$ which will be denoted by i_a as well. For the same reason the DGLA $\Omega_{\mathbf{e_2}}(\mathbb{F}_{\mathbf{e_2}^{\vee}}(C^{\bullet}(A)), M)[1]$ and $C^{\bullet}(A)[1]$ are quasi-isomorphic in a way which commutes with the respective operations i_a .

On the other hand, let $i_a \colon V^{\bullet}(A) \to V^{\bullet}(A)[-1]$ denote the adjoint action in the sense of the Schouten bracket and the identification $A = V^0(A)$. The operation i_a extends uniquely to a coderivation of $\mathbb{F}_{\mathbf{e}_2^{\vee}}(V^{\bullet}(A))$ which anticommutes with the differential $d_{V^{\bullet}(A)}$ because i_a is a derivation of the \mathbf{e}_2 -algebra structure on $V^{\bullet}(A)$. We denote this coderivation as well as its unique extension to a derivation of the differential graded \mathbf{e}_2 -algebra $\Omega_{\mathbf{e}_2}(\mathbb{B}_{\mathbf{e}_2^{\vee}}(V^{\bullet}(A)))$ by i_a . The counit map $\eta_{\mathbf{e}_2} \colon \Omega_{\mathbf{e}_2}(\mathbb{B}_{\mathbf{e}_2^{\vee}}(V^{\bullet}(A))) \to V^{\bullet}(A)$ commutes with respective operations i_a .

The subcoalgebra $\Xi(A)$ of $\mathbb{F}_{\mathbf{e}_{2}^{\vee}}(C^{\bullet}(A))$ and $\mathbb{F}_{\mathbf{e}_{2}^{\vee}}(V^{\bullet}(A))$ is preserved by the respective operations i_{a} . Moreover, the restrictions of the two operations to $\Xi(A)$ coincide, i.e. the maps in (4.0.1) commute with i_{a} and, therefore, so do the maps in (4.0.2) and (4.0.3).

4.2. Deformations of \mathcal{O} and Kontsevich formality. Suppose that X is a manifold. Let \mathcal{O}_X (respectively, \mathcal{T}_X) denote the structure sheaf (respectively, the sheaf of vector fields). The construction of the diagram localizes on X yielding the diagram of sheaves of differential graded $\mathbf{e_2}$ -algebras

(4.2.1)

$$\Omega_{\mathbf{e_2}}(\mathbb{F}_{\mathbf{e_2}^{\vee}}(C^{\bullet}(\mathcal{O}_X)), M) \xleftarrow{\Omega_{\mathbf{e_2}}(\sigma)} \Omega_{\mathbf{e_2}}(\Xi(\mathcal{O}_X), d_{V^{\bullet}(\mathcal{O}_X)}) \xrightarrow{\nu} V^{\bullet}(\mathcal{O}_X),$$

where $C^{\bullet}(\mathcal{O}_X)$ denotes the sheaf of multidifferential operators and $V^{\bullet}(\mathcal{O}_X) := \operatorname{Sym}_{\mathcal{O}_X}^{\bullet}(\mathcal{T}_X[-1])$ denotes the sheaf of multivector fields. Theorem 4.1 extends easily to this case stating that the morphisms $\Omega_{\mathbf{e}_2}(\sigma)$ and ν in (4.2.1) are quasi-isomorphisms of sheaves of differential graded \mathbf{e}_2 -algebras.

5. Formality for the algebroid Hochschild complex

5.1. A version of [5] for jets. Let $C^{\bullet}(\mathcal{J}_X)$ denote sheaf of continuous (with respect to the adic topology) \mathcal{O}_X -multilinear Hochschild cochains on \mathcal{J}_X . Let $V^{\bullet}(\mathcal{J}_X) = \operatorname{Sym}_{\mathcal{J}_X}^{\bullet}(\operatorname{Der}_{\mathcal{O}_X}^{cont}(\mathcal{J}_X)[-1])$.

Working now in the category of graded \mathcal{O}_X -modules we have the diagram

(5.1.1)

10

$$\Omega_{\mathbf{e}_{2}}^{\prime}(\mathbb{F}_{\mathbf{e}_{2}^{\vee}}(C^{\bullet}(\mathcal{J}_{X})), M) \xleftarrow{\Omega_{\mathbf{e}_{2}}(\sigma)} \Omega_{\mathbf{e}_{2}}(\Xi(\mathcal{J}_{X}), d_{V^{\bullet}(\mathcal{J}_{X})}) \xrightarrow{\nu} V^{\bullet}(\mathcal{J}_{X})$$

of sheaves of differential graded \mathcal{O}_X - $\mathbf{e_2}$ -algebras. Theorem 4.1 extends easily to this situation: the morphisms $\Omega_{\mathbf{e_2}}(\sigma)$ and ν in (5.1.1) are quasi-isomorphisms. The sheaves of DGLA $\Omega_{\mathbf{e_2}}(\mathbb{F}_{\mathbf{e_2}^{\vee}}(C^{\bullet}(\mathcal{J}_X)), M)[1]$ and $C^{\bullet}(\mathcal{J}_X)[1]$ are canonically L_{∞} -quasi-isomorphic.

The canonical flat connection ∇^{can} on \mathcal{J}_X induces a flat connection which we denote ∇^{can} as well on each of the objects in the diagram (5.1.1). Moreover, the maps $\Omega_{\mathbf{e}_2}(\sigma)$ and ν are flat with respect to ∇^{can} hence induce the maps of respective de Rham complexes

$$(5.1.2) \quad \mathrm{DR}(\Omega_{\mathbf{e}_{2}}(\mathbb{F}_{\mathbf{e}_{2}^{\vee}}(C^{\bullet}(\mathcal{J}_{X})), M)) \xleftarrow{\mathrm{DR}(\Omega_{\mathbf{e}_{2}}(\sigma))} \\ \mathrm{DR}(\Omega_{\mathbf{e}_{2}}(\Xi(\mathcal{J}_{X}), d_{V^{\bullet}(\mathcal{J}_{X})})) \xrightarrow{\mathrm{DR}(\nu)} \mathrm{DR}(V^{\bullet}(\mathcal{J}_{X}))$$

where, for (K^{\bullet}, d) one of the objects in (5.1.1) we denote by $DR(K^{\bullet}, d)$ the total complex of the double complex $(\mathcal{A}^{\bullet}_X \otimes K^{\bullet}, d, \nabla^{can})$. All objects in the diagram (5.1.2) have canonical structures of differential graded $\mathbf{e_2}$ -algebras and the maps are morphisms thereof.

The DGLA $\Omega_{\mathbf{e}_{2}}(\mathbb{F}_{\mathbf{e}_{2}^{\vee}}(C^{\bullet}(\mathcal{J}_{X})), M)[1]$ and $C^{\bullet}(\mathcal{J}_{X})[1]$ are canonically L_{∞} -quasi-isomorphic in a way compatible with ∇^{can} . Hence, the DGLA $\mathsf{DR}(\Omega_{\mathbf{e}_{2}}(\mathbb{F}_{\mathbf{e}_{2}^{\vee}}(C^{\bullet}(\mathcal{J}_{X})), M)[1])$ and $\mathsf{DR}(C^{\bullet}(\mathcal{J}_{X})[1])$ are canonically L_{∞} -quasi-isomorphic.

5.2. A version of [5] for jets with a twist. Suppose that $\omega \in \Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X / \mathcal{O}_X)$ satisfies $\nabla^{can} \omega = 0$.

For each of the objects in (5.1.2) we denote by i_{ω} the operation which is induced by the one described in 4.1 and the wedge product on \mathcal{A}_X^{\bullet} . Thus, for each differential graded $\mathbf{e_2}$ -algebra (N^{\bullet}, d) in (5.1.2) we have a derivation of degree one and square zero i_{ω} which anticommutes with d and we denote by $(N^{\bullet}, d)_{\omega}$ the ω -twist of (N^{\bullet}, d) , i.e. the differential graded $\mathbf{e_2}$ -algebra $(N^{\bullet}, d + i_{\omega})$. Since the morphisms in (5.1.2) commute with the respective operations i_{ω} , they give rise to morphisms of respective ω -twists

(5.2.1)
$$\operatorname{DR}(\Omega_{\mathbf{e}_{2}}(\mathbb{F}_{\mathbf{e}_{2}^{\vee}}(C^{\bullet}(\mathcal{J}_{X})), M))_{\omega} \xleftarrow{\operatorname{DR}(\Omega_{\mathbf{e}_{2}}(\sigma))} \operatorname{DR}(\Omega_{\mathbf{e}_{2}}(\Xi(\mathcal{J}_{X}), d_{V^{\bullet}(\mathcal{J}_{X})}))_{\omega} \xrightarrow{\operatorname{DR}(\nu)} \operatorname{DR}(V^{\bullet}(\mathcal{J}_{X}))_{\omega}.$$

Let $F_{\bullet}\mathcal{A}_X^{\bullet}$ denote the stupid filtration: $F_i\mathcal{A}_X^{\bullet} = \mathcal{A}_X^{\geq -i}$. The filtration $F_{\bullet}\mathcal{A}_X^{\bullet}$ induces a filtration denoted $F_{\bullet}DR(K^{\bullet}, d)_{\omega}$ for each object (K^{\bullet}, d)

of (5.1.1) defined by $F_i DR(K^{\bullet}, d)_{\omega} = F_i \mathcal{A}^{\bullet}_X \otimes K^{\bullet}$. As is easy to see, the associated graded complex is given by

(5.2.2)
$$Gr_{-p}\mathsf{DR}(K^{\bullet},d)_{\omega} = (\mathcal{A}_X^p \otimes K^{\bullet}, \mathsf{Id} \otimes d).$$

It is clear that the morphisms $DR(\Omega_{e_2}(\sigma))$ and $DR(\nu)$ are filtered with respect to F_{\bullet} .

Theorem 5.1. The morphisms in (5.2.1) are filtered quasi-isomorphisms, i.e. the maps $Gr_i DR(\Omega_{e_2}(\sigma))$ and $Gr_i DR(\nu)$ are quasi-isomorphisms for all $i \in \mathbb{Z}$.

Proof. We consider the case of $DR(\Omega_{e_2}(\sigma))$ leaving $Gr_i DR(\nu)$ to the reader.

The map $Gr_{-p} DR(\Omega_{e_2}(\sigma))$ induced by $DR(\Omega_{e_2}(\sigma))$ on the respective associated graded objects in degree -p is equal to the map of complexes (5.2.3)

$$\mathrm{Id}\otimes\Omega_{\mathbf{e_2}}(\sigma)\colon\mathcal{A}_X^p\otimes\Omega_{\mathbf{e_2}}(\Xi(\mathcal{J}_X),d_{V^{\bullet}(\mathcal{J}_X)})\to\mathcal{A}_X^p\otimes\Omega_{\mathbf{e_2}}(\mathbb{F}_{\mathbf{e_2}^{\vee}}(C^{\bullet}(\mathcal{J}_X)),M).$$

The map σ is a quasi-isomorphism by Theorem 4.1, therefore so is $\Omega_{\mathbf{e}_2}(\sigma)$. Since \mathcal{A}_X^p is flat over \mathcal{O}_X , the map (5.2.3) is a quasi-isomorphism.

Corollary 5.2. The maps $DR(\Omega_{e_2}(\sigma))$ and $DR(\nu)$ in (5.2.1) are quasiisomorphisms of sheaves of differential graded e_2 -algebras.

Additionally, the DGLA $DR(\Omega_{e_2}(\mathbb{F}_{e_2} \vee (C^{\bullet}(\mathcal{J}_X)), M)[1])$ and $DR(C^{\bullet}(\mathcal{J}_X)[1])$ are canonically L_{∞} -quasi-isomorphic in a way which commutes with the respective operations i_{ω} which implies that the respective ω -twists $DR(\Omega_{e_2}(\mathbb{F}_{e_2} \vee (C^{\bullet}(\mathcal{J}_X)), M)[1])_{\omega}$ and $DR(C^{\bullet}(\mathcal{J}_X)[1])_{\omega}$ are canonically L_{∞} quasi-isomorphic.

5.3. L_{∞} -structures on multivectors. The canonical pairing $\langle , \rangle : \mathcal{A}^1_X \otimes \mathcal{T}_X \to \mathcal{O}_X$ extends to the pairing

$$\langle , \rangle \colon \mathcal{A}^1_X \otimes V^{\bullet}(\mathcal{O}_X) \to V^{\bullet}(\mathcal{O}_X)[-1]$$

For $k \geq 1$, $\omega = \alpha_1 \wedge \ldots \wedge \alpha_k$, $\alpha_i \in \mathcal{A}^1_X$, $i = 1, \ldots, k$, let

$$\Phi(\omega): \operatorname{Sym}^k V^{\bullet}(\mathcal{O}_X)[2] \to V^{\bullet}(\mathcal{O}_X)[k]$$

denote the map given by the formula

$$\Phi(\omega)(\pi_1,\ldots,\pi_k) = (-1)^{(k-1)(|\pi_1|-1)+\ldots+2|(\pi_{k-3}|-1)+(|\pi_{k-2}|-1)} \times \sum_{\sigma} \operatorname{sgn}(\sigma) \langle \alpha_1, \pi_{\sigma(1)} \rangle \wedge \cdots \wedge \langle \alpha_k, \pi_{\sigma(k)} \rangle,$$

where $|\pi| = l$ for $\pi \in V^l(\mathcal{O}_X)$. For $\alpha \in \mathcal{O}_X$ let $\Phi(\alpha) = \alpha \in V^0(\mathcal{O}_X)$.

12

Recall that a graded vector space W gives rise to the graded Lie algebra Der(coComm(W[1])). An element $\gamma \in \text{Der}(\text{coComm}(W[1]))$ of degree one which satisfies $[\gamma, \gamma] = 0$ defines a structure of an L_{∞} algebra on W. Such a γ determines a differential $\partial_{\gamma} := [\gamma, .]$ on Der(coComm(W[1])), such that $(\text{Der}(\text{coComm}(W[1])), \partial_{\gamma})$ is a differential graded Lie algebra. If \mathfrak{g} is a graded Lie algebra and γ is the element of $\text{Der}(\text{coComm}(\mathfrak{g}[1]))$ corresponding to the bracket on \mathfrak{g} , then $(\text{Der}(\text{coComm}(\mathfrak{g}[1])), \partial_{\gamma})$ is equal to the shifted Chevalley cochain complex $C^{\bullet}(\mathfrak{g}; \mathfrak{g})[1]$.

In what follows we consider the (shifted) de Rham complex $\mathcal{A}_X^{\bullet}[2]$ as a differential graded Lie algebra with the trivial bracket.

Lemma 5.3. The map $\omega \mapsto \Phi(\omega)$ defines a morphism of sheaves of differential graded Lie algebras

(5.3.1)
$$\Phi: \mathcal{A}^{\bullet}_{X}[2] \to C^{\bullet}(V^{\bullet}(\mathcal{O}_{X})[1]; V^{\bullet}(\mathcal{O}_{X})[1])[1].$$

Proof. Recall the explicit formulas for the Schouten bracket. If f and g are functions and X_i , Y_j are vector fields, then

$$[fX_1 \dots X_k, gY_1 \dots Y_l] = \sum_i (-1)^{k-i} fX_k(g) X_1 \dots \widehat{X_i} \dots X_k Y_1 \dots Y_l + \sum_j (-1)^j Y_j(f) gX_1 \dots X_k Y_1 \dots \widehat{Y_j} \dots Y_l + \sum_{i,j} (-1)^{i+j} fg X_1 \dots \widehat{X_i} \dots X_k Y_1 \dots \widehat{Y_j} \dots Y_l$$

Note that for a one-form ω and for vector fields X and Y

(5.3.2)
$$\langle \omega, [X,Y] \rangle - \langle [\omega,X],Y \rangle - \langle X, [\omega,Y] \rangle = \Phi(d\omega)(X,Y)$$

From the two formulas above we deduce by an explicit computation that

$$\langle \omega, [\pi, \rho] \rangle - \langle [\omega, \pi], \rho \rangle - (-1)^{|\pi| - 1} \langle \pi, [\omega, \rho] \rangle = (-1)^{|\pi| - 1} \Phi(d\omega)(\pi, \rho)$$

Note that Lie algebra cochains are invariant under the symmetric group acting by permutations multiplied by signs that are computed by the following rule: a permutation of π_i and π_j contributes a factor $(-1)^{|\pi_i||\pi_j|}$. We use the explicit formula for the bracket on the Lie algebra complex.

$$[\Phi, \Psi] = \Phi \circ \Psi - (-1)^{|\Phi||\Psi|} \Psi \circ \Phi$$
$$(\Phi \circ \Psi)(\pi_1, \dots, \pi_{k+l-1}) = \sum_{I,J} \epsilon(I, J) \Phi(\Psi(\pi_{i_1}, \dots, \pi_{i_k}), \pi_{j_1}, \dots, \pi_{j_{l-1}})$$

Here $I = \{i_1, \ldots, i_k\}; J = \{j_1, \ldots, j_{l-1}\}; i_1 < \ldots < i_k; j_1 < \ldots < j_{l-1}; I \coprod J = \{1, \ldots, k+l-1\};$ the sign $\epsilon(I, J)$ is computed by the same sign rule as above. The differential is given by the formula

$$\partial \Phi = [m, \Phi]$$

where $m(\pi, \rho) = (-1)^{|\pi|-1}[\pi, \rho]$. Let $\alpha = \alpha_1 \dots \alpha_k$ and $\beta = \beta_1 \dots \beta_l$. We see from the above that both cochains $\Phi(\alpha) \circ \Phi(\beta)$ and $\Phi(\beta) \circ \Phi(\alpha)$ are antisymmetrizations with respect to α_i and β_j of the sums

$$\sum_{I,J,p} \pm \langle \alpha_1 \beta_1, \pi_p \rangle \langle \alpha_2, \pi_{i_1} \rangle \dots \langle \alpha_k, \pi_{i_{k-1}} \rangle \langle \beta_2, \pi_{j_1} \rangle \dots \langle \beta_l, \pi_{j_{l-1}} \rangle$$

over all partitions $\{1, \ldots, k+l-1\} = I \coprod J \coprod \{p\}$ where $i_1 < \ldots < i_{k-1}$ and $j_1 < \ldots < j_{l-1}$; here $\langle \alpha\beta, \pi \rangle = \langle \alpha, \langle \beta, \pi \rangle \rangle$. After checking the signs, we conclude that $[\Phi(\alpha), \Phi(\beta)] = 0$. Also, from the definition of the differential, we see that $\partial \Phi(\alpha)(\pi_1, \ldots, \pi_{k+1})$ is the antisymmetrizations with respect to α_i and β_j of the sum

$$\sum_{i < j} \pm (\langle \alpha_1, [\pi_i, \pi_j] \rangle - \langle [\alpha_1, \pi_i], \pi_j \rangle - (-1)^{|\pi_i| - 1} [\pi_i, \langle \alpha_1, \pi_j \rangle]) \cdot \langle \alpha_2, \pi_1 \rangle \dots \langle \alpha_i, \pi_{i-1} \rangle \langle \alpha_{i+1}, \pi_{i+1} \rangle \dots \langle \alpha_{j-1}, \pi_{j-1} \rangle \langle \alpha_j, \pi_{j+1} \rangle \langle \alpha_k, \pi_{k+1} \rangle$$

We conclude from this and (5.3.2) that $\partial \Phi(\alpha) = \Phi(d\alpha)$.

Thus, according to Lemma 5.3, a closed 3-form H on X gives rise to a Maurer-Cartan element $\Phi(H)$ in $\Gamma(X; C^{\bullet}(V^{\bullet}(\mathcal{O}_X)[1]; V^{\bullet}(\mathcal{O}_X)[1])[1])$, hence a structure of an L_{∞} -algebra on $V^{\bullet}(\mathcal{O}_X)[1]$ which has the trivial differential (the unary operation), the binary operation equal to the Schouten-Nijenhuis bracket, the ternary operation given by $\Phi(H)$, and all higher operations equal to zero. Moreover, cohomologous closed 3forms give rise to gauge equivalent Maurer-Cartan elements, hence to L_{∞} -isomorphic L_{∞} -structures.

Notation. For a closed 3-form H on X we denote the corresponding L_{∞} -algebra structure on $V^{\bullet}(\mathcal{O}_X)[1]$ by $V^{\bullet}(\mathcal{O}_X)[1]_H$. Let

$$\mathfrak{s}(\mathcal{O}_X)_H := \Gamma(X; V^{\bullet}(\mathcal{O}_X)[1])_H.$$

5.4. L_{∞} -structures on multivectors via formal geometry. In order to relate the results of 5.2 with those of 5.3 we consider the analog of the latter for jets.

Let $\widehat{\Omega}_{\mathcal{J}/\mathcal{O}}^k := \mathcal{J}_X(\mathcal{A}_X^k)$, the sheaf of jets of differential k-forms on X. Let $\widehat{d}_{\mathbb{R}}$ denote the $(\mathcal{O}_X$ -linear) differential in $\widehat{\Omega}_{\mathcal{J}/\mathcal{O}}^{\bullet}$ induced by the de Rham differential in \mathcal{A}_X^{\bullet} . The differential $\widehat{d}_{\mathbb{R}}$ is horizontal with respect to the canonical flat connection ∇^{can} on $\widehat{\Omega}_{\mathcal{J}/\mathcal{O}}^{\bullet}$, hence we have

the double complex $(\mathcal{A}_X^{\bullet} \otimes \widehat{\Omega}_{\mathcal{J}/\mathcal{O}}^{\bullet}, \nabla^{can}, \mathrm{Id} \otimes \widehat{d}_{\mathrm{R}})$ whose total complex is denoted $\mathrm{DR}(\widehat{\Omega}_{\mathcal{J}/\mathcal{O}}^{\bullet})$.

Let $1: \mathcal{O}_X \to \mathcal{J}_X$ denote the unit map (not to be confused with the map j^{∞}); it is an isomorphism onto the kernel of $\widehat{d}_{\mathbf{R}} : \mathcal{J}_X \to \widehat{\Omega}^1_{\mathcal{J}/\mathcal{O}}$ and therefore defines the morphism of complexes $1: \mathcal{O}_X \to \widehat{\Omega}^{\bullet}_{\mathcal{J}/\mathcal{O}}$ which is a quasi-isomorphism. The map $\mathbf{1}$ is horizontal with respect to the canonical flat connections on \mathcal{O}_X and \mathcal{J}_X (respectively, $\widehat{\Omega}^{\bullet}_{\mathcal{J}/\mathcal{O}}$), therefore we have the induced map of respective de Rham complexes $\mathsf{DR}(\mathbf{1}): \mathcal{A}^{\bullet}_X \to \mathsf{DR}(\mathcal{J}_X)$ (respectively, $\mathsf{DR}(\mathbf{1}): \mathcal{A}^{\bullet}_X \to \mathsf{DR}(\widehat{\Omega}^{\bullet}_{\mathcal{J}/\mathcal{O}})$, a quasiisomorphism).

Let $C^{\bullet}(\mathfrak{g}(\mathcal{J}_X);\mathfrak{g}(\mathcal{J}_X))$ denote the complex of continuous \mathcal{O}_X -multilinear cochains. The map of differential graded Lie algebras

(5.4.1)
$$\widehat{\Phi}: \widehat{\Omega}^{\bullet}_{\mathcal{J}/\mathcal{O}}[2] \to C^{\bullet}(V^{\bullet}(\mathcal{J}_X)[1]; V^{\bullet}(\mathcal{J}_X)[1])[1]$$

defined in the same way as (5.3.1) is horizontal with respect to the canonical flat connection ∇^{can} and induces the map

$$(5.4.2) \quad \mathsf{DR}(\widehat{\Phi}) \colon \mathsf{DR}(\widehat{\Omega}^{\bullet}_{\mathcal{J}/\mathcal{O}})[2] \to \mathsf{DR}((C^{\bullet}(V^{\bullet}(\mathcal{J}_X)[1]; V^{\bullet}(\mathcal{J}_X)[1])[1])$$

There is a canonical morphism of sheaves of differential graded Lie algebras

(5.4.3)

14

$$\mathsf{DR}(C^{\bullet}(V^{\bullet}(\mathcal{J}_X)[1]; V^{\bullet}(\mathcal{J}_X)[1])[1]) \to C^{\bullet}(\mathsf{DR}(V^{\bullet}(\mathcal{J}_X)[1]); \mathsf{DR}(V^{\bullet}(\mathcal{J}_X)[1]))[1]$$

Therefore, a degree three cocycle in $\Gamma(X; DR(\widehat{\Omega}^{\bullet}_{\mathcal{J}/\mathcal{O}}))$ determines an L_{∞} -structure on $DR(V^{\bullet}(\mathcal{J}_X)[1])$ and cohomologous cocycles determine L_{∞} -isomorphic structures.

Notation. For a section $B \in \Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X)$ we denote by \overline{B} it's image in $\Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X/\mathcal{O}_X)$.

Lemma 5.4. If $B \in \Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X)$ satisfies $\nabla^{can}\overline{B} = 0$, then

- (1) $\widehat{d}_{\mathbf{d}}B$ is a (degree three) cocycle in $\Gamma(X; DR(\widehat{\Omega}_{\mathcal{T}/\mathcal{O}}^{\bullet}));$
- (2) there exist a unique $H \in \Gamma(X; \mathcal{A}_X^3)$ such that dH = 0 and $DR(1)(H) = \nabla^{can} B$.

Proof. For the first claim it suffices to show that $\nabla^{can} B = 0$. This follows from the assumption that $\nabla^{can} \overline{B} = 0$ and the fact that $\widehat{d}_{\mathfrak{K}} : \mathcal{A}^{\bullet}_X \otimes \mathcal{J}_X \to \mathcal{A}^{\bullet}_X \otimes \widehat{\Omega}^1_{\mathcal{J}/\mathcal{O}}$ factors through $\mathcal{A}^{\bullet}_X \otimes \mathcal{J}_X/\mathcal{O}_X$.

We have: $\widehat{d}_{\mathfrak{R}} \nabla^{can} B = \nabla^{can} \widehat{d}_{\mathfrak{R}} B = 0$. Therefore, $\nabla^{can} B$ is in the image of $\mathsf{DR}(\mathbf{1}) : \Gamma(X; \mathcal{A}_X^3) \to \Gamma(X; \mathcal{A}_X^3 \otimes \mathcal{J}_X)$ which is injective, whence the existence and uniqueness of H. Since $\mathsf{DR}(\mathbf{1})$ is a morphism of complexes it follows that H is closed. \Box

Suppose that $B \in \Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X)$ satisfies $\nabla^{can}\overline{B} = 0$. Then, the differential graded Lie algebra $\mathsf{DR}(\mathfrak{g}(\mathcal{J}_X))_{\overline{B}}$ (the \overline{B} -twist of $\mathsf{DR}(\mathfrak{g}(\mathcal{J}_X))$) is defined. On the other hand, due to Lemma 5.4, (5.4.2) and (5.4.3), $\widehat{d}_{\mathfrak{R}}B$ gives rise to an L_{∞} -structure on $\mathsf{DR}(V^{\bullet}(\mathcal{J}_X)[1])$.

Lemma 5.5. The L_{∞} -structure induced by $\widehat{d}_{\mathfrak{R}}B$ is that of a differential graded Lie algebra equal to $\mathsf{DR}(V^{\bullet}(\mathcal{J}_X)[1])_{\overline{B}}$.

Proof. Left to the reader.

Notation. For a 3-cocycle $\omega \in \Gamma(X; DR(\widehat{\Omega}^{\bullet}_{\mathcal{J}/\mathcal{O}}))$ we will denote by $DR(V^{\bullet}(\mathcal{J}_X)[1])_{\omega}$ the L_{∞} -algebra obtained from ω via (5.4.2) and (5.4.3). Let

$$\mathfrak{s}_{\mathrm{DR}}(\mathcal{J}_X)_{\omega} := \Gamma(X; \mathrm{DR}(V^{\bullet}(\mathcal{J}_X)[1]))_{\omega}.$$

Remark 5.6. Lemma 5.5 shows that this notation is unambiguous with reference to the previously introduced notation for the twist. In the notations introduced above, $\widehat{d}_{\mathbb{R}}B$ is the image of \overline{B} under the *injective* map $\Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X/\mathcal{O}_X) \to \Gamma(X; \mathcal{A}_X^2 \otimes \widehat{\Omega}_{\mathcal{J}/\mathcal{O}}^1)$ which factors $\widehat{d}_{\mathbb{R}}$ and "allows" us to "identify" \overline{B} with $\widehat{d}_{\mathbb{R}}B$.

Theorem 5.7. Suppose that $B \in \Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X)$ satisfies $\nabla^{can}\overline{B} = 0$. Let $H \in \Gamma(X; \mathcal{A}_X^3)$ denote the unique 3-form such that $DR(\mathbf{1})(H) = \nabla^{can}B$ (cf. Lemma 5.4). Then, the L_{∞} -algebras $\mathfrak{g}_{DR}(\mathcal{J}_X)_{\overline{B}}$ and $\mathfrak{s}(\mathcal{O}_X)_H$ are L_{∞} -quasi-isomorphic.

Proof. The map $j^{\infty} \colon V^{\bullet}(\mathcal{O}_X) \to V^{\bullet}(\mathcal{J}_X)$ induces a quasi-isomorphism of sheaves of DGLA

(5.4.4)
$$j^{\infty} \colon V^{\bullet}(\mathcal{O}_X)[1] \to \mathrm{DR}(V^{\bullet}(\mathcal{J}_X)[1]).$$

Suppose that H is a closed 3-form on X. Then, the map (5.4.4) is a quasi-isomorphism of sheaves of L_{∞} -algebras

$$j^{\infty} \colon V^{\bullet}(\mathcal{O}_X)[1]_H \to \mathrm{DR}(V^{\bullet}(\mathcal{J}_X)[1])_{\mathrm{DR}(\mathbf{1})(H)}$$

Passing to global section we obtain the quasi-isomorphism of $L_\infty\text{-}$ algebras

(5.4.5)
$$j^{\infty} \colon \mathfrak{s}(\mathcal{O}_X)_H \to \mathfrak{s}_{\mathsf{DR}}(\mathcal{J}_X)_{\mathsf{DR}(1)(H)}.$$

By assumption, B provides a homology between $\widehat{d}_{\mathfrak{R}}B$ and $\nabla^{can}B = D\mathbf{R}(\mathbf{1})(H)$. Therefore, we have the corresponding L_{∞} -quasi-isomorphism (5.4.6)

$$\mathsf{DR}(V^{\bullet}(\mathcal{J}_X)[1])_{\mathsf{DR}(\mathbf{1})(H)} \stackrel{L_{\infty}}{\cong} \mathsf{DR}(V^{\bullet}(\mathcal{J}_X)[1])_{\widehat{\mathrm{d}}_{\mathrm{dR}}B} = \mathsf{DR}(V^{\bullet}(\mathcal{J}_X)[1])_{\overline{B}}$$

(the second equality is due to Lemma 5.5).

According to Corollary 5.2 the sheaf of DGLA $DR(V^{\bullet}(\mathcal{J}_X)[1])_{\overline{B}}$ is L_{∞} quasi-isomorphic to the DGLA deduced form the differential graded $\mathbf{e_2}$ algebra $DR(\Omega_{\mathbf{e_2}}(\mathbb{F}_{\mathbf{e_2}^{\vee}}(C^{\bullet}(\mathcal{J}_X)), M))_{\overline{B}})$. The latter DGLA is L_{∞} -quasiisomorphic to $DR(C^{\bullet}(\mathcal{J}_X)[1])_{\overline{B}}$.

Passing to global sections we conclude that $\mathfrak{s}_{\mathsf{DR}}(\mathcal{J}_X)_{\mathsf{DR}(1)(H)}$ and $\mathfrak{g}_{\mathsf{DR}}(\mathcal{J}_X)_{\overline{B}}$ are L_{∞} -quasi-isomorphic. Together with (5.4.5) this implies the claim.

6. Application to deformation theory

Theorem 6.1. Suppose that S is a twisted form of \mathcal{O}_X (2.5). Let H be a closed 3-form on X which represents $[S]_{dR} \in H^3_{dR}(X)$. For any Artin algebra R with maximal ideal \mathfrak{m}_R there is an equivalence of 2-groupoids

$$\mathrm{MC}^2(\mathfrak{s}(\mathcal{O}_X)_H \otimes \mathfrak{m}_R) \cong \mathrm{Def}(\mathcal{S})(R)$$

natural in R.

16

Proof. Since cohomologous 3-forms give rise to L_{∞} -quasi-isomorphic L_{∞} -algebras we may assume, possibly replacing H by another representative of $[\mathcal{S}]_{dR}$, that there exists $B \in \Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X)$ such that \overline{B} represents $[\mathcal{S}]$ and $\nabla^{can}B = \mathsf{DR}(1)(H)$. By Theorem 5.7 $\mathfrak{s}(\mathcal{O}_X)_H$ is L_{∞} -quasi-isomorphic to $\mathfrak{g}_{\mathsf{DR}}(\mathcal{J}_X)_{\overline{B}}$. By the Theorem 2.1 we have a homotopy equivalence of nerves of 2-groupoids $\gamma_{\bullet}(\mathfrak{s}(\mathcal{O}_X)_H \otimes \mathfrak{m}_R) \cong \gamma_{\bullet}(\mathfrak{g}_{\mathsf{DR}}(\mathcal{J}_X)_{\overline{B}} \otimes \mathfrak{m}_R)$. Therefore, there are equivalences

$$\mathrm{MC}^2(\mathfrak{s}(\mathcal{O}_X)_H \otimes \mathfrak{m}_R) \cong \mathrm{MC}^2(\mathfrak{g}_{\mathrm{DR}}(\mathcal{J}_X)_{\overline{B}} \otimes \mathfrak{m}_R) \cong \mathrm{Def}(\mathcal{S})(R),$$

the second one being that of Theorem 3.3.

Remark 6.2. In particular, the isomorphism classes of formal deformations of S are in a bijective correspondence with equivalence classes of Maurer-Cartan elements of the L_{∞} -algebra $\mathfrak{s}_{\mathsf{DR}}(\mathcal{O}_X)_H \widehat{\otimes} t \cdot \mathbb{C}[[t]]$. These are the formal *twisted Poisson structures* in the terminology of [13], i.e. the formal series $\pi = \sum_{k=1}^{\infty} t^k \pi_k, \ \pi_k \in \Gamma(X; \bigwedge^2 \mathcal{T}_X)$, satisfying the equation

$$[\pi,\pi] = \Phi(H)(\pi,\pi,\pi).$$

A construction of an algebroid stack associated to a twisted Poisson structure was proposed by P. Ševera in [12].

References

- P. Bressler, A. Gorokhovsky, R. Nest, and B. Tsygan. Deformation quantization of gerbes. Adv. Math., 214(1):230–266, 2007.
- [2] P. Bressler, A. Gorokhovsky, R. Nest, and B. Tsygan. Deformations of gerbes on smooth manifolds. In *K-theory and noncommutative geometry*. European Mathematical Society, 2008.

- [3] A. D'Agnolo and P. Polesello. Stacks of twisted modules and integral transforms. In *Geometric aspects of Dwork theory. Vol. I, II*, pages 463–507. Walter de Gruyter GmbH & Co. KG, Berlin, 2004.
- [4] P. Deligne. Letter to L. Breen, 1994.
- [5] V. Dolgushev, D. Tamarkin, and B. Tsygan. The homotopy Gerstenhaber algebra of Hochschild cochains of a regular algebra is formal. J. Noncommut. Geom., 1(1):1–25, 2007.
- [6] J. W. Duskin. Simplicial matrices and the nerves of weak n-categories. I. Nerves of bicategories. *Theory Appl. Categ.*, 9:198–308 (electronic), 2001/02. CT2000 Conference (Como).
- [7] E. Getzler. Lie theory for nilpotent L-infinity algebras. Ann. of Math., to appear, arXiv:math.AT/0404003.
- [8] E. Getzler. A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J., 111(3):535–560, 2002.
- [9] M. Kashiwara and P. Schapira. Categories and sheaves, volume 332 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.
- [10] M. Kontsevich. Formality conjecture. In Deformation theory and symplectic geometry (Ascona, 1996), volume 20 of Math. Phys. Stud., pages 139–156. Kluwer Acad. Publ., Dordrecht, 1997.
- [11] M. Kontsevich. Deformation quantization of Poisson manifolds. Lett. Math. Phys., 66(3):157–216, 2003.
- [12] P. Ševera. Quantization of Poisson families and of twisted Poisson structures. Lett. Math. Phys., 63(2):105–113, 2003.
- [13] P. Ševera and A. Weinstein. Poisson geometry with a 3-form background. *Progr. Theoret. Phys. Suppl.*, (144):145–154, 2001. Noncommutative geometry and string theory (Yokohama, 2001).
- [14] D. Tamarkin. Another proof of M. Kontsevich formality theorem. preprint, arXiv:math/9803025v4 [math.QA].

MAX-PLANCK-INSTITUT FÜR MATHEMATIK, VIVATSGASSE 7, 53111 BONN, GERMANY

E-mail address: paul.bressler@gmail.com

DEPARTMENT OF MATHEMATICS, UCB 395, UNIVERSITY OF COLORADO, BOULDER, CO 80309-0395, USA

E-mail address: Alexander.Gorokhovsky@colorado.edu

DEPARTMENT OF MATHEMATICS, COPENHAGEN UNIVERSITY, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN, DENMARK

E-mail address: rnest@math.ku.dk

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, IL 60208-2730, USA

E-mail address: tsygan@math.northwestern.edu