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Abstract

We study the computational complexity of the Word Problem (WP)
in free solvable groups Sy 4, where r > 2 is the rank and d > 2 is the
solvability class of the group. It is known that the Magnus embedding
of Sy 4 into matrices provides a polynomial time decision algorithm for
WP in a fixed group S; 4. Unfortunately, the degree of the polynomial
grows together with d, so the uniform algorithm is not polynomial in d.
In this paper we show that WP has time complexity O(rnlog,n) in Sy,
and O(n®rd) in S,.4 for d > 3. However, it turns out, that a seemingly
close problem of computing the geodesic length of elements in Sy 2 is N P-
complete. We prove also that one can compute Fox derivatives of elements
from S, 4 in time O(n®rd), in particular one can use efficiently the Magnus
embedding in computations with free solvable groups. Our approach is
based on such classical tools as the Magnus embedding and Fox calculus,
as well as, on a relatively new geometric ideas, in particular, we establish a
direct link between Fox derivatives and geometric flows on Cayley graphs.
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1 Introduction

In this paper we study the computational complexity of several algorithmic
problems related to the Word Problem (WP) in free solvable groups. Let Sy 4
be a free solvable group of rank r > 2 and the solvability class d > 2. We
present here a uniform decision algorithm that solves WP in time O(rnlog,n)
in the free metabelian group S, 2 (also denoted by M,), and O(n®rd) in the
free solvable group S 4 for d > 3, where n is the length of the input word. In
particular, this algorithm is at most cubic in n and linear in r and d for all
free solvable groups S, 4. Notice, that in all previously known polynomial time
decision algorithms for WP in S, 4 the degree of the polynomial grows together
with d. In fact, we prove more, we show that one can compute Fox derivatives
of elements from S, 4 in time O(n3rd). This allows one to use efficiently the
Magnus embedding in computations with free solvable groups. On the other
hand, we describe geodesics in S, ¢ and show that a seemingly close problem of
finding the geodesic length of a given element from S o is surprisingly hard —
it is NP-complete. Our approach is based on such classical tools as the Magnus
embedding and Fox calculus, as well as, on a relatively new (in group theory)
geometric ideas from [12] and [53]. In particular, we establish a direct link
between Fox derivatives and geometric flows on Cayley graphs.

The study of algorithmic problems in free solvable groups can be traced to
the the work [36] of Magnus, who in 1939 introduced an embedding (now called
the Magnus embedding) of an arbitrary group of the type F//N’ into a matrix
group of a particular type with coefficients in the group ring of F'//N (see section
below). Since WP in free abelian groups is decidable in polynomial time, by
induction, this embedding immediately gives a polynomial time decision algo-
rithm for a fixed free solvable group S, 4. However the degree of the polynomial
here grows together with d.

In 1950’s R. Fox introduced his free differential calculus and made the Mag-
nus embedding much more transparent [20, 2T], 22, 23] (see also Section E3).
Namely, besides other things, he showed that an element w € F belongs to
N’ =[N, N] if and only if all partial derivatives of w is equal to 0 in the integer
group ring of F//N. This reduces WP in F/N’ directly to the word problem in
F/N. In particular, it solves, by induction, WP in S, 4. Again, the decision
algorithm is polynomial in a fixed group S, 4, but the degree of the polynomial
grows with d — not a surprise since the partial derivatives of w describe precisely
the image of w under the Magnus embedding.
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A few years later P. Hall proved the finiteness of all subdirect indecompos-
able finitely generated abelian-by-nilpotent groups. This implies that all finitely
generated abelian-by-nilpotent, in particular, metabelian, groups are residually
finite. About the same time Gruenberg extended this result to arbitrary free
solvable groups [2Z7]. Now one can solve WP in S, 4 in the following way. Given
w € Sy 4, as a word in the fixed set of generators, one can start two processes in
parallel. The first one enumerates effectively all consequences of the defining re-
lations of S, 4 in F,. (which is possible since the group is recursively presented)
until the word w occurs, and the second one enumerates all homomorphisms
from Sy 4 into all finite symmetric groups S, (checking if a given r-tuple of
elements in S,, generates a solvable group of class d) until it finds one where
the image of w is non-trivial. However, computer experiments show that the
algorithm described above is extremely inefficient (though its complexity is un-
known).

Another shot at WP in metabelian groups comes from their linear represen-
tations. V. Remeslennikov proved in [45] that a finitely generated metabelian
group (under some restrictions) is embeddable into GL(n, R) for a suitable n
and a suitable ring R = K1 X ... x K,, which is a finite direct product of fields
K;. In 4], see also [B5], B. Wehrfritz generalized this result to arbitrary finitely
generated metabelian groups G. It follows that G is embeddable into a finite
direct product of linear groups. Since WP in linear groups is polynomial time
decidable this implies that WP in G is polynomial time decidable. Notice, that
it is unclear if there is a uniform polynomial time decision algorithm for WP in
arbitrary finitely generated metabelian groups.

In comparison, observe, that there are finitely presented solvable groups of
class 3 with undecidable WP. In [34] O. Kharlampovich constructed the first
example of such a group by simulating a universal Minski machine in WP of the
group. There are several results which clarify the boundary between decidability
and undecidability of the word problems in solvable groups, we refer to a survey
[35] for details.

Our approach to WP in free solvable groups is based on the Fox Theorem
mentioned above. Using binary tree search techniques and associative arrays we
were able to compute Fox’s derivatives of elements w of a free solvable group
Sg,r in time O(n3d), where n = |w|. Significance of this result goes beyond WP
for these groups - it gives a fast algorithm to compute images of elements under
the Magnus embedding. This opens up an opportunity to solve effectively other
algorithmic problems in groups S, ¢ using the classical techniques developed for
wreath products of groups.

In the second half of the paper, Section Bl we study algorithmic problems
on geodesics in free metabelian groups. Let G be a group with a finite set of
generators X = {x1,...,2,} and p : F(X) — G the canonical epimorphism.
For a word w in the alphabet X*! by |w| we denote the length of w. The
geodesic length lx (g) of an element g € G relative to X is defined by

Ix(g9) = min{[w| | w € F(X), w" = g}.

We write, sometimes, [x(w) instead of Ix(w#*). A word w € F(X) is called
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geodesic in G relative to X, if |w| = Ix(w). We are interested here in the
following two algorithmic search problems in G.

The Geodesic Problem (GP): Given a word w € F(X) find a word u €
F(X) which is geodesic in G such that w* = ut.

The Geodesic Length Problem (GLP): Given a word w € F(X) find
ZX (w) .

Though GLP seems easier than GP, in practice, to solve GLP one usually
solves GP first, and only then computes the geodesic length. It is an interesting
question if there exists a group G and a finite set X of generators for G relative
to which GP is strictly harder than GLP.

As customary in complexity theory one can modify the search problem GLP
to get the corresponding bounded decision problem (that requires only answers
77yes77 or b2 no77):

The Bounded Geodesic Length Problem (BGLP): Let G be a group
with a finite generating set X. Given a word w € F(X) and a natural number
k determine if Ix (w) < k.

In Section EEJl we compare in detail the algorithmic ”hardness” of the prob-
lems WP, BGLP, GLP, and GP in a given group G. Here we would like only to
mention that in the list of the problems above each one is Turing reducible in
polynomial time to the next one in the list, and GP is Turing reducible to WP
in exponential time (see definitions in Section ETI).

Among general facts on computational complexity of geodesics notice that
if G has a polynomial growth, i.e., there is a polynomial p(n) such that for each
n € N cardinality of the ball B,, of radius n in the Cayley graph I'(G, X) is at
most p(n), then one can easily construct this ball B,, in polynomial time with an
oracle for WP in G. If, in addition, such a group G has WP decidable in polyno-
mial time then all the problems above have polynomial time complexity with re-
spect to any finite generating set of G (since the growth and WP stay polynomial
for any finite set of generators). Now, by Gromov’s theorem [25], groups of poly-
nomial growth are virtually nilpotent, hence linear, so they have WP decidable
in polynomial time. It follows that all Geodesic Problems are polynomial time
decidable in groups of polynomial growth (finitely generated virtually nilpo-
tent groups). On the other hand, there are many groups of exponential growth
where GP is decidable in polynomial time, for example, hyperbolic groups [15]
or metabelian Baumslag-Solitar group BS(1,n) = (a,t | t"tat = a"), n > 2
(see [T4] and Section Bl for comments).

In general, if WP in G is decidable in polynomial time then BGLP is in the
class NP, i.e., it is decidable in polynomial time by a non-deterministic Turing
machine. It might happen though, that BGLP in a group G is as hard as any
in the class NP, i.e., it is NP-complete. The simplest example of this type is
due to Perry, who showed in [#4] that BGLP is NP-complete in the metabelian
group Zowr(Z x Z) (the wreath product of Zy and Z x Z). Correspondingly, the
search problems GP and GLP are NP-hard, which means, precisely, that some
(any) NP-complete problem is Turing reducible to them in polynomial time.
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Our view-point on geodesics in free solvable groups is based on geometric
ideas from the following two papers. In 1993 Droms, Lewin, and Servatius in-
troduced a new geometric approach to study WP and GLP in groups of the
type F'/N' via paths in the Cayley graph of F//N [I2]. In 2004 Vershik and Do-
brynin studied algebraic structure of solvable groups, using homology of related
Cayley graphs [53]. This approach was outlined earlier in the papers [B1, B2,
where possible applications to random walks on metabelian groups have been
discussed. In the papers [B1l B2] (see also [B3]) a new robust presentation of a
free metabelian group S, » was introduced as an extension of Z" by the integer
first homology group of the lattice Z" (viewed as a one-dimensional complex)
with a distinguished 2-cocycle. Similar presentations of other metabelian and
solvable groups laid out foundations of a new approach to algorithmic problems
in solvable groups.

It seems these ideas are still underdeveloped in group-theoretic context, de-
spite their obvious potential. Meanwhile, in semigroup theory similar geometric
techniques have been widely used to deal with free objects in semidirect products
of varieties. One can find an explicit exposition of these techniques in the pa-
pers due to Almeida [I] and Almeida and Weil [2], while in E8| 7, £ B] Auinger,
Rhodes and Steinberg use similar machinery on a regular basis. Earlier, similar
methods, though sometimes implicitly, were used in inverse semigroups theory,
we refer here to papers 42, B7, B8, §].

In group theory most of the results in this area relied on various forms of the
Magnus embedding and Fox derivatives. The role that the Magnus embeddings
play in varieties of groups was clarified by Shmelkin [49]. In [39 Matthews
proved that the conjugacy problem (CP) in free metabelian groups is decidable,
and Kargapolov and Remeslennikov generalized this to free solvable groups S, 4
[32]. A few years later Remeslennikov and Sokolov described precisely the image
of F/N’ under the Magnus embedding and showed that CP is residually finite in
Sr.a E1Q. We refer to a survey [46] on algorithmic problems in solvable groups.

In Sections X4l and Z8 we study elements of groups of the type F//N’ via flows
on the Cayley graph I" of F//N. It turns out the flow generated by a word w € F
on the graph I directly corresponds to the Fox derivatives of w in the group
ring ZF/N. This simple observation links together the techniques developed in
group theory for the Magnus embeddings with the extensive geometric and the
graph-theoretic machinery for flows. Indeed, the set of geometric circulations
(flows where the Kirchhoff law holds for all vertices, including the source and
the sink) form a group which is naturally isomorphic to the first homology group
Hy(T',Z) of T. In this content the geometric circulations on I' represent precisely
the 1-cycles of T' (viewed as 1-complex). The classical result in homology theory
describes Hy (T', Z) as the abelianization of the fundamental group 71 (T"), which,
in this case, is isomorphic to the free group N. Putting all these together one
has another geometric proof of the Fox theorem, as well as the description of
the kernel of the Magnus embedding.

In Section X7 we describe geodesics in groups F/N' as Euler tours in some
finite subgraphs of I' generated by the supports of the flows of the elements of
F/N’ on T'. The description is geometric, explicit, and it gives a natural way
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to compute the geodesic length of elements. In this part geometric ideas seem
unavoidable. However, this simplicity becomes treacherous when one concerns
the efficiency of computations.

We prove that BGLP (relative to the standard basis) is NP-complete even
in S, 2. Consequently, the problems GP and GLP are NP-hard in S, 5. To show
this we construct a polynomial-time reduction of the Rectilinear Steiner Tree
Problem (RSTP), which is NP-complete, to BGLP in S, 2. The necessary infor-
mation on RSTP is outlined in Section and the proof of the main theorem
is in Section B4l Notice, that in [I2] GLP was claimed to be polynomial time
decidable in arbitrary finitely generated free solvable groups, but the argument
turned out to be fallacious.

In the second half of the 20th century free solvable groups, as well as, solv-
able wreath products of groups and finitely generated metabelian groups, were
intensely studied, but mostly from the view-point of combinatorial groups the-
ory. Now they stand at the heart of research in various areas of algebra. On the
one hand, the rejuvenated interest to these groups stems from random walks
on groups and, cohomology theory. For example, wreath products of abelian
groups give exciting examples and counterexamples to several conjectures on the
numerical characteristics of random walks. It seems, the main reasons that fa-
cilitate research here come from some paradoxical properties of the groups itself:
all these groups are amenable (as solvable group), but they have exponential
growth and may have nontrivial Poisson boundary [31], etc. These groups, con-
trary to, say, free nilpotent groups, may have irreducible unitary representations
with nontrivial cohomology. Some numerical characteristics of these groups are
very intriguing, giving new exciting examples in the quantitative group theory.
For example, metabelian ”lamplighter” groups have intermediate growth of the
drift, positive entropy, etc. These groups were intensively studied recently (see
papers [31), [T6] and the bibliography in the latter).

On the other hand, metabelian groups are currently at the focus of a very
active research in geometric groups theory. In 1983 Gromov proposed a program
for studying finitely generated groups as geometric objects [26]. One of the
principal directions of this program is the classification of finitely generated
groups up to quasi-isometry. It follows from Gromov’s result on groups with
polynomial growth [25] that a group quasi-isometric to a nilpotent group is
virtually nilpotent. In the case of solvable groups the situation is much less
known. Erschler shown in [I3] that a group quasi-isometric to a solvable group
may be not virtually solvable. Thus, the class of virtually solvable groups is not
closed under quasi-isometry. On the other hand there are interesting classes of
solvable non-polycyclic groups that are quasi-isometrically rigid, for example,
solvable Baumslag-Solitar groups (Farb and Mosher [I8, [[9]). We refer to the
papers [41] and [I] for some recent results in this area.

It seems timely to try extend the results of this paper to the classes of
solvable groups mentioned above. There are many interesting open questions
concerning computational complexity of algorithmic problems in these classes
of solvable groups, we discuss some of them in Section

All polynomial time algorithms presented in this work are implemented and
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available at [T0)].
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2 Preliminaries

2.1 The Word Problem

Let F = F, = F(X) be a free group with a basis X = {z1,...,2,}. A subset
R C F defines a presentation P = (X | R) of a group G = F/N where N =
ncl(R) is the normal closure of R in F. If R is finite (recursively enumerable)
then the presentation is called finite (recursively enumerable).

The Word Problem W P for P is termed decidable if the normal closure N is
a decidable subset of F'(X), i.e., there exists an algorithm A to decide whether a
given word w € F(X) belongs to N or not. The time function T4 : F(X) - N
of the algorithm A is defined as the number of steps required for A to halt
on an input w € F(X). We say that the Word Problem for P is decidable in
polynomial time if there exists a decision algorithm 4, as above, and constants
¢, k € N such that

Ta(w) < clw|®

for every w € F(X) (here |w| is the length of the word w). In this case we say
that the time complexity of WP for P is O(n*).

2.2 Free solvable groups and the Magnus embedding

For a free group F = F(X) of rank r denote by F() = F’ = [F, F] the derived
subgroup of F, and by F@ = [F(@=1 pd=D] _ the d-th derived subgroup of
F, d > 2. The quotient group A, = F,./F! is a free abelian group of rank r,
M, = FT/FT(2) is a free metabelian group of rank r, and Sy q = FT/FT(d) is a free
solvable group of rank r and class d. In the sequel we usually identify the set X
with its canonical images in A,, M, and S, 4.

One of the most powerful approaches to study free solvable groups is via the,
so-called, Magnus embedding. To explain we need to introduce some notation.
Let G = F/N and ZG the group ring of G with integer coefficients. By pu :
F — G we denote the canonical factorization epimorphism, as well its linear
extension to p : ZF — ZG. Let T be a free (left) ZG-module of rank r with a
basis {t1,...,t,}. Then the set of matrices

M(G)—<g f>_{(g §>|g€G,teT}
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forms a group with respect to the matrix multiplication. It is easy to see that
the group M (G) is a discrete wreath product M (G) = A, wrG of the free abelian
group A, and G.

In [36] Magnus showed that the homomorphism ¢ : F' — M (G) defined by

X; 0 1 5 1=1,...,7,

satisfies ker ¢ = N’. It follows that ¢ induces a monomorphism
Y : F/N' — M(F/N),

which is now called the Magnus embedding.

The Magnus embedding allows one to solve WP in the group F/N’ if WP
in G = F/N is decidable. Indeed, given a word w € F(X) one can compute
its image ¢(w) in M(G) (multiplying the images of the letters in w) and then,
using a decision algorithm for WP in G, check if the resulting matrix ¢(w) is
the identity matrix or not. To estimate the complexity of such an algorithm
notice first, that the coefficients from ZG that occur in the upper-right corner
of the matrix ¢(w) have O(Jw|) summands. Secondly, to check whether or not
an element h = myv; + ... + myug € ZG, where m; € Z and v; € G are given
as words in the generators X from G, is trivial in ZG it requires about O(k?)

comparisons of the type v; = v;7 in G. This gives an estimate for the time
function 7" of WP in F//N’ via the time function T for WP in F/N:

T'(n) = O(rn*T(n)),

where n = |w|. Since WP in A, can be decided in linear time the estimate above
shows that the complexity of WP in M, is O(rn?). Moreover, induction on the
solvability class d gives a polynomial estimate O(r¢~1n2?=1) for WP in the
free solvable group S, 4. Thus, the Magnus embedding gives a straightforward
polynomial time (in  and n) decision algorithm for WP in S, 4, but the degree
of the polynomial grows with d. In particular, this algorithm is not polynomial
as a uniform algorithm on the whole class of free solvable groups.

2.3 Free Fox derivatives

Let F = F.(X) be a free group of rank r with a basis X = {x1,...,z,}. The
trivial group homomorphism F' — 1 extends to a ring homomorphism ¢ : ZF —
Z. The kernel of ¢ is called the fundamental ideal Ap of ZF, it is a free (left)
ZF-module freely generated by elements z; —1,...,2, — 1.

In |20, 27, 22, 23] R. Fox introduced and gave a thorough account of the
free differential calculus in the group ring ZF. Here we recall some notions and
results referring to books [9, B, 28] for details.

A map D : ZF — ZF is called a derivation if it satisfies the following
conditions:

(D1) D(u+v) = D(u)+ D(v);
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(D2) D(uww) = D(u)v® + uD(v), where ¢ is the ring homomorphism defined
above.

For every z; € X there is a unique derivation, the so-called, a free partial
derivative 0/0x;, such that 0z;/0x; = d;;, where 0;; is the Kronecker’s delta.
It turned out that for every u € ZF

u—u® =0u/0r1(x1 — 1) + ... + Ou/0x,(z, — 1). (1)

Since Af is a free ZF-module the equality () gives another definition of the
partial derivatives.

Condition (D2) implies the following useful formulas, that allow one to com-
pute easily partial derivatives of elements of ZF

-1 R S|
Ox; " [0z = —dijx; . (2)
and, hence, for a word w = x;! ...2;" € F(X) one has
_ym e €1 (925 /9p.) —
Ow/Ox; = X7 x5! ... w0, [On;) = (3)
— €1 Ej—-1 _ €1 £j
= E PN A E Tit ... T
1<j<n, ij=i, e;=1 1<j<n, ij=i, g;=—1

The following result is one of the principle technical tools in this area, it
follows easily from the Magnus embedding theorem, but in the current form it
is due to Fox [20 2T], 22, 23].

Theorem [Fox] Let N be a normal subgroup of F and p : F — F/N the
canonical epimorphism. Then for every u € F the following equivalence holds:

Vi (Ou/dz;)" =0 <= u e [N,N|.

In particular, for N = F(49 the standard epimorphism p : F — Sy = F/F(d)
gives rise to a ring homomorphism p : ZF — Z.S, such that

FUOD — Lo e F | (u/dxi)* =0 fori=1,...,r}. (4)

Composition of 9/0x; with u gives an induced partial derivative 0*/dz; : ZF —
ZS4, which we often denote again by 9/0x; omitting u (when it is clear from
the context).

Partial derivatives 0* /Ox; are useful when computing images under the Mag-
nus embedding. Indeed, by induction on the length of w € F it is easy to show
that the image of w, under the Magnus embedding ¢ : F/N' — M(F/N), can
be written as follows

o (0 T

This shows that the faithfulness of the Magnus embedding is, in fact, equivalent
to the Fox Theorem above.
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2.4 Flows on F'/N

In this section we relate flow networks on the Cayley graph of F/N to the
elements of F'/N'.

Let X = {z1,..., 2.} be a finite alphabet. An X-labeled directed graph T (or
X-digraph) is a pair of sets (V, E') where the set V' is called the vertex set and
the set E CV x V x X is called the edge set. An element e = (vq,vs,2) € E
designates an edge with the origin v; (also denoted by o(e)), the terminus vy
(also denoted by t(e)), labeled by x. If for e € E we have o(e) = ¢(e) then we
say that e is a loop. The graph I' can be finite or infinite.

Example 2.1. The Cayley graph I'(G, X) of the group G = F/N is an X-
digraph.

Given an X-digraph I', we can make I' into a directed graph labeled by
the alphabet X*! = X U X~!. Namely, for each edge e = (v1, v, ) of T we
introduce a formal inverse e=! = (vg,v1,27%). For the new edges e~ we set
(e71)~! = e. The new graph, endowed with this additional structure, is denoted
by I'. In fact in many instances we abuse notation by disregarding the difference
between I' and T

Remark 2.2. If X is a generating set of @ such that X N X~ = then I'(@, X)
is the Cayley graph I'(G, X *!) of G relative to the generating set X 1.

The edges of I inherited from I are called positively oriented or positive. The
formal inverses of positive edges in I are called negatively oriented or negative.
The edge set of T splits in a disjoint union E(I') = E*(I') U E~(T) of the sets
of positive and negative edges.

The use of I" allows us to define the notion of a path in T'. Namely, a path
p in T' is a sequence of edges p = eq,...,ex where each e; is an edge of I' and
the origin of each e; (for ¢ > 1) is the terminus of e;_;. In this situation we say
that the origin o(p) of p is o(e1) and the terminus t(p) is t(ex). The length |p|
of this path is set to be k. Also, such a path p has a naturally defined label
v(p) = v(e1)...v(ex). Thus v(p) is a word in the alphabet ¥ = X U X ~!. Note
that it is possible that v(p) contains subwords of the form aa~! or a~'a for
some a € X. If v is a vertex of I'; we will consider the sequence p = v to be a
path with o(p) = ¢(p) = v, |p| =0 and v(p) = 1 (the empty word).

In general, one can consider labels in an arbitrary inverse semigroups, the
construction above applies to this case as well. In particular, we will consider
directed graphs with labels in Z. We consider also digraphs with no labels at
all (to unify terminology, we view them sometimes, as labeled in the trivial
semigroup {1}), the construction above still applies.

Let T' = (V, E) be an X-digraph with two distinguished vertices s (called
source) and ¢ (called sink) from V. Recall that a flow (more precisely Z-flow)
on I' is a function f : E — Z such that

(F) forall v € V' — {s,t} the equality >_,,_, f(€) = >;)=, f(e) = 0 holds.
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The number f*(v) = 3, .)=, f(€) =X 4(¢)=, f(e) is called the net flowat v € V.
The condition (F) is often referred to as the Kirchhoff law (see, for example,
[6, 1) or a conservation law [1.

For the digraph I the definition above can be formulated in the following
equivalent way, which is the standard one in flow networks:

(F1) f(e)=—f(e?!) for any e € E.
(F2) > oe)= fle) =0 forallveV —{s,t}.

Here the net flow at v is equal to f*(v) = >_, . =, f(e).
Usually a flow network comes equipped with a capacity function ¢ : £ — N,
in which case a flow f has to satisfy the capacity restriction

(F3) f(e) <cle) for all e € E.

In the sequel we do not make much use of the capacity function (it occurs in
an obvious way), so in most cases we consider flows on graphs I' satisfying the
Kirchhoff law (F) (or, equivalently, on graphs I satisfying (F1) and (F2)).

A flow f is called a circulation if (F) holds for all vertices from V' (including
s and t).

Example 2.3. Let I' = T'(G, X) be the Cayley graph of G = F/N relative
to the generating set X. The constant function f : E(I') — {1} defines a
circulation on T, since for every vertex g € V(T') and every label x € X there is
precisely one edge (gx~!, g) with label 2 incoming into g and precisely one edge
(g, gx) with the label z leaving g.

An important class of flows on I' = I'(G, X) comes from paths in I". A path
p in I" defines an integer-valued function m, : E(I') — Z, such that for an edge
e m(e) is the algebraic sum (with respect to the orientation) of the number of
times the path p traverses e, i.e., each traversal of e in the positive direction
adds +1, and in the negative direction adds —1. It is obvious that 7p is a flow
on I" with the source o(p) (the initial vertex of p) and the sink ¢(p) (the terminal
vertex of p). Notice that m, satisfies also the following conditions:

(F4) either , is a circulation (iff p is a closed path), or f*(s) =1, f*(t) = —1.
(F5) m, has finite support, i.e, the set supp(n) = {e € E | w(e) # 0} is finite.

We say that a flow 7 on I' is geometric if it satisfies conditions (F4) and (F5).
It is easy to see that the set C(I") of all circulations on I" forms an abelian
group with respect to the operations (here f, g € C(T")):

o (f+9)e) = f(e)+g(e),
o (=f)(e) =—f(e).
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Meanwhile, the set GC(I') of all geometric circulations is a subgroup of C(T').
On the other hand, the sum f + g of two geometric flows gives a geometric flow
only if the sink of f is equal to the source of g, or either f or g (or both) is a
circulation. In fact, the set GF(T') of all geometric flows is a groupoid.

Let TI(T') be the fundamental groupoid of paths in I'. Then the map o :
II(T") — GF(T) defined for p € II(T") by o(p) = 7, is a morphism in the category
of groupoids, i.e., the following holds (here p, g € TI(T")):

o Ty, = Ty + Ty, if pg is defined in II(T),
(] 7Tp71 = —Tp.

Now we will show that every geometric flow 7 on I' can be realized as a path
flow m, for a suitable path p.

Lemma 2.4. Let w be a geometric flow on I'. Then there exists a path p in T’
such that m = m,.

Proof. Let m be a geometric flow on I' with the source s and the sink ¢. Denote
by I';: the subgraph of T" generated by supp(m)U{s,t}. Suppose @ is a subgraph
of I such that A = T',UQ is a connected graph (every two vertices are connected
by a path in f‘) Clearly, 7 induces a flow on A. Now we construct another X-
digraph A* by adding new edges to A in the following manner. For every edge
e € BE(A) with |7(e)| > 1 we add extra |7(e)| — 1 new edges e, ... elm€)l-1
from o(e) to t(e) if m(e) > 0 and from t(e) to o(e), if w(e) < 0. We label
the new edges by the same label if 7(e) > 0, and by its inverse, otherwise. If
7(e) = 0 then we add a new edge e~ ! from t(e) to o(e) with the inverse label.
In the case |w(e)| = 1 we do not add any new edges. Notice that every vertex in
V(A*) —{s,t} has even directed degree (the number of incoming edges is equal
to the number of outgoing edges). There are two cases to consider.

Case 1). Suppose 7 is a circulation. Then every vertex in A* has even
directed degree. Therefore, the digraph A* has an Euler tour p*, i.e., a closed
path at s that traverses every edge in A* precisely once. Let ¢ : A* — A be the
morphism of X-digraphs that maps all the new edges eV, ..., el™©)I=1 to their
original edge e. Clearly, the image p = ¢(p*) is a path in A such that Tp = T.

Case 2). Suppose 7 is not a circulation. Let ¢ be a path in A* from s to ¢.
Then 7’ = 7 — m, is a circulation. Hence by Case 1) there exists a path p in I’
such that ' = 7,. Therefore, 7y, = 7, + 14 = 7’ + 7y = 7, as required.

O

2.5 Geometric interpretation of Fox derivatives

In this section we give a geometric interpretation of Fox derivatives.

Let G = F/N, yu: F — F/N the canonical epimorphism, and I' = T'(G, X)
the Cayley graph of G with respect to the generating set X. A word w € F(X)
determines a unique path p,, in T' labeled by w which starts at 1 (the vertex
corresponding to the identity of G). As we mentioned in Section 4] the path
D defines a geometric flow m,, on I' which we denote by 7.
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Lemma 2.5. Let w € F = F(X). Then for any g € F/N and x € X the value
of my on the edge e = (g, gx) is equal to the coefficient in front of g in the Fox
derwative (Ow/0x)* € ZG, i.e.,

(Ow/0x)* = > mulg,g7)g

geG,xeX
Proof. Follows by induction on the length of w from formulas (Bl). O

Figure[Mis an example for F' = F({z1,22}) and N = F’. Non-zero values of
7w are shown as weights on the edges (zero weights are omitted).

oL N W A
\J

X1

] . _ -1 -3 —1 .
Figure 1: The values of m,, for w = zoxixexi1T00] x5 "] on (21, z2)-grid. In

this case Ow/dz1 = —1 + 13 — 2123 + 2123 and Ow/dxe = 1 — 1 + 2323 — 2123,

The following theorem has been proven in [T2, B3] using a homological ar-
gument similar to the one in Proposition Z8 Here we give a short independent
proof based on the Fox theorem.

Theorem 2.6. [19,[53] Let N be a normal subgroup of F and ~n an equivalence
relation on F' defined by

UNSN V= Ty = Ty
Then F/N' = F/ ~y.

Proof. Let u,v € F. Suppose v = v in F/N’. Then uv~! € N’ hence by
Fox theorem O (uv=1)/dz = 0 for every z € X (here by 9*/0x we denote the
canonical image of 9/dz in the group ring Z(F/N)). Observe that

0, 1, Ou _10v
%(uv )—%—uv pre (5)
Hence in Z(F/N)
_o* 1 Otu M
0= g(uv ) dxr Oz’

so, by Lemma 1 7, = 7, as claimed.
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To show the converse, notice first that =, = m, implies that « = v in F/N.
Indeed, it can be seen from the definition of 7 but also follows from () and
Lemma [ZH since in this case

€ a“
(ut —o*) — (u—v)* = Z g(u—v)-(ﬂc—l)zo
reX
which implies u* = v#. Now by ()
o+ 4 otu  OMv
%™ )= " "

and, hence, by Fox theorem uv~' € N'.
O

Remark 2.7. Theorem [ZT relates the algebraic and geometric points of view
on derivatives. One can prove this theorem (see Section E20]) using a pure topo-
logical argument, then the Fox theorem, as well as, the Magnus embedding,
come along as easy corollaries.

2.6 Geometric circulations and the first homology group
of I’

We describe here geometric circulations on I' = T'(G, X) in a pure topological
manner. For all required notions and results on homology of simplicial com-
plexes we refer to [30] or [B0).

In this section we view I' as an infinite 1-complex.

Proposition 2.8. Let G = F/N, ' =T'(G, X), and o : (") — GC(T") be a
map defined by o(p) = m, for p € m1(T") . Then:

e o is an epimorphism of groups;

e every geometric circulation on I' defines a 1-cycle on T

H,(T',Z) ~ GC(T);

m1(T) ~ N and kero = N'.

Proof. It was mentioned already in Section EZ4] that the map p — m, is a mor-
phism from the fundamental groupoid II(T") of paths in I' into the groupoid of
geometric flows GF(T"). Hence, the restriction of this map onto the fundamental
group m1 (I') of T gives a homomorphism of groups. We have seen in Lemma 7]
that o is onto. This proves the first statement.

To see 2) observe first that a geometric circulation f : E(T') — Z, viewed
as a formal sum ) . B(D) f(e)e, gives precisely a 1-chain in T" (see, for example,
B0]). Moreover,by definition, the net flow f*(v) at the vertex v € V(I') is the
coefficient in front of v in the boundary 0f of f. Therefore, f =0, so f is a
1-cycle.
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3) follows easily from the 2). Indeed, I' is an 1-complex, so there are no
non-trivial 1-boundaries in T'. In this event H; (T, Z) is isomorphic to the group
GC(T) of 1-cycles, as claimed.

4) Tt is a classical result that the kernel of o : 71 (") — Hy(T', Z) is equal to
the derived subgroup of 71 (T") (see [B0]). To prove 4) it suffices to notice that
m1(T) ~ N, which is easy. O

Remark 2.9. Proposition gives a simple geometric proof of Theorem P26l
that relates the algebraic and geometric points of view on derivatives. Now one
can derive the Fox theorem from the geometric argument above and then obtain
the description of the kernel of the Magnus embedding, as an easy corollary.

2.7 Geodesics in F/N’

Let G = F/N and p : F(X) — G the canonical epimorphism. In this section
we describe geodesics of elements of the group H = F/N' relative to the set of
generators X*.

It is convenient to view the free group F' = F(X) as the set of all freely
reduced words in the alphabet X*! = X U X ~! with the obvious multiplication.

To describe geodesics in H (relative to X) of a given word w € F we need a
construction from Lemma B4l Recall that p,, is the path in the Cayley graph
' =T(G, X) from 1 to w" with the label w and 7, the induced geometric flow
on I' with the source 1 and the sink w*. By I';, we denote the subgraph of
I' generated by supp(m,) U {1,w"}. Suppose @ is a finite subgraph of I' such
that A = T',, UQ is a connected graph and @ has the least number of edges
among all such subgraphs. It follows from minimality of ) that every connected
component of Q) is a tree. Moreover, if in the graph A =T',, U @ one collapses
every connected component I', to a point, then the resulting graph is a tree.
We refer to @Q as a minimal forest for w. In general, there could be several
minimal forests for w.

Similarly as in the proof of Lemma B4l we construct a finite X-digraph A*
by replicating every edge e € E(A) with ||y, (e)| — 1| new edges in such a way
that every vertex in V(A*)—{1, w*} has even directed degree and the map, that
sends every replica of an edge e back to e (or e~! depending on the orientation)
is a morphism of X-labeled digraphs ¢ : A* — A. There are two cases.

e CASE 1. Suppose that p,, is a closed path in T, i.e., w € N. In this case
every vertex in A* has even degree, so A* has a Euler tour, say pg, at
1. Denote by pq the image ¢(pg)) of py, under ¢. It follows from the
construction (see Lemma 7)) that pg is a closed path at 1 in I" such that
Tw = Tpg- Therefore, if w,, € F is the label of pg then by Theorem 28
w = wp, in H. Moreover, since pq is a Euler tour in A* its length, hence
the length of w,,, is equal to

pol=" > Imw(e) +2[EQ)I. (6)

e€supp(pw)
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e CASE II. Suppose that p,, is a not a closed path in I'; i.e., w € N. By
induction on |w| it is easy to show that the vertices 1 and w" belong
to the same connected component of I'y,. Again, there exists an Fuler’s
tour pg, in the graph A* which starts at the source and ends at the sink.
Clearly, mp,, satisfies the equality (@l). If u is the label of the path mp,
then m, = mp, =7y, and u is a geodesic word for w.

Now, with the construction in place, we are ready to characterize geodesics
in H of elements from N.

Theorem 2.10. Let H = F/N’ and w € F. Then the following holds:

e if Q is a minimal forest for w then wy, is a geodesic for w and

Ix(w)y= Y mu(e) +2/BQ)-

e€supp(pw)

e cvery geodesic word for w is equal (in F') to a word wy, for a suitable
minimal forest Q and an Euler path py,.

Proof. Let u € F be a geodesic word for w* in H. Observe, that A = supp(m,)U
Py is a connected subgraph of I and

pul = Y0 male) + 2/E(A — supp(m))|.

e€supp(pu)

Now, by Theorem P8l the equality © = w in H implies 7, = m,. In particular,
supp(my,) = supp(my). Hence

pul = D0 muwle) +2/B(A — supp(m))|- (7)

e€supp(pw)

Since u is geodesic for w the number |A — supp(my,)| is minimal possible, so
Q = A — supp(m,) is a minimal forest for w. In fact, the equation [ shows that
the converse is also true. This proves the theorem. O

The discussion above shows that GP is easy in F//N’ provided one can solve
the following problem efficiently.

Minimal Forest Problem (MFP) Given a finite set of connected finite sub-
graphs I'1,...,T's in I find a finite subgraph @ of I" such that I'y U.. . UT, U@
is connected and @ has a minimal possible number of edges.

Proposition 2.11. GP in F/N’ (relative to X) is linear time reducible to MFP
for T(F/N, X).

Proof. Follows from the discussion above. Indeed, given a word w € F one can in
linear time compute the flow 7, and find the connected components I'y,..., T
of supp(my) U {0(pw), t(pw)} in T = T(F/N, X). Then, solving MFP for these
components, one gets the subgraph @ which makes the graph 'y U...UT, UQ
connected. Obviously, it takes linear time to find a Euler path in the graph A,
hence to find a geodesic for w. O
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3 The Word Problem in free solvable groups

In this section we present fast algorithms to compute Fox derivatives of elements
of a free group F in the group ring ZS, 4 of a free solvable group S, 4. As an im-
mediate application, we obtain a decision algorithm for WP in a free metabelian
group M, with time complexity O(rnlog, n) and a decision algorithm for WP in
Sy.d,d > 3, with time complexity O(rdn3). These are significant improvements
in comparison with the known decision algorithms discussed in Introduction
and Section As another application we get a fast algorithm to compute
images of elements from S, 4 under the Magnus embedding, which opens up
an opportunity to use efficiently the classical techniques developed for wreath
products.

3.1 The Word Problem in free metabelian groups

In this section we compute Fox derivatives of elements of F' in the group ring
Z(F/F’). Then we apply this to WP in free metabelian groups.

Let X = {21,...,2,}, F = F. = F(X), M = M, = F/F® A=A, =
F/F’, and p : F — A the canonical epimorphism. All Fox derivatives in this
section are computed in the ring ZA.

Let w € F. Then

oHw

8CCZ'

= E Mq,i@, Mg,; € 2.
a€A

One can encode all the derivatives 0#w/dx; in one mapping M, : A X
{1,...,r} = Z, where M (a,i) = mq,. Let

supp(Mw) = {(a, i) | M (a,i) # 0},

and S, the restriction of M,, onto supp(M,,). To compute Fox derivatives of w
we construct a sequence of finite maps So = 0, 51,...,S5, = S, as we read w.
On each step k we either extend the domain Dom(S%) of Sy or change the value
of S on some element from Dom(Sy). To do this we need a data structure
which allows one to do the following operations efficiently:

e for a given (a,i) determine if (a,i) € Dom(S) or not;

e add (a,i) to Dom(Sg) if (a,i) € Dom(S) and define Si(a, i) = ¢ for some
qeZ;

e change the value of Sy on (a,4) if (a,i) € Dom(Sk).

Every element a € A can be written uniquely in the form a = x‘lsl(a) @)
where d;(a) € Z, so one may use the tuple of coordinates d(a) =
(61(a),...,0.(a)) to represents a. It follows from the formula (B for par-
tial derivatives that for every (a,i) € Dom(S,,) the components J;(a) of §(a)
satisfy the inequality |d;(a)] < |w|, as well as the values of S,, and, hence,
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[Sw(a,i)] < |w|. Therefore, it takes [logy(|w| + 1)] bits to encode one coordi-
nate d;(a) (one extra bit to encode the sign + or —), r[log,(Jw| + 1)] bits to
encode d(a), and at most r[log,(|w| + 1)] + [log, ] bits to encode (a,i). We
denote the binary word encoding (a,%) by (a,%)*.

Thus every function Sy can be uniquely represented by a directed {0, 1}-
labeled binary tree Tj, with the root € and with leaves labeled by integers such
that (a,i) € Dom(Sk) if and only if there exists a path in T} from the root
€ to a leaf labeled by the code of (a,i) and such that the leaf of this path is
labeled precisely by the integer Sk(a,?). Notice, that the height of T} is equal
to rllogy(Jw| + 1)] + [logy 7]. Such a tree is visualized schematically in Figure

0'/\\~/v

&
0 1 o—”/\

€
NUEIERNe e

r (log, |YW|+1) +log,r

Figure 2: The tree T} representing the function Sy.

Remark 3.1. It is clear that one can perform every operation mentioned above
on this data structure in at most r[log,(|w| + 1)] + [log, r] elementary steps.

We use this data structure to design the following algorithm for computing
Sw-
Algorithm 3.2. (Computing Fox derivatives in F/F")
INPUT. 7 € Nand w = 27} ... 27" € F(X), where i € {1,...,r} and ¢; = £1.
OUTPUT. S,.
COMPUTATIONS.

A. Set S =0 and é(a) = (0,...,0) € Z".
B. For j=1,...,n do:
(1) if e; =1 then
* check if there is a path (from the root to a leaf) labeled by
(0(a),i;)* in S;
* if such a path does not exist in S then create it, add it to S, and
put 1 as the corresponding value at the new leaf;

x if such a path exists in S then add 1 to the value at its leaf.
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(2) if e; = —1 then
% add €; to the ¢;th coordinate of d(a);
* check if there is a path (from the root to a leaf) labeled by
(0(a),i;)* in S;
* if such a path does not exist in S then create it, add it to S, and
put —1 at the corresponding leaf;

* if such a path exists in .S then subtract 1 from the value at its
leaf.

C. Output S,.

Theorem 3.3. Given r € N and w € F Algorithm [ZQ computes all partial
derivatives of w in ZA (the mapping S,,) in time O(r|w|logy |w]).

Proof. Using the formula (@) for partial derivatives it is easy to check that
given w € F Algorithm B2 indeed, computes the mapping S,,. To verify the
complexity estimates observe, first that there are |w| iterations in the part [B.] of
Algorithm B Each such iteration requires O(r[log,(Jw|+1)]) elementary steps
(see Remark Bl), so altogether one has O(r|w|logz|w|) as the time complexity
estimate for Algorithm B2 as claimed.

O

Algorithm 3.4. (Word Problem in free metabelian groups)
InpUT. reNand w € F.

OuTPUT. True if w represents the identity in M, and False otherwise.
COMPUTATIONS.

e Apply Algorithm to compute S, .

e Check, looking at the values assigned to leaves of S,,, if all Fox derivatives
ow/dx;, i =1,...,r are equal to 0 or not.

e If all the derivatives are 0 then output True. If there is a non-zero deriva-
tive then output False.

Theorem 3.5. Algorithm solves the Word problem in a free metabelian
group M, in time O(r|w|logs |w)).

Proof. Follows from Theorem and the Fox Theorem (see Section Z). O

3.2 The Word problem in free solvable groups

In this section we present an algorithm to compute all Fox derivatives of a word
w € F in the group ring ZS, 4—1, d > 2 in time O(rd|w|?). This gives a decision
algorithm for WP in S, 4 within time complexity O(rd|n|?).

Let X = {21,...,2,}, F=F, = F(X), S = S,.q = F/FY d > 3, and
p: F — Sy q_1 the canonical epimorphism. All Fox derivatives in this section
are computed in the ring ZS, 4_1.
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In Section Bl we used a unique representation of elements a € A, by their
coordinate vectors d(a) to compute Fox derivatives in nearly linear time. Now
we do not have such normal forms of elements of S, 4, d > 2, so our computations
are slightly different, however, the general strategy is quite similar. To speed
up computations we use some data structures based on efficient partitioning
techniques.

In general, let G be a group generated by X and D a finite subset of FI(X).
A G-partition of D is a partition of D into a union of disjoint non-empty subsets
D; such that for any u,v € D, u = v in G if and only if they belong to some
subset D;. Clearly, the G-partition of D is unique. Observe that if a group
H is a quotient of G then the G-partition of D is the same or finer than the
H-partition of D.

If the set D is ordered, say D = {wy,...,w,} then the G-partition of D
can be represented by a function P : {0,...,n} — {0,...,n} where P(j) =1 if
and only if w; = w; in G and ¢ is the smallest with such property. Given the
G-partition P of D one can arrange his data in such a way that it takes linear
time (in the size of j) to compute P(j). In particular, given ¢, j one can check
in linear time if w; = w; in G. Also, for a given word w € D one can find in
linear time an index i such that w = w;. These are the main two subroutines
concerning partitions of D.

Let w = 7! ...x3F, where i; € {1,...,r} and ¢; = £1. Put
Dy ={e, xj}, ailxi?, ..., xj...x;"} C F(X,). (8)
We order the set D,, as follows wg = ¢,...,w, = w. Now, to check whether

or not the derivative dw/dx; is trivial in ZS, 4_1 one has to determine which
pairs (w;,w;) of elements from D,, represent the same element in S, 41 and
then cancel out w; with w; in dw/0x; if they have the opposite signs.

The goal of Algorithm BT0 below is to compute S, 4-partition for D,,. This
is performed in a sequence of iterations. The algorithm starts out by computing
the A,-partition of D,,. On the second iteration the algorithm computes the
M, -partition of D,,. On the third step it computes the S, s-partition of D,,. It
continues this way until it computes the S, 4-partition of D,,,.

To explain how the algorithm works assume that the S, q—;-partition of D,,
is given by the partition function P;_; described above. Notice, that the S, 4-
partition of D,, is the same or finer than the S, 4_1-partition of D,,, since S, q—1
is a quotient of S, 4. This shows that to construct S, 4-partition P; of D,, one
has only to compare elements from D,, which are equal in S, 4—1. Suppose
that ws,ws € Dy, s < t and wg = w; in Sy q—1. To check if wy = w; in S, 4
we compare all their Fox derivatives in ZS; 4_1, so for every k = 1,...,r we
compute the following differences:

Ows /Oxy, — Owy/Oxy, =

2 : €1 Ej—1 €1 €5
11 15—1 11 15

1<j<s, i;=k, e;=1 1<j<s, i;=k, e;=—1
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_ €1 €ji—1 €1 i
E R N E Tip oo Ty =

1<5<t, ij=k, g;=1 1<5<t, ij=k, g;j=—1
_ €1 Ej—1 €1 €i _
E xil...xijfl—i— E Ty Ty =
s+1<j<t, ij=k, ;=1 s+1<j<t, ij=k, e;=—1
- E Wj—1 + E w; (9)
s+1<5<t, i;=k, ;=1 s+1<5<t, i;=k, ¢;=—1

Clearly, given w and s, as above one can compute the formal expression () in
time O(|w|). To check if @), viewed as an element in ZS, 4_1, is equal to 0
it suffices to represent it in the standard group ring form 3 . Sra MY (where
m € Z) and verify if all coefficients in this representation are zeros. Now we
describe a particular procedure, termed Collecting Similar Terms Algorithm,
which gives the standard group ring form for [@). Given ([@) one can compute

in time O(Jw|) the following sum

- > wp(j-1) + > WP(j) (10)

s+1<j<t, i;=k, e;=1 s+1<j<t, i;=k, e;=—1

Observe now, that two summands w, and w, in [[[) are equal in S, 4_1 if and
only if p = ¢. It is easy to see that it takes time O(|w|) to collect similar terms
in ({), i.e., to compute the coefficients in the standard group ring presentation
of ().

It follows that dw,/0x, = Ow,/Oxy in ZSyq—1 if and only if all the co-
efficients in the standard group ring form of ([[) are equal to 0. The argu-
ment above shows that one can check whether or not dws/0xr = Ow;/Oxy
in ZSy 4—1 in time O(|w|). Since we need to compare all partial derivatives
0/0x, k =1,...,r, of the elements w, and w; it takes altogether O(r|w|) time
to verify if ws = w¢ in Sy q—1.

The routine above allows one to construct effectively the .S, 4-partition Py
of D,, when given the S, 4_i-partition P;_;. A more formal description of the
algorithm is given below.

Algorithm 3.6. (Computing the S, s-partition of D,,)

INPUT. Positive integers r > 2, d > 2, and a word w € F(X).

OutpuUT. The S, 4-partition function P; for the set D,,.

INITIALIZATION. Compute the set D,, and form the initial (trivial) F-partition
Py of Dy, so Py(i) =i for every i € {0,...,n}.

COMPUTATIONS.

A. Compute A-partition P; of D,,.
B. Forc=2,...,d do:

1) For each 0 < s < t < n such that ws = wy in Sy .1 check whether
or not ws = wy in Sy .

2) Form the S, .-partition Py of D,,.
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C. Output Py.

Lemma 3.7. Given integers r,d > 2 and w € F Algorithm [T computes the
S,.a-partition (the function Py) of Dy, in time O(dr|w|?).

Proof. Algorithm B0l makes precisely d iterations ¢ = 1,...,d by consequently
computing the S, .-partitions of D,,. After the S, ._i-partition of D,, is com-
puted, the algorithm computes the S, .-partition of D,, by comparing elements
Ws, Wy € Dy, in Sy .. Tt requires at most |w|(Jw| + 1)/2 such checks, and, as was
explained above, every such check can be done in time O(r|w|). Altogether one
needs O(r|w|?) steps to construct the function P. on the iteration c. Since the
algorithm makes altogether d iterations it takes it O(dr|w|®) time to produce
P;, as claimed.

o

Now we are in a position to show two applications of Algorithm Bl The
first one concerns with computing Fox derivatives in ZS, 4.

Algorithm 3.8. (Computing Fox derivatives)

INPUT. Positive integers r > 2, d > 2, a word w € F(X), and a number
ke{l,...,r}.

OuTpuT. The standard group ring presentation of the Fox derivative dw/dx
in and.

COMPUTATIONS.

A. Compute, using formals (@), the Fox derivative Ow/0xy, in ZF.
B. Compute, using Algorithm Bl the S, g-partition of D,,.

C. Compute, using the Collecting Similar Terms Algorithm, the standard
group ring form of dw/dxy, in ZS, 4

D. Output dw/dz, computed in [C.].

Lemma 3.9. Given integers r,d > 2, a word w € F, and a number k €
{1,...,r} Algorithm [Z8 computes the standard group ring presentation of the
Foz derivative Ow/dzy, in ZSy 4 in time O(dr|w|?).

Proof. Follows from Lemma B O
The second application of Algorithm B is to WP in S, 4.

Algorithm 3.10. (WP in S, 4)

INPUT. Positive integers r > 2, d > 2, and a word w € F(X).
OutpuT. Trueif w =11in S, 4 and False otherwise.
COMPUTATIONS.

A. Compute the set D,,.

B. Using Algorithm Bl compute S, g-partition Py of D,,.
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C. If P4(0) = Py(n), i.e., 1 = w in S, 4, then output True. Otherwise output
False.

Theorem 3.11. Algorithm solves the Word Problem in a free solvable
group Sy.q in time O(dr|w|?).

Proof. Follows immediately from Lemma B O

4 Geodesics in free metabelian groups

In this section we discuss the computational hardness of different variations of
Geodesic problems and prove the main result about NP-completeness of BGLP
in free metabelian groups.

4.1 Algorithmic problems with geodesics in groups

Let G be a group with a finite set of generators X = {z1,...,2,} and p :
F(X) — G the canonical epimorphism. In this section we view the free group
F(X) as the set of all freely reduced words in the alphabet X*! = X U X!
with the obvious multiplication.

For a word w in the alphabet X*! by |w| we denote the length of w. The
geodesic length of an element g € G relative to X, denoted by lx(g), is the
length of a shortest word w € F(X) representing g, i.e.,

Ix(g) = min{jw| | w € F(X),w" = g}.

To simplify notation we write, sometimes, [x(w) instead of Ix(w"). A word
w € F(X) is called geodesic in G relative to X, if |w| = Ix (w).

We are interested here in the following algorithmic search problem in a given
group G described as above.

The Geodesic Problem (GP):
Given a word w € F(X) find a geodesic (in G) word @ € F(X) such that
wh = wh.

One can consider the following variation of GP.

The Geodesic Length Problem (GLP):
Given a word w € F(X) find I x(w).

Though GLP seems easier than GP (since a solution to GP gives, in linear
time, a solution to GLP), in practice, to solve GP one usually solves GP first,
and only then computes the geodesic length.

As customary in complexity theory one can modify the search problem GLP
to get the corresponding bounded decision problem:

The Bounded Geodesic Length Problem (BGLP):
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Let G be a group with a finite generating set X. Given a word w € F(X) and
a natural number k determine if [ x(w) < k.

It is instructive to compare the algorithmic ”hardness” of the problems above
and the Word Problem (WP). Clearly, if one of them is decidable then all of
them are decidable. To see the difference we need to recall a few definitions.
Let A and B be algorithmic problems with inputs sets I4 and Ig. Then A is
termed Turing reducible to B in polynomial time, if there exists an algorithm
A with an oracle for B (which can be viewed as a ”subroutine” of A that for
a given input e € Ig in one step returns the answer for B on e) that solves A
in polynomial time. Similarly, one can define Turing reducibility in exponential
time. In these cases we write A <7, B or, correspondingly, A <7 cqp B.

Again, it is not hard to see WP =1, BGLP =1, GLP =<1, GP. More-
over, since (by brute force algorithm) GP <7 crp WP it follows that all these
problems are Turing reducible to each other in exponential time. Moreover, if
G has polynomial growth, i.e., there is a polynomial p(n) such that for each
nN cardinality of the ball B,, of radius n in the Cayley graph I'(G, X) is at
most p(n), then one can easily construct this ball B,, in polynomial time with
an oracle for the WP in G (see, for example, [I2] for details). It follows that
if a group with polynomial growth has WP decidable in polynomial time then
all the problems above have polynomial time complexity with respect to any
finite generating set (since the growth and WP stay polynomial for any finite
set of generators). Observe now, that by Gromov’s theorem [25] finitely gener-
ated groups of polynomial growth are virtually nilpotent. It is also known that
the latter have WP decidable in polynomial time (nilpotent finitely generated
groups are linear). These two facts together imply that the Geodesic Problem
is polynomial time decidable in finitely generated virtually nilpotent groups.

On the other hand, there are many groups of exponential growth where GP
is decidable in polynomial time, for example, hyperbolic groups [15]. Among
metabelian groups the Baumslag-Solitar group BS(1,2) = (a,t | t~tat = a?)
has exponential growth (it is solvable but not polycyclic - and the claim follows
from the Milnor theorem [40]) and GP in BS(1,2) is decidable in polynomial
time (see [14]).

In general, if WP in G is polynomially decidable then BGLP is in the
class NP, i.e., it is decidable in polynomial time by a non-deterministic Turing
machine. Indeed, if Ix (w) < k then there is a word u € F(X) of length at most
k which is equal to w in G - this u is a ”witness” of polynomial size which allows
one to verify in polynomial time that I x (w) < k (just checking that u = w in G).
In this case GLP is Turing reducible in polynomial time to an NP problem, but
we cannot claim the same for GP. Observe, that BGLP is in NP for any finitely
generated metabelian group, since they have WP decidable in polynomial time
(see Introduction).

It might happen though, that WP in a group G is polynomial time decidable,
but BGLP in G is as hard as any problem in the class NP, i.e., it is NP-complete.
Recall (in the notation above) that a decision problem B is NP-complete if it is in
NP and for any decision problem A from NP there is a computable in polynomial
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time function f : I4 — Ip (Karp reduction, or a polynomial reduction), such
that A is true on = € I4 if and only if B is true on f(z). The simplest example
of this type is due to Perry, who showed in [44] that BGLP is NP-complete in
the metabelian group Zswr(Z x Z) (the wreath product of Zy and Z x Z). In
this event, the search problems GP and GLP are called NP-hard, this means
precisely that some (any) NP-complete problem is a Turing reducible to them
in polynomial time.

It would be very interesting to classify finitely generated metabelian groups
with respect to computational hardness of their GP or GLP problems. In the
next section we clarify the situation with free metabelian groups. Some remain-
ing open problems are discussed in Section

It was claimed in [T2] that in free solvable groups of finite rank GLP is decid-
able in polynomial time. Unfortunately, in this particular case their argument
is fallacious. Our main result of this section is the following theorem.

Theorem 4.1. (Main Theorem) Let M, be a free metabelian group M, of
finite rank r > 2. Then BGLP in M, (relative to the standard basis) is NP-
complete.

Proof. The proof of this result consists of two parts. Firstly, in Section
(Corollary EEH) we show that it suffices to prove that BGLP is NP-complete in
Ms. Secondly, in Section Bl (Theorem ELTTl) we give a proof that BGLP is,
indeed, NP-complete in M. o

This immediately implies the following results.

Corollary 4.2. The search problems GP and GLP are NP-hard in non-abelian
M, (relative to the standard basis).

To prove the Main Theorem we reduce the problem to the case r = 2 and
then show that BGLP in My is NP-complete. To see the latter we construct a
polynomial reduction of the Rectilinear Steiner Tree Problem to BGLP in M,..

4.2 Reduction to M,

Let V be a variety of groups. For groups A, B € V we denote by A xy, B the
free product of A and B relative to V. In particular, if A = (X | R), and
B = (Y | S) are presentations of A and B in V then A%y B = (xUY | RUS) is
a presentation of A*y B in V. As usual, A*y B satisfies the canonical universal
property: any two homomorphism A — C, B — C into a group C € V extends
to a unique homomorphism A xy, B — C' (we refer to [43] for details). It follows
that if Fy(X UY) is a free group in V with basis X UY then Fy(X UY) =
Fy(X) xy Fy(Y).

The following lemma claims that free V-factors of a group G are isometrically
embedded into G.

Lemma 4.3. Let A,B €V with finite generating sets X and Y. Then in the
group Axy B no geodesic word (relative to XUY ) for an element from A contains
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a letter from Y. In particular, for any word w € F(X) its geodesic length in A
(relative to X ) is equal to the geodesic length in A xy B (relative to X UY).

Proof. Let w € F(X) be a geodesic word in A relative to X. Suppose that
u € F(XUY) is a geodesic word in G = A xy B (relative to X UY) that
defines the same element as w. The identical map A — A and the trivial map
B — 1 give rise to a homomorphism ¢ : G — A. This ¢, when applied to u,
just 7erases” all letters from Y. It follows that if u contains a letter from Y
then |u?| < |u| < |w| - contradiction with the assumption that w is geodesic in
A relative to X (since w = u® in A). O

Corollary 4.4. In the notation above, each of the problems GP, GLP, BGLP
in A (relative to X) is polynomial time reducible to the problem of the same
type in A %y B (relative to X UY).

Notice, that M, = M, * 4, My, where Az is the variety of all metabelian
groups. Since WP is in P for groups from M Corollary implies the following
result.

Corollary 4.5. If BGLP is NP-complete in M5 then it is NP-complete in
M,.,r > 2, relative to the standard bases.

Remark 4.6. Corollary easily generalizes to free groups in an arbitrary
variety, provided they have WP decidable in polynomial time.

4.3 Rectilinear Steiner Tree Problem

The Steiner Tree Problem (STP), which was originally introduced by Gauss, is
one of the initial twenty one NP-complete problems that appeared in the Karp’s
list [33]. We need the following rectilinear variation of STP.

Let R? be the Euclidean plane and I' the integer grid canonically embedded
into R? (all vertices from Z? together with all the horizontal and vertical lines
connecting them). If A is a finite subset of Z? then a rectilinear Steiner tree
(RST) for A is a subgraph T of I such that AU T is connected in . By s(T')
(size of T') we denote the number of edges in T. An RST for A is optimal if it
has a smallest possible size among all RST for A, we denote such RST by T4.
Observe, that a given A may have several different optimal RST, but their size
is the same, we denote it by s(A).

Notice that, in general, T4 for A is not a spanning tree for A in I', it may
contain some vertices from Z? which are not in A (so-called, Steiner points).
The Rectilinear Steiner Tree Problem (RSTP) asks for a given finite A C Z2
and k € N decide if there exists some Ty for A with s(T4) < k. It is known
that RSTP is NP-complete [24].

4.4 NP-completeness of BGLP in M,

Now we construct a polynomial reduction of RSTP to GLDP in M> relative to
the standard basis X = {z,y}.
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With each point (s, t) € Z? we associate a word
.St -1, .—1 —t_.—s
Wt = 70y - (To@1@y Ty ) -y Ty

in F(z,y). Similarly, with a set of points A = {(s1,t1),..., (Sn,tn)} C Z2,
ordered in an arbitrary way, we associate a word

n
wyp = sti,ti.
=1

Observe, that the word wy ¢, as well as w4, belongs to F' = [F, F], so in M, they

define elements from MJ}. In particular, the path p,, is a closed path in the

grid T' = Z2, which is viewed as the Cayley graph of the abelianization F/F".
For A C Z2, (p,q) € Z%, and m € Z we put

o A+ (p,g)={(s+pt+q)|(st) € A},
e mA = {(ms,mt) | (s,t) € A}.

Xz Xz Xz
1

4 4 Y R W
3 3 . 3uuma
2 . 2 Y Ny W 1
TR 1 - X
0 ® T X, 0 ® X, 0 ® Ui X,
1 -1 -1 >l

-10 1 2 3 -10 1 2 3 -10 1 2 3

Figure 3: Flows on Z? defined by words wq o, wa,1, and W{(=1,2),(1,-1),(2,3)} -

The following result is due to Hanan [29].

Theorem 4.7. [24, Theorem 4]

Let A = {(x1,y1),- -, (@Tn,yn)} be a finite subset of Z x Z. There exists
some Ty for A with the set of Steiner points Q = {(a1,b1),...,(aq,bq)} such
that {a1,...,aq} C{z1,...,2n} and {b1,...,0¢} C{y1,...,yn}-

Corollary 4.8. Let A be a finite subset of Z x Z. Then
1. s(A+ (b,c)) = s(A) for any (b, c) € Z?;
2. s(A) = ms(mA) for any m € N.

Proof. The first statement is obvious because the parallel shift (z,y) — (z,y) +
(b, ¢) is an isomorphism of the Cayley graph I' (in particular, an isometry).

To prove the second statement, notice first that s(mA) < ms(A). Indeed,
stretching T4 by the factor of m along all horizontal and vertical lines gives
some RST for mA, hence the claim.
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On the other hand, s(A) < s(mA)/m. To see this, observe that by Theorem
E there exists R = T,,4 which lies inside the grid mZ x mZ. Since the
coordinates of all vertices in R are multiples of k one can shrink R by the
factor of m, in such a way that the image of R becomes an RST for A. Clearly,
the size of the image is equal to $(Ti4)/m, hence the result. O

Proposition 4.9. Let A be a finite subset of Z?2, (b,c) € A, and n = |A|. Put
A* =10n(A — (b,¢)). Then Ix(wax) € [20ns(A),20ns(A) + 4n].

Proof. Let u be a geodesic word for w4~ relative to the basis X. Since wa+ € F’
the paths p, and p,, . are closed paths in ' = Z? (viewed as the Cayley graph
of My/Mj). Hence u and wyu- determine the same circulations m, = m4,. on
I'. As described in Section EX7 the flow 7, is associated with the subgraph I,
generated in T' by supp(m,) U {(0,0)}. It follows from the construction of the
word w4+ that the connected components of I',, are precisely the 1 x 1-squares
in I', whose lower-left corners are located at the points from A*. Notice that
(0,0) € A — (b,c) hence (0,0) € A*. Now, if @ is a minimal forest for u (a
subgraph of T of minimal size that makes the graph I';, U @ connected in T")
then by Theorem EZTOI

ul = Ix(was) = Y mule) +2/EQ)] = 4n+2|E(Q)]. (11)

e€supp(pu)

Observe, that an optimal RST T4+ for A* also makes the graph I';, UQ connected
in T, hence |E(Q)| < s(A*). Therefore, Ix(wa~) < 20ns(A4) + 4n.

On the other hand assume that |u| = Ix(wa+) < 20ns(A). Hence, from
(), there exists a minimal forest @) for A* such that 2|E(Q)| < 20ns(A) — 4n.
Since every connected component has precisely 4 edges and there are n such
components, it follows that there is an RST for A* of size strictly less than
10ns(A) - contradiction with Corollary EE¥l This proves the proposition.

O

Corollary 4.10. Let A be a finite subset of Z? and k € N. In the notation
above,
$(A) < k<= lx(wa~) < 20nk + 4n.

In particular, this gives a polynomial reduction of RSTP to BGLP in M, relative
to X.

Proof. Indeed, if s(A) < k then by Proposition EEO [ x (w4+) < 20ns(A) + 4n <
20nk + 4n. On the other hand, suppose s(A4) > k, say s(A) = k + [ for some
positive [ € N. Then, again by Proposition L3 Ix (wa~) > 20ns(A) = 20n(k +
) > 20nk + 4n, as required. O

Theorem 4.11. GLDP in a free metabelian group Mz is NP-complete.

Proof. Corollary EEI0 gives a polynomial reduction of RSTP in Z2 to BGLP in
Ms. Therefore BGLP in Ms is NP-hard. Meanwhile, as was mentioned above
BGLP for M, is in NP, since WP in M, is polynomial. o
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5 Open Problems

Denote by M the class of all finitely generated metabelian groups.

Problem 5.1. Describe groups in M with GP in P. In particular, the following
partial questions are of interest here:

e Are there any groups in M with GP not in P?
e Do polycyclic groups from M have GP in P?
e Describe wreath products of two f.g. abelian groups have GP in P?

Notice, since WP is in P for groups from M, it follows that GLP is at most
in NP (Turing reducible in P time to BGLP which is in NP). This makes the
following problem very interesting.

Problem 5.2. Classify groups in M with NP-complete BGLP. In particular,
the following partial questions are of interest:

e Do polycyclic groups from M have GLP in P?

e Is it true that a wreath product of finitely generated abelian groups AwrB
has NP-complete BGLP if A # 1 and the torsion-free rank of B is at least
27

Clearly, GLP is polynomial time reducible to GP. On the other hand, it is
not clear if there are finitely presented (or finitely generated) groups where GP
is not polynomial time reducible to GLP. It would be interesting to clarify the
situation in the class M. To this end we post the following

Problem 5.3. Are there group is M where GP is not polinomial time reducible
to GLP?
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