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Abstract. We extend the formality theorem of M. Kontsevich
from deformations of the structure sheaf on a manifold to defor-
mations of gerbes.

1. Introduction

In the fundamental paper [11] M. Kontsevich showed that the set of
equivalence classes of formal deformations the algebra of functions on
a manifold is in one-to-one correspondence with the set of equivalence
classes of formal Poisson structures on the manifold. This result was
obtained as a corollary of the formality of the Hochschild complex of
the algebra of functions on the manifold conjectured by M. Kontsevich
(cf. [10]) and proven in [11]. Later proofs by a different method were
given in [14] and in [5].

In this paper we extend the formality theorem of M. Kontsevich to
deformations of gerbes on smooth manifolds, using the method of [5].
Let X be a smooth manifold; we denote by OX the sheaf of complex
valued C∞ functions on X. For a twisted form S of OX regarded
as an algebroid stack (see Section 2.5) we denote by [S]dR ∈ H3

dR(X)
the de Rham class of S. The main result of this paper establishes an
equivalence of 2-groupoid valued functors of Artin C-algebras between
Def(S) (the formal deformation theory of S, see [2]) and the Deligne
2-groupoid of Maurer-Cartan elements of L∞-algebra of multivector
fields on X twisted by a closed three-form representing [S]dR:

Theorem 6.1. Suppose that S is a twisted form of OX . Let H be a
closed 3-form on X which represents [S]dR ∈ H3

dR(X). For any Artin
algebra R with maximal ideal mR there is an equivalence of 2-groupoids

MC2(s(OX)H ⊗mR) ∼= Def(S)(R)

natural in R.

A. Gorokhovsky was partially supported by NSF grant DMS-0400342. B. Tsy-
gan was partially supported by NSF grant DMS-0605030.

1



2 P.BRESSLER, A.GOROKHOVSKY, R.NEST, AND B.TSYGAN

Here, s(OX)H denotes the L∞-algebra of multivector fields with the
trivial differential, the binary operation given by Schouten bracket, the
ternary operation given by H (see 5.3) and all other operations equal
to zero. As a corollary of this result we obtain that the isomorphism
classes of formal deformations of S are in a bijective correspondence
with equivalence classes of the formal twisted Poisson structures defined
by P. Severa and A. Weinstein in [13].

The proof of the Theorem proceeds along the following lines. As a
starting point we use the construction of the Differential Graded Lie
Algebra (DGLA) controlling the deformations of S. This construc-
tion was obtained in [1, 2]. Next we construct a chain of L∞-quasi-
isomorphisms between this DGLA and s(OX)H , using the techniques
of [5]. Since L∞-quasi-isomorphisms induce equivalences of respective
Deligne groupoids, the result follows.

The paper is organized as follows. Section 2 contains the preliminary
material on jets and deformations. Section 3 describes the results on
the deformations of algebroid stacks. Section 4 is a short exposition of
[5]. Section 5 contains the main technical result of the paper: the con-
struction of the chain of quasi-isomorphisms mentioned above. Finally,
in Section 6 the main theorem is deduced from the results of Section 5.

The paper was written while the first author was visiting Max-Plank-
Institut für Mathematik, Bonn.

2. Preliminaries

2.1. Notations. Throughout this paper, unless specified otherwise, X
will denote a C∞ manifold. By OX we denote the sheaf of complex-
valued C∞ functions on X. A•X denotes the sheaf of differential forms
on X, and TX the sheaf of vector fields on X. For a ring K we denote
by K× the group of invertible elements of K.

2.2. Jets. Let pri : X×X → X, i = 1, 2, denote the projection on the
ith factor. Let ∆X : X → X ×X denote the diagonal embedding. Let
IX := ker(∆∗X).

For a locally-free OX-module of finite rank E let

J k
X(E) := (pr1)∗

(
OX×X/Ik+1

X ⊗pr−1
2 OX

pr−1
2 E
)
,

J k
X := J k

X(OX) .

It is clear from the above definition that J k
X is, in a natural way, a

commutative algebra and J k
X(E) is a J k

X-module.
Let
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1(k) : OX → J k
X

denote the composition

OX
pr∗1−−→ (pr1)∗OX×X → J k

X

In what follows, unless stated explicitly otherwise, we regard J k
X(E) as

a OX-module via the map 1(k).
Let

jk : E → J k
X(E)

denote the composition

E e 7→1⊗e−−−−→ (pr1)∗OX×X ⊗C E → J k
X(E)

The map jk is not OX-linear unless k = 0.
For 0 ≤ k ≤ l the inclusion I l+1

X → Ik+1
X induces the surjective map

πl,k : J l
X(E) → J k

X(E). The sheaves J k
X(E), k = 0, 1, . . . together with

the maps πl,k, k ≤ l form an inverse system. Let JX(E) = J∞X (E) :=
lim←−J

k
X(E). Thus, JX(E) carries a natural topology.

The maps 1(k) (respectively, jk), k = 0, 1, 2, . . . are compatible with
the projections πl,k, i.e. πl,k ◦ 1(l) = 1(k) (respectively, πl,k ◦ jl = jk).
Let 1 := lim←−1(k), j∞ := lim←− j

k.
Let

d1 : OX×X ⊗pr−1
2 OX

pr−1
2 E −→

pr−1
1 A1

X ⊗pr−1
1 OX

OX×X ⊗pr−1
2 OX

pr−1
2 E

denote the exterior derivative along the first factor. It satisfies

d1(Ik+1
X ⊗pr−1

2 OX
pr−1

2 E) ⊂ pr−1
1 A1

X ⊗pr−1
1 OX

IkX ⊗pr−1
2 OX

pr−1
2 E

for each k and, therefore, induces the map

d
(k)
1 : J k(E)→ A1

X ⊗OX
J k−1(E)

The maps d
(k)
1 for different values of k are compatible with the maps

πl,k giving rise to the canonical flat connection

∇can : JX(E)→ A1
X ⊗OX

JX(E) .
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2.3. Deligne groupoids. In [4] P. Deligne and, independently, E. Get-
zler in [8] associated to a nilpotent DGLA g concentrated in degrees
grater than or equal to −1 the 2-groupoid, referred to as the Deligne
2-groupoid and denoted MC2(g) in [1], [2] and below. The objects of
MC2(g) are the Maurer-Cartan elements of g. We refer the reader to
[8] (as well as to [2]) for a detailed description. The above notion was
extended and generalized by E. Getzler in [7] as follows.

To a nilpotent L∞-algebra g Getzler associates a (Kan) simplicial
set γ•(g) which is functorial for L∞ morphisms. If g is concentrated in
degrees greater than or equal to 1 − l, then the simplicial set γ•(g) is
an l-dimensional hypergroupoid in the sense of J.W. Duskin (see [6])
by [7], Theorem 5.4.

Suppose that g is a nilpotent L∞-algebra concentrated in degrees
grater than or equal to −1. Then, according to [6], Theorem 8.6 the
simplicial set γ•(g) is the nerve of a bigroupoid, or, a 2-groupoid in
our terminology. If g is a DGLA concentrated in degrees grater than
or equal to −1 this 2-groupoid coincides with MC2(g) of Deligne and
Getzler alluded to earlier. We extend our notation to the more general
setting of nilpotent L∞-algebras as above and denote by MC2(g) the
2-groupoid furnished by [6], Theorem 8.6.

For an L∞-algebra g and a nilpotent commutative algebra m the
L∞-algebra g ⊗ m is nilpotent, hence the simplicial set γ•(g ⊗ m) is
defined and enjoys the following homotopy invariance property ([7],
Proposition 4.9, Corollary 5.11):

Theorem 2.1. Suppose that f : g → h is a quasi-isomorphism of L∞
algebras and let m be a nilpotent commutative algebra. Then the induced
map

γ•(f ⊗ Id) : γ•(g⊗m)→ γ•(h⊗m)

is a homotopy equivalence.

2.4. Algebroid stacks. Here we give a very brief overview, referring
the reader to [3, 9] for the details. Let k be a field of characteristic
zero, and let R be a commutative k-algebra.

Definition 2.2. A stack in R-linear categories C on X is an R-algebroid
stack if it is locally nonempty and locally connected, i.e. satisfies

(1) any point x ∈ X has a neighborhood U such that C(U) is
nonempty;

(2) for any U ⊆ X, x ∈ U , A,B ∈ C(U) there exits a neighborhood
V ⊆ U of x and an isomorphism A|V ∼= B|V .

For a prestack C we denote by C̃ the associated stack.
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For a category C denote by iC the subcategory of isomorphisms in C;
equivalently, iC is the maximal subgroupoid in C. If C is an algebroid

stack then the stack associated to the substack of isomorphisms ĩC is
a gerbe.

For an algebra K we denote by K+ the linear category with a single
object whose endomorphism algebra is K. For a sheaf of algebras
K on X we denote by K+ the prestack in linear categories given by

U 7→ K(U)+. Let K̃+ denote the associated stack. Then, K̃+ is an
algebroid stack equivalent to the stack of locally free Kop-modules of
rank one.

By a twisted form of K we mean an algebroid stack locally equivalent

to K̃+. It is easy to see that the equivalence classes of twisted forms of
K are bijective correspondence with H2(X; Z(K)×), where Z(K) denotes
the center of K.

2.5. Twisted forms of O. Twisted forms of OX are in bijective cor-
respondence with O×X-gerbes: if S is a twisted form of OX , the corre-
sponding gerbe is the substack iS of isomorphisms in S. We shall not
make a distinction between the two notions.

The equivalence classes of twisted forms of OX are in bijective cor-
respondence with H2(X;O×X). The composition

O×X → O
×
X/C

× log−→ OX/C
j∞−→ DR(JX/OX)

induces the map H2(X;O×X)→ H2(X; DR(JX/OX)) ∼= H2(Γ(X;A•X ⊗
JX/OX),∇can). We denote by [S] the image in the latter space of the
class of S.

The short exact sequence

0→ OX
1−→ JX → JX/OX → 0

gives rise to the short exact sequence of complexes

0→ Γ(X;A•X)→ Γ(X; DR(JX))→ Γ(X; DR(JX/OX))→ 0,

hence to the map (connecting homomorphism) H2(X; DR(JX/OX))→
H3
dR(X). Namely, if B ∈ Γ(X;A2

X ⊗ JX) maps to B ∈ Γ(X;A2
X ⊗

JX/OX) which represents [S], then there exists a unique H ∈ Γ(X;A3)
such that ∇canB = DR(1)(H). The form H is closed and represents the
image of the class of B under the connecting homomorphism.

Notation. We denote by [S]dR the image of [S] under the map

H2(X; DR(JX/OX))→ H3
dR(X).
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3. Deformations of algebroid stacks

3.1. Deformations of linear stacks. Here we describe the notion of
2-groupoid of deformations of an algebroid stack. We follow [2] and
refer the reader to that paper for all the proofs and additional details.

For an R-linear category C and homomorphism of algebras R → S
we denote by C ⊗R S the category with the same objects as C and
morphisms defined by HomC⊗RS(A,B) = HomC(A,B)⊗R S.

For a prestack C in R-linear categories we denote by C ⊗R S the
prestack associated to the fibered category U 7→ C(U)⊗R S.

Lemma 3.1 ([2], Lemma 4.13). Suppose that A is a sheaf of R-algebras

and C is an R-algebroid stack. Then C̃ ⊗R S is an algebroid stack.

Suppose now that C is a stack in k-linear categories on X and R is a
commutative Artin k-algebra. We denote by Def(C)(R) the 2-category
with

• objects: pairs (B, $), where B is a stack in R-linear categories

flat over R and $ : B̃ ⊗R k → C is an equivalence of stacks in
k-linear categories
• 1-morphisms: a 1-morphism (B(1), $(1))→ (B(2), $(2)) is a pair

(F, θ) where F : B(1) → B(2) is a R-linear functor and θ :
$(2) ◦ (F ⊗R k)→ $(1) is an isomorphism of functors
• 2-morphisms: a 2-morphism (F ′, θ′) → (F ′′, θ′′) is a morphism

of R-linear functors κ : F ′ → F ′′ such that θ′′ ◦ (Id$(2) ⊗ (κ⊗R
k)) = θ′

The 2-category Def(C)(R) is a 2-groupoid.
Let B be a prestack on X in R-linear categories. We say that B is

flat if for any U ⊆ X, A,B ∈ B(U) the sheaf HomB(A,B) is flat (as a
sheaf of R-modules).

Lemma 3.2 ([2], Lemma 6.2). Suppose that B is a flat R-linear stack

on X such that B̃ ⊗R k is an algebroid stack. Then B is an algebroid
stack.

3.2. Deformations of twisted forms of O. Suppose that S is a
twisted form of OX . We will now describe the DGLA controlling the
deformations of S.

The complex Γ(X; DR(C•(JX)) = (Γ(X;A•X ⊗C•(JX)),∇can + δ) is
a differential graded brace algebra in a canonical way. The abelian Lie
algebra JX = C0(JX) acts on the brace algebra C•(JX) by deriva-
tions of degree −1 by Gerstenhaber bracket. The above action fac-
tors through an action of JX/OX . Therefore, the abelian Lie algebra
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Γ(X;A2
X⊗JX/OX) acts on the brace algebra A•X⊗C•(JX) by deriva-

tions of degree +1. Following longstanding tradition, the action of an
element a is denoted by ia.

Due to commutativity of JX , for any ω ∈ Γ(X;A2
X ⊗ JX/OX) the

operation ιω commutes with the Hochschild differential δ. If, moreover,
ω satisfies ∇canω = 0, then ∇can + δ + iω is a square-zero derivation of
degree one of the brace structure. We refer to the complex

Γ(X; DR(C•(JX))ω := (Γ(X;A•X ⊗ C•(JX)),∇can + δ + iω)

as the ω-twist of Γ(X; DR(C•(JX)).
Let

gDR(J )ω := Γ(X; DR(C•(JX))[1])ω

regarded as a DGLA. The following theorem is proved in [2] (Theorem
1 of loc. cit.):

Theorem 3.3. For any Artin algebra R with maximal ideal mR there
is an equivalence of 2-groupoids

MC2(gDR(JX)ω ⊗mR) ∼= Def(S)(R)

natural in R.

4. Formality

We give a synopsis of the results of [5] in the notations of loc. cit. Let
k be a field of characteristic zero. For a k-cooperad C and a complex
of k-vector spaces V we denote by FC(V ) the cofree C-coalgebra on V .

We denote by e2 the operad governing Gerstenhaber algebras. The
latter is Koszul, and we denote by e2

∨ the dual cooperad.
For an associative k-algebra A the Hochschild complex C•(A) has

a canonical structure of a brace algebra, hence a structure of ho-
motopy e2-algebra. The latter structure is encoded in a differential
(i.e. a coderivation of degree one and square zero) M : Fe2

∨(C•(A))→
Fe2

∨(C•(A))[1].
Suppose from now on that A is regular commutative algebra over

a field of characteristic zero (the regularity assumption is not needed
for the constructions). Let V •(A) = Sym•A(Der(A)[−1]) viewed as a
complex with trivial differential. In this capacity V •(A) has a canonical
structure of an e2-algebra which gives rise to the differential dV •(A) on
Fe2

∨(V •(A)); we have: Be2
∨(V •(A)) = (Fe2

∨(V •(A)), dV •(A)) (see [5],
Theorem 1 for notations).

In addition, the authors introduce a sub-e2
∨-coalgebra Ξ(A) of both

Fe2
∨(C•(A)) and Fe2

∨(V •(A)). We denote by σ : Ξ(A)→ Fe2
∨(C•(A))

and ι : Ξ(A) → Fe2
∨(V •(A)) respective inclusions and identify Ξ(A)



8 P.BRESSLER, A.GOROKHOVSKY, R.NEST, AND B.TSYGAN

with its image under the latter one. By [5], Proposition 7 the differen-
tial dV •(A) preserves Ξ(A); we denote by dV •(A) its restriction to Ξ(A).
By Theorem 3, loc. cit. the inclusion σ is a morphism of complexes.
Hence, we have the following diagram in the category of differential
graded e2

∨-coalgebras:

(4.0.1) (Fe2
∨(C•(A)),M)

σ←− (Ξ(A), dV •(A))
ι−→ Be2

∨(V •(A))

Applying the functor Ωe2 (adjoint to the functor Be2
∨ , see [5], The-

orem 1) to (4.0.1) we obtain the diagram

(4.0.2) Ωe2(Fe2
∨(C•(A)),M)

Ωe2 (σ)
←−−−−

Ωe2(Ξ(A), dV •(A))
Ωe2 (ι)
−−−→ Ωe2(Be2

∨(V •(A)))

of differential graded e2-algebras. Let ν = ηe2 ◦ Ωe2(ι), where ηe2 :
Ωe2(Be2

∨(V •(A)))→ V •(A) is the counit of adjunction. Thus, we have
the diagram

(4.0.3) Ωe2(Fe2
∨(C•(A)),M)

Ωe2 (σ)
←−−−− Ωe2(Ξ(A), dV •(A))

ν−→ V •(A)

of differential graded e2-algebras.

Theorem 4.1 ([5], Theorem 4). The maps Ωe2(σ) and ν are quasi-
isomorphisms.

Additionally, concerning the DGLA structures relevant to applica-
tions to deformation theory, deduced from respective e2-algebra struc-
tures we have the following result.

Theorem 4.2 ([5], Theorem 2). The DGLA Ωe2(Fe2
∨(C•(A)),M)[1]

and C•(A)[1] are canonically L∞-quasi-isomorphic.

Corollary 4.3 (Formality). The DGLA C•(A)[1] and V •(A)[1] are
L∞-quasi-isomorphic.

4.1. Some (super-)symmetries. For applications to deformation the-
ory of algebroid stacks we will need certain equivariance properties of
the maps described in 4.

For a ∈ A let ia : C•(A) → C•(A)[−1] denote the adjoint action
(in the sense of the Gerstenhaber bracket and the identification A =
C0(A)). It is given by the formula

iaD(a1, . . . , an) =
n∑
i=0

(−1)kD(a1, . . . , ai, a, ak+1, . . . , an).

The operation ia extends uniquely to a coderivation of Fe2
∨(C•(A));

we denote this extension by ia as well. Furthermore, the subcoalgebra
Ξ(A) is preserved by ia.
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Since the operation ia is a derivation of the cup product as well as
of all of the brace operations on C•(A) and the homotopy-e2-algebra
structure on C•(A) given in terms of the cup product and the brace
operations it follows that ia anti-commutes with the differential M .
Hence, the coderivation ia induces a derivation of the differential graded
e2-algebra Ωe2(Fe2

∨(C•(A)),M) which will be denoted by ia as well.
For the same reason the DGLA Ωe2(Fe2

∨(C•(A)),M)[1] and C•(A)[1]
are quasi-isomorphic in a way which commutes with the respective
operations ia.

On the other hand, let ia : V •(A) → V •(A)[−1] denote the ad-
joint action in the sense of the Schouten bracket and the identification
A = V 0(A). The operation ia extends uniquely to a coderivation of
Fe2

∨(V •(A)) which anticommutes with the differential dV •(A) because
ia is a derivation of the e2-algebra structure on V •(A). We denote
this coderivation as well as its unique extension to a derivation of the
differential graded e2-algebra Ωe2(Be2

∨(V •(A))) by ia. The counit map
ηe2 : Ωe2(Be2

∨(V •(A))) → V •(A) commutes with respective operations
ia.

The subcoalgebra Ξ(A) of Fe2
∨(C•(A)) and Fe2

∨(V •(A)) is preserved
by the respective operations ia. Moreover, the restrictions of the two
operations to Ξ(A) coincide, i.e. the maps in (4.0.1) commute with ia
and, therefore, so do the maps in (4.0.2) and (4.0.3).

4.2. Deformations of O and Kontsevich formality. Suppose that
X is a manifold. Let OX (respectively, TX) denote the structure sheaf
(respectively, the sheaf of vector fields). The construction of the di-
agram localizes on X yielding the diagram of sheaves of differential
graded e2-algebras
(4.2.1)

Ωe2(Fe2
∨(C•(OX)),M)

Ωe2 (σ)
←−−−− Ωe2(Ξ(OX), dV •(OX))

ν−→ V •(OX),

where C•(OX) denotes the sheaf of multidifferential operators and
V •(OX) := Sym•OX

(TX [−1]) denotes the sheaf of multivector fields.
Theorem 4.1 extends easily to this case stating that the morphisms
Ωe2(σ) and ν in (4.2.1) are quasi-isomorphisms of sheaves of differen-
tial graded e2-algebras.

5. Formality for the algebroid Hochschild complex

5.1. A version of [5] for jets. Let C•(JX) denote sheaf of continuous
(with respect to the adic topology) OX-multilinear Hochschild cochains
on JX . Let V •(JX) = Sym•JX

(DercontOX
(JX)[−1]).
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Working now in the category of graded OX-modules we have the
diagram
(5.1.1)

Ωe2(Fe2
∨(C•(JX)),M)

Ωe2 (σ)
←−−−− Ωe2(Ξ(JX), dV •(JX))

ν−→ V •(JX)

of sheaves of differential graded OX-e2-algebras. Theorem 4.1 extends
easily to this situation: the morphisms Ωe2(σ) and ν in (5.1.1) are
quasi-isomorphisms. The sheaves of DGLA Ωe2(Fe2

∨(C•(JX)),M)[1]
and C•(JX)[1] are canonically L∞-quasi-isomorphic.

The canonical flat connection ∇can on JX induces a flat connection
which we denote ∇can as well on each of the objects in the diagram
(5.1.1). Moreover, the maps Ωe2(σ) and ν are flat with respect to ∇can

hence induce the maps of respective de Rham complexes

(5.1.2) DR(Ωe2(Fe2
∨(C•(JX)),M))

DR(Ωe2 (σ))
←−−−−−−

DR(Ωe2(Ξ(JX), dV •(JX)))
DR(ν)−−−→ DR(V •(JX))

where, for (K•, d) one of the objects in (5.1.1) we denote by DR(K•, d)
the total complex of the double complex (A•X⊗K•, d,∇can). All objects
in the diagram (5.1.2) have canonical structures of differential graded
e2-algebras and the maps are morphisms thereof.

The DGLA Ωe2(Fe2
∨(C•(JX)),M)[1] and C•(JX)[1] are canonically

L∞-quasi-isomorphic in a way compatible with∇can. Hence, the DGLA
DR(Ωe2(Fe2

∨(C•(JX)),M)[1]) and DR(C•(JX)[1]) are canonically L∞-
quasi-isomorphic.

5.2. A version of [5] for jets with a twist. Suppose that ω ∈
Γ(X;A2

X ⊗ JX/OX) satisfies ∇canω = 0.
For each of the objects in (5.1.2) we denote by iω the operation which

is induced by the one described in 4.1 and the wedge product on A•X .
Thus, for each differential graded e2-algebra (N•, d) in (5.1.2) we have
a derivation of degree one and square zero iω which anticommutes with
d and we denote by (N•, d)ω the ω-twist of (N•, d), i.e. the differential
graded e2-algebra (N•, d + iω). Since the morphisms in (5.1.2) com-
mute with the respective operations iω, they give rise to morphisms of
respective ω-twists

(5.2.1) DR(Ωe2(Fe2
∨(C•(JX)),M))ω

DR(Ωe2 (σ))
←−−−−−−

DR(Ωe2(Ξ(JX), dV •(JX)))ω
DR(ν)−−−→ DR(V •(JX))ω.

Let F•A•X denote the stupid filtration: FiA•X = A≥−iX . The filtration
F•A•X induces a filtration denoted F•DR(K•, d)ω for each object (K•, d)
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of (5.1.1) defined by FiDR(K•, d)ω = FiA•X ⊗K•. As is easy to see, the
associated graded complex is given by

(5.2.2) Gr−pDR(K•, d)ω = (ApX ⊗K
•, Id⊗ d).

It is clear that the morphisms DR(Ωe2(σ)) and DR(ν) are filtered with
respect to F•.

Theorem 5.1. The morphisms in (5.2.1) are filtered quasi-isomorphisms,
i.e. the maps GriDR(Ωe2(σ)) and GriDR(ν) are quasi-isomorphisms for
all i ∈ Z.

Proof. We consider the case of DR(Ωe2(σ)) leaving GriDR(ν) to the
reader.

The map Gr−pDR(Ωe2(σ)) induced by DR(Ωe2(σ)) on the respective
associated graded objects in degree −p is equal to the map of complexes
(5.2.3)
Id⊗Ωe2(σ) : ApX⊗Ωe2(Ξ(JX), dV •(JX))→ ApX⊗Ωe2(Fe2

∨(C•(JX)),M).

The map σ is a quasi-isomorphism by Theorem 4.1, therefore so is
Ωe2(σ). SinceApX is flat overOX , the map (5.2.3) is a quasi-isomorphism.

�

Corollary 5.2. The maps DR(Ωe2(σ)) and DR(ν) in (5.2.1) are quasi-
isomorphisms of sheaves of differential graded e2-algebras.

Additionally, the DGLA DR(Ωe2(Fe2
∨(C•(JX)),M)[1]) and DR(C•(JX)[1])

are canonically L∞-quasi-isomorphic in a way which commutes with
the respective operations iω which implies that the respective ω-twists
DR(Ωe2(Fe2

∨(C•(JX)),M)[1])ω and DR(C•(JX)[1])ω are canonically L∞-
quasi-isomorphic.

5.3. L∞-structures on multivectors. The canonical pairing 〈 , 〉 : A1
X⊗

TX → OX extends to the pairing

〈 , 〉 : A1
X ⊗ V •(OX)→ V •(OX)[−1]

For k ≥ 1, ω = α1 ∧ . . . ∧ αk, αi ∈ A1
X , i = 1, . . . , k, let

Φ(ω) : Symk V •(OX)[2]→ V •(OX)[k]

denote the map given by the formula

Φ(ω)(π1, . . . , πk) = (−1)(k−1)(|π1|−1)+...+2|(πk−3|−1)+(|πk−2|−1)×∑
σ

sgn(σ)〈α1, πσ(1)〉 ∧ · · · ∧ 〈αk, πσ(k)〉,

where |π| = l for π ∈ V l(OX). For α ∈ OX let Φ(α) = α ∈ V 0(OX).
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Recall that a graded vector space W gives rise to the graded Lie
algebra Der(coComm(W [1])). An element γ ∈ Der(coComm(W [1])) of
degree one which satisfies [γ, γ] = 0 defines a structure of an L∞-
algebra on W . Such a γ determines a differential ∂γ := [γ, .] on
Der(coComm(W [1])), such that (Der(coComm(W [1])), ∂γ) is a differ-
ential graded Lie algebra. If g is a graded Lie algebra and γ is the
element of Der(coComm(g[1])) corresponding to the bracket on g, then
(Der(coComm(g[1])), ∂γ) is equal to the shifted Chevalley cochain com-
plex C•(g; g)[1].

In what follows we consider the (shifted) de Rham complex A•X [2]
as a differential graded Lie algebra with the trivial bracket.

Lemma 5.3. The map ω 7→ Φ(ω) defines a morphism of sheaves of
differential graded Lie algebras

(5.3.1) Φ: A•X [2]→ C•(V •(OX)[1];V •(OX)[1])[1].

Proof. Recall the explicit formulas for the Schouten bracket. If f and
g are functions and Xi, Yj are vector fields, then

[fX1 . . . Xk, gY1 . . . Yl] =
∑
i

(−1)k−ifXk(g)X1 . . . X̂i . . . XkY1 . . . Yl+∑
j

(−1)jYj(f)gX1 . . . XkY1 . . . Ŷj . . . Yl+∑
i,j

(−1)i+jfgX1 . . . X̂i . . . XkY1 . . . Ŷj . . . Yl

Note that for a one-form ω and for vector fields X and Y

(5.3.2) 〈ω, [X, Y ]〉 − 〈[ω,X], Y 〉 − 〈X, [ω, Y ]〉 = Φ(dω)(X, Y )

From the two formulas above we deduce by an explicit computation
that

〈ω, [π, ρ]〉 − 〈[ω, π], ρ〉 − (−1)|π|−1〈π, [ω, ρ]〉 = (−1)|π|−1Φ(dω)(π, ρ)

Note that Lie algebra cochains are invariant under the symmetric group
acting by permutations multiplied by signs that are computed by the
following rule: a permutation of πi and πj contributes a factor (−1)|πi||πj |.
We use the explicit formula for the bracket on the Lie algebra complex.

[Φ,Ψ] = Φ ◦Ψ− (−1)|Φ||Ψ|Ψ ◦ Φ

(Φ ◦Ψ)(π1, . . . , πk+l−1) =
∑
I,J

ε(I, J)Φ(Ψ(πi1 , . . . , πik), πj1 , . . . , πjl−1
)



FORMALITY FOR ALGEBROID STACKS 13

Here I = {i1, . . . , ik}; J = {j1, . . . , jl−1}; i1 < . . . < ik; j1 < . . . < jl−1;
I
∐
J = {1, . . . , k + l − 1}; the sign ε(I, J) is computed by the same

sign rule as above. The differential is given by the formula

∂Φ = [m,Φ]

where m(π, ρ) = (−1)|π|−1[π, ρ]. Let α = α1 . . . αk and β = β1 . . . βl.
We see from the above that both cochains Φ(α)◦Φ(β) and Φ(β)◦Φ(α)
are antisymmetrizations with respect to αi and βj of the sums∑

I,J,p

±〈α1β1, πp〉〈α2, πi1〉 . . . 〈αk, πik−1
〉〈β2, πj1〉 . . . 〈βl, πjl−1

〉

over all partitions {1, . . . , k+l−1} = I
∐
J
∐
{p} where i1 < . . . < ik−1

and j1 < . . . < jl−1; here 〈αβ, π〉 = 〈α, 〈β, π〉〉. After checking the signs,
we conclude that [Φ(α),Φ(β)] = 0. Also, from the definition of the
differential, we see that ∂Φ(α)(π1, . . . , πk+1) is the antisymmetrizations
with respect to αi and βj of the sum∑

i<j

±(〈α1, [πi, πj]〉 − 〈[α1, πi], πj〉 − (−1)|πi|−1[πi, 〈α1, πj〉])·

〈α2, π1〉 . . . 〈αi, πi−1〉〈αi+1, πi+1〉 . . . 〈αj−1, πj−1〉〈αj, πj+1〉〈αk, πk+1〉
We conclude from this and (5.3.2) that ∂Φ(α) = Φ(dα). �

Thus, according to Lemma 5.3, a closed 3-form H on X gives rise to
a Maurer-Cartan element Φ(H) in Γ(X;C•(V •(OX)[1];V •(OX)[1])[1]),
hence a structure of an L∞-algebra on V •(OX)[1] which has the trivial
differential (the unary operation), the binary operation equal to the
Schouten-Nijenhuis bracket, the ternary operation given by Φ(H), and
all higher operations equal to zero. Moreover, cohomologous closed 3-
forms give rise to gauge equivalent Maurer-Cartan elements, hence to
L∞-isomorphic L∞-structures.

Notation. For a closed 3-form H on X we denote the corresponding
L∞-algebra structure on V •(OX)[1] by V •(OX)[1]H . Let

s(OX)H := Γ(X;V •(OX)[1])H .

5.4. L∞-structures on multivectors via formal geometry. In or-
der to relate the results of 5.2 with those of 5.3 we consider the analog
of the latter for jets.

Let Ω̂k
J /O := JX(AkX), the sheaf of jets of differential k-forms on

X. Let d̂dR denote the (OX-linear) differential in Ω̂•J /O induced by the

de Rham differential in A•X . The differential d̂dR is horizontal with

respect to the canonical flat connection ∇can on Ω̂•J /O, hence we have
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the double complex (A•X ⊗ Ω̂•J /O,∇can, Id⊗ d̂dR) whose total complex

is denoted DR(Ω̂•J /O).

Let 1 : OX → JX denote the unit map (not to be confused with

the map j∞); it is an isomorphism onto the kernel of d̂dR : JX →
Ω̂1
J /O and therefore defines the morphism of complexes 1 : OX → Ω̂•J /O

which is a quasi-isomorphism. The map 1 is horizontal with respect

to the canonical flat connections on OX and JX (respectively, Ω̂•J /O),
therefore we have the induced map of respective de Rham complexes

DR(1) : A•X → DR(JX) (respectively, DR(1) : A•X → DR(Ω̂•J /O), a quasi-

isomorphism).
Let C•(g(JX); g(JX)) denote the complex of continuousOX-multilinear

cochains. The map of differential graded Lie algebras

(5.4.1) Φ̂ : Ω̂•J /O[2]→ C•(V •(JX)[1];V •(JX)[1])[1]

defined in the same way as (5.3.1) is horizontal with respect to the
canonical flat connection ∇can and induces the map

(5.4.2) DR(Φ̂) : DR(Ω̂•J /O)[2]→ DR((C•(V •(JX)[1];V •(JX)[1])[1])

There is a canonical morphism of sheaves of differential graded Lie
algebras
(5.4.3)
DR(C•(V •(JX)[1];V •(JX)[1])[1])→ C•(DR(V •(JX)[1]); DR(V •(JX)[1]))[1]

Therefore, a degree three cocycle in Γ(X; DR(Ω̂•J /O)) determines an

L∞-structure on DR(V •(JX)[1]) and cohomologous cocycles determine
L∞-isomorphic structures.

Notation. For a section B ∈ Γ(X;A2
X⊗JX) we denote by B it’s image

in Γ(X;A2
X ⊗ JX/OX).

Lemma 5.4. If B ∈ Γ(X;A2
X ⊗ JX) satisfies ∇canB = 0, then

(1) d̂dRB is a (degree three) cocycle in Γ(X; DR(Ω̂•J /O));

(2) there exist a unique H ∈ Γ(X;A3
X) such that dH = 0 and

DR(1)(H) = ∇canB.

Proof. For the first claim it suffices to show that ∇canB = 0. This

follows from the assumption that ∇canB = 0 and the fact that d̂dR :

A•X ⊗ JX → A•X ⊗ Ω̂1
J /O factors through A•X ⊗ JX/OX .

We have: d̂dR∇canB = ∇cand̂dRB = 0. Therefore, ∇canB is in the im-
age of DR(1) : Γ(X;A3

X)→ Γ(X;A3
X ⊗ JX) which is injective, whence

the existence and uniqueness of H. Since DR(1) is a morphism of com-
plexes it follows that H is closed. �
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Suppose that B ∈ Γ(X;A2
X ⊗ JX) satisfies ∇canB = 0. Then, the

differential graded Lie algebra DR(g(JX))B (the B-twist of DR(g(JX)))
is defined. On the other hand, due to Lemma 5.4, (5.4.2) and (5.4.3),

d̂dRB gives rise to an L∞-structure on DR(V •(JX)[1]).

Lemma 5.5. The L∞-structure induced by d̂dRB is that of a differential
graded Lie algebra equal to DR(V •(JX)[1])B.

Proof. Left to the reader. �

Notation. For a 3-cocycle ω ∈ Γ(X; DR(Ω̂•J /O)) we will denote by DR(V •(JX)[1])ω
the L∞-algebra obtained from ω via (5.4.2) and (5.4.3). Let

sDR(JX)ω := Γ(X; DR(V •(JX)[1]))ω.

Remark 5.6. Lemma 5.5 shows that this notation is unambiguous with
reference to the previously introduced notation for the twist. In the

notations introduced above, d̂dRB is the image of B under the injective

map Γ(X;A2
X ⊗ JX/OX) → Γ(X;A2

X ⊗ Ω̂1
J /O) which factors d̂dR and

“allows” us to “identify” B with d̂dRB.

Theorem 5.7. Suppose that B ∈ Γ(X;A2
X ⊗JX) satisfies ∇canB = 0.

Let H ∈ Γ(X;A3
X) denote the unique 3-form such that DR(1)(H) =

∇canB (cf. Lemma 5.4). Then, the L∞-algebras gDR(JX)B and s(OX)H
are L∞-quasi-isomorphic.

Proof. The map j∞ : V •(OX)→ V •(JX) induces a quasi-isomorphism
of sheaves of DGLA

(5.4.4) j∞ : V •(OX)[1]→ DR(V •(JX)[1]).

Suppose that H is a closed 3-form on X. Then, the map (5.4.4) is a
quasi-isomorphism of sheaves of L∞-algebras

j∞ : V •(OX)[1]H → DR(V •(JX)[1])DR(1)(H).

Passing to global section we obtain the quasi-isomorphism of L∞-
algebras

(5.4.5) j∞ : s(OX)H → sDR(JX)DR(1)(H).

By assumption, B provides a homology between d̂dRB and ∇canB =
DR(1)(H). Therefore, we have the corresponding L∞-quasi-isomorphism
(5.4.6)

DR(V •(JX)[1])DR(1)(H)

L∞∼= DR(V •(JX)[1])bddRB
= DR(V •(JX)[1])B

(the second equality is due to Lemma 5.5).
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According to Corollary 5.2 the sheaf of DGLA DR(V •(JX)[1])B is L∞-
quasi-isomorphic to the DGLA deduced form the differential graded e2-
algebra DR(Ωe2(Fe2

∨(C•(JX)),M))B. The latter DGLA is L∞-quasi-
isomorphic to DR(C•(JX)[1])B.

Passing to global sections we conclude that sDR(JX)DR(1)(H) and gDR(JX)B
are L∞-quasi-isomorphic. Together with (5.4.5) this implies the claim.

�

6. Application to deformation theory

Theorem 6.1. Suppose that S is a twisted form of OX (2.5). Let H be
a closed 3-form on X which represents [S]dR ∈ H3

dR(X). For any Artin
algebra R with maximal ideal mR there is an equivalence of 2-groupoids

MC2(s(OX)H ⊗mR) ∼= Def(S)(R)

natural in R.

Proof. Since cohomologous 3-forms give rise to L∞-quasi-isomorphic
L∞-algebras we may assume, possibly replacing H by another repre-
sentative of [S]dR, that there exists B ∈ Γ(X;A2

X ⊗ JX) such that
B represents [S] and ∇canB = DR(1)(H). By Theorem 5.7 s(OX)H
is L∞-quasi-isomorphic to gDR(JX)B. By the Theorem 2.1 we have a
homotopy equivalence of nerves of 2-groupoids γ•(s(OX)H ⊗ mR) ∼=
γ•(gDR(JX)B ⊗mR). Therefore, there are equivalences

MC2(s(OX)H ⊗mR) ∼= MC2(gDR(JX)B ⊗mR) ∼= Def(S)(R),

the second one being that of Theorem 3.3. �

Remark 6.2. In particular, the isomorphism classes of formal deforma-
tions of S are in a bijective correspondence with equivalence classes of
Maurer-Cartan elements of the L∞-algebra sDR(OX)H⊗̂t ·C[[t]]. These
are the formal twisted Poisson structures in the terminology of [13],
i.e. the formal series π =

∑∞
k=1 t

kπk, πk ∈ Γ(X;
∧2 TX), satisfying the

equation
[π, π] = Φ(H)(π, π, π).

A construction of an algebroid stack associated to a twisted Poisson
structure was proposed by P. Ševera in [12].
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