Max-Planck-Institut für Mathematik Bonn

Arbeitstagung 2009
9. Arbeitstagung der zweiten Serie

Arbeitstagung 2009

9. Arbeitstagung der zweiten Serie

Max-Planck-Institut	Mathematisches Institut
für Mathematik	der Universität Bonn
Vivatsgasse 7	Endenicher Allee 60
53111 Bonn	53115 Bonn
Germany	Germany

Contents

List of Participants

Program

Lectures:

M. Kontsevich Symplectic geometry of homological algebra
A. Klemm Dualities and Symmetries in String Theory
W. Ziller Manifolds of Positive Curvature
A. Licata Categorical $\mathfrak{s l}_{2}$-Actions
P. Teichner The Kervaire Invariant Problem (after Hill, Hopkins and Ravenel)
F. Oort Hecke Orbits
G. Harder The Fundamental Lemma
N. A'Campo Tête-à-Tête twists and geometric Monodromy

Anton Mellit Elliptic dilogarithms and parallel lines
W. Klingenberg Holomorphic Discs in the Space of Oriented Lines via Mean Curvature Flow and Applications
W. Müller Analytic Torsion and Cohomology of hyperbolic 3-manifolds
D. Lebedev From archimedean L-factors to Topological Field Theories
G. Mikhalkin Tropical Geometry
T. Kobayashi Discontinuous Groups on pseudo-Riemannian Spaces
M. Belolipetsky Counting Lattices
M. Bourdon Quasi-conformal geometry and word hyperbolic Coxeter groups
O. Lorscheid Geometry over the field with one element

Name	First Name	Institution
A'Campo	Norbert	Universität Basel
Ageev	Oleg	MPIM
Ahmadian	Razieh	University of Teheran
Alexandrov	Alexander	Intitute for Central Sciences RAS
Amerik	Ekaterina	MPIM/Université Paris-Sud
Angel	Andees	HCM Bonn
Asgari	Mahdi	Oklahoma State University
Auroux	Denis	MIT
Baditiou	Gabriel	MPIM/Institute of Mathematics Bucharest
Ballmann	Werner	MPIM/Universität Bonn
Belolipetsky	Misha	Durham University
Beraldo	Dario	University of California, Berkeley
Boissy	Corentin	MPIM/Université Aix-Marseille 3
Cacic	Branimir	MPIM
Carrilo	Paulo	MPIM
Ceyhan	Özgür	MPIM
Choi	Ka	University of California, Berkeley
Dabrowski	Andrzej	Universisty of Szczecin
Dais	Dimitrios	University of Crete
Dalawat	Chandan	Harish-Chandra Institute
Dessai	Anand	Université de Fribourg
Dobrwoski	Peter	Universität Köln
Dobrynskiy	Vladimir	
Drozd	Yuri	MPIM/Institute of Mathematics, Kiev
Dzhumadail'daev	Askar	Insitute of Mathematics
Elashvili	Alexander	Institute of Mathematics Tiblis
Faltings	Gerd	MPIM
Faustino	Nelson	Universidade de Aveiro
Felikson	Anna	MPIM
Felshtyn	Alexander	MPIM/University of Szczecin
Felshtyn	Marten	
Florin	Nicolae	Technische Universität Berlin
Frégier	Yael	RMATH Luxembourg
Friedrich	Reinhold	MPIM/Universität Bonn
Garion	Shelly	MPIM
Gashi	Quendrim	MPIM
Gatsinzi	Jean Baptiste	MPIM/University of Botswana
Grobner	Harald	Universität Wien
Grossi-Ferreira	Carlos	MPIM
Grunewald	Fritz	Universität Düsseldorf
Hambleton	Ian	MPIM/McMaster University Hamilton
Hanke	Bernhard	LMU München
Harder	Günter	MPIM/Universität Bonn
Hegenbarth	Fritz	Universita degli Studi di Milano
Heim	Bernhard	MPIM/Universität Mannheim
Heinze	Joachim	Springer-Verlag
Hirzebruch	Friedrich	MPIM
Hitchin	Nigel	University of Oxford
Hornbostel	Jens	Universität Bonn
Huesmöller	Dale	MPIM
Iranmanesh	Ali	Tarbiat Modares Unversity
Jacobson	Jeremy	LSU/Universität Bonn
Kaiser	Christian	MPIM
Kaiser	Uwe	Boise State University
Kashani	S.M.B	Unversity of Teheran
Katzarkov	Ludmil	Universität Wien
Kaufmann	Ralph	Purdue University
Keel	Sean	University of Texas, Austin
Khimshiashvili	Giorgi	Razmadze Mathematical Institute, Tiblis

Kishore	Marathe	MIS Leipzig
Klingenberg	Wilhelm	Durham University
Kobayashi	Toshiyuki	MPIM/Tokyo
Kolyada	Sergii	MPIM/Institute of Mathematics, Kiev
Kontsevich	Maxim	IHES
Kounchev	Ognyan	Insitute of Mathematics, Bulgaria
Kühnel	Wolfgang	Universität Stuttgart
Kurke	Herbert	Humboldt-Universität Berlin
Ladkani	Sefi	MPIM
Lebedev	Dmitry	Université de Dijon
Li	Qin	University of California, Berkeley
Licata	Anthony	MPIM/Stanford University
Licata	Joan	MPIM/Stanford University
Lorscheid	Oliver	MPIM
Mahanta	Snigdhayan	IHES
Maimanni	Hamidreza	Shahid Rejaee University
Makar-Limanov	Leonid	MPIM/Wayne State University
Manin	Yuri	MPIM
Matveev	Vladimir	MPIM
Mellit	Anton	MPIM
Mihalache	George	Universität Hamburg
Minabe	Satoshi	MPIM
Moree	Pieter	MPIM
Müller	Jörn	MPIM/Universität Bonn
Müller	Werner	Universität Bonn
Muro	Fernando	Universitat de Barcelona
Mustata	Andrei	MPIM
Oort	Frans	University of Utrecht
Osipov	Denis	Steklov Mathematical Institute
Patnaik	Manish	Harvard University
Petit	Francais	Paris VI University
Petras	Oliver	HCM Bonn
Pevzner	Michael	Université de Reims
Pichereau	Anne	MPIM
Poletaeva	Elena	University of Texas, Pan American
Putzka	Jens	MPIM/HCM Bonn
Raulf	Nicole	MPIM/Université de Lille 1
Reizakis	Marina	Springer-Verlag
Rovinsky	Marat	MPIM/Steklov Mathematical Institute
Schommer-Pries	Christopher	MPIM
Seiler	Wolfgang	Universität Mannheim
Shatz	Stephen	Pennsylvania State University
Shoikhet	Boris	Université du Luxembourg
Silhan	Josef	MPIM
Smirnov	Maxim	MPIM
Snoha	L'ubomir	MPIM/Matj Bel University
Somberg	Petr	MFF UK
Soucek	Vladimir	Charles University Prague
Spirdonov	Vyacheslav	Lab. Of Theor. Physics, JINR, Dubna
Strohmaier	Alexander	Loughborough University
Strooker	Jan	University of Utrecht
Stroppel	Katharina	Universität Bonn
Szeczepanski	Andrzej	University at Gdansk
Szemberg	Tomas	MPIM
Tabachnikov	Sergei	MPIM/Pennsylvania State University
Teicher	Mina	Emmy Noether Institute
Teichner	Peter	MPIM
Terakawa	Hiroyuki	MPIM/Tsuru University
Tien	Trinh Duy	Universität Essen-Duisburg
Troitsky	Evegenij	MPIM/Moscow State University

Tziolas	Nikolaos	MPIM/University of Cyprus
Valdez	Perran	MPIM
Van Roosmalen	Adam-Christiaan	MPIM
Vdovina	Alina	Newcastle University
Virdol	Cristian	MPIM/Columbia University
Vlasenko	Maria	MPIM
Wang	Mingxi	ETH Zürich
Winn	Brian	Loughborough University
Xiandong	Ye	MPIM/University of Sci. and Tech. of China
Yassemi	Siamak	University of Teheran
Yu	Chia-Fu	Inst. of Math. Academica Sinica
Zagier	Don	MPIM
Zeidler	Eberhard	MIS Leipzig
Zharkov	Ilia	Kansas State University
Ziller	Wolfgang	University of Pennsylvania

Max-Planck-Institut	Mathematisches Institut	
für Mathematik	and	der Universität Bonn
Vivatsgasse 7		Endenicher Allee 60
53111 Bonn	53115 Bonn	

Program of the Mathematische Arbeitstagung 2009 (I)

All lectures will take place in the "Großer Hörsaal," Wegelerstraße 10.
Friday, June 05, 2009

$3: 30-4: 15$ p.m.	Opening and first program discussion
$5: 00-6: 00$ p.m.	Maxim Kontsevich (IHES) Symplectic geometry of homological algebra
8:00 p.m.	Rector's Party
	Festsaal der Universität, Hauptgebäude (entrance from "Am Hof" street across from Bouvier bookstore)

Saturday, June 06, 2009

10:15-11:15 a.m.	A. Klemm (Univ. Bonn) Duality and Symmetry
12:00-1:00 p.m.	W. Ziller (UPenn) Manifolds of Positive Curvature
5:00-6:00 p.m.	A. Licata (MPIM) Categorical $S L_{2}$-Action

Sunday, June 07, 2009

10:15-10:30 a.m.	Program discussion (II)
10:30-11:30 a.m.	P. Teichner (MPIM / UC Berkeley) The Kervaire Invariant One Problem
12:00-1:00 p.m.	F. Oort (Univ. Utrecht) Hecke Orbits
$5: 00-6: 00$ p.m.	G. Harder (MPIM / Univ. Bonn) The Fundamental Lemma

All lectures will take place in the "Großer Hörsaal," Wegelerstraße 10. There will be tea breaks after the morning lecture from 11:15/11:30 a.m. on in Wegelerstrasse and from 3:30 p.m. in the MPI. At this time also mail will be distributed and you will have the opportunity to pay your Tagungsbeitrag of 30 Euro. Lists of participants and other information will lie out in Wegelerstrasse and in the MPIM. All participants are requested to put their name on the list!
**** All Arbeitstagung participants and those accompanying them are invited to the Rector's Party on Friday and the Boat Trip on Monday (see special announcements) ****

Max-Planck-Institut
für Mathematik
Vivatsgasse 7
53111 Bonn

Mathematisches Institut der Universität Bonn
Endenicher Allee 60 53115 Bonn

Program of the Mathematische Arbeitstagung 2009 (II)

All lectures will take place in the "Großer Hörsaal," Wegelerstraße 10.

Monday, June 08, 2009

10:15-11:15 a.m.	N. A'Campo (Univ Basel) Tête-à-Tête twists and geometric Monodromy
12:00 - ca. 7:00 p.m.	Boat Trip See special leaflet

Tuesday, June 09, 2009
10:15-10:30 a.m. Program discussion (III)
10:30-11:30 a.m. A. Mellit (MPIM)
Mahler measures and L-functions
12:00-1:00 p.m. W. Klingenberg (Univ. Durham)
Proof of Carathéodory Conjecture
5:00-6:00 p.m. W. Müller (Univ. Bonn)
Analytic Torsion and Cohomology of hyperbolic 3-manifolds

All lectures will take place in the "Großer Hörsaal," Wegelerstraße 10. Except for Monday, there will be tea breaks after the morning lecture from 11:15/11:30 a.m. on in Wegelerstrasse and 3:30 p.m. on in the MPI. At this time also mail will be distributed and you will have the opportunity to pay your Tagungsbeitrag of 30 Euro.
Lists of participants and other information will lie out in Wegelerstrasse and in the MPI. All participants are requested to put their name on the list!
**** All Arbeitstagung participants and those accompanying them are invited to the Boat Trip on Monday (see special announcement) ****

Max-Planck-Institut	Mathematisches Institut der Universität Bonn	
Vivatsgasse 7 7	and	Endenicher Allee 60
53111 Bonn		53115 Bonn

Program of the Mathematische Arbeitstagung 2009 (III)

All lectures will take place in the "Großer Hörsaal," Wegelerstraße 10.

Wednesday, June 10, 2009
10:15-11:15 a.m. D. Lebedev (ITEP)
From Archimedean L-factors to Topological Field Theories
12:00-1:00 p.m
G. Mikhalkin (Univ. Genève) Tropical Geometry

5:00-6:00 p.m.
T. Kobayashi (Univ. Tokyo)

Discontinuous Groups on pseudo-Riemannian Spaces
Thursday, June 11, 2009

10:15-11:15 a.m.	M. Belolipetsky (Univ. Durham) Counting Lattices
12:00 - 1:00 p.m.	M. Bourdon (Univ. Lille 1 / MPIM) Quasiconformal Geometry
5:00-6:00 p.m.	O. Lorscheid (MPIM)
\mathbb{F}_{1} - geometry	

All lectures will take place in the "Großer Hörsaal," Wegelerstraße 10. Except for Monday, there will be tea breaks after the morning lecture from 11:15/11:30 a.m. on in Wegelerstrasse and $3: 30 \mathrm{p} . \mathrm{m}$. on in the MPI. At this time also mail will be distributed and you will have the opportunity to pay your Tagungsbeitrag of 30 Euro.
Lists of participants and other information will lie out in Wegelerstrasse and in the MPI. All participants are requested to put their name on the list!

Symplectic geometry of homological algebra

Maxim Kontsevich

June 10, 2009

Derived non-commutative algebraic geometry

With any scheme X over ground field \mathbf{k} we can associate a \mathbf{k}-linear triangulated category $\operatorname{Perf}(X)$ of perfect complexes, i.e. the full subcategory of the unbounded derived category of quasi-coherent sheaves on X, consisting of objects which are locally (in Zariski topology) quasi-isomorphic to finite complexes of free sheaves of finite rank.

The category $\operatorname{Perf}(X)$ is essentially small, admits a natural enhancement to a differential graded (dg in short) category up to a homotopy equivalence, and is Karoubi (e.g. idempotent) closed. The main idea of derived noncommutative algebraic geometry is to treat any Karoubi closed small dg category as the category of perfect complexes on a "space".

By a foundamental result of A. Bondal and M. Van den Bergh, any separated scheme of finite type is affine in the derived sense, i.e. $\operatorname{Perf}(X)$ is generated by just one object. Equivalently,

$$
\operatorname{Perf}(X) \sim \operatorname{Perf}(A)
$$

for some dg algebra A, where prefect A-modules are direct summands in the homotopy sense of modules M which are free finitely generated \mathbb{Z}-graded A modules, with generators m_{1}, \ldots, m_{N} of certain degree $\operatorname{deg}\left(m_{i}\right) \in \mathbb{Z}$, such that $d m_{i} \in \oplus_{j<i} A \cdot m_{j}$ for all i. Algebra A associated with X is not unique, it is defined up to a derived Morita equivalence.

Some basic properties of schemes one can formulate purely in derived terms.

Definition 1. Dg algebra A is called smooth if $A \in \operatorname{Perf}\left(A \otimes A^{o p}\right)$. It is compact if $\operatorname{dim} H^{\bullet}(A, d)<\infty$. This properties are preserved under the derived Morita equivalence.

For a separated scheme X of finite type the properties of smoothness and properness are equivalent to the corresponding properties of a dg algebra A with $\operatorname{Perf}(A) \sim \operatorname{Perf}(X)$. Smooth and compact dg algebras are expected to be the "ideal" objects of derived geometry, similar to smooth projective varieties in the usual algebraic geometry. For a smooth algebra A the homotopy category $\operatorname{Fin}(A)$ of dg-modules with finite-dimensional total cohomology is contained in $\operatorname{Perf}(A)$, and for compact A the category $\operatorname{Perf}(A)$ is contained in $\operatorname{Fin}(A)$. One can define two notions of a Calabi-Yau algebra of dimension $D \in \mathbb{Z}$. In the smooth case it says that $A^{!}:=\operatorname{Hom}_{A \otimes A^{o p}-\bmod }\left(A, A \otimes A^{o p}\right)$ is quasi-isomorphic to $A[-D]$ as $A \otimes A^{o p}$-module (it corresponds to the triviality of the canonical bundle for smooth schemes). Similarly, in the compact case we demand that $A^{*}=\operatorname{Hom}_{\mathbf{k}-\bmod }(A, \mathbf{k})$ is quasi-ismorphic to $A[D]$, as a bimodule (it corresponds for schemes to the condition that X has Gorenstein singularities and the dualizing sheaf is trivial).

The notion of smoothness for dg algebras is itself not perfect, as e.g. it includes somewhat pathological example $\mathbf{k}\left[x,\left(1 /\left(x-x_{i}\right)_{i \in S}\right]\right.$ where $S \subset \mathbf{k}$ is an infinite subset. It seems that the right analog of smooth shemes (of finite type) is encoded in the following notion of dg algebra of finite type due to B. Toën and M. Vaquie:

Definition 2. A dg algebra A is called of finite type if it is a homotopy retract in the homotopy category of dg algebras of the free finitely generated algbera $\mathbf{k}\left\langle x_{1}, \ldots, x_{N}\right\rangle, \operatorname{deg}\left(x_{i}\right) \in \mathbb{Z}$ with the differential of the form

$$
d x_{i} \in \mathbf{k}\left\langle x_{1}, \ldots, x_{i-1}\right\rangle, \quad i=1, \ldots, N
$$

Any dg algebra of finite type is smooth, and any smooth compact dg algebra is of finite type. It is also convenient to replace a free graded algebra in the definition of finite type by the algebra of paths in a finite \mathbb{Z}-graded quiver.

A large class of small triangulated categories (including many examples from representation theory) can be interpreted as the categories of perfect complexes on a space of finite type with a given "support". In terms of dg algebras, in order to specify the support one should pick a perfect complex $M \in \operatorname{Perf}(A)$. The corresponding category is the full subcategory of $\operatorname{Perf}(A)$ generated by M, and is equivalent to $\operatorname{Perf}(B)$ where $B=\operatorname{End}_{A-\bmod }(M, M)^{o p}$. One can say in non-commutative terms what is the "complement" $X-\operatorname{Supp}(M)$ and the "formal completion" $\widehat{X}_{\text {Supp } M}$ of X at $\operatorname{Supp}(M)$. The complement is given by the localization of $\operatorname{Perf}(X)=$ $\operatorname{Perf}(A)$ at M, and is again of finite type. By Drinfeld's construction, in terms of dg quivers it means that we add a new free generator $h_{M} \in$
$\operatorname{Hom}^{-1}(M, M)$ with $d h_{M}=\operatorname{id}_{M}$. The formal completion is given by algebra $C=\operatorname{End}_{B-\bmod }(M, M)^{o p}$. E.g. when $A=\mathbf{k}[x]$ and $M=\mathbf{k}$ with x acting trivially, we have $B=H^{\bullet}\left(S^{1}, \mathbf{k}\right)$ (the exterior algebra in one variable in degree +1), and $C=\mathbf{k}[[x]]$.

Examples of categories of finite type

Algebraic geometry: For any smooth scheme X the category $\operatorname{Perf}(X) \simeq$ $D^{b}(\operatorname{Coh}(X))$ is of finite type.

Topology: Let X be now a space homotopy equivalent to a finite connected CW complex. Define $A_{X}:=$ Chains $\left(\Omega\left(X, x_{0}\right)\right)$, the dg algebra of chains (graded in non-positive degrees) of the monoid of based loops in X, with the product induced from the composition of loops. This algebra is of finite type as can be seen directly from the following description of a quasi-isomorphic algebra.

Let us assume for simplicity that X is simplicial subcomplex in a standard simplex Δ^{K} for some $K \in \mathbb{Z}_{\geq 0}$. We associate with such X a finite dg quiver Q_{X}. Its vertices are $v_{i}, i=0, \ldots, K$ for $i \in X$. The arrows are $a_{i_{0}, \ldots, i_{k}}$ for $k>0$, where $\left(i_{0}, \ldots, i_{k}\right)$ is a face of X, and $i_{0}<i_{1}<\cdots<i_{k}$. The arrow $a_{i_{0}, \ldots, i_{k}}$ has degree $(1-k)$ and goes from $v_{i_{0}}$ to $v_{i_{k}}$. We define the differential in Q_{X} by

$$
d a_{i_{0}, \ldots, i_{k}}=\sum_{j=1}^{k-1}(-1)^{j} a_{i_{0}, \ldots, i_{j}} \cdot a_{i_{j}, \ldots, i_{k}}
$$

Then we have to "invert" all arrows of degree 0, i.e. add inverse arrows $a_{i_{0}, i_{1}}$ for all egdes $\left(i_{0}, i_{1}\right)$ in X. It can be done either directly (but then we obtain a non-free quiver), or in a more pedantical way which gives a free quiver. In general, if want to invert a arrow $a_{E F}$ in a dg quiver connecting verices E and F, with $\operatorname{deg} a_{E F}=0$ and $d a_{E F}=0$, one can proceed as follows. To say that $a_{E F}$ is an isomorphism is the same as to say that the cone $C:=\operatorname{Cone}\left(a_{E F}: E \rightarrow F\right)$ is zero. Hence we should add an endmorphism h_{C} of the cone of degree -1 whose differential is the identity morphism. Describing h_{C} as 2×2 matrix one obtains the following. One has to add 4 arrows

$$
h_{F E}^{0}, h_{E E}^{-1}, h_{F F}^{-1}, h_{E F}^{-2}
$$

with degrees indicated by the upper index, with differentials

$$
\begin{gathered}
d h_{F E}^{0}=0, d h_{E E}^{-1}=\mathrm{id}_{E}-a_{E F} \cdot h_{F E}^{0}, \\
d h_{F F}^{-1}=\operatorname{id}_{F}-h_{F E}^{0} \cdot a_{E F}, d h_{E F}^{-2}=a_{E F} \cdot h_{F F}^{-1}-h_{E E}^{-1} \cdot a_{E F} .
\end{gathered}
$$

Theorem 1. The quiver Q_{X} localized in either way, is dg equivalent to A_{X}.
In particular, if X is space of type $K(\Gamma, 1)$ then A_{X} is homotopy equivalent to an ordinary algebra in degree 0 , the group ring $\mathbf{k}[\Gamma]$. In particular, such an algebra is of finite type. In the case $\operatorname{char}(\mathbf{k})=0$ one can also allow torsion, i.e. consider orbispaces, hence Γ can be an arithmetic group, a mapping class group, etc.

The full subcategory of finite-dimensional dg modules $\operatorname{Fin}\left(A_{X}\right) \subset \operatorname{Perf}\left(A_{X}\right)$ is the triangulated category of sheaves whose cohomology are finite rank local systems on X. If we invert not all arrows of degree 0 in Q_{X} for simplicial $X \subset \Delta^{K}$, we can obtain categories of complexes of sheaves with cohomology constructible with respect to a given CW-stratification, and even more general categories.

Algebraic geometry II: The last example of a category of finite type is somewhat paradoxical.

Theorem 2. (V.Lunts) For any separated scheme X of finite type the category $D^{b}(C o h(X))$ (with its natural dg enhancement) is of finite type.

Morally one should interpret $\operatorname{Perf}(X)$ as the category of perfect complexes on a smooth derived noncommutative space Y with support on a closed subset Z. Then the category $D^{b}(\operatorname{Coh}(X))$ can be thought as the category of perfect complexes on the formal neighborhood \widehat{X}_{Z}. It turns out that for the case of usual schemes this neighbourhood coincides with Y itself. The informal reason is that the "transversal coordinates" to Z in Y are of strictly negative degrees, hence the formal power series coincide with polynomials in \mathbb{Z}-graded sense.

Fukaya categories

Let (X, ω) be a compact symplectic C^{∞} manifold with $c_{1}\left(T_{X}\right)=0$
The idea of K. Fukaya is that one should associate with (X, ω) a compact A_{∞} Calabi-Yau category over a non-archimedean field (Novikov ring)

$$
N o v:=\sum_{i} a_{i} T^{E_{i}}, \quad a_{i} \in \mathbb{Q}, \quad E_{i} \in \mathbb{R}, \quad E_{i} \rightarrow+\infty
$$

where numbers E_{i} have the meaning of areas of pseudo-holomorphic discs. The objects of $\mathcal{F}(X)$ in the classical limit $T \rightarrow 0$ should be oriented Lagrangain spin manifolds $L \subset X$ (maybe endowed with a local system). There are several modifications of the original definition:

- one can allow manifolds with $c_{1} \neq 0$ (in this case one get only a $\mathbb{Z} / 2 \mathbb{Z}$ graded category),
- on can allow X to have a pseudo-convex boundary (see the discussion of the Stein case below),
- (Landau-Ginzburg model), X is endowed with a potential $W: X \rightarrow \mathbb{C}$ satisfying some conditions at infinity (then the corresponding FukayaSeidel category is not a Calabi-Yau one),
- allow X to have holes inside, then one get so called "wrapped" Fukaya category with infinite-dimensional Hom-spaces.

Fukaya categories of Stein manifolds

The simplest and the most important case is when X is compact complex manifold with real boundary such that there exists a strictly plurisubharmonic function $f: X \rightarrow \mathbb{R}_{\leq 0}$ with $f_{\mid \partial X}=0$ and no critical points on ∂X.

Seidel in his book gave a complete definition of the Fukaya category of Stein manifold in terms of Lefschetz fibrations. The additional data necessary for \mathbb{Z}-grading is a trivialization of the square of the canonical bundle. One can analyze his construction and associate certain algebra A of finite type (over \mathbb{Z}) such that the Fukaya category constructed by Seidel is a full subcategory of $\operatorname{Fin}(A)$. We propose to consider A (or category $\operatorname{Perf}(A)$ and not Fin (A)) to be a more foundamental object, and to formulate all the theory in such terms. For example, for $X=T^{*} Y$ where Y is a compact oriented manifold, the algebra A is Chains $\left(\Omega\left(Y, y_{0}\right)\right)$ contains information about the foundamental group of Y, whereas the category of finite-dimensional representations could be very poor for non-residually finite group $\pi_{1}(Y)$.

Also we propose a slightly different viewpoint on A_{X}. Namely, one can make X smaller and smaller without changing A, and eventually contract X to a singular Lagrangian submanifold $L \subset X$. Hence we can say that $A=A_{L}$ depends only on L (up to derived Morita equivalence). One can think for example about L being a 3 -valent graph embedded in an open complex curve X as a homotopy retract. If X is endowed with a potential, we should contract X to a noncompact L such that $\operatorname{Re}(W)_{\mid L}: L \rightarrow \mathbb{R}$ is a proper map to $[c,+\infty), c \in \mathbb{R}$, e.g. $L=\mathbb{R}^{n}$ for $X=\mathbb{C}^{n}$ with the holomorphic potential $\sum_{i=1}^{n} z_{i}^{2}$.

We expect that $\operatorname{Fin}\left(A_{X}\right)$ is the global category associated with a constructible sheaf (in homotopy sense) \mathcal{E}_{L} of smooth compact dg categories on
L depending only on the local geometry. In terms of dg algebras, A_{X} is a homotopy colimit of a finite diagram of local algebras. For example, if L is smooth and oriented and spin, the sheaf \mathcal{E}_{L} is the constant sheaf of $\operatorname{Perf}(\mathbb{Z})$, and the global algebra is the algebra Chains $\left(\Omega\left(L, x_{0}\right)\right)$ considered before.

In terms of topological field theory, the stalks of \mathcal{E}_{L} are possible boundary terms for the theory of pseudo-holomorphic discs in X with boundary on L.

In codimension 1 singular Lagrangian L looks generically as the product of a smooth manifold with the union of three rays $\left\{z \in \mathbb{C} \mid z^{3} \in \mathbb{R}_{\geq 0}\right\}$, endowed with a natural cyclic order. The stalk of the sheaf \mathcal{E}_{L} at such a point is $\operatorname{Perf}\left(A_{2}\right)$, the category of representations of quiver A_{2} (two vertices and one directed egde). The symmetry group of $\operatorname{Perf}\left(A_{2}\right)$ after factoring by the central subgroup of shifts by $2 \mathbb{Z}$ is equal to $\mathbb{Z} / 3 \mathbb{Z}$. Explicitly it can be done by the following modification of the quiver at triple points. Namely, consider the quiver with three vertices (corresponding to 3 objects E, F, G), a closed arrow $F \rightarrow G$ of degree 0 , two arrows $E \rightarrow F, E \rightarrow G$ of degreess -1 and 0 respectively (with differential saying that we have a morphism $E \rightarrow \operatorname{Cone}(F \rightarrow G)$. We say that E is quasi-isomorohic to Cone $(F \rightarrow G)$, i.e.

$$
\operatorname{Cone}(E \rightarrow \operatorname{Cone}(F \rightarrow G))=0
$$

This can be done explicitly by constructing a homotopy to the identity of the above object, which is a 3×3-matrix. Combining all equations together we get a quiver with 3 vertices and 12 arrows which gives a heavy but explicit finite type model for exact triangles.

A natural example of a Lagrangian submanifold with triple point singularities comes from any union of transversally intersecting Lagarngain submanifolds $L_{i} \subset X, i=1, \ldots, k$. For any point x of intersection (or selfintersection) we should remove small discs in two branches of Lagrangian manifolds intersecting at x, and glue a small ball with two collars. The set of triple points forms a sphere.

Global algebra A_{L} of finite type is Calabi-Yau if L is compact, and not Calabi-Yau in general for non-compact L. There are many examples of (compact and non-compact) sungular Lagrangian manifolds such that

$$
\operatorname{Perf}\left(A_{L}\right) \simeq D^{b}(\operatorname{Coh}(X))
$$

for some scheme X of finite type over \mathbb{Z} (maybe singular and/or noncompact). In the pictures at the end we collected several examples of this "limiting mirror symmetry". Categories of type A_{L} one can consider as "non-commutative spaces of finite type" defined combinatorially, without
parameters. Among other examples one can list toric varieties, maximally degenerate stable curves, etc.

Deforming degenerate Fukaya categories

Let us assume that X is compact, in fact a complex projective manifold, and take a complement X^{o} to an ample divisor. New manifold X^{o} is Stein, and can be contracted to a singular Lagrangian $L \subset X^{o}$. The advantage of X^{o} is that is has no continuous parameters as a symplectic manifold. As was advocated by P . Seidel several years ago, one can think of $\mathcal{F}(X)$ as a deformation of $\mathcal{F}\left(X^{o}\right)$. For example, if X is a two-dimensional torus (elliptic curve) and X^{o} is the complement to a finite set, then $\mathcal{F}\left(X^{o}\right)$ is equivalent to $\operatorname{Perf}\left(Y_{0}\right)$ where Y_{0} is a degenerate elliptic curve, a chain of copies of \mathbb{P}^{1}.

In algebraic terms, holomorphic discs in X give a solution of the MaurerCartan equation

$$
d \gamma+[\gamma, \gamma] / 2=0, \quad \gamma \in C^{\bullet}\left(A_{L}, A_{L}\right) \widehat{\otimes} \mathfrak{m}_{N o v}
$$

where $C^{\bullet}\left(A_{L}, A_{L}\right)=\operatorname{Cone}\left(A_{L} \rightarrow \operatorname{Der}\left(A_{L}\right)\right)$ is the cohomological Hochschild complex of smooth algebra A_{L}, and $\mathfrak{m}_{N o v}$ is the maximal ideal in the ring of integers in the Novikov field Nov.

Analogy with algebraic geometry suggests that different choices of open $X^{o} \subset X$ should lead to dg algebras of finite type endowed with deformations over $\mathfrak{m}_{\text {Nov }}$ such that algebras became (in certain sense) derived Morita equivalent after the localization to Nov. We expect that such a formulation will handle the cases when the deformed Fukaya category is too small, e.g. when the mirror family consists of non-algebraic varieties (e.g. non-algebraic K3 surfaces or complex tori).

Question about automorphisms

The group of connected components of X (with appropriate modications for the potential/Landau-Ginzburg/wrapped cases) acts by automorphisms of dg category $\mathcal{F}(X)$ over the local field Nov. One can ask whetehr this group coincides with the whole group of automorphisms. To our knowledge, there is no counterexamples to it! In principle, one can extend the group by taking the product of X with the Landau-Ginzburg model $\left(\mathbb{C}^{n}, \sum_{i=1}^{n} z_{i}^{2}\right)$ which is undistinguishable categorically from a point. So, a more realistic conjecture is that the automorphism group of Fukaya category coincides with the stabilized symplectomorphism group. Why anything like this should be true?

There is an analogous statement in the (commutative) algebraic geometry. The group of automorphisms of a maximally degenerating Calabi-Yau variety Y over a local non-archimedean field K maps naturally to the group of integral piece-wise linear homeomorphisms of certain polytope (called the skeleton, and usally homeomorphic to a sphere). The skeleton lies intrisically in the Berkovich spectrum $Y^{a n}$ where the latter is defined as the colimit of sets of points $X\left(K^{\prime}\right)$ over all non-archimedean field extensions $K^{\prime} \supset K$. The Berkovich spectrum is a very hairy but Hausdorff topological space, and the skeleton is a naturally defined homotopy retract of $Y^{a n}$.

We expect that one can define some notion of analytic spectrum for a dg algebra over a non-archimedean field, and its skeleton should be probably a piecewise symplectic manifold (maybe infinite-dimensional). For Fukaya type categories this skeleton should be the original symplectic manifold.

Dualities and Symmetries in String Theory

Albrecht Klemm
Physikalisches Institut
Universität Bonn
Nussallee 12
53115 Bonn
Mathematische Arbeitstagung June 5-11, 2009
Max-Planck-Institut für Mathematik, Bonn, Germany

1 Exposition of the problem

In string theory one considers maps

$$
\begin{equation*}
X: \Sigma_{g} \rightarrow \hat{M} \tag{1}
\end{equation*}
$$

from a Riemann surface Σ_{g} to a target space \hat{M}. For simplicity we focus on orientable closed Riemann surface of genus g. The standard supersymmetric string theory, called type II string, has desirable symmetries at quantum level if $\operatorname{dim}_{R}(\hat{M})=10$. This is called the critical dimension and to describe a four dimensional gravity theory, or more precisely a four dimensional $N=2$ supergravity theory, one considers $\hat{M}=M \times M_{4}$. Here M_{4} is a large space of signature (3,1), which is to be identified with our universe, while M is a three complex dimensional Calabi-Yau manifold and its typical radii are so small that according to Heisenbergs uncertainty principle one needs higher energy scales then presently explored to detect it directly in experiments. Physical amplitudes are given by variational integrals, the simplest one is the vacuum amplitude

$$
\begin{equation*}
Z(M)=\int \mathcal{D} X \mathcal{D} \chi e^{-S(X, \chi, M)}, \tag{2}
\end{equation*}
$$

where the action S is schematically

$$
\begin{equation*}
S=\int_{\sigma} G^{\mu \nu} \partial_{\alpha} X_{\mu} \partial^{\alpha} X_{\nu}+i B^{\mu \nu} \epsilon^{\alpha \beta} \partial_{\alpha} X_{\mu} \partial_{\beta} X_{\nu}+\text { supersymmetric completion } \tag{3}
\end{equation*}
$$

Here χ stands for fermionic partners of the bosonic coordinate X, which occur in the supersymmetric completion.

Note that the variational integral over the worldsheet metric does not appear since it trivializes due to the special symmetries in the critical dimension.

On the other hand the metric $G^{\mu \nu}$ and the antisymmetric 2 -form field $B^{\mu \nu}$ on M are not varied over, so that Z depends on them as well as on other properies of M, which determines the nature of physics in M_{4}. The main interest in this
talk are the invariances of Z if we modify its argument M. These are called spacetime dualities.

Note that the first term in S is equivalent to area of the image curve and the critical sets of S can be identified with the holomorphic maps.

Due to supersymmetric localization there exists a truncation of the theory to these critical bosonic configurations. The truncated theory is called the topological A-model. In the truncated theory Z collapses to Z_{A}, which is given by infinite sum over topological sectors labelled by g and the class of the image curve $\beta \in H_{2}(M, \mathbb{Z})$. The variational integral collapses in each sector into a mathematically welldefined integral over the finite dimensional moduli space of the holomophic maps $\overline{\mathcal{M}_{g}(M, \beta)}$. The A-model truncation is best decribed by nilpotent BRST operators, which allow to define a cohomological theory whose finite dimensional Hilbert spaces is spanned by states, which are in one to one correspondence with the de Rahm cohomology groups $H^{i, i}(M), i=0, \ldots, 3$. Its correlators are the cassical intersections deformed by contributions of the holomorphic maps.

The decisive A-model quantity is the free energy

$$
\begin{equation*}
F(\lambda, t)=\log \left(Z_{A}\right)=\sum_{g=0}^{\infty} \lambda^{2 g-2} F_{g}(t) \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{g}(t)=\text { classical }+\sum_{\beta \in H_{2}(M \mathbb{Z})} r_{\beta}^{g} q^{\beta} . \tag{5}
\end{equation*}
$$

Here

$$
\begin{equation*}
r_{\beta}^{g}=\int_{\overline{\mathcal{M}_{g}(M, \beta)}} c_{b}^{v i r}(M, \beta) \in \mathbb{Q} \tag{6}
\end{equation*}
$$

are the Gromov-Witten invariants. They are defined as the integral of a virtual fundamental class over the compactifications of the moduli space of the holomorphic maps. The virtual dimension of the moduli space follows from an index theorem

$$
\begin{equation*}
\operatorname{viim}_{\mathbb{C}} \overline{\mathcal{M}_{g}(M, \beta)}=\int_{\beta} c_{1}+(\operatorname{dim}-3)(1-g) \tag{7}
\end{equation*}
$$

We note that Calabi-Yau threefolds are the critical cases as $\operatorname{vdim}_{\mathbb{C}} \overline{\mathcal{M}_{g}(M, \beta)}=$ 0 . This implies that generically a point counting problem in a moduli stack yields $r_{\beta}^{g} \neq 0$. The variable $q^{\beta}=\exp \left(t_{\beta}\right)$, where $t_{\beta}=2 \pi i \int_{\beta}(b+\omega)$ is the complexified Kähler parameter. It is a complex variable build from linear deformation of the 2 -form field $b=\delta B$ and the real Kähler form $\omega=i \delta G_{i \bar{\jmath}} \mathrm{~d} z^{i} \wedge \mathrm{~d} \overline{z^{\bar{j}}}$. Both take values in $H^{1,1}(M, \mathbb{R})$. We note that $q^{\beta} \rightarrow 0$ in the limit of large volume. I.e. the large volume limit suppresses the contributions of the holomorphic maps. The classical terms are constant map contributions which are of course independed of the volume. An important feature is, that the A-model, does not depend on the pure deformations of the metric $\delta G_{i j}$ and $\delta G_{\bar{\imath} \bar{\jmath}}$, which parametrize the complex structure deformations of M.
$F(\lambda, t)$ is a generating function for Gromov-Witten invariants. The problem that we pose here is how to calculate it and the main point of this lecture is to explain how $F(\lambda, t)$ can be reconstructed using dualities and symmetries of (2).

2 Other symplectic invariants and integrality conjectures

Before we focus on the main topic we notice that the mathematically well defined rational Gromov-Witten invariants r_{β}^{g} are conjecturally related to integral BPS invariants n_{β}^{g}, which are physically motivated to be an index on the cohomology of the moduli space of $D 2-D 0$ branes. The relation between the $n_{\beta}^{g} \in \mathbb{Z}$ and the r_{β}^{g} are defined by
$Z_{A}^{\prime}(Q, q)=\prod_{\beta}\left[\left(\prod_{r=1}^{\infty}\left(1-Q^{r} q^{\beta}\right)^{r n_{\beta}^{0}}\right) \prod_{g=1}^{\infty} \prod_{l=0}^{2 g-2}\left(1-Q^{g-l-1} q^{\beta}\right)^{(-1)^{g+r}\left(2_{l}^{2-2}\right) n_{\beta}^{g}}\right]$,
where $Q=e^{i \lambda}$ and the prime indicates that we are omitting the constant map contributions.

To get an impression about the key properties of the BPS invariants we listed the complete information up degree $d=11$ in table 1 for M the quintic hypersurface in $\mathbb{P}^{4} . d \in \mathbb{Z}$ represents β, in the one dimensional $H_{2}(M, \mathbb{Z})$ lattice. One important property is that within a fixed class d there is a bound $g_{\max }$ on g so that $n_{d}^{g}=0$ for $g \geq g_{\max }(d)$. The bound $g_{\max }$ growth assymtotically like $g_{\max }(d) \propto d^{2}$. This a simple consequence of the adjunction formula, which implies that there are no embedded curves of genus g if the degree is not high enough. The important difference between r_{β}^{g} and n_{β}^{g} is that the latter is a property of the embedded curve in m rather then a property of the map to M. Puting it differently all information about the multi covering of the map into a given curve class is encoded in (8).

A simple example of the index definition of n_{β}^{g} can be stated for smooth curves C, where $n_{\beta}^{g}=(-1)^{\operatorname{dim} \mathcal{M}_{\mathcal{C}}} e\left(\mathcal{M}_{\mathcal{C}}\right)$. Here \mathcal{M}_{C} is the deformation space. For $d=5$ and $d=10$ and maximal genus those smooth curves are complete intersections and a simple calculation of their moduli space yields $n_{5}^{6}=10$ and $n_{10}^{16}=-50$.

A further relation links the above invariants to the Donaldson-Thomas invariants, which are integrals over the moduli space of ideal sheafs on M. Let

$$
\begin{equation*}
Z_{D T}(Q, q)=\sum_{\beta, k \in \mathbb{Z}} m_{\beta}^{k} Q^{k} q^{\beta} \tag{9}
\end{equation*}
$$

define a generating series for the Donaldson-Thomas invariants $m_{\beta}^{k} \in \mathbb{Z}$ then the relation is given by

$$
\begin{equation*}
Z_{D T}(-Q, q)=Z_{A}^{\prime}(Q, q) M(-Q)^{e(M)}, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
M(Q)=\prod_{n \geq 1} \frac{1}{\left(1-q^{n}\right)^{n}} \tag{11}
\end{equation*}
$$

is the McMahon function.

Table 1: BPS invariants n_{β}^{g} on the Quintic hypersurface in \mathbb{P}^{4}

3 The duality symmetries

3.1 Mirror symmetry

Mirror symmetry can be summarized by the statement that

$$
\begin{align*}
Z_{A}(M, \lambda, t) & =Z_{B}(W, \lambda, \hat{t}) \\
Z_{A}(W, \lambda, t) & =Z_{B}(M, \lambda, \hat{t}) \tag{12}
\end{align*}
$$

here (W, M) are mirror pairs of manifolds with

$$
\begin{equation*}
H^{3-k, p}(M)=H^{k, p}(W) \tag{13}
\end{equation*}
$$

for $k, p=0, \ldots, 3$. B stands for the topological B-model. It emerges by a different localisation of the full variational integral $Z(M)$ to constant maps albeit with a more complicated measure. Mirror symmetry identifies the A model on M with the B-model on W and vice versa. The topological states of the B model are in correspondence with the cohomology groups dual (13) to ones which define the states of the A-model. The B-model depends only on the complex structure variations \hat{t} of the corresponding manifold. The latter are encoded in period integrals over the holomorphic (3,0)-form. Studying the latter at a point of maximal degeneration yields also a concrete expression for the mirror map $\hat{t}(t)$ in (12). It should be noted that (12) is a specialized version of mirror symmetry, which is designed to be mathematically controllable. The physical expectation is simply that string theory on M and on W are indistiguishable.

The construction of mirror manifolds is understood conceptually in symplectic geometry, by the SYZ conjecture, which states that every Calabi-Yau manifold is a (degenerate) Lagrangian T^{3} fibration over a 3 -dim base and that the mirror can be constructed by dualizing the T^{3} torus fibrewise. Pragmatically thousands of mirror pairs can be easily constructed within the framework of algebraic geometry as anticanonical hypersurfaces in pairs of toric varities defined by pairs of reflexive polyhedra as pointed out by Batyrev

3.2 Periods and monodromy

We discuss now the monodromy of one paramter family of mirror quintics $W(\hat{t})$,

$$
\begin{equation*}
W(\hat{t})=\left\{p=\sum_{i=1}^{5} x_{i}^{5}-5 e^{-\frac{\hat{t}}{5}} \prod_{i=1}^{5} x_{i}=0 \text { in } \mathbb{P}^{4}\right\} \tag{14}
\end{equation*}
$$

It can be obtained as orbifold M / \mathbb{Z}_{5}^{3} of the original quintic M, where the \mathbb{Z}_{5} 's are generated by phase rotations on the homogeneous coordinates \mathbb{P}^{4}

$$
\begin{equation*}
x_{i} \rightarrow \exp \left(2 \pi i g_{i}^{(\alpha)} / 5\right) x_{i}, \quad \alpha=1,2,3, \quad i=1, \ldots, 5 \tag{15}
\end{equation*}
$$

with $g^{(1)}=(1,4,0,0,0), g^{(2)}=(1,0,4,0,0)$ and $g^{(3)}=(1,0,0,4,0)$. We identify $z=e^{\hat{t}}$ and notice that the complex moduli space is parametrized by z as $\mathcal{M}=\mathbb{P} \backslash\{z=0,1, \infty\}$.

The holomorphic $(3,0)$-form is locally $\Omega=\frac{z^{-\frac{1}{5}} x_{i} \wedge_{k \neq i, j} \mathrm{~d} x_{k}}{\partial_{j} p}$. There is a flat connection on the period vector

$$
\begin{equation*}
\Pi=\binom{\int_{A^{I}} \Omega=X^{I}}{\int_{B_{I}} \Omega=P_{I}=\frac{\partial F_{0}}{\partial X^{I}}}, \quad, I=0, \ldots, 3 \tag{16}
\end{equation*}
$$

expressed by the PIcard-Fuchs equation

$$
\begin{equation*}
\left[\theta^{4}-5 z \prod_{k=1}^{4}(\theta+k)\right] \Pi(z)=0, \quad \theta=z \frac{\mathrm{~d}}{\mathrm{~d} z} \tag{17}
\end{equation*}
$$

which undergoes the monodromies $\Pi \mapsto M_{i} \Pi$ with $M_{z=z_{i}} \in S P(4, \mathbb{Z})$

$$
M_{0}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \tag{18}\\
1 & 1 & 0 & 0 \\
5 & -3 & 1 & -1 \\
-8 & -5 & 0 & 1
\end{array}\right), \quad M_{1}=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

generate the monodromy group Γ_{M}, where the loops are schematically

Mirror quintic family

$3.3 g=0$

The first sucess of mirror symmetry is that

$$
\begin{equation*}
F_{0}(t)=\text { class. }+\sum_{d=1} n_{d}^{0} \mathrm{Li}_{3}\left(q^{d}\right) \tag{19}
\end{equation*}
$$

where the mirror map at large complex strcuture $(C S) z=0$ is

$$
\begin{equation*}
t=\frac{X^{1}}{X^{0}}(z), \tag{20}
\end{equation*}
$$

where $X^{0}=1+$ holom and $\frac{1}{2 \pi i}\left(X^{0} \log (z)+\right.$ holom. $)$ are completly determined from (17).

In the complex moduli space one has special geometry, with Kählerpotential $e^{-K}=i \int \Omega \wedge \bar{\Omega}, C_{i j k}=\int \Omega \partial_{i} \partial_{j} \partial_{k} \Omega=D_{i} D_{j} D_{K} F_{0}$ and the integrability condition

$$
\begin{equation*}
R_{k \bar{l} m}^{i}=\delta_{k}^{i} g_{\bar{l} m}+\delta_{m}^{i} g_{\bar{l} k}+C_{k m j} \bar{C}_{\bar{l}}^{i j} \tag{21}
\end{equation*}
$$

with $\bar{C}_{\bar{l}}^{i j}=\bar{C}_{\bar{l} \bar{l} l} g^{\bar{m} i} g^{\bar{k} j} e^{2 K}$.

$3.4 g=1$

The genus one amplitude is a Ray-Singer-Torsion family index over \mathcal{M} and fullfills

$$
\begin{equation*}
\partial_{i} \bar{\partial}_{\bar{\jmath}} F_{1}=\frac{1}{2} \bar{C}_{\bar{\jmath}}^{m n} C_{i m n}-\left(\frac{e(m)}{24}-1\right) g_{i \bar{\jmath}} \tag{22}
\end{equation*}
$$

It can be fixed by the boundary behaviour $F_{1} \sim \frac{1}{12} \log \left(t_{c}\right)$, where t_{c} is the flat coordinate near the conifold and $F_{1} \sim 50 \frac{t}{24}$ near large complex strcuture.

$3.5 \quad g>1$

For higher genus the F_{g} fullfill the holomorphic anomaly equation

$$
\begin{equation*}
\partial_{\bar{\imath}} F_{g}=\frac{1}{2} \bar{C}_{\bar{\imath}}^{m n}\left(D_{m} D_{n} F_{g-1}+\sum_{r=1}^{g-1} D_{m} F_{r} D_{n} F g-r\right) \tag{23}
\end{equation*}
$$

It has an holomorphic function as an ambiguity. The latter can be fixed by the fact that F_{g} is modular invariant and physical boundary conditions. The first fact implies that the F_{g} are finetly generated by a ring which can be viewed as the generalization of the ring of almost holomorphic modular forms from elliptic curves to Calabi-Yau manifolds.

In local flat coordinates the leading behaviour at the boundaries is as follows

- Expansion around the conifold point $z=1$:

$$
\begin{aligned}
F_{0}^{\mathrm{c}} & =-\frac{5}{2} \log \left(\hat{t}_{c}\right) \hat{t}_{c}^{2}+\frac{5}{12}\left(1-6 b_{1}\right) \hat{t}_{D}^{3} \\
& +\left(\frac{5}{12}\left(b_{1}-3 b_{2}\right)-\frac{89}{1440}-\frac{5}{4} b_{1}^{2}\right) \hat{t}_{c}^{4}+\mathcal{O}\left(\hat{t}_{c}^{5}\right) \\
F_{1}^{\mathrm{c}} & =-\frac{\log \left(\hat{t}_{c}\right)}{12}+\left(\frac{233}{120}-\frac{113 b_{1}}{12}\right) \hat{t}_{c} \\
& +\left(\frac{233 b_{1}}{120}-\frac{113 b_{1}{ }^{2}}{24}-\frac{107 b_{2}}{12}-\frac{2681}{7200}\right) \hat{t}_{c}^{2}+\mathcal{O}\left(\hat{t}_{c}^{3}\right) \\
F_{2}^{\mathrm{c}} & =\frac{1}{240 \hat{t}_{c}^{2}}-\left(\frac{120373}{72000}+\frac{11413 b_{2}}{144}\right) \\
& +\left(\frac{107369}{150000}-\frac{120373 b_{1}}{36000}+\frac{23533 b_{2}}{720}-\frac{11413 b_{1} b_{2}}{72}\right) \hat{t}_{c}+\mathcal{O}\left(\hat{t}_{c}^{2}\right) \\
F_{3}^{\mathrm{c}} & =\frac{1}{1008 \hat{t}_{c}^{4}}-\left(\frac{178778753}{32400000}+\frac{2287087 b_{2}}{43200}+\frac{1084235 b_{2}^{2}}{864}\right)+\mathcal{O}\left(\hat{t}_{c}\right) \\
F_{4}^{\mathrm{c}} & =\frac{1}{1440 \hat{t}_{c}^{6}}-\left(\frac{977520873701}{3402000000000}+\frac{162178069379 b_{2}}{3888000000}\right. \\
& \left.+\frac{5170381469 b_{2}^{2}}{2592000}+\frac{490222589 b_{2}^{3}}{15552}\right)+\mathcal{O}\left(\hat{t}_{c}\right) . \\
F_{g}^{\mathrm{conifold}} & =\frac{(-1)^{g-1} B_{2 g}}{2 g(2 g-2)\left(\hat{t}_{c}\right)^{2 g-2}}+\mathcal{O}\left(\hat{t}_{c}^{0}\right) .
\end{aligned}
$$

I.e. at the conifold we have the gap condition that the $2 g-2$ subleading coefficients are absent.

- Expansions around the orbifold point $\frac{1}{z}=0$

$$
\begin{aligned}
F_{0}^{\mathrm{o}} & =\frac{5 s^{3}}{6}+\frac{5 s^{8}}{1008}+\frac{5975 s^{13}}{10378368}+\frac{34521785 s^{18}}{266765571072}+\ldots \\
F_{1}^{\mathrm{o}} & =-\frac{s^{5}}{9}-\frac{163 s^{10}}{18144}-\frac{85031 s^{15}}{46702656}-\frac{6909032915 s^{20}}{20274183401472}+\ldots \\
F_{2}^{\mathrm{o}} & =\frac{155 s^{2}}{18}-\frac{5 s^{7}}{864}+\frac{585295 s^{12}}{14370048}+\frac{1710167735 s^{17}}{177843714048}+\ldots \\
F_{3}^{\mathrm{o}} & =\frac{488305 s^{4}}{9072}-\frac{3634345 s^{9}}{979776}-\frac{1612981445 s^{14}}{7846046208}-\frac{2426211933305 s^{19}}{116115777662976}+\ldots \\
F_{4}^{\mathrm{o}} & =\frac{48550 s}{567}+\frac{36705385 s^{6}}{163296}+\frac{16986429665 s^{11}}{603542016}+\frac{341329887875 s^{16}}{70614415872}+\ldots
\end{aligned}
$$

I.e. at the orbifold point we have the constion that F_{g} behaves regular. The coefficients of the expansion in the flat coordinate s are the orbifold Gromov-Witten invariants and some checks using direct computations of the latter have been made.

It can be shown that these boundary conditions fix $\left[\frac{2 g-1}{5}\right]+2 g-2$ constant in the holomorphic or modular ambiguity, which is parametrized by $3 g-3$ coeffcients. If one uses the fact that $n_{d}^{g}=0$ for $g>g_{\max }$ one can solve the equation (22) up to genus 51 as can be seen from the follwing figure

References

[HKQ] M. x. Huang, A. Klemm and S. Quackenbush, "Topological String Theory on Compact Calabi-Yau: Modularity and Boundary Conditions," Lect. Notes Phys. 757 (2009) 45 [arXiv:hep-th/0612125].

Manifolds of Positive Curvature

Wolfgang Ziller

Arbeitstagung, Bonn, June 2009

We discussed recent joint work with Karsten Grove and Luigi Verdiani in which we construct a new example with positive sectional curvature in dimension 7:

ThEOREM A. There exists a seven dimensional manifold P with positive sectional curvature with the following properties:
(a) P is homeomorphic to the unit tangent bundle of \mathbb{S}^{4}.
(b) $\mathrm{SO}(4)$ acts isometrically on P with one dimensional quotient (a so called cohomogeneity one manifold).
(c) There exists an orbifold principal fibration $\mathrm{SU}(2) \rightarrow P \rightarrow \mathbb{S}^{4}$, where $\mathrm{SU}(2) \subset \mathrm{SO}(4)$ acts almost freely on P.

We do not know wether the manifold P is diffeomorphic to the unit tangent bundle or not.

The orbifold structure on the base is as follows: The metric is smooth, except along a standard Veronese embedding $\mathbb{R} \mathbb{P}^{2} \subset \mathbb{S}^{4}$, where normal to the surface the metric has an angle $2 \pi / 3$. The quotient is thus homeomorphic to \mathbb{S}^{4}.

The positively curved metric is a Kaluza Klein metric (sometimes called connection metric) in the orbifold principal fibration in (c). It is thus described by a metric on the base and a principal connection. Due to (b) it is sufficient to describe the metric along a geodesic orthogonal to all orbits. Along this geodesic our metric and principal connection is given by piecewise polynomial functions of degree at most 5 .

The proof that the metric has positive curvature is obtained by using Thorpe's method. Here one modifies the curvature operator $\hat{R}: \Lambda^{2} T \rightarrow \Lambda^{2} T$ with a curvature type endomorphism $\hat{\alpha}: \Lambda^{2} T \rightarrow \Lambda^{2} T$ induces by a 4 -form $\alpha \in \Lambda^{4} T$. If the modified curvature operator $\hat{R}+\hat{\alpha}$ is positive definite, the sectional curvature is positive. We construct an explicit 4 -form consisting of piecewise rational functions and combine Sylvester's theorem and Sturm's theorem to show that the minor determinants are all positive.

The example fits into an infinite family of "candidates" coming from the following classification theorem:

Theorem B (Verdiani, n even, Grove-Wilking-Ziller, n odd). Let M be a positively curved compact simply connected manifold on which G acts isometrically with $\operatorname{dim} M / G=$ 1. Then M^{n} is equivariantly diffeomorphic to one of the following:
(a) A rank one symmetric space with a linear action of G.
(b) One of the normal homogeneous manifolds of positive curvature, or certain positively curved Eschenburg or Bazaikin spaces which admit a cohomogeneity one action.
(c) One of the seven dimensional manifolds $P_{k}^{7}, Q_{k}^{7}, k \geq 1$, or R^{7} with $G=\mathrm{SO}(4)$.

The manifolds in part (c) are not yet known to admit positive curvature, although $P_{1}=\mathbb{S}^{7}$ and $Q_{1}=\mathrm{SU}(3) / \mathrm{S}^{1}$ (an Aloff-Wallach space) do. Our new example is the manifold P_{2}.

Two theorem's by Grove-Ziller imply that all candidates in (c) admit a G invariant metric with non-negative sectional curvature and one of positive Ricci curvature as well.

The manifolds P_{k} are 2-connected with $\pi_{3}\left(P_{k}\right)=\mathbb{Z}_{k}$, and thus rational homology spheres. A finiteness theorem due to Petrunin-Tuschmann and Fang-Rong implies that the pinching constants δ_{k}, i.e. $0<\delta_{k} \leq \sec \leq 1$, for any positively curved metric on P_{k} would necessarily go to 0 as $k \rightarrow \infty$, and P_{k} would be the first examples of this type.

For the manifolds in part (c), $\mathrm{SU}(2) \subset \mathrm{SO}(4)$ acts almost freely and they are thus all the total space of principal orbifold bundles over \mathbb{S}^{4} for P_{k} and over $\mathbb{C P}^{2}$ for Q_{k} and R. The total space in case of P_{k} and Q_{k} admit so called 3-Sasakian metrics, which already have lots of positive curvature by definition, and the induced metric on the base is the self dual Einstein orbifold metric constructed by Hitchin. The bundle can also be described, up to a 2-fold cover, as the frame bundle of the vector bundle of self dual 2-forms on the base. Our metric on $P=P_{2}$ is a deformation of the 3-Sasakian metric.

CATEGORICAL $\mathfrak{s l}_{2}$ ACTIONS

ANTHONY LICATA

1. Introduction

1.1. Actions of $\mathfrak{s l}_{2}$ on categories. A action of $\mathfrak{s l}_{2}$ on a finite-dimensional \mathbb{C}-vector space V consists of a direct sum decomposition $V=\oplus V(\lambda)$ into weight spaces, together with linear maps

$$
e(\lambda): V(\lambda-1) \rightarrow V(\lambda+1) \text { and } f(\lambda): V(\lambda+1) \rightarrow V(\lambda-1)
$$

satisfying the condition

$$
\begin{equation*}
e(\lambda-1) f(\lambda-1)-f(\lambda+1) e(\lambda+1)=\lambda \mathrm{I}_{V(\lambda)} . \tag{1}
\end{equation*}
$$

Such an action automatically integrates to the group $S L_{2}$. In particular, the reflection element

$$
t=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] \in S L_{2}
$$

acts on V, inducing an isomorphism $V(-\lambda) \rightarrow V(\lambda)$.
A first pass at a categorification of this structure involves replacing vector spaces with categories and linear maps with functors. Thus, a naïve categorification of a finite dimensional $\mathfrak{s l}_{2}$ module consists of a sequence of categories $\mathcal{D}(\lambda)$, together with functors

$$
\mathrm{E}(\lambda): \mathcal{D}(\lambda-1) \rightarrow \mathcal{D}(\lambda+1) \text { and } \mathrm{F}(\lambda): \mathcal{D}(\lambda+1) \rightarrow \mathcal{D}(\lambda-1)
$$

between them. These functors should satisfy a categorical version of (1) above,

$$
\begin{equation*}
\mathrm{E}(\lambda-1) \circ \mathrm{F}(\lambda-1) \cong \mathrm{I}_{\mathcal{D}(\lambda)}^{\oplus \lambda} \oplus \mathrm{F}(\lambda+1) \circ \mathrm{E}(\lambda+1), \quad \text { for } \lambda \geq 0 \tag{2}
\end{equation*}
$$

and an analogous condition when $\lambda \leq 0$. The sense in which this is naïve is that ideally there should be specified natural transformations which induce the isomorphisms (2).

2. ChuAng-Rouquier's Definition of $\mathfrak{s l}_{2}$-CATEGORIFICATION

In order to get a good theory of $\mathfrak{s l}_{2}$-categorification, we need to define the algebraic structure arising from natural transformations between various compositions of the functors E and F. The first such definition, due to Joe Chuang and Raphael Rouquier [CR], is given below. (In the definition, as well as in some later parts of the abstract, we will omit the λ from the notation, writing E and F instead of $E(\lambda)$ and $F(\lambda)$.

Definition 2.1. An $\mathfrak{s l}_{2}$ categorification consists of a finite length abelian category \mathcal{A}, together with exact functors $\mathrm{E}, \mathrm{F}: \mathcal{A} \rightarrow \mathcal{A}$ such that:
(i) E is a left and right adjoint to F ;
(ii) The action of $[\mathrm{E}]$ and $[\mathrm{F}]$ on $V=K_{\mathbb{C}}(\mathcal{A})$ induces a locally finite action of $\mathfrak{s l}_{2}$;
(iii) We have a decomposition $\mathcal{A}=\bigoplus_{\lambda \in \mathbb{Z}} \mathcal{A}_{\lambda}$ such that $K_{\mathbb{C}}\left(\mathcal{A}_{\lambda}\right)=V_{\lambda}$ is a weight space of V.

We also require natural transformations $X: \mathrm{E} \rightarrow \mathrm{E}$ and $T: \mathrm{EE} \rightarrow \mathrm{EE}$ such that
(i) $T^{2}=\mathrm{I}_{\mathrm{EE}}$;
(ii) $\left(T \mathrm{I}_{\mathrm{E}}\right) \circ\left(\mathrm{I}_{\mathrm{E}} T\right) \circ\left(T \mathrm{I}_{\mathrm{E}}\right)=\left(\mathrm{I}_{\mathrm{E}} T\right) \circ\left(T \mathrm{I}_{\mathrm{E}}\right) \circ\left(\mathrm{I}_{\mathrm{E}} T\right)$ in $\operatorname{End}\left(\mathrm{E}^{3}\right)$;
(iii) $T \circ\left(\mathrm{I}_{E} X\right)=\left(X \mathrm{I}_{E}\right) \circ T-\mathrm{I}_{E E}$;
(iv) $X_{M} \in \operatorname{End}(E M)$ is nilpotent for all objects $M \in \mathcal{A}$.

It follows that endomorphisms X and T induce an action of the degenerate affine Hecke algebra of $G L_{n}$ on E^{n} (and, by adjunction, on F^{n}.) As a consequence of the definition, Chuang-Rouquier prove that the functor E^{n} is isomorphic to the direct sum of n ! copies of a single functor $\mathrm{E}^{(n)}$. Similarly, by adjunction, the functor F^{n} is isomorphic to n ! copies of a single functor $\mathrm{F}^{(n)}$. Thus $\mathrm{E}^{(n)}$ and $\mathrm{F}^{(n)}$ naturally categorify the divided powers $e^{(n)}=\frac{e^{n}}{n!}$ and $f^{(n)}=\frac{f^{n}}{n!}$. Chuang-Rouquier then define a complex $\Theta(\lambda)$ of functors, which they call the Rickard complex. The terms of the Rickard complex are

$$
\Theta(\lambda)_{d}=\mathrm{E}^{(\lambda+d)} \mathrm{F}^{(d)},
$$

and the differential $\delta: \Theta(\lambda)_{d} \rightarrow \Theta(\lambda)_{d-1}$ is built from the adjunction morphism EF $\rightarrow \mathrm{I}$, see [CR].
Theorem 2.2. (Chuang-Rouquier) The functor $\Theta(\lambda)$ defines an equivalence of categories

$$
\Theta(\lambda): D^{b}\left(\mathcal{A}_{-\lambda}\right) \simeq D^{b}\left(\mathcal{A}_{\lambda}\right)
$$

Futhermore, Chuang and Rouquier construct an explicit $\mathfrak{s l}_{2}$ categorification using direct summands of induction and restriction functors between symmetric groups. As a corollary of the above theorem, they are then able to prove Broue's abelian defect conjecture for symmetric groups.

3. Geometric examples of $\mathfrak{s l}_{2}$ Categorification

There are geometric examples of categorical $\mathfrak{s l}_{2}$ actions which do not quite satisfy the hypotheses in the Chuang-Rouquier definition above, essentially because the underlying weight space categories are not abelian (though they are triangulated) and the degenerate affine Hecke algebra does not act naturally on E^{n} (though the nil affine Hecke algebra does.) In these cases, the Chuang-Rouquier definition must be modified slightly.
3.1. Categorical $\mathfrak{s l}_{2}$ actions. We begin by giving a modified definition of $\mathfrak{s l}_{2}$ categorification which was introduced in joint work with Sabin Cautis and Joel Kamnitzer [CKL1],[CKL2],[CKL3]. Then we will discuss the basic geometric example, which involves cotangent bundles to Grassmanians. Let \mathbb{k} be a field. We denote by \mathbb{P}^{r} the projective space of lines in an r-dimensional \mathbb{C} vector space, by $\left.\mathbb{G}\left(r_{1}, r_{1}+r_{2}\right)\right)$ the Grassmanian of r_{1}-planes in $r_{1}+r_{2}$ space, and by $H^{*}\left(\mathbb{G}\left(r_{1}, r_{1}+r_{2}\right)\right)$ the singular cohomology of the Grassmanian, with it's grading shifted to be symmetric about 0 .

A categorical $\mathfrak{s l}_{2}$ action consists of the following data:

- A sequence of \mathbb{k}-linear, \mathbb{Z}-graded, additive categories $\mathcal{D}(-N), \ldots, \mathcal{D}(N)$ which are idempotent complete. "Graded" means that each category $\mathcal{D}(\lambda)$ has a shift functor $\langle\cdot\rangle$ which is an equivalence.
- Functors

$$
\mathrm{E}^{(r)}(\lambda): \mathcal{D}(\lambda-r) \rightarrow \mathcal{D}(\lambda+r) \text { and } \mathrm{F}^{(r)}(\lambda): \mathcal{D}(\lambda+r) \rightarrow \mathcal{D}(\lambda-r)
$$

for $r \geq 0$ and $\lambda \in \mathbb{Z}$.

- Morphisms

$$
\begin{aligned}
& \eta: \mathrm{I} \rightarrow \mathrm{~F}^{(r)}(\lambda) \mathrm{E}^{(r)}(\lambda)\langle r \lambda\rangle \text { and } \eta: \mathrm{I} \rightarrow \mathrm{E}^{(r)}(\lambda) \mathrm{F}^{(r)}(\lambda)\langle-r \lambda\rangle \\
& \varepsilon: \mathrm{F}^{(r)}(\lambda) \mathrm{E}^{(r)}(\lambda) \rightarrow \mathrm{I}\langle r \lambda\rangle \text { and } \varepsilon: \mathrm{E}^{(r)}(\lambda) \mathrm{F}^{(r)}(\lambda) \rightarrow \mathrm{I}\langle-r \lambda\rangle .
\end{aligned}
$$

- Morphisms

$$
\iota: \mathrm{E}^{(r+1)}(\lambda)\langle r\rangle \rightarrow \mathrm{E}(\lambda+r) \mathrm{E}^{(r)}(\lambda-1) \text { and } \pi: \mathrm{E}(\lambda+r) \mathrm{E}^{(r)}(\lambda-1) \rightarrow \mathrm{E}^{(r+1)}(\lambda)\langle-r\rangle .
$$

- Morphisms
$X(\lambda): \mathrm{E}(\lambda)\langle-1\rangle \rightarrow \mathrm{E}(\lambda)\langle 1\rangle$ and $T(\lambda): \mathrm{E}(\lambda+1) \mathrm{E}(\lambda-1)\langle 1\rangle \rightarrow \mathrm{E}(\lambda+1) \mathrm{E}(\lambda-1)\langle-1\rangle$.
On this data we impose the following additional conditions:
- The morphisms η and ε are units and co-units of adjunctions
(i) $\mathrm{E}^{(r)}(\lambda)_{R}=\mathrm{F}^{(r)}(\lambda)\langle r \lambda\rangle$ for $r \geq 0$
(ii) $\mathrm{E}^{(r)}(\lambda)_{L}=\mathrm{F}^{(r)}(\lambda)\langle-r \lambda\rangle$ for $r \geq 0$
- E's compose as

$$
\mathrm{E}^{\left(r_{2}\right)}\left(\lambda+r_{1}\right) \mathrm{E}^{\left(r_{1}\right)}\left(\lambda-r_{2}\right) \cong \mathrm{E}^{\left(r_{1}+r_{2}\right)}(\lambda) \otimes_{\mathbb{k}} H^{*}\left(\mathbb{G}\left(r_{1}, r_{1}+r_{2}\right)\right)
$$

For example,

$$
\mathrm{E}(\lambda+1) \mathrm{E}(\lambda-1) \cong \mathrm{E}^{(2)}(\lambda)\langle-1\rangle \oplus \mathrm{E}^{(2)}(\lambda)\langle 1\rangle
$$

(By adjointness the F's compose similarly.) In the case $r_{1}=r$ and $r_{2}=1$ we also require that the maps

$$
\oplus_{i=0}^{r}\left(X(\lambda+r)^{i} I\right) \circ \iota\langle-2 i\rangle: \mathrm{E}^{(r+1)}(\lambda) \otimes_{\mathbb{k}} H^{\star}\left(\mathbb{P}^{r}\right) \rightarrow \mathrm{E}(\lambda+r) \mathrm{E}^{(r)}(\lambda-1)
$$

and

$$
\oplus_{i=0}^{r} \pi\langle 2 i\rangle \circ\left(X(\lambda+r)^{i} I\right): \mathrm{E}(\lambda+r) \mathrm{E}^{(r)}(\lambda-1) \rightarrow \mathrm{E}^{(r+1)}(\lambda) \otimes_{\mathbb{k}} H^{\star}\left(\mathbb{P}^{r}\right)
$$

are isomorphisms. We also have the analogous condition when $r_{1}=1$ and $r_{2}=r$.

- If $\lambda \leq 0$ then

$$
\mathrm{F}(\lambda+1) \mathrm{E}(\lambda+1) \cong \mathrm{E}(\lambda-1) \mathrm{F}(\lambda-1) \oplus \mathrm{I} \otimes_{\mathbb{k}} H^{\star}\left(\mathbb{P}^{-\lambda-1}\right)
$$

The isomorphism is induced by

$$
\sigma+\sum_{j=0}^{-\lambda-1}\left(I X(\lambda+1)^{j}\right) \circ \eta: \mathrm{E}(\lambda-1) \mathrm{F}(\lambda-1) \oplus \mathrm{I} \otimes_{\mathbb{k}} H^{\star}\left(\mathbb{P}^{-\lambda-1}\right) \xrightarrow{\sim} \mathrm{F}(\lambda+1) \mathrm{E}(\lambda+1)
$$

where σ is the composition of maps

$$
\begin{array}{rll}
\mathrm{E}(\lambda-1) \mathrm{F}(\lambda-1) & \xrightarrow{\eta I I} & \mathrm{~F}(\lambda+1) \mathrm{E}(\lambda+1) \mathrm{E}(\lambda-1) \mathrm{F}(\lambda-1)\langle\lambda+1\rangle \\
\xrightarrow{I T(\lambda) \mathrm{I}} & \mathrm{~F}(\lambda+1) \mathrm{E}(\lambda+1) \mathrm{E}(\lambda-1) \mathrm{F}(\lambda-1)\langle\lambda-1\rangle \\
\xrightarrow{I I \epsilon} & \mathrm{~F}(\lambda+1) \mathrm{E}(\lambda+1) .
\end{array}
$$

Similarly, if $\lambda \geq 0$, then

$$
\mathrm{E}(\lambda-1) \mathrm{F}(\lambda-1) \cong \mathrm{F}(\lambda+1) \mathrm{E}(\lambda+1) \oplus \mathrm{I} \otimes_{\mathbb{k}} H^{\star}\left(\mathbb{P}^{\lambda-1}\right)
$$

with the isomorphism induced as above.

- The X 's and T 's satisfy the nil affine Hecke relations:
(i) $T(\lambda)^{2}=0$
(ii) $(I T(\lambda-1)) \circ(T(\lambda+1) I) \circ(I T(\lambda-1))=(T(\lambda+1) I) \circ(I T(\lambda-1)) \circ(T(\lambda+1) I)$ as endomorphisms of $\mathrm{E}(\lambda-2) \mathrm{E}(\lambda) \mathrm{E}(\lambda+2)$.
(iii) $(X(\lambda+1) I) \circ T(\lambda)-T(\lambda) \circ(I X(\lambda-1))=I=-(I X(\lambda-1)) \circ T(\lambda)+T(\lambda) \circ(X(\lambda+1))$ as endomorphisms of $\mathrm{E}(\lambda-1) \mathrm{E}(\lambda+1)$.
- For $r \geq 0$, we have $\operatorname{Hom}\left(\mathrm{E}^{(r)}(\lambda), \mathrm{E}^{(r)}(\lambda)\langle i\rangle\right)=0$ if $i<0$ and $\operatorname{End}\left(\mathrm{E}^{(r)}(\lambda)\right)=\mathbb{k} \cdot \mathrm{I}$.

Given a categorical $\mathfrak{s l}_{2}$ action, for each $\lambda \geq 0$ we may construct the Rickard complex [CKL2]

$$
\Theta_{*}: \mathcal{D}(\lambda) \rightarrow \mathcal{D}(-\lambda)
$$

The terms in the complex are

$$
\Theta_{s}=\mathrm{F}^{(\lambda+s)}(s) \mathrm{E}^{(s)}(\lambda+s)\langle-s\rangle,
$$

where $s=0, \ldots,(N-\lambda) / 2$. The differential $d_{s}: \Theta_{s} \rightarrow \Theta_{s-1}$ is given by the composition of maps

$$
\mathrm{F}^{(\lambda+s)} \mathrm{E}^{(s)}\langle-s\rangle \xrightarrow{u} \mathrm{~F}^{(\lambda+s-1)} \mathrm{FEE}^{(s-1)}\langle-(\lambda+s-1)-(s-1)-s\rangle \xrightarrow{\varepsilon} \mathrm{F}^{(\lambda+s-1)} \mathrm{E}^{(s-1)}\langle-s+1\rangle .
$$

Then we have the following theorem, proved in [CKL2].

Theorem 3.1. Suppose the underlying weight space categories $\mathcal{D}(\lambda)$ are triangulated. Then complex Θ_{*} has a unique convolution T , and $\mathrm{T}: \mathcal{D}(-\lambda) \longrightarrow \mathcal{D}(\lambda)$ is an equivalence of triangulated categories.
3.2. A Geometric Example. The basic example of a categorical $\mathfrak{s l}_{2}$ action comes from Grassmanian geometry, and we refer to [CKL2] for complete details.

Fix $N>0$. For our weight spaces we will take the derived category of coherent sheaves on the cotangent bundle to the Grassmannian $T^{\star} \mathbb{G}(k, N)$. We use shorthand $Y(\lambda)=T^{\star} \mathbb{G}(k, N)$, where $k=(N-\lambda) / 2$. These spaces have a particularly nice geometric description,

$$
T^{\star} \mathbb{G}(k, N) \cong\left\{(X, V): X \in \operatorname{End}\left(\mathbb{C}^{N}\right), 0 \subset V \subset \mathbb{C}^{N}, \operatorname{dim}(V)=k \text { and } \mathbb{C}^{N} \xrightarrow{X} V \xrightarrow{X} 0\right\},
$$

where $\operatorname{End}\left(\mathbb{C}^{N}\right)$ denotes the space of complex $N \times N$ matrices. (The notation $\mathbb{C}^{N} \xrightarrow{X} V \xrightarrow{X} 0$ means that $X\left(\mathbb{C}^{n}\right) \subset V$ and that $X(V)=0$.) Forgetting X corresponds to the projection $T^{\star} \mathbb{G}(k, N) \rightarrow$ $\mathbb{G}(k, N)$ while forgetting V gives a resolution of the variety

$$
\left\{X \in \operatorname{End}\left(\mathbb{C}^{N}\right): X^{2}=0 \text { and } \operatorname{rank}(X) \leq \min (k, N-k)\right\}
$$

On $T^{\star} \mathbb{G}(k, N)$ we have the tautological rank k vector bundle V as well as the quotient \mathbb{C}^{N} / V.
To describe the kernels \mathcal{E} and \mathcal{F} we will need the correspondences

$$
W^{r}(\lambda) \subset T^{\star} \mathbb{G}(k+r / 2, N) \times T^{\star} \mathbb{G}(k-r / 2, N)
$$

defined by

$$
\begin{aligned}
& W^{r}(\lambda):=\left\{\left(X, V, V^{\prime}\right): X \in \operatorname{End}\left(\mathbb{C}^{N}\right), \operatorname{dim}(V)=k+\frac{r}{2}, \operatorname{dim}\left(V^{\prime}\right)=k-\frac{r}{2},\right. \\
& \left.\quad 0 \subset V^{\prime} \subset V \subset \mathbb{C}^{N}, \mathbb{C}^{N} \xrightarrow{X} V^{\prime}, \text { and } V \xrightarrow{X} 0\right\} .
\end{aligned}
$$

(Here, as before, λ and k are related by the equation $k=(N-\lambda) / 2)$.
There are two natural projections $\pi_{1}:\left(X, V, V^{\prime}\right) \mapsto(X, V)$ and $\pi_{2}:\left(X, V, V^{\prime}\right) \mapsto\left(X, V^{\prime}\right)$ from $W^{r}(\lambda)$ to $Y(\lambda-r)$ and $Y(\lambda+r)$ respectively. Together they give us an embedding

$$
\left(\pi_{1}, \pi_{2}\right): W^{r}(\lambda) \subset Y(\lambda-r) \times Y(\lambda+r)
$$

On $W^{r}(\lambda)$ we have two natural tautological bundles, namely $V:=\pi_{1}^{*}(V)$ and $V^{\prime}:=\pi_{2}^{*}(V)$, where the prime on the V^{\prime} indicates that the vector bundle is the pullback of the tautological bundle by the second projection. We also have natural inclusions

$$
0 \subset V^{\prime} \subset V \subset \mathbb{C}^{N} \cong \mathcal{O}_{W^{r}(\lambda)}^{\oplus N}
$$

We now define the kernel $\mathcal{E}^{(r)}(\lambda) \in D(Y(\lambda-r) \times Y(\lambda+r))$ by

$$
\mathcal{E}^{(r)}(\lambda):=\mathcal{O}_{W^{r}(\lambda)} \otimes \operatorname{det}\left(\mathbb{C}^{N} / V^{\prime}\right)^{-r} \operatorname{det}(V)^{r}\left\{\frac{r(N-\lambda-r)}{2}\right\}
$$

Similarly, the kernel $\mathcal{F}^{(r)}(\lambda) \in D(Y(\lambda+r) \times Y(\lambda-r))$ is defined by

$$
\mathcal{F}^{(r)}(\lambda):=\mathcal{O}_{W^{r}(\lambda)} \otimes \operatorname{det}\left(V^{\prime} / V\right)^{\lambda}\left\{\frac{r(N+\lambda-r)}{2}\right\}
$$

These kernels define functors (Fourier-Mukai transforms) $\mathrm{E}^{(k)}$ and $\mathrm{F}^{(k)}$, and in [CKL2] we define natural transformations which enhance these functors to a full categorical $\mathfrak{s l}_{2}$ action.

As a result, we may define the Rickard complex Θ. Convolution with this complex gives new equivalences of triangulated categories between categories corresponding to opposite $\mathfrak{s l}_{2}$ weight spaces.
Corollary 3.2. [CKL3] The complex Θ defines an equivalence between derived categories of coherent sheaves of cotangent bundles to dual Grassmanians

$$
\Theta: D\left(T ^ { * } (G (k , N)) \simeq D \left(T^{*}(G(N-k, N))\right.\right.
$$

4. Further Developements

The notion of $\mathfrak{s l}_{2}$-categorification goes back at least to the paper [BFK], which inspired much of the subsequent work on algebraic aspects of categorification. After the seminal contribution [CR], which contains several algebraic examples of $\mathfrak{s l}_{2}$ categorifications, various geometric aspects of categorical $\mathfrak{s l}_{2}$ representation theory were develeoped in [CKL1], [CKL2], [CKL3].

On the other hand, it is quite natural to categorify the entire quantized enveloping algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$, rather than just the finite dimensional representations. This has been accomplished by Rouquier $[\mathrm{R}]$, and by Lauda [L]. Moreover, the entire story can be generalized and repeated, with the lead actor $\mathfrak{s l}_{2}$ replaced by an arbitrary symmetrizable Kac-Moody Lie algbera \mathfrak{g}. This is the subject of the significant work of Khovanov-Lauda [KL] and, independently, Rouquier [R].

References

[BFK] J. Bernstein, I. Frenkel, and M. Khovanov, A categorification of the Temperley-Lieb algebra and Schur quotients of $U\left(s l_{2}\right)$ via projective and Zuckerman functors, Selecta Math. (5) (1999), 199-241; math.QA/0002087.
[CR] J. Chuang and R. Rouquier, Derived equivalences for symmetric groups and $\mathfrak{s l}_{2}$-categorification, Ann. of Math. 167 (2008), no. 1, 245-298; math.RT/0407205.
[CKL1] S. Cautis, J. Kamnitzer and A. Licata, Categorical geometric skew Howe duality, to appear.
[CKL2] S. Cautis, J. Kamnitzer and A. Licata, Derived equivalences for cotangent bundles of Grassmannians via categorical $\mathfrak{s l}_{2}$ actions, to appear.
[CKL3] S. Cautis, J. Kamnitzer and A. Licata, Coherent Sheaves and Categorical $\mathfrak{s l}_{2}$ Actions, to appear.
[KL] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups I, II, and III; math.QA/0803.4121, math.QA/0804.2080, and math.QA/0807.3250.
[L] A. Lauda, A categorification of quantum $\mathfrak{s l}_{2}$, arXiv:0803.3652v2.
[R] R. Rouquier, 2-Kac-Moody algebras; math.RT/0812.5023.

The Kervaire invariant problem, after Mike Hill (Virginia), Mike Hopkins (Harvard) and Doug Ravenel (Rochester)

Peter Teichner

June 11, 2009

The authors recently proved that θ_{j} does not exist for $j>6$. Here θ_{j} is a hypothetical element of order 2 in the stable homotopy groups of spheres in dimension $2^{j+1}-2$.
In 1960 , Kevaire defined a $\mathbb{Z} / 2$-valued invariant for closed, smooth manifolds with a stable framing. In geometric terms, the above result means that the only possible dimensions for such manifolds with nontrivial Kervaire invariant are

$$
2,6,14,30,62,126
$$

The first 5 dimensions were previously known to be realized, the first 3 by $S^{j} \times S^{j}$ for $j=1,2,3$. The status of θ_{6} (in dimension 126) remains open. The theorem implies that the kernel and cokernel of the Kervair-Milnor map

$$
\Theta_{n} \rightarrow \pi_{n}^{s t} / \operatorname{im}(J)
$$

are completely known finite abelian groups. Here Θ_{n} is the group of exotic smooth structures on S^{n} and the map associates to it the underlying framed manifold. The image of $J: K O_{n+1} \rightarrow \pi_{n}^{s t}$ realizes the different choices of framings on such homotopy spheres.

For further details see:
http://www.math.rochester.edu/u/faculty/doug/kervaire.html

Hecke orbits

Frans Oort

June 2009

Arbeitstagung Bonn, 2009

This is a report on work, mostly joint with Ching-Li Chai.

1) Moduli spaces and Hecke orbits. We write $\mathcal{A}_{g} \rightarrow \operatorname{Spec}(\mathbb{Z})$ for the moduli space of polarized abelian varieties. However from $\S 3$ we will write \mathcal{A}_{g} instead of $\mathcal{A}_{g} \otimes \mathbb{F}_{p}$, the moduli space of polarized abelian varieties in characteristic p.

Let $[(A, \mu)]=x \in \mathcal{A}_{g}$. We say that $[(B, \nu)]=y$ is in the Hecke orbit of x, notation $y \in \mathcal{H}(x)$, if there exists a diagram

$$
(A, \mu)_{\Omega} \stackrel{\varphi}{\stackrel{\varphi}{4}}(C, \zeta) \xrightarrow{\psi}(B, \nu)_{\Omega}
$$

here A and B are in the same characteristic, Ω is some algebraically closed field, and $\varphi: C \rightarrow A$ and $\psi: C \rightarrow B$ are isogenies such that

$$
\varphi^{*}(\mu)=\zeta=\psi^{*}(\nu)
$$

If moreover the degrees of φ and ψ are both some power of a prime number ℓ, different from a given p, we write $y \in \mathcal{H}_{\ell}(x)$.

If A and B are both in characteristic p and φ and ψ are both of α_{p}-coverings, then we write $y \in \mathcal{H}_{\alpha}(x)$.

If A and B are both in characteristic p and φ and ψ have degrees not divisible by p we write $y \in \mathcal{H}^{(p)}(x)$.

Question. Given (A, μ); what is the Zariski closure of the Hecke orbit $\mathcal{H}(x)$?
2) Over \mathbb{C}. In case (A, μ) is defined over \mathbb{C}, it is easy to see that $\mathcal{H}(x)$ is classically everywhere dense in $\mathcal{A}_{g}(\mathbb{C})$; hence

$$
\overline{\mathcal{H}(x)}=\mathcal{A}_{g} \otimes \mathbb{C} .
$$

3) A theorem by Ching-Li Chai in 1995. From now on we work in characteristic p. We say an abelian variety A of dimension g is ordinary if $A(k)[p] \cong(\mathbb{Z} / p)^{g}$. We say an elliptic curve is supersingular if it is not ordinary. The following facts are not difficult to prove / well known.
(3a) For an ordinary elliptic curve E its moduli point x has a Hecke orbit which is everywhere dense in \mathcal{A}_{1}. In this case even $\mathcal{H}_{\ell}(x)$ is everywhere dense in \mathcal{A}_{1} for every prime number $\ell \neq p$.
(3b) For a supersingular elliptic curve its moduli point $x \in \mathcal{A}_{1,1}$ has a Hecke orbit which is nowhere dense in \mathcal{A}_{1}. In fact, $\mathcal{H}(x) \cap \mathcal{A}_{1,1}$ is finite.

We see that in general, and in contrast with characteristic zero, a Hecke orbit need not be dense in the moduli space. What can we expect? What is the Zariski closure of a Hecke orbit?
(3b) Theorem, Chai, 1995, see [1]. For an ordinary abelian variety A the Hecke orbit of (A, μ) is everywhere Zariski dense in the moduli space.

This is a deep result. The proof uses various methods, the most crucial being showing that the closure of the Hecke orbit in $\mathcal{A}_{g, 1}$ contains, the "cusp at infinity". A tricky computation then shows that around this point the Hecke orbit is dense.
(3c) In this paper by Chai we find the following remark by M. Larsen. Let (E, λ) be an ordinary elliptic curve with its principal polarization. It is not difficult to show that the Hecke orbit of $(A, \mu):=(E, \lambda)^{g}$ is everywhere dense in the moduli space.
4) Methods and ideas. We like to determine the Zariski closure of every Hecke orbit in positive characteristic. Perhaps the question is not so interesting, but we will see that methods developed in order to answer this question give insight into structure of $\mathcal{A}_{g} \otimes \mathbb{F}_{p}$.

- Structure of $A\left[p^{\infty}\right]$ carries information about A.
- This is used to define two stratifications and two foliations of \mathcal{A}_{g}. E.g. see [8], [12] and [14]. Interplay between these will provide useful information.
- Note that this information is typical for characteristic p geometry. We do not have "continuous" paths, nor complex uniformization, but we do have quite a lot of other structure, which enables us to study properties in characteristic p.
- We use "interior boundaries": instead of degenerating the abelian varieties, we can "make the p-structure more special".
- At ordinary points we have Serre-Tate canonical coordinates. These can be generalized to "central leaves" of \mathcal{A}_{g}.
- Every abelian variety over a finite field admits sufficiently many Complex Multiplications (as Tate showed). However a new notion "hypersymmetric abelian varieties" is more restrictive, see [4]. Such cases can be considered as analogous to abelian varieties of CM-type in characteristic zero.
- As in [1] the method of Hilbert Modular Varieties will be of technical importance.

5) Newton polygons. A Newton polygon for an abelian variety is a polygon

- starting at $(0,0)$, and ending at $(h=2 g, d=g)$,
- lower convex,
- with breakpoints in $\mathbb{Z} \times \mathbb{Z}$,
- and slopes β wit $0 \leq \beta \leq 1$.
- A NP is called symmetric if the slopes β and $1-\beta$ appear with the same multiplicity.

Every p-divisible group in characteristic p determines a Newton Polygon; basically its slopes are given as "the p-adic values of the eigenvalues of the Frobenius morphism". This statement is correct over \mathbb{F}_{p}. In general more theory is necessary in order to give the definition of the NP of a p-divisible group. See [9]. For an abelian variety one defines the Newton Polygon $\mathcal{N}(A)$ to be the NP of $A\left[p^{\infty}\right]$; the NP of an abelian variety is symmetric (Manin, FO).

A theorem by Diedonné en Manin says that over an algebraically closed field k isogeny classes of p-divisible groups are classified by Newton Polygons. See [9].

An example: we write σ for the NP where all slopes are equal to $1 / 2$. This is called the supersingular Newton polygon. A non-trivial fact (Tate, FO, Shioda, Deligne): $\mathcal{N}(A)=\sigma$ if and only if $A \otimes k \sim E^{g}$, where E is a supersingular elliptic curve.

6) Stratifications and foliations.

6a) NP: $A\left[p^{\infty}\right]$ up to \sim_{k}.
We write:

$$
\mathcal{W}_{\xi}^{0}\left(\mathcal{A}_{g}\right)=\{[(A, \mu)] \mid \mathcal{N}(A)=\xi\} .
$$

Here ξ is a symmetric NP. These are called te open Newton Polygon strata.
Theorem (Grothendieck, Katz), see [8].

$$
\mathcal{W}_{\xi}^{0}\left(\mathcal{A}_{g}\right) \subset \mathcal{A}_{g}
$$

is localy closed.
The "interior boundary" of $\mathcal{W}_{\xi}^{0}\left(\mathcal{A}_{g, 1}\right)$ was predicted by a conjecture, the "principally polarized version" of a conjecture by Grothendieck. For proofs see [11], and [13].

6b) Fol $A\left[p^{\infty}\right]$ up to \cong_{k}.
For $x=[(A, \mu)]$ we write

$$
\mathcal{C}(x)=\left\{[(B, \nu)] \mid \exists \Omega \quad(A, \mu)\left[p^{\infty}\right]_{\Omega} \cong(B, \nu)\left[p^{\infty}\right]_{\Omega}, \quad T_{\ell}(A, \mu)_{\Omega} \cong T_{\ell}(B, \nu)_{\Omega} \quad \forall \ell \neq p\right\} .
$$

Here Ω is some algebraically closed field. This is called "the central leaf through x ".
Theorem. For $x \in \mathcal{W}_{\mathcal{A}_{g}}^{0}:$

$$
\mathcal{C}(x) \subset \mathcal{W}_{\mathcal{A}_{g}}^{0}
$$

is closed.
See [14]. This uses the notion of "slope filtrations" as developed by T. Zink, and a theorem in [16].

An obvious remark, which will be of use later:
if $y \in \mathcal{C}(x)$, say y, x both defined over the same perfect field, then $\mathcal{C}(y)=\mathcal{C}(x)$.

Remark. The "interior boundaries" of central leaves are mysterious, although S. Harashita and I have a conjecture how they should look like.

6c) EO $A[p]$ up to \cong_{k}.
For (A, μ), where μ is a principal polarization, we write φ for the isomorphism class of $(A, \mu)[p] \otimes k$.

$$
S_{\varphi}=\left\{[(B, \nu)] \mid \exists \Omega \quad(A, \mu)[p]_{\Omega} \cong(B, \nu)[p]_{\Omega}\right\} .
$$

Theorem.

$$
S_{\varphi} \subset \mathcal{A}_{g, 1}
$$

is a localy closed subset. Every stratum S_{φ} is quasi-affine.
See [12]. These strata are called EO-strata, where the E refers to T. Ekedahl. The "interior boundaries" of these strata are determined in [12]. Note that if the dimension of $\left.S_{[\varphi}\right]$ is positive then its closure has extra points inside $\mathcal{A}_{g, 1}$, i.e. the "interior boundary"

$$
\partial\left(S_{\varphi}\right):=\overline{S_{\varphi}}-S_{\varphi} \text { is not empty. }
$$

7) The Hecke Orbit conjecture.

HO Conjecture (FO, 1995), theorem (Chai \& FO, manuscript in preparation).

$$
\forall x \in \mathcal{W}_{\xi}^{0}\left(\mathcal{A}_{g}\right) \quad \mathcal{H}(x) \text { is dense in } \mathcal{W}_{\xi}^{0}\left(\mathcal{A}_{g}\right)
$$

See [10], [14]. A detailed proof will be given in [7]. For a preliminary survey of a proof see [3].
8) The almost-product-structure. Let W be an irreducible component of $\mathcal{W}_{\xi}^{0}\left(\mathcal{A}_{g} \otimes k\right)$ and let $x \in W$. For the notion of an "isogeny leaf" $I(x)$, the smallest connected subset of $\mathcal{H}_{\alpha}(x)$ containing x, see [14]. This is also constructed as part of the $\bmod p$ reduction of a Rapoport-Zink space.

There exist reduced, irreducible schemes T and J and a finite surjective morphism

$$
\Phi: T \times J \rightarrow W
$$

such that for every $t \in T$, we have that

$$
\Phi(\{t\} \times J) \text { is a irreducible component of an isogeny leaf inside } W
$$

and for every $j \in J$, we have that

$$
\Phi(T \times\{j\}) \text { is an irreducible component of a central leaf. }
$$

I.e. "Central leaves and isogeny leaves give, up to a finite map, a product structure on every component of a Newton Polygon stratum".

9) Reductions.

9a) We write $\mathbf{H O}_{\ell}$ for the conjecture that for every x the Hecke- ℓ-orbit \mathcal{H}_{ℓ} is dense in the central leaf $\mathcal{C}(x)$. Analogous definition for $\mathbf{H O}{ }^{(p)}$.

In fact, what can be proved:

$$
\left(\mathbf{H O}_{\ell} \text { for at least one } \ell \neq p\right) \quad \Longleftrightarrow \quad \mathbf{H O}^{(p)}
$$

By the almost-product-structure we see that
$\mathbf{H O}_{\ell}$ for at least one $\ell \neq p \Longleftrightarrow \mathbf{H O}^{(p)} \Longrightarrow \mathbf{H O}$.

9b) In order to show HO for every x it suffices to show $\mathbf{H O}$ for every $x \in \mathcal{A}_{g}(\mathbb{F})$, where $\mathbb{F}=\overline{\mathbb{F}_{p}}$.

9c) We write $\mathbf{H O}_{\ell \text {,discrete }}$ for:
For every non-supersingular $x \in \mathcal{A}_{g}$ the central leaf $\mathcal{C}(x)$ is absolutely irreducible.
9d) We write $\mathbf{H O}_{\ell, \text { contin }}$ for:
For every non-supersingular $x \in \mathcal{A}_{g}$ the Zariski closure of the Hecke orbit $\mathcal{H}_{\ell}(x)$ contains an irreducible component of the same dimension as $\mathcal{C}(x)$; i.e. $\mathcal{H}_{\ell}(x)$ is dense in at least one irreducible component of $\mathcal{C}(x)$.

9e) We conclude:

$$
\mathbf{H O}_{\ell, \text { discrete }}+\mathbf{H O}_{\ell, \text { contin }} \Longrightarrow \mathbf{H O} .
$$

9f) For any $y \in \mathcal{H}(x)$ there is a finite-to-finite (Hecke) correspondence

$$
\mathcal{C}(x)_{k} \quad \longleftarrow \quad T \quad \longrightarrow \mathcal{C}(y)_{k} .
$$

9f) We conclude that we need only show HO for moduli points over \mathbb{F} and their central leaves inside $\mathcal{A}_{g, 1} \otimes \mathbb{F}$.

10) Hypersymmetric abelian varieties.

Note that Tate showed that for any abelian variety A over a finite field the natural maps

$$
\begin{aligned}
& \operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} \xrightarrow{\sim} \operatorname{End}\left(T_{\ell}(A)\right), \\
& \operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Z}_{p} \xrightarrow{\sim} \operatorname{End}\left(A\left[p^{\infty}\right]\right)
\end{aligned}
$$

are isomorphisms.
Definition. An abelian variety over $\mathbb{F}:=\overline{\mathbb{F}_{p}}$ is said to be hypersymmetric if the natural map

$$
\operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Z}_{p} \xrightarrow{\sim} \operatorname{End}\left(A\left[p^{\infty}\right]\right)
$$

is an isomorphism.
It is not difficult to prove that for any p and for any symmetric Newton polygon there exists a hypersymmetric abelian variety having that Newton Polygon. For details see [4].

Here is a fact which will be used.
For every $x \in \mathcal{A}_{g}$ the central leaf $\mathcal{C}(x)$ contains a hypersymmetric point.

Sketch of a proof. One shows that any central leaf admits a Hecke correspondence with a central leaf inside $\mathcal{A}_{g, 1}$, use (9f). Hence we assume that $x \in \mathcal{A}_{g, 1}$. As every supersingular abelian variety is hypersymmetric we are done in that case. Assume that $x \in \mathcal{W}_{\xi}^{0}$, with $\xi \neq \sigma$. In that case $W_{\xi}:=\mathcal{W}_{\xi}^{0}\left(\mathcal{A}_{g, 1}\right)$ is a geometrically irreducible. Hence W_{ξ} contains a hypersymmetric point. By the almost-product-structure, see (8), there is a H_{α}-action moving that point into a given central leaf.

We give some ideas leading to a proof of the Hecke Orbit conjecture (apologies, many details are missing in this description).

11) "Shaken not stirred".

11a) Theorem. Every non-supersingular $W_{\xi}^{0}:=\mathcal{W}^{0} \xi\left(\mathcal{A}_{g, 1}\right)$ is geometrically irreducible.
Note the amusing fact that W_{σ}^{0} has "many components", for $p \gg 0$, but all other W_{ξ} are irreducible.

This theorem I conjectured long ago, see [10]. A proof uses "interior boundaries": results in [11], [12], [13], and a description of moduli spaces of supersingular abelian varieties (Tadao Oda-FO, K.-Z.Li-FO); from these results one concludes that Hecke- ℓ operates transitively on the set of geometrically irreducible components of W_{ξ}^{0}; then one concludes using [2]. For details see [5].

11b) Theorem. For every non-supersingular $x \in \mathcal{A}_{g}$ the central leaf $\mathcal{C}(x)$ is geometrically irreducible.
Note that this also works for non-principal polarizations. For details see [5].
Conclusion. $\mathbf{H O}_{\ell, \text { discrete }}$ holds.
11c) We say that a principally abelian variety (B, ν) over k is split if there is an isogeny

$$
(B, \nu) \sim\left(B_{1}, \nu_{1}\right) \times \cdots \times\left(B_{r}, \nu_{r}\right),
$$

where the Newton polygon of each of these factors has at most two slopes.
11d) "The Hilbert trick." Note that any abelian variety A over a fintie field has smCM. Hence there exists a commutative, totally real algebra E of rank over \mathbb{Q} equal to the dimension of A such that $E \subset \operatorname{End}^{0}(A)$. This proves that through any point of $\mathcal{A}_{g, 1}(\mathbb{F})$ we can choose the image of a Hilbert Modular variety. For details see [1], and especially see [6], Section 9.

11e) For HMV various strata were studied. Results by Goren-FO, Andreatta-Goren. Finally Chia-Fu Yu showed the discrete HO problem for Hilbert Modular Varieties, [17].

11f) Using EO-strata we show that any component of the image of a Hilbert Modular variety contains supersingular points. Here we make essential use of the idea of "interior boundaries".

11g) Write

$$
Z(x)=\overline{\mathcal{H}^{(p)}(x)}
$$

Collecting all information obtained up to now one shows:
for every $x \in \mathcal{A}_{g, 1}$ there exists a point $y \in Z(x) \cap \mathcal{C}(x)$ which is hypersymmetric and split.
(This is one of the most difficult and tricky parts of the proof.)
11h) For a hypersymmetric and split point $\mathbf{H O} \mathbf{c o n t i n}_{(p)}^{\text {holds. }}$
Here we see the idea by M. Larsen, already mentioned in [1], see (3c). One ingredient is a generalization of Serre-Tate coordinates to the case of any central leaf, completed at any point.

11i) We see:

$$
\mathcal{C}(y)=Z(y) \cap \mathcal{C}(y) \quad \subset \quad Z(x) \cap \mathcal{C}(x) \quad \subset \quad \mathcal{C}(x)=\mathcal{C}(y)
$$

Indeed, as $Z(x) \cap \mathcal{C}(x)$ is $\mathcal{H}^{(p)}$-stable, the first inclusion follows. This proves $\mathbf{H O} \mathbf{O}_{\text {contin }}^{(p)}$ for every $x \in \mathcal{A}_{g, 1}(\mathbb{F})$. Hence, using reduction steps, this proves HO.

12) Analogies: three conjectures.

Here are conjectures / theorems, where the basic structure are are quite similar. However methods of proof are very different.

Geometry: a variety V over some field K, of finite type over its prime field.
Arithmetic: a subset Γ of V. Typically the points of Γ are not all defined over some fixed finite extension of K.

Question. What is the closure of Γ inside V ? In all three problem we first predict what $\bar{\Gamma}$ should be, and then (try to) prove this to be true.

12a) The Manin-Mumford conjecture. Here $V=A$ is an abelian variety over a field K of characteristic zero. The set Γ is some subset of $\operatorname{Tors}(A)$, a set of torsion points.

The closure of Γ is a finite union of translates of abelian subvarieties of A.
This was first proved by M. Raynaud.

12b) The André-Oort conjecture. Here $V=S$ is a Shimura variety over a field K of characteristic zero. The set Γ is some subset of $\operatorname{Spec}(S)$, a set of "special points"; in case S is a moduli scheme of abelian varieties (possibly with some extra structure), a special point is defined by an abelian variety with sufficiently many complex multiplications.

The closure of Γ should be a finite union of special subvarieties, Hecke translates of Shimura subvarieties.

It seems that this conjecture has been proved, assuming the generalized RH, by Yafaev Klingler - Ullmo (using ideas by Edixhoven and Clozel).

12c) The Hecke Orbit conjecture. Here $V=\mathcal{A}_{g} \otimes \mathbb{F}_{p}$, and $\Gamma=\mathcal{H}(x)$. See above.

References

[1] C.-L. Chai - Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli space. Invent. Math. 121 (1995), 439-479.
[2] C.-L. Chai - Monodromy of Hecke-invariant subvarieties. Pure Appl. Math. Quaterly 1 (Special issue: in memory of Armand Borel), 291-303.
[3] C.-L. Chai -Hecke orbits on Siegel modular varieties. Progress in Mathematics 235, Birkhäuser, 2004, pp. 71-107.
[4] C.-L. Chai \& F. Oort - Hypersymmetric abelian varieties. Quaterly J. Pure Applied Math. 2 (Coates Special Issue) (2006), 1-27.
[5] C.-L. Chai \& F. Oort - Monodromy and irreducibility of leaves. [To appear]
[6] C.-L. Chai and F. Oort - Moduli of abelian varieties and p-divisible groups: density of Hecke orbits and a conjecture by Grothendieck. Summer School on arithmetic geometry, Göttingen July/August 2006. To appear: Clay Mathematics Proceedings. Arithmetic geometry, Proceedings of the Clay Summer School Gttingen 2006, (Editors: Y. Tschinkel, H. Darmon and B. Hassett).[To appear]
[7] Ching-Li Chai and Frans Oort - Hecke orbits. [In preparation]
[8] N. M. Katz - Slope filtration of F-crystals. Journ. Géom. Alg. Rennes, Vol. I, Astérisque 63 (1979), Soc. Math. France, 113-164.
[9] Yu. I. Manin - The theory of commutative formal groups over fields of finite characteristic. Usp. Math. 18 (1963), 3-90; Russ. Math. Surveys 18 (1963), 1-80.
[10] F. Oort - Some questions in algebraic geometry, preliminary version. Manuscript, June 1995.

See: http://www.math.uu.nl/people/oort/ http://www.math.uu.nl/people/oort/
[11] F. Oort - Newton polygons and formal groups: conjectures by Manin and Grothendieck. Ann. Math. 152 (2000), 183-206.
[12] F. Oort - A stratification of a moduli space of polarized abelian varieties. In: Moduli of abelian varieties. (Ed. C. Faber, G. van der Geer, F. Oort). Progress Math. 195, Birkhäuser Verlag 2001; pp. 345-416.
[13] F. Oort - Newton polygon strata in the moduli space of abelian varieties. In: Moduli of abelian varieties. (Ed. C. Faber, G. van der Geer, F. Oort). Progress Math. 195, Birkhäuser Verlag 2001; pp. 417-440.
[14] F. Oort - Foliations in moduli spaces of abelian varieties. Journ. A. M. S. 17 (2004), 267-296.
[15] F. Oort - Foliations in moduli spaces of abelian varieites and dimension of leaves. [To appear]
[16] F. Oort \& T. Zink - Families of p-divisible groups with constant Newton polygon. Documenta Mathematica 7 (2002), 183-201.
[17] C.-F. Yu - [A paper on the Lie stratification of HB varieties; in preparation.]

Frans Oort
Mathematisch Instituut P.O. Box. 80.010

NL - 3508 TA Utrecht The Netherlands email: f.oort@uu.nl

The Fundamental Lemma

Günter Harder

The fundamental lemma is a celebrated result in the theory of automorphic forms, it is the key result that is needed for the stabilization of the trace formula. It has been formulated by Langlands and Diana Shelstad and it has been proved recently by Ngo Bau Chau, the final proof is based on the work of many other mathematicians.

My aim in this talk was to explain the meaning of the fundamental lemma to general audience.

In a certain sense the fundamental lemma was explained by Langlands in a talk at the Arbeitstagung in the early 1970-th. In this talk Langlands reported on his joint paper with Labesse with title " L-indistinguishability for SL(2)." They discovered the phenomenon that two automorphic representations which have the same L function may occur with different multiplicities in the space of automorphic forms.

At the same Arbeitstagung Hirzebruch proved the following theorem:
Let p be a prime which is $3 \bmod 4$ let $F=\mathbb{Q}[\sqrt{p}]$. Let \mathcal{O} be its ring of integers, then the group $\mathrm{Sl}_{2}(\mathcal{O})$ acts on the product of two upper half planes $H^{+} \times H^{+}$, the compactification of the quotient $S l_{2}(\mathcal{O}) \backslash H^{+} \times H^{+}$yields a Hilbert-Blumenthal surface S^{++}. But it also acts on $H^{+} \times H^{-}$and we get a second such surface S^{+-}. Then we have a discrepancy between the spaces of holomorphic 2-forms:

$$
\left.\operatorname{dim} H^{0}\left(S^{++}, \Omega^{2}\right)-\operatorname{dim} H^{0}\left(S^{+-}, \Omega^{2}\right)\right)=h(\sqrt{-p})
$$

where the number on the right is the class number of $\mathbb{Q}(\sqrt{-p})$.
The elements in these spaces provide L-indistinguishabie automorphic forms.
In their paper Labesse and Langlands used a baby version of the fundamental lemma for the group $S l_{2}$. This was not so difficult to prove, but after that it turned out to be incredibly difficult to prove generalizations of this fundamental lemma for other reductive groups.

The fundamental lemma was formulated as a very precise conjecture and looks like that (here G is a reductive group over \mathbb{Q})

$$
\begin{gathered}
\sum_{\xi_{p}} \int_{Z_{\gamma \cdot \xi_{p}}\left(\mathbb{Q}_{p}\right) \backslash G\left(\mathbb{Q}_{p}\right)} f_{p}\left(x_{p}^{-1} \gamma \cdot \xi_{p} x_{p}\right) \kappa_{p}\left(\xi_{p}\right) \epsilon\left(\xi_{p}\right) d x_{p}= \\
\Delta_{p}(\gamma, \kappa) \int_{Z_{\gamma^{\kappa}}\left(\mathbb{Q}_{p}\right) \backslash H^{\kappa}\left(\mathbb{Q}_{p}\right)} f_{p}^{H^{\kappa}}\left(y_{p}^{-1} \gamma y_{p}\right) d y_{p}
\end{gathered}
$$

here κ is -under certain conditions a character on a finite abelian group from which the ξ_{p} are taken. The H^{κ} is the so called endoscopic group attached to κ, the factor in front is the transfer factor. The integrals on the left are the κ orbital integrals, the integral for the trivial character $\kappa=1$ is called the stable orbital integral for the group G and the fundamental lemma says that a κ orbital integral -which now is unstable if $\kappa \neq 1$ is up to the tranfer factor equal to a stable orbital integral on the endoscopic group.

The fundamental lemma enters the stage if we apply the trace formula (Arthur-Selberg or topological trace formula) to compute the trace of a Hecke operator T_{h} on a certain space X of functions or on some cohomology groups. Then we encounter certain sums of orbital integrals which can be manipulated to become a sum of κ-orbital integrals. Eventually we get

$$
\operatorname{tr}\left(T_{h} \mid H\right)=\sum_{\kappa} \operatorname{tr}\left(T_{h^{\kappa}}^{H^{\kappa}} \mid X^{H^{\kappa}}\right)=T_{h}^{G} \mid X+\sum_{\kappa \neq 1} \operatorname{tr}\left(T_{h^{\kappa}}^{H^{\kappa}} \mid X^{H^{\kappa}}\right)
$$

where the terms on the right hand side are stable.
If our group is $G / \mathbb{Q}=R_{F / \mathbb{Q}}\left(S l_{2} / F\right)$ as above then the torus H / \mathbb{Q} of norm one elements in F^{\times}is endoscopic and the resulting term on the right side explains the class number in the difference of dimensions.

Ngo Bao Chau: Le lemme fondamental pour les algebres de Lie, arXiv:0801.0446

Tête-à-tête twists and geometric monodromy.

Norbert A'Campo

Introduction. Let (Σ, Γ) be a pair consisting of a a compact connected oriented surface Σ with non empty boundary $\partial \Sigma$ and a finite graph Γ that is embedded in the interior of Σ. We assume that the surface Σ is a regular neihborhood of the graph Γ and that the embedded graph has the tête-à-tête property, which property we will define later in this paper. Moreover, we will construct for each pair (Σ, Γ) with the tête-à-tête property a mapping classe T_{Γ} on $(\Sigma, \partial \Sigma)$. We call the mapping classes resulting from this construction tête-à-tête twists.

A surface of genus g and with r boundary components carries up to congruence by homeomorphism of the surface only finite many graphs with the tête-à-tête property and hence for fixed (g, r) there are only finite many mapping classes, which are tête-àtête twists.

The main theorem of this paper asserts:
Theorem. The geometric monodromy diffeomorphism of a plane curve singularity is a tête-à-tête twist.

As a corollary, we obtain a very strong topological restriction for mapping classes, that are geometric monodromies of plane curve singularities.

Section 1. Tête-à-tête twist.

Let Γ be a finite connected metric graph with $e(\Gamma)$ edges and no vertices of valency 1. We assume, that the edges are parametrized by continuous bijective maps E_{e} : $\left[0, L_{e}\right] \rightarrow \Gamma, L_{e}>0, e=1, \cdots, e(\Gamma)$, such that the distance from $E_{e}(t)$ to $E_{e}(s)$ is $|t-s|, t, s \in\left[0, L_{e}\right]$.

Let Σ be a smooth, connected and oriented surface with non empty boundary $\partial \Sigma$. We say, that a map π of Γ into Σ is regular if π is continuous, injective, $\pi(\Gamma) \cap \partial \Sigma=\emptyset$, the compositions $\pi \circ E_{e}, e=1, \cdots, e(\Gamma)$, are smooth regular embeddings of intervals and moreover, at each vertex v of Γ all outgoing speed vectors of $\pi \circ E_{e}, v=E_{e}(0)$ or $v=$ $E_{e}\left(L_{e}\right)$ are distinct.

We denote by abuse of language by the pair (Σ, Γ) the pair $(\Sigma, \pi(\Gamma)$.
A safe walk along Γ is a continuous injective path $\gamma:[0,2] \rightarrow \Sigma$ with following properties:
$-\gamma(t) \in \Gamma, t \in[0,2]$,

- the speed, measured with the parametrization E_{e} at $t \in[0,2]$ equals ± 1 if $\gamma(t)$ is in the interior of edge e,
- if the path γ runs at $t \in(0,2)$ into the vertex v, the path γ makes the a sharpest possible right turn, i.e. the oriented angle at $v=\gamma(t) \in \Sigma$ in between the speed vectors $-\dot{\gamma}\left(t_{-}\right)$and $\dot{\gamma}\left(t_{+}\right)$is smallest possible.

It follows, that a save walk γ is determined by its starting point $\gamma(0)$ and its starting speed vector $\dot{\gamma}(0)$. Futhermore, if the metric graph $\Gamma \subset \Sigma$ is without cycles of length less are equal 2 , from each interior point of an edge start two distinct save walks.

Definition: Let (Σ, Γ) be the pair of a surface and regular embedded metric graph. We say that the tête-à-tête tête-à-tête property holds for the the pair if

- the graph Γ has no cycles of length ≤ 2,
- the graph Γ is a regular retract of the surface Σ,
- for each point $p \in \Gamma, p$ not being a vertex, the two distinct safe walks $\gamma_{p}^{+}, \gamma_{p}^{-}$: $[0,2] \rightarrow \Sigma$ with $p=\gamma_{p}^{+}(0)=\gamma_{p}^{-}(0)$ satisfy to $\gamma_{p}^{+}(2)=\gamma_{p}^{-}(2)$.

It follows that the underlying metric graph of a pair (Σ, Γ) with tête-à-tête property is the union of its cycles of length 4.

We give basic examples of pairs (Σ, Γ) with tête-à-tête property:

- the surface is the cylinder $[-1,1] \times S^{1}$ and the graph Γ is the cycle $\{0\} \times S^{1}$ subdivided by 4 vertices in edges of equal length. Here we think S^{1} as a circle of length 4.
- the surface $\Sigma_{1,1}$ is of genus 1 with 1 boundary component and the metric graph $\Gamma \subset \Sigma$ is the biparted complet graph $K_{3,2}$.
- for $p, q \in \mathbf{N}, p>0, q>0$, the biparted complet graph $K_{p, q}$ is the spine of a surface $S_{g, r}, g=1 / 2(p-1)(q-1), r=(p, q)$, such that the tête-à-tête property holds. For instance, let P and Q be two parallel lines in the plane and draw p points on P, q points on Q. We add $p q$ edges and get a planar projection of the graph $K_{p, q}$. The surface $S_{g, r}$ is a regular thickening of that projection.

Let (Σ, Γ) a pair of a surface and graph with tête-à-tête property. Our purpose is to construct for this pair a well defined element T_{Γ} in the relative mapping class group of the surface Σ. For each edge e of Γ we embed relatively a copy $\left(I_{e}, \partial I_{e}\right)$ of the interval $[-1,1]$ into $(\Sigma, \partial \Sigma)$ such that alle copies are pairwise disjoint and such that each copy I_{e} intersects in its midpoint $0 \in I_{e}$ the graph Γ transversally in one point which is the midpoint of the edge e. We call I_{e} the dual arc of the edge e. Let Γ_{e} be the union of $\Gamma \cup I_{e}$. We consider Γ_{e} also as a metric graph. The graph Γ_{e} has 2 terminal vertices a, b.

Let $w_{a}, w_{b}:[-1,2] \rightarrow \Gamma_{e}$ be the only save walks along Γ_{e} with $w_{a}(-1)=a, w_{b}(-1)=$ b. We displace by a small isotopy the walks w_{a}, w_{b} to smooth injektive path $w_{a}^{\prime}, w_{b}^{\prime}$, that keeps the points $w_{a}(-1), w_{b}(-1)$ and $w_{a}(2), w_{b}(2)$ fixed, such that $w_{a}^{\prime}(t) \notin \Gamma_{e}$ for $t \in(-1,2)$. The walks w_{a}, w_{b} meet each other in the midpoint of the edge e. Hence by the tête-à-tête property we have $w_{a}(2)=w_{b}(2)$. Let w_{e} the juxtaposition of the pathes w_{a}^{\prime} and $-w_{b}^{\prime}$. We may assume that the path w_{e} is smooth and intersects Γ transversally. Let I_{e}^{\prime} the image of the path w_{e}. We now claim that there exits up to isotopy a unic relative diffeomorphism ϕ_{Γ} of Σ with $\phi_{\Gamma}\left(I_{e}\right)=I_{e}^{\prime}$. We define the tête-à-tête twist T_{Γ} as the class of ϕ_{Γ}.

For our first basic example we obtain back the classical right Dehn twist. The second example has as tête-à-tête twist the geometric monodromy of the plane curve singularity $x^{3}-y^{2}$. The twist of the example ($S_{g, r}, K_{p, q}$) computes the geometric monodromy of for the singularity $x^{p}+y^{q}$.

Section 2. Relative tête-à-tête retracts.

We prepare material, that will allow us to glue the previous examples. Let S be a connected compact surface with boundary ∂S. The boundary $\partial S=A \cup B$ is decomposed as a partition of boundary components of the surface S. We assume $A \neq \emptyset, B \neq \emptyset$.

Definition. A relative tête-à-tête graph (S, A, Γ) in (S, A) is an embedded metric graph Γ in S with $A \subset \Gamma$. Moreover, the following properties hold:

- the graph Γ has no cycles of length ≤ 2,
- the graph Γ is a regular retract of the surface Σ,
- for each point $p \in \Gamma \backslash A$, p not being a vertex, the two distint safe walks $\gamma_{p}^{+}, \gamma_{p}^{-}$: $[0,2] \rightarrow \Sigma$ with $p=\gamma_{p}^{+}(0)=\gamma_{p}^{-}(0)$ satisfy to $\gamma_{p}^{+}(2)=\gamma_{p}^{-}(2)$.
- for each point $p \in A, p$ not being a vertex, the only save walk γ_{p}^{+}satisfies $\gamma_{p}^{+}(2) \in A$.

We call the subset A the boundary of the relative tête-à-tête graph (S, A, Γ). This boundary carries a self map $p \in A \mapsto \gamma_{p}^{+}(2) \in A$, which we call the boundary walk w.

We now give a family of examples of relative tête-à-tête graphs.

- Consider the previous example $\left(S_{g, r}, K_{p, q}\right), g=1 / 2(p-1)(q-1), r=(p, q)$. We blow up in the real oriented sense the p vertices of valency q, so we replace such a vertex $v_{i}, 1 \leq i \leq p$ by a circle A_{i} and attach the edges of $K_{p, q}$ that are incident with v_{i} to the circle in the cyclic order given by the embedding of $K_{p, q}$ in $S_{g, r}$. We get a surface $S_{g, r+p}$ and its boundary is partitioned in $A:=\cup A_{i}$ and $B=\partial S_{g, r}$. The new graph is the union of A with the strict transform of $K_{p, q}$. So the new graph is in fact the total transform $K_{p, q}^{\prime}$. We think this graph as a metric graph. The metric will be such that all edges have a positive length and that the tête-à-tête property remains for
all points of $K_{p, q}^{\prime} \backslash A$. We achieve this by giving the edges of A the length $2 \epsilon, \epsilon>0, \epsilon$ small and by giving the edges of $K_{p, q}^{\prime} \backslash A$ the length $1-\epsilon$. The boundary walk is an interval exchange map from $w: A \rightarrow A$. We denote by the pair $\left(S_{g, r+p}, K_{p, q}^{\prime}\right)$ this relative tête-à-tête graph together with its boundary walk.

Section 3. Gluing and closing of relative tête-à-tête graphs.

First we discribe the procedure of closing. We do it by an example. Consider $\left(S_{6,1+2}, K_{2,13}^{\prime}\right)$. We have two A boundary components A_{1} and A_{2}. In oder to close the A components, we choose a piece-wise linear orientation reversing selfmap $s_{1}: A_{1} \rightarrow A_{1}$ of order 2 . The boundary component A_{1} will be closed if we identify the pieces using the map s_{1}. In order to get the tête-à-tête property we do the same with the component A_{2}, but we take care such that the involution $s_{2}: A_{2} \rightarrow A_{2}$ is equivariant via the boundary walk w to the involution s_{1}. Hence we take $p \in A_{2} \mapsto s_{2}(p):=w \circ s_{1} \circ w^{-1}(p) \in A_{2}$. More concretely, we can choose for $s_{1}: A_{1} \rightarrow A_{1}$ an involution that exchange in an orientation reversing way the opposite edges of an hexagon. If we do so, we get a surface $S_{8,1}$ with tête-à-tête graph. The corresponding twist is the geometric monodromy of the singularity $\left(x^{3}-y^{2}\right)^{2}-x^{5} y$. If we make our choices generically, the resulting graph will have 51 vertices, 36 edges, 6 vertices of valency 2 , 45 vertices of valency 3 .

Now an example of gluing. We glue in an walk equivariant way to copies of $\left(S_{2,1}, K_{2,5}^{\prime}\right)$. We get a tête-à-tête graph on the surface $S_{5,2}$. The corresponding twist is the monodromy of the singularity $\left(x^{3}-y^{2}\right)\left(x^{2}-y^{3}\right)$.

This is work in progress. A futher constuction for isolated singularities $f: \mathbf{C}^{n+1} \rightarrow$ C provides its Milnor fiber with a spine, that consists of lagrangian strata. Again the monodromy is concentrated at the spine. The monodromy diffeomorphism is a generalized tête-à-tête twist. The case of plane curves is already interesting for we are aiming progress in restricting the adjacency tables. Thanks for your interest.

University of Basel, Rheinsprung 21, CH-4051 Basel.
example of pairs (S, Γ) with tête-a-fite property

$$
\left(s_{1,1}^{x}-k_{2,3}^{y}\right)
$$

Example of a relative fain (S, A, B)

Elliptic dilogarithms and parallel lines

Anton Mellit *

June 10, 2009

Abstract

We prove Boyd's conjectures relating Mahler's measures and values of L-functions of elliptic curves in the cases when the corresponding elliptic curve has conductor 14 .

1 Boyd's conjectures

Rogers provided a table of relations between Mahler's measures and values of L-functions of elliptic curves of low conductors $11,14,15,20,24,27,32$, 36 in [Rog08]. Among these relations some had been proved and some had not. According to Rogers, those relations which involve curves with complex multiplication (conductors 27, 32, 36) were all proved. Except those, only a relation with curve of conductor 11 was proved. Let us list the relations with curves of conductor 14.

Let $P \in \mathbb{C}[y, z]$. Then Mahler's measure of P is defined as

$$
m(P):=(2 \pi \mathrm{i})^{-2} \int_{|y|=|z|=1} \log |P(y, z)| \frac{d y}{y} \frac{d z}{z} .
$$

Denote

$$
\begin{aligned}
n(k) & :=m\left(y^{3}+z^{3}+1-k y z\right), \\
g(k) & :=m((1+y)(1+z)(y+z)-k y z) .
\end{aligned}
$$

Let E be the elliptic curve of conductor 14 with Weierstrass form $y^{2}+$ $y x+y=x^{3}+4 x-6$. It is isomorphic to the modular curve $X^{0}(14)$ with the pullback of the Néron differential $\frac{d x}{2 y+x+1}$ given by the eta-product [MO97]

$$
f:=\eta(\tau) \eta(2 \tau) \eta(7 \tau) \eta(14 \tau)
$$

[^0]Then $L(E, s)=L(f, s)$ and the relations listed by Rogers are

$$
\begin{align*}
n(-1) & =\frac{7}{\pi^{2}} L(f, 2), \tag{1}\\
n(5) & =\frac{49}{2 \pi^{2}} L(f, 2), \tag{2}\\
g(1) & =\frac{7}{2 \pi^{2}} L(f, 2), \tag{3}\\
g(7) & =\frac{21}{\pi^{2}} L(f, 2), \tag{4}\\
g(-8) & =\frac{35}{\pi^{2}} L(f, 2) \tag{5}
\end{align*}
$$

2 The regulator

Fix a smooth projective curve C / \mathbb{C}. An element $\sum_{i}\left\{f_{i}, g_{i}\right\} \in \Lambda^{2} \mathbb{C}(C)^{\times}$will be denoted simply by $\{f, g\}$ and we will omit the corresponding " \sum_{i} " sign in expressions below to soften the notation. The regulator of $\{f, g\} \in K_{2}(C)$ is defined as $r_{C}(\{f, g\}) \in H^{1}(C, \mathbb{R})$ whose value on $[\gamma] \in H_{1}(C, \mathbb{Z})$ is

$$
r_{C}(\{f, g\})([\gamma])=\int_{\gamma} \log |f| d \arg g-\log |g| d \arg f
$$

Let ω be a holomorphic 1-form on C. The value of the regulator on ω is defined as follows:

$$
\begin{equation*}
\left\langle r_{C}(\{f, g\}), \omega\right\rangle=\left\langle r_{C}(\{f, g\}) \cap \omega,[C]\right\rangle=2 \int_{C} \log |f| d \arg g \wedge \omega \tag{6}
\end{equation*}
$$

Denote by \mathscr{K}_{n} (resp. \mathscr{K}_{g}) the set of values of the function $\frac{y^{3}+z^{3}+1}{y z}$ (resp. $\left.\frac{(1+y)(1+z)(y+z)}{y z}\right)$ on the torus $|y|=|z|=1$. Then by a theorem of Deninger [Den97] for $k \notin \mathscr{K}_{n}$ (resp. $k \notin \mathscr{K}_{g}$) one can express $n(k)$ (resp. $\left.g(k)\right)$ as $\frac{1}{2 \pi} r_{C}(\{y, z\})([\gamma])$ for a certain $[\gamma] \in H_{1}(C, \mathbb{Z})$, where C is the projective closure of the equation $y^{3}+z^{3}+1-k y z$ (resp. $\left.(1+y)(1+z)(y+z)-k y z\right)$. When k is on the boundary of \mathscr{K}_{n} (resp. \mathscr{K}_{g}) Deninger's result still applies by continuity.

3 Elliptic dilogarithm

Let E / \mathbb{C} be an elliptic curve. Define a map from $\Lambda^{2} \mathbb{C}(E)^{\times}$to $\mathbb{Z}[E(\mathbb{C})]^{-}$by

$$
\{f, g\} \rightarrow(f) *(g)^{-}
$$

where "*" and "-" mean the convolution and the antipode operations on divisors of an elliptic curve. Fix an isomorphism $E \cong \mathbb{C} /\langle 1, \tau\rangle$ for $\tau \in \mathfrak{H}$. Let u be the coordinate on \mathbb{C}. Let $x \in E(\mathbb{C}), x=a \tau+b$ for $a, b \in \mathbb{R}$. As in [Zag90] (it seems that the sign there is wrong) put

$$
R(\tau, x)=-\frac{\mathrm{i}}{\pi}(\operatorname{Im} \tau)^{2} \sum_{(m, n) \neq(0,0)} \frac{\sin (2 \pi(n a-m b))}{(m \tau+n)^{2}(m \bar{\tau}+n)}
$$

We have

$$
\left\langle r_{E}(\{f, g\}), d u\right\rangle=R\left(\tau,(f) *(g)^{-}\right) .
$$

For a holomorphic 1-form ω on E put

$$
R_{E, \omega}(x)=\frac{\omega}{d u} R(\tau, x) .
$$

Then $R_{E, \omega}$ does not depend on the choice of the isomorphism $E \cong \mathbb{C} /\langle 1, \tau\rangle$ and we call $R_{E, \omega}$ the elliptic dilogarithm, while usually people call elliptic dilogarithm the real part of $R(\tau, x)$.

When E is defined over \mathbb{R} and an orientation on $E(\mathbb{R})$ is chosen there is a canonical choice of the isomorphism above and we will write $R_{E}(x)$ for the "old dilogarithm" $R(\tau, x)=R_{E, d u}(x)$.

By linearity we extend $R_{E, \omega}$ to the odd part of the group of divisors $\mathbb{Z}[E(\mathbb{C})]^{-}$.

The function $R_{E, \omega}(x)$ satisfies the following properties:
(i) For any $\lambda \in \mathbb{C} R_{E, \lambda \omega}(x)=\lambda R_{E, \omega}(x)$.
(ii) For an isogeny $\varphi: E^{\prime} \rightarrow E$ and $x \in E(\mathbb{C})$

$$
\begin{equation*}
R_{E, \omega}(x)=\sum_{x^{\prime} \in \varphi^{-1}(x)} R_{E^{\prime}, \varphi^{*} \omega}\left(x^{\prime}\right) . \tag{7}
\end{equation*}
$$

(iii) For a function $f \in \mathbb{C}(E)^{\times}, f \neq 1$, one has $R_{E, \omega}\left((f) *(1-f)^{-}\right)=0$.

The second property is called the distribution relation, the third one is the Steinberg relation.

We expect that any algebraic relation between $R_{E, \omega}(x)$ where E, ω, x are defined over $\overline{\mathbb{Q}}$ follows from the relations listed above.

4 Beilinson's theorem for $\Gamma_{0}(N)$

Let N be a squarefree integer with prime decomposition $N=p_{1}, \ldots, p_{n}$. Let $f=\sum a(n) q^{n}$ be a newform for $\Gamma_{0}(N)$ of weight 2 . Let W be the group of Atkin-Lehner involutions. This is a group isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{n}$. For $m>0$, $m \mid N$ denote by w_{m} the Atkin-Lehner involution corresponding to m. Any cusp of $\Gamma_{0}(N)$ is given by $w(\infty)$ for a unique $w \in W$. The width of $w_{m}(\infty)$ is m. It is known that for a prime $p \mid N$ we have $\left.f\right|_{2} w_{p}=-a(p) f$.

Let $\mathbb{Q}[W]_{0}$ be the augmentation ideal of $\mathbb{Q}[W]$. For any $\alpha \in \mathbb{Q}[W]_{0}, \alpha=$ $\sum_{w \in W} \alpha_{w}[w]$ consider $F_{\alpha} \in \mathbb{C}\left(X_{0}(N)\right)^{\times} \otimes \mathbb{Q}$ such that $\left(F_{\alpha}\right)=\sum_{w \in W} \alpha_{w}[w(\infty)]$.

Let $\gamma: W \rightarrow\{ \pm 1\}$ be such that $\left.f\right|_{2} w=\gamma(w) f$ for all $w \in W$. Let $d=\sum_{m \mid N} m w_{m}$,

$$
d^{-1}=\prod_{k=1}^{n} \frac{1-p_{k} w_{p_{k}}}{1-p_{k}^{2}} .
$$

Let γ^{*} be the involution of $\mathbb{Q}[W]$ which sends w to $\gamma(w) w$ for $w \in W$. Put $\alpha^{\prime}=d^{-1} \alpha, \beta^{\prime}=d^{-1} \beta$ for $\alpha, \beta \in \mathbb{Q}[W]_{0}$. Let $\varepsilon: \mathbb{Q}[W] \rightarrow \mathbb{Q}$ be a linear map such that $\varepsilon\left(w_{m}\right)$ is 0 for $m \neq 1$ and 1 for $m=1$. Then

$$
\begin{equation*}
\left\langle r_{X_{0}(N)}\left(\left\{F_{\alpha}, F_{\beta}\right\}\right), 2 \pi \mathrm{i} f(\tau) d \tau\right\rangle=-\frac{144 N}{\pi} \varepsilon\left(w_{N} \alpha^{\prime} \gamma^{*}\left(\beta^{\prime}\right)\right) L(f, 1) L(f, 2) . \tag{8}
\end{equation*}
$$

5 Parallel lines

By results stated above both sides of the conjectured identities are reduced to relations between values of the elliptic dilogarithm. To prove relations between elliptic dilogarithms one usually tries to construct rational functions f such that divisors of both f and $1-f$ are supported on a given set of points.

Let E / \mathbb{C} be an elliptic curve and $Z \subset E(\mathbb{C})$ be a finite subgroup. Let us realize E as a plane cubic with equation $y^{2}=x^{3}+a x+b$ for $a, b \in \mathbb{C}$. For each triple $p, q, r \in Z \backslash\{0\}$ such that $p+q+r=0$ consider the line $l_{p, q, r}$ passing through p, q, r with equation $y+s_{p, q, r} x+t_{p, q, r}=0$. Suppose $s_{p, q, r}=s_{p^{\prime}, q^{\prime}, r^{\prime}}$ for another triple of points, which is equivalent to the lines $l_{p, q, r}$ and $l_{p^{\prime}, q^{\prime}, r^{\prime}}$ being parallel. Then from equations of these lines one can obtain two functions f, g on E such that $f+g=1$ and divisors of f and g are supported on Z. Thus we obtain (hopefully a non-trivial) relation between values of the elliptic dilogarithm at points of Z.

I propose to search for parallel lines as above in two ways. The first way, dubbed "breadth-first search", is to fix $Z=\mathbb{Z} / m \times \mathbb{Z} / m^{\prime}$ and consider the moduli space of elliptic curves E with embedding $Z \rightarrow E$. Then for any two triples p, q, r and $p^{\prime}, q^{\prime}, r^{\prime}$ the difference $s_{p, q, r}-s_{p^{\prime}, q^{\prime}, r^{\prime}}$ is a function on the moduli space, which can be found explicitly, and at the points where the function is zero we obtain a relation.

Another approach, which I call "depth-first search", is to fix a curve E and consider some large subgroup Z hoping that when Z is large enough some parallel lines will appear. However, this seems to work only for some "nice" curves.

In the proof of (1) - (5) we use identities found by the two approaches on the curve $Y^{2}+Y X+Y=X^{3}-X$, and obtain results for isogenous curves by the distribution relation.

Finally let us mention an interesting propery of the slopes $s_{p, q, r}$.
Proposition. There exists a unique map from $Z \backslash\{0\}$ to \mathbb{C}, denoted $p \rightarrow z_{p} \in$ \mathbb{C}, such that
(i) $z_{p}+z_{-p}=0$ for all p,
(ii) $z_{p}+z_{q}+z_{r}=s_{p, q, r}$ for all (p, q, r) with $p+q+r=0$,
moreover, we have (x_{p} is the x-coordinate of p)
(iii) $x_{p}+x_{q}+x_{r}=s_{p, q, r}^{2}$ for all (p, q, r) with $p+q+r=0$.

In fact these z_{p} are related to Eisenstein series of weight 1 and they satisfy a certain distribution relation.

6 Acknowledgements

The author would like to thank W . Zudilin for bringing his attention to the problem. He is also grateful to M. Rogers, H. Gangl, A. Levin, F. R. Villegas, A. Goncharov and D. Zagier for interesting discussions and to the Max Planck Institute for Mathematics in Bonn for its hospitality and stimulating environment.

References

[Bei85] A.A. Beilinson. Higher regulators and values of L-functions. J. Sov. Math., 30:2036-2070, 1985.
[Blo00] Spencer J. Bloch. Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. CRM Monograph Series. 11. Providence, RI: American Mathematical Society (AMS). ix, 97 p., 2000.
[Den97] Christopher Deninger. Deligne periods of mixed motives, K-theory and the entropy of certain \mathbb{Z}^{n}-actions. J. Am. Math. Soc., 10(2):259281, 1997.
[MO97] Yves Martin and Ken Ono. Eta-quotients and elliptic curves. Proc. Am. Math. Soc., 125(11):3169-3176, 1997.
[Rog08] Mathew D. Rogers. Hypergeometric formulas for lattice sums and mahler measures. 2008.
[RV99] F. Rodriguez Villegas. Modular Mahler measures. I. Ahlgren, Scott D. (ed.) et al., Topics in number theory. In honor of B. Gordon and S. Chowla. Proceedings of the conference, Pennsylvania State University, University Park, PA, USA, July 31-August 3, 1997. Dordrecht: Kluwer Academic Publishers. Math. Appl., Dordr. 467, 17-48 (1999)., 1999.
[SS88] Norbert Schappacher and Anthony J. Scholl. Beilinson's theorem on modular curves. Beilinson's conjectures on special values of Lfunctions, Meet. Oberwolfach/FRG 1986, Perspect. Math. 4, 273-304 (1988)., 1988.
[Zag90] Don Zagier. The Bloch-Wigner-Ramakrishnan polylogarithm function. Math. Ann., 286(1-3):613-624, 1990.

Holomorphic Discs in the Space of Oriented Lines via Mean Curvature Flow and Applications
 Wilhelm Klingenberg, Durham University (joint work with Brendan Guilfoyle, IT Tralee)

We introduce a metric \mathbb{G} on the space \mathbb{L} of oriented geodesics in Euclidean 3space. It is of index $(2,2)$. Together with the natural complex structure \mathbb{J} due to Nigel Hitchin and the classical symplectic structure Ω on this space, this endows \mathbb{L} with the structure of a neutral Kähler surface. The geometry of this space captures the geometry of C^{1}-smooth surfaces in Euclidean 3 -space via a correspondance that associates with S the family $\Sigma \subset \mathbb{L}$ of oriented Euclidean-normal lines to S.

Our results are as follows.

1. We establish long-time existence for those solutions of mean curvature flow for spacelike surfaces in (\mathbb{L}, \mathbb{G}) that remain in a fixed compact subset of \mathbb{L}.
2. Given a Lagrangian surface $\Sigma \subset \mathbb{L}$, we consider mean curvature flow for spacelike surfaces Σ_{t} in \mathbb{L} subject to three boundary conditions:
a) $\partial \Sigma_{t} \subset \Sigma$ for all t,
b) the angle between Σ_{t} and Σ remains constant in time,
c) $T \partial \Sigma_{t}$ is holomorphic as $t \rightarrow \infty$.

In this situation, we prove that there exist times $t_{j} \rightarrow \infty$ such that $\Sigma_{t_{j}}$ converges to a holomorphic curve $\Sigma_{t_{\infty}}$.
3. We prove that the existence of $\Sigma_{t_{\infty}}$ as above implies a bound on the relative first chern class of the pair (\mathbb{L}, Σ) along the boundary of $\Sigma_{t_{\infty}}$. This in turn implies a local index bound on the index of an isolated umbilic point of S. Here S arises as an integral surface of the family of lines that correspond to Σ in Euclidean 3 -space.

ANALYTIC TORSION AND COHOMOLOGY OF HYPERBOLIC 3-MANIFOLDS

WERNER MÜLLER

1. Introduction

In this talk we discuss the connection between the Ray-Singer analytic torsion of hyperbolic 3-manifolds and the torsion of the integer cohomology of arithmetic hyperbolic 3 -manifolds.

1. Analytic torsion. Let X be a compact Riemannian manifold of dimension n. Let $\rho: \pi_{1}(X) \rightarrow \mathrm{GL}\left(V_{\rho}\right)$ be a finite-dimensional representation of the fundamental group of X and let $E_{\rho} \rightarrow X$ be the associated flat vector bundle. Then the Ray-Singer analytic torsion $T_{X}(\rho)$ attached to ρ is defined as follows. Pick a Hermitian fiber metric h in E_{ρ} and let

$$
\Delta_{p}(\rho): \Lambda^{p}\left(X, E_{\rho}\right) \rightarrow \Lambda^{p}\left(X, E_{\rho}\right)
$$

be the Laplacian on E_{ρ}-valued p-forms w.r.t. the hyperbolic metric g on X and the fibre metric h in E_{ρ}. Then $\Delta_{p}(\rho)$ is a non-negative self-adjoint operator whose spectrum consists of eigenvalues $0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots$ of finite multiplicities. Let

$$
\zeta_{p}(s ; \rho)=\sum_{\lambda_{i}>0} \lambda_{i}^{-s}, \quad \operatorname{Re}(s)>n / 2
$$

be the zeta function of $\Delta_{p}(\rho)$. It is well known that $\zeta_{p}(s ; \rho)$ admits a meromorphic extension to $s \in \mathbb{C}$ which is regular at $s=0$. Then the regularized determinant $\operatorname{det} \Delta_{p}(\rho)$ of $\Delta_{p}(\rho)$ is defined as

$$
\operatorname{det} \Delta_{p}(\chi)=\exp \left(-\left.\frac{d}{d s} \zeta_{p}(s ; \rho)\right|_{s=0}\right)
$$

The analytic torsion is defined as the following weighted product of regularized determinants

$$
T_{X}(\rho ; h)=\prod_{p=0}^{n}\left(\operatorname{det} \Delta_{p}(\rho)\right)^{(-1)^{p} p / 2} .
$$

By definition it depends on h. However, if n is odd and ρ is acyclic, i.e., $H^{*}\left(X, E_{\rho}\right)=0$, then $T_{X}(\rho ; h)$ is independent of h (see [Mu1]) and we denote it by $T_{X}(\rho)$.
The representation ρ is called unimodular, if $|\operatorname{det} \rho(\gamma)|=1, \forall \gamma \in \Gamma$. Let ρ be a unimodular, acyclic representation. Then the Reidemeister tosion $\tau_{X}(\rho)$ is defined [Mu1, section 1]. It is defined combinatorially in terms of a smooth triangulation of X and we have $T_{X}(\rho)=\tau_{X}(\rho)[\mathrm{Ch}],[\mathrm{Mu} 2],[\mathrm{Mu} 1]$.

[^1]2. Hyperbolic 3-manifolds. Let X be a compact oriented 3-dimensional hyperbolic manifold. Then there exists a discrete, torsion free, co-compact subgroup $\Gamma \subset \operatorname{SL}(2, \mathbb{C})$ such that $X=\Gamma \backslash \mathbb{H}^{3}$, where $\mathbb{H}^{3}=\mathrm{SL}(2, \mathbb{C}) / \mathrm{SU}(2)$ is the 3-dimensional hyperbolic space.

For $m \in \mathbb{N}$ let $\rho_{m}: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{GL}\left(S^{m}\left(\mathbb{C}^{2}\right)\right)$ be the standard irreducible representation of dimension $m+1$ acting in the space homogeneous polynomials $S^{m}\left(\mathbb{C}^{2}\right)$ of degree m. By restriction of ρ_{m} to Γ we obtain a representation of Γ which we continue to denote by ρ_{m}. It follows from [BW, Theorem 6.7, Chapt. VII] that ρ_{m} is acyclic. Since $\operatorname{SL}(2, \mathbb{C})$ is semisimple, it follows that $\operatorname{det} \rho_{m}(g)=1$ for all $g \in \operatorname{SL}(2, \mathbb{C})$. Therefore the Reidemeister torsion $\tau_{X}\left(\rho_{m}\right)$ of X with respect to $\left.\rho_{m}\right|_{\Gamma}$ is well defined. Our main result determines the asymptotic bahavior of $\tau_{X}\left(\rho_{m}\right)$ as $m \rightarrow \infty$.

Theorem 1. Let X be a closed, oriented hyperbolic 3-manifold $\Gamma \backslash \mathbb{H}^{3}$. Then

$$
-\log \tau_{X}\left(\rho_{m}\right)=\frac{1}{\pi} \operatorname{vol}(X) m^{2}+O(m)
$$

as $m \rightarrow \infty$.

3. Arithmetic groups.

Let $F \subset \mathbb{C}$ be an imaginary quadratic field. Let $\mathcal{H}=\mathcal{H}(a, b ; F)$ be a quaternion algebra over $F, a, b \in F^{\times}$. Then \mathcal{H} splits over \mathbb{C}

$$
\varphi: \mathcal{H} \otimes_{F} \mathbb{C} \cong M(2, \mathbb{C})
$$

Let \mathfrak{R} be an order in \mathcal{H} and let $\mathfrak{R}^{1}=\{x \in \mathfrak{R}: N(x)=1\}$. Let $\Gamma=\varphi\left(\mathfrak{R}^{1}\right)$. Then Γ is a lattice in $\operatorname{SL}(2, \mathbb{C})$. Moreover Γ is co-compact, if and only if \mathcal{H} is a skew field. The norm 1 elements of \mathcal{H} act by conjugation on the trace zero elements. In this way we get a Γ-invariant lattice $\Lambda \subset S^{2}\left(\mathbb{C}^{2}\right)$. Taking symmetric powers, it induces a Γ-invariant lattice in all even symmetric powers $S^{2 m}\left(\mathbb{C}^{2}\right)$. So the integer cohomology $H^{*}\left(\Gamma \backslash \mathbb{H}^{3}, E_{2 m, \mathbb{Z}}\right)$ is defined. These are finite abelian groups. Denote by $\left|H^{p}\left(\Gamma \backslash \mathbb{H}^{3}, E_{2 m, \mathbb{Z}}\right)\right|$ the order of $H^{p}\left(\Gamma \backslash \mathbb{H}^{3}, E_{2 m, \mathbb{Z}}\right)$. Then we have

$$
\begin{equation*}
\tau_{\Gamma \backslash \mathbb{H}^{3}}\left(\rho_{2 m}\right)=\prod_{p=1}^{3}\left|H^{p}\left(\Gamma \backslash \mathbb{H}^{3}, E_{2 m, \mathbb{Z}}\right)\right|^{(-1)^{(p+1)}} . \tag{1}
\end{equation*}
$$

Combining this result with Theorem 1, we get
Theorem 2. Let Γ be a co-compact, arithmetic lattice. Then

$$
\sum_{p=1}^{3}(-1)^{p} \log \left|H^{p}\left(\Gamma \backslash \mathbb{H}^{3}, E_{2 m, \mathbb{Z}}\right)\right|=\frac{4}{\pi} \operatorname{vol}\left(\Gamma \backslash \mathbb{H}^{3}\right) m^{2}+O(m)
$$

as $m \rightarrow \infty$.
4. Ruelle zeta function. The proof of Thoerem 1 is based on the study of the twisted

Ruelle zeta function $R(s, \rho)$ attached to a finite-dimensional representation ρ of Γ. In a half-plane $\operatorname{Re}(s) \gg 0$ it is defined by the following infinite product

$$
R(s, \rho)=\prod_{\substack{[\gamma] \neq 1 \\ p r i m e}} \operatorname{det}\left(\mathrm{I}-\rho(\gamma) e^{-s \ell(\gamma)}\right)
$$

where the product runs over all non-trivial prime conjugacy classes in Γ and $\ell(\gamma)$ denotes the length of the corresponding closed geodesic. It admits a meromomorphic extension to $s \in \mathbb{C}$ [Fr2, p.181]. It follows from the main result of [Wo] that $R\left(s, \rho_{m}\right)$ is holomorphic at $s=0$ and

$$
\begin{equation*}
\left|R\left(0, \rho_{m}\right)\right|=T_{\Gamma \backslash \mathbb{H}^{3}}\left(\rho_{m}\right)^{2} . \tag{2}
\end{equation*}
$$

The corresponding result for unitary representations ρ was proved by Fried [Fr1]. Now the proof of Theorem 1 is reduced to the study of the asymptotic behavior of $\left|R\left(0, \rho_{m}\right)\right|$ as $m \rightarrow \infty$. The volume appears through the functional equation satisfied by $R\left(s, \rho_{m}\right)$.

References

[BW] A. Borel, N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Second edition. Mathematical Surveys and Monographs, 67. Amer. Math. Soc., Providence, RI, 2000.
[Ch] J. Cheeger, Analytic torsion and the heat equation. Ann. of Math. (2) 109 (1979), no. 2, 259-322.
[Fr1] D. Fried, Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. math. 84 (1986), 523-540.
[Fr2] D. Fried, Meromorphic zeta functions of analytic flows, Commun. Math. Phys. 174 (1995), 161 190.
[Mu1] W. Müller, Analytic torsion and R-torsion for unimodular representations, J. Amer. Math. Soc. 6 (1993), 721-753.
[Mu2] W. Müller, Analytic torsion and R-torsion of Riemannian manifolds. Adv. in Math. 28 (1978), no. 3, 233-305.
[Wo] A. Wotzke, The Ruelle zeta function and analytic torsion of hyperbolic manifolds, dissertation, Bonn, 2008.

Universität Bonn, Mathematisches Institut, Beringstrasse 1, D - 53115 Bonn, Germany
E-mail address: mueller@math.uni-bonn.de

From Archimedean L-factors to Topological Field Theories *

Anton Gerasimov, Dimitri Lebedev and Sergey Oblezin

Introduction

Archimedean local L-factors were introduced to simplify functional equations of global L-functions. From the point view of arithmetic geometry these factors complete the Euler product representation of global L-factors by taking into account Archimedean places of the compactified spectrum of the global field. A construction of non-Archimedean local L-factors is rather transparent and uses characteristic polynomial of the image of the Frobenius homomorphism in finite-dimensional representations of the local Weil-Deligne group closely related to the local Galois group. On the other hand, Archimedean L-factors are expressed through products of Γ-functions and thus are analytic objects avoiding simple algebraic interpretation. Moreover, Archimedean Weil-Deligne groups are rather mysterious objects in comparison with their non-Archimedean counterparts. In a series of papers [GLO1], [GLO2], [GLO3], [GLO4] we approach the problem of the proper interpretation of Archimedean L-factors using various methods developed to study quantum integrable systems and low-dimensional topological field theories. As a result we produce several interesting explicit representations for Archimedean L-factors and related special functions revealing some hidden structures that might be relevant to the Archimedean (also known as ∞-adic) algebraic geometry. Some of our considerations are close to the approach advocated by Deninger [D1], [D2]. Also equivariant symplectic volumes of the space of maps of a disk into symplectic manifolds were previously discussed in [Gi1], [Gi2] in connection with the Gromov-Witten theory.

1 Archimedean Hecke algebra

Let K be a maximal compact subgroup of $G=G L(\ell+1, \mathbb{R})$. Define spherical Hecke algebra $\mathcal{H}_{\mathbb{R}}=$ $\mathcal{H}(G L(\ell+1, \mathbb{R}), K)$ as an algebra of K-biinvariant functions on $G, \phi(g)=\phi\left(k_{1} g k_{2}\right), k_{1}, k_{2} \in K$ with the multiplication given by

$$
\begin{equation*}
\phi * f(g)=\int_{G} \phi\left(g \tilde{g}^{-1}\right) f(\tilde{g}) d \tilde{g} . \tag{1.1}
\end{equation*}
$$

To ensure the convergence of the integrals one usually imposes the condition of compact support on K-biinvariant functions. We will consider a more general class of exponentially decaying functions.

By the multiplicity one theorem for principle series representations of $G L(\ell+1, \mathbb{R})$ there is a unique smooth spherical vector $\langle k|$ in a principal series irreducible representation $\mathcal{V}_{\underline{\lambda}}=\operatorname{Ind}_{B_{-}}^{G} \chi_{\underline{\lambda}}$ where χ_{λ} is a character of a Borel subgroup B_{-}. The action of a K-biinvariant function ϕ on the spherical vector $\langle k|$ in $\mathcal{V}_{\underline{\chi}}$ is reduced to multiplication by a character Λ_{ϕ} of the Hecke algebra:

$$
\begin{equation*}
\phi *\langle k| \equiv \int_{G} d g \phi\left(g^{-1}\right)\langle k| \pi_{\underline{\lambda}}(g)=\Lambda_{\phi}(\underline{\lambda})\langle k|, \quad \phi \in \mathcal{H}_{\mathbb{R}} . \tag{1.2}
\end{equation*}
$$

[^2]Define $\mathfrak{g l}_{\ell+1}$-Whittaker function $\Phi_{\lambda}^{\mathfrak{g l}}{ }_{\ell+1}$ as a matrix element in a principle series irreducible representation $\mathcal{V}_{\underline{\lambda}}$ satisfying the covariance property

$$
\begin{equation*}
\Phi_{\underline{\lambda}}^{\mathfrak{g} \mathrm{l}_{\ell+1}}(\text { kan })=\chi_{N}(n) \Phi_{\underline{\lambda}}^{\mathfrak{g} \mathrm{l}_{\ell+1}}(a), \tag{1.3}
\end{equation*}
$$

where $k a n \in K A N_{-} \rightarrow G$ is the Iwasawa decomposition. We parametrize the representations \mathcal{V}_{λ} of $G L(\ell+1, \mathbb{R})$ by vectors $\underline{\lambda}=\left(\lambda_{1}, \cdots, \lambda_{\ell+1}\right)$ in $\mathbb{C}^{\ell+1}$. Whitaker functions play an important role in the theory of quantum integrable systems providing explicit solutions of quantum Toda chains. Let us define a related function

$$
\begin{equation*}
\Psi_{\underline{\lambda}}^{\mathfrak{g}_{\ell+1}}(\underline{x})=e^{-\langle\rho, \underline{x}\rangle} \Phi_{\underline{\lambda}}^{\mathfrak{g}_{\ell+1}}(\underline{x}), \tag{1.4}
\end{equation*}
$$

where $\underline{x}=\left(x_{1}, \ldots, x_{\ell+1}\right) \in \mathbb{R}^{\ell+1}, \rho \in \mathbb{R}^{\ell+1}$, with $\rho_{j}=\frac{\ell}{2}+1-j, j=1, \ldots, \ell+1$ and we use the standard orthogonal pairing \langle,$\rangle on \mathbb{R}^{\ell+1}$. The functions (1.4) are common eigenfunctions of a ring of commuting differential operators generated by coefficients of a polynomial

$$
\begin{equation*}
t^{\mathfrak{g l}_{\ell+1}}(\lambda)=\sum_{j=1}^{\ell+1}(-\imath)^{j} \lambda^{\ell+1-j} \mathcal{H}_{j}^{\mathfrak{g}_{\ell+1}}\left(x, \partial_{x}\right) \tag{1.5}
\end{equation*}
$$

where the first two operators are given by

$$
\begin{equation*}
\mathcal{H}_{1}^{\mathfrak{g l}}{ }_{\ell+1}=-\imath \sum_{i=1}^{\ell+1} \frac{\partial}{\partial x_{i}}, \quad \mathcal{H}_{2}^{\mathfrak{g l}_{\ell+1}}=-\frac{1}{2}\left(\mathcal{H}_{1}^{\mathfrak{g} \mathfrak{g}_{\ell+1}}\right)^{2}-\frac{1}{2} \sum_{i=1}^{\ell+1} \frac{\partial^{2}}{\partial x_{i}{ }^{2}}+\sum_{i=1}^{\ell} e^{x_{i}-x_{i+1}} \tag{1.6}
\end{equation*}
$$

The last differential operator is a quantum Hamiltonian operator of $\mathfrak{g l}_{\ell+1}$-Toda chain. Commuting differential operators (1.5) provide an action of the center of the universal enveloping algebra $\mathcal{U}\left(\mathfrak{g l}_{\ell+1}\right)$ on the matrix elements satisfying (1.3). We have

$$
\begin{equation*}
t^{\mathfrak{g l}_{\ell+1}}(\lambda) \Psi_{\underline{\lambda}}^{\mathfrak{g l}_{\ell+1}}(\underline{x})=\prod_{j=1}^{\ell+1}\left(\lambda-\lambda_{j}\right) \Psi_{\underline{\lambda}}^{\mathfrak{g l}_{\ell+1}}(\underline{x}) . \tag{1.7}
\end{equation*}
$$

The following version of the Givental integral representation [Gi3] for $\mathfrak{g l}_{\ell+1}$-Whittaker function was proposed in [GKLO].

Theorem 1.1 The following integral recursive representation of $\mathfrak{g l}_{\ell+1}$-Whittaker functions holds

$$
\begin{gather*}
\Psi_{\lambda_{1}, \ldots, \lambda_{\ell+1}}^{\mathfrak{g l}_{\ell+1}}\left(\underline{x}_{\ell+1}\right)=\int_{\mathbb{R}_{\ell}} \prod_{i=1}^{\ell} d x_{\ell, i} Q_{\mathfrak{g}_{\ell}}^{\mathfrak{g l}_{\ell+1}}\left(\underline{x}_{\ell+1}, \underline{x}_{\ell} \mid \lambda_{\ell+1}\right) \Psi_{\lambda_{1}, \ldots, \lambda_{\ell}}^{\mathfrak{g l}_{\ell}}\left(\underline{x}_{\ell}\right), \tag{1.8}\\
Q_{\mathfrak{g} \ell_{\ell}}^{\mathfrak{g l}_{\ell+1}}\left(\underline{x}_{\ell+1}, \underline{x}_{\ell} \mid \lambda_{\ell+1}\right)=\exp \left\{\lambda_{\ell+1}\left(\sum_{i=1}^{\ell+1} x_{\ell+1, i}-\sum_{i=1}^{\ell} x_{\ell, i}\right)-\sum_{i=1}^{\ell}\left(e^{x_{\ell+1, i}-x_{\ell, i}}+e^{x_{\ell, i}-x_{\ell+1, i+1}}\right)\right\},
\end{gather*}
$$

where $\underline{x}_{k}=\left(x_{k, 1}, \ldots, x_{k, k}\right)$ and we assume that $Q_{\mathfrak{g l}_{0}}^{\mathfrak{g l}_{1}}\left(x_{11} \mid \lambda_{1}\right)=e^{\lambda_{1} x_{1,1}}$.

Note that due to (1.2) any left K-invariant matrix element is an eigenfunction with respect to the action of any $\phi \in \mathcal{H}_{\mathbb{R}}$. Thus we have for the Whittaker function

$$
\begin{equation*}
\phi * \Phi_{\underline{\lambda}}^{\mathfrak{g} \mathfrak{l}_{\ell+1}}(g)=\Lambda_{\phi}(\underline{\lambda}) \Phi_{\underline{\lambda}}^{\mathfrak{g}_{\ell+1}}(g), \quad \phi \in \mathcal{H}_{\mathbb{R}} \tag{1.9}
\end{equation*}
$$

Theorem 1.2 Let $\phi_{\mathcal{Q}_{B}(\lambda)}(g)$ be a K-biinvariant function on $G=G L(\ell+1, \mathbb{R})$ given by

$$
\begin{equation*}
\phi_{\mathcal{Q}_{B}(\lambda)}(g)=2^{\ell+1}|\operatorname{det} g|^{\lambda+\frac{\ell}{2}} e^{-\pi \operatorname{Tr} g^{t} g} . \tag{1.10}
\end{equation*}
$$

Then, the action of $\phi_{\mathcal{Q}_{0}(\lambda)}$ on the Whittaker function $\Phi_{\underline{\lambda}}^{\mathfrak{g l}_{\ell+1}}(g)$ (defined by (1.3)) descends to the action of an integral operator $\mathcal{Q}_{B}^{\mathfrak{g l}_{k+1}}(\lambda)$ with the kernel

$$
\mathcal{Q}_{B}^{\mathfrak{g} \mathfrak{l}_{\ell+1}}(\underline{x}, \underline{y} \mid \lambda)=2^{\ell+1} \exp \left\{\sum_{j=1}^{\ell+1}\left(\lambda+\rho_{j}\right)\left(x_{j}-y_{j}\right)-\pi \sum_{k=1}^{\ell}\left(e^{2\left(x_{k}-y_{k}\right)}+e^{2\left(y_{k}-x_{k+1}\right)}\right)-\pi e^{2\left(x_{\ell+1}-y_{\ell+1}\right)}\right\},
$$

where $\underline{x}=\left(x_{1}, \ldots, x_{\ell+1}\right)$ and $\underline{y}=\left(y_{1}, \ldots, y_{\ell+1}\right)$. The corresponding eigenvalue

$$
\begin{equation*}
\left(\phi_{\mathcal{Q}_{B}(\lambda)} * \Phi_{\underline{\lambda}}^{\mathfrak{g} \mathfrak{l}_{\ell+1}}\right)(g)=L_{\mathbb{R}}(\lambda \mid \underline{\lambda}) \Phi_{\underline{\lambda}}^{\mathfrak{g l}_{\ell+1}}(g), \tag{1.11}
\end{equation*}
$$

is given by

$$
\begin{equation*}
L_{\mathbb{R}}(\lambda \mid \underline{\lambda})=\prod_{j=1}^{\ell+1} \pi^{-\frac{\lambda-\lambda_{j}}{2}} \Gamma\left(\frac{\lambda-\lambda_{j}}{2}\right) . \tag{1.12}
\end{equation*}
$$

The integral operator $\mathcal{Q}_{B}^{\mathfrak{g} \mathfrak{l}_{e+1}}(\lambda)$ is an example of the Baxter operator which provides a key tool to solve quantum integrable systems. Its construction for quantum $\mathfrak{g l}_{\ell+1}$-Toda chains and its interpretation as an element of a spherical Hecke algebra $\mathcal{H}_{\mathbb{R}}$ was given in [GLO1].

The eigenvalues (1.12) can be considered as elementary building blocks from which general Whittaker functions can be constructed via Mellin-Barnes representations. Consider a simple example of the degenerate Whittaker function for which an analog of the Givental representation is given by

$$
\begin{equation*}
\Psi_{\underline{\lambda}}^{\mathfrak{g}_{\ell+1}}(x)=\int_{\mathbb{R}^{\ell}} \prod_{k=1}^{\ell} d x_{k, 1} e^{\mathcal{F}\left(x_{1,1}, \ldots, x_{\ell, 1}, x_{\ell+1,1}\right)}, \tag{1.13}
\end{equation*}
$$

where $x:=x_{\ell+1,1}$ and

$$
\mathcal{F}(t)=\lambda_{1} x_{11}+\sum_{k=1}^{\ell} \lambda_{k+1}\left(x_{k+1,1}-x_{k, 1}\right)-e^{x_{11}}-\sum_{k=1}^{\ell} e^{x_{k+1,1}-x_{k, 1}} .
$$

The degenerate Whittaker function satisfies the following differential equation

$$
\begin{equation*}
\left\{\prod_{k=1}^{\ell+1}\left(-\frac{\partial}{\partial x}+\lambda_{k}\right)-e^{x}\right\} \Psi_{\underline{\lambda}}(x)=0 \tag{1.14}
\end{equation*}
$$

Besides the Givental representation there exists a representation of the Mellin-Barnes type

$$
\begin{equation*}
\Psi_{\underline{\lambda}}^{\mathfrak{g} \mathfrak{l}_{\ell+1}}(x)=\int_{\sigma-\imath \infty}^{\sigma+2 \infty} d \lambda e^{\lambda x} \prod_{k=1}^{\ell+1} \Gamma\left(\lambda_{k}-\lambda\right), \tag{1.15}
\end{equation*}
$$

where σ is such that $\sigma<\min \left\{\operatorname{Re} \lambda_{j}, j=1, \ldots, \ell+1\right\}$. Thus, basically, the degenerate Whittaker function is given by an action of integral projection operator on a product of eigenvalues (1.12).

There is a p-adic analog $\mathcal{H}_{p}=\mathcal{H}\left(G L\left(\ell+1, \mathbb{Q}_{p}\right), G L\left(\ell+1, \mathbb{Z}_{p}\right)\right)$ of the Hecke algebra $\mathcal{H}_{\mathbb{R}}$. One can define a \mathcal{H}_{p}-valued function of an axillary variable such that its action by convolution on the p-adic analog [CS] of the Whittaker function is given by the multiplication on a local non-Archimedean
L-factor $L_{p}(s)$. In [GLO1] we argue that (1.10) should be considered as an Archimedean analog of the \mathcal{H}_{p}-valued function in non-Archimedean case. In particular the corresponding eigenvalues (1.12) are given by real Archimedean L-factors

$$
\begin{equation*}
L_{\mathbb{R}}(s \mid V, \Lambda)=\operatorname{det}_{V} \pi^{-\frac{s-\Lambda}{2}} \Gamma\left(\frac{s-\Lambda}{2}\right) \tag{1.16}
\end{equation*}
$$

where $V=\mathbb{C}^{\ell+1}, s=\lambda$ and Λ is diagonal matrix with the diagonal entries $\Lambda_{j}=\lambda_{j}$. In the next Section we provide a functional integral representation of the Archimedean L-factors (1.16). Taking into account that general Whittaker functions can be constructed form L-factors this leads to a functional integral representation of general Whittaker functions.

$2 L$-factors via equivariant topological linear sigma model

In this Section we demonstrate how local Archimedean L-factors (1.16) can be described in the framework of the two-dimensional topological field theory. Precisely, we consider equivariant version of type A topological linear sigma model on a disk $D=\{z| | z \mid \leq 1\}$ with non-compact target space $X=\mathbb{C}^{\ell+1}$. The vector space $\mathbb{C}^{\ell+1}$ is supplied with a Kähler form and a Kähler metric given in local complex coordinates $\left(\varphi^{j}, \varphi^{\bar{j}}\right)$ by

$$
\begin{equation*}
\omega=\frac{\imath}{2} \sum_{j=1}^{\ell+1} d \varphi^{j} \wedge \bar{\varphi}^{j}, \quad g=\frac{1}{2} \sum_{j=1}^{\ell+1}\left(d \varphi^{j} \otimes d \bar{\varphi}^{j}+d \bar{\varphi}^{j} \otimes d \varphi^{j}\right) \tag{2.1}
\end{equation*}
$$

We also supply the disk D with the flat metric $d^{2} s=d z d \bar{z}=d r^{2}+r^{2} d \sigma^{2}$, $z=r e^{\imath \sigma}$. Let K and \bar{K} be canonical and anti-canonical bundles on D. Let $\operatorname{Map}\left(D, \mathbb{C}^{\ell+1}\right)$ be the space of maps $\Phi: D \rightarrow X$ of the disk D to $\mathbb{C}^{\ell+1}$. Let $T_{\mathbb{C}} X=T^{1,0} \mathbb{C}^{\ell+1} \oplus T^{0,1} \mathbb{C}^{\ell+1}$ be a decomposition of the complexified tangent bundle of $\mathbb{C}^{\ell+1}$. Now let us specify the field content of the topological sigma model for $X=\mathbb{C}^{\ell+1}$. We define commuting fields F and \bar{F} as sections of $K \otimes \Phi^{*}\left(T^{0,1} X\right)$ and of $\bar{K} \otimes$ $\Phi^{*}\left(T^{1,0} X\right)$ correspondingly. The anticommuting fields $\chi, \bar{\chi}$ are sections of the bundles $\Phi^{*}\left(\Pi T^{1,0} X\right)$, $\Phi^{*}\left(\Pi T^{0,1} X\right)$ and anticommuting fields $\psi, \bar{\psi}$ are sections of the bundles $K \otimes \Phi^{*}\left(\Pi T^{0,1} X\right), \bar{K} \otimes$ $\Phi^{*}\left(\Pi T^{1,0} X\right)$. Here $\Pi \mathcal{E}$ denotes the vector bundle \mathcal{E} with the reverse parity of the fibres. Denote by \langle,$\rangle a natural Hermitian pairing on the spaces of sections of various bundles involved. We have$ the standard action of $U_{\ell+1}$ on $V=\mathbb{C}^{\ell+1}$ and an action of S^{1} on D by rotations $\sigma \rightarrow \sigma+\alpha$. The action of $G=S^{1} \times U_{\ell+1}$ lifts naturally to the action on the fields $(F, \bar{F}, \varphi, \bar{\varphi}, \psi, \bar{\psi}, \chi, \bar{\chi})$. Let Λ be an image of an element of $\mathfrak{u}_{\ell+1}$ in the representation $\mathbb{C}^{\ell+1}$. Let \hbar be a generator of $S^{1}, v_{0}=\partial_{\sigma}$ be a corresponding vector field on S^{1} and $\mathcal{L}_{v_{0}}$ be the Lie derivative along v_{0}.

Consider G-equivariant type A topological linear sigma model on D with the target space $X=\mathbb{C}^{\ell+1}$ described by a G-invariant action functional

$$
\begin{equation*}
S_{D}=\imath \int_{\Sigma} d^{2} z(\langle F, \bar{\partial} \varphi\rangle+\langle\bar{F}, \partial \bar{\varphi}\rangle+\langle\bar{\psi}, \partial \bar{\chi}\rangle+\langle\psi, \bar{\partial} \chi\rangle), \tag{2.2}
\end{equation*}
$$

The action is also invariant with respect to an odd transformation δ_{G}

$$
\begin{array}{cccc}
\delta_{G} \varphi=\chi, & \delta_{G} \chi=-\left(\imath \Lambda \varphi+\hbar \mathcal{L}_{v_{0}} \varphi\right), & \delta_{G} \psi=F, & \delta_{G} F=-\left(\imath \Lambda \psi+\hbar \mathcal{L}_{v_{0}} \psi\right), \\
\delta_{G} \bar{\varphi}=\bar{\chi}, & \delta_{G} \bar{\chi}=-\left(-\imath \Lambda \bar{\varphi}+\hbar \mathcal{L}_{v_{0}} \bar{\varphi}\right), & \delta_{G} \bar{\psi}=\bar{F}, & \delta_{G} \bar{F}=-\left(-\imath \Lambda \bar{\psi}+\hbar \mathcal{L}_{v_{0}} \bar{\psi}\right) . \tag{2.3}
\end{array}
$$

Let us remark that δ_{G} can be considered as an infinite-dimensional analog of the de Rham differential in the Cartan model for equivariant cohomology. Observables in the topological sigma model are given by δ_{G}-closed G-invariant functionals of the fields.

Theorem 2.1 Let $V=\mathbb{C}^{\ell+1}$ be a standard representation of $U_{\ell+1}$, Λ be the image of an element $u \in \mathfrak{u}_{\ell+1}$ in $\operatorname{End}(V)$. Then the following identity holds

$$
\begin{equation*}
\left\langle e^{\mu \mathcal{O}_{\Lambda, \hbar}}\right\rangle_{D}=\hbar^{-\frac{\ell+1}{2}} \operatorname{det}_{V}\left(\frac{2}{\mu \hbar}\right)^{-\Lambda / \hbar} \Gamma(\Lambda / \hbar) \tag{2.4}
\end{equation*}
$$

where $\mathcal{O}_{\Lambda, \hbar}$ is given by

$$
\begin{equation*}
\mathcal{O}_{\Lambda, \hbar}=\left.\frac{\imath}{2} \int_{0}^{2 \pi} d \sigma\left(-\left\langle\chi\left(r e^{\imath \sigma}\right), \chi\left(r e^{\imath \sigma}\right)\right\rangle+\left\langle\varphi\left(r e^{\imath \sigma}\right),\left(\imath \Lambda+\hbar \mathcal{L}_{v_{0}}\right) \varphi\left(r e^{\imath \sigma}\right)\right\rangle\right)\right|_{r=1} \tag{2.5}
\end{equation*}
$$

The functional integral in the $S^{1} \times U_{\ell+1}$-equivariant type A topological linear sigma model (2.2) in the l.h.s. of (2.4) is defined using ζ-function regularization of Gaussian integrals.

Taking $\mu=2 / \pi, \hbar=1$ and making the change of variables $\Lambda \rightarrow(s \cdot \mathrm{id}-\Lambda) / 2$ the correlation function (2.4) turns into local Archimedean L-factor (1.16). Let us note that the correlation function (2.4) for arbitrary μ and \hbar can be considered as an Archimedean L-factor taking into account freedom to redefine ϵ-factor in the functional equation for global L-functions.

The functional integral (2.4) can be interpreted as a $S^{1} \times U_{\ell+1}$-equivariant symplectic volume of the space of holomorphic maps of the disk D to $\mathbb{C}^{\ell+1}$. Let M be a $2(\ell+1)$-dimensional symplectic manifold with a symplectic form ω. Let G be a compact Lie group acting on (M, ω) and the action is Hamiltonian with the momentum map $H: M \rightarrow \mathfrak{g}^{*}$ to the dual \mathfrak{g}^{*} to the Lie algebra \mathfrak{g} of G. Then G-equivariant symplectic volume of M is defined as an the following integral

$$
\begin{equation*}
Z(M, \lambda)=\int_{M} e^{\omega+\langle\lambda, H\rangle}=\int_{M} \frac{\omega^{\ell+1}}{(\ell+1)!} e^{\langle\lambda, H\rangle}, \quad \lambda \in \mathfrak{g} \tag{2.6}
\end{equation*}
$$

where \langle,$\rangle is the paring between \mathfrak{g}$ and its dual \mathfrak{g}^{*}. The integral (2.6) is a finite-dimensional analog of the functional integral in the l.h.s. of (2.4) where the observable (2.5) plays the role of the equivariant symplectic form $\omega_{G}=\omega+\langle\lambda, H\rangle$.

$3 q$-version of $\mathfrak{g l}_{\ell+1}$-Whittaker function

Any local non-Archimedean factor $L_{p}(s)$ can be represented as a trace of Frobenius homomorphism acting in the direct sum of symmetric powers $S^{*} V$ of some fixed representation V of the Galois group. Similar representation of a non-Archimedean Whittaker function as a trace of Frobenius homomorphism in finite-dimensional representations of Galois group is given in [CS]. These representations provides an arithmetic interpretation of local non-Archimedean L-factors/Whittaker functions. On the other hand Archimedean L-factors/Whittaker functions are analytic objects avoiding an analog of such interpretation. To make the corresponding structure in Archimedean case visible one can use a q-deformation of L-factors/Whittaker functions interpolating between non-Archimedean $(q=0)$ and Archimedean $(q \rightarrow 1)$ cases. In this Section we recall a construction [GLO3] of the q-deformed $\mathfrak{g l}_{\ell+1}$-Whittaker function $\Psi_{\underline{z}^{\mathfrak{g}}}{ }^{\mathfrak{l}}\left(\underline{p}_{\ell+1}\right)$ defined on the lattice $\underline{p}_{\ell+1}=\left(p_{\ell+1,1}, \ldots, p_{\ell+1, \ell+1}\right) \in \mathbb{Z}^{\ell+1}$. The q-deformed $\mathfrak{g}_{\ell+1}$-Whittaker functions are common eigenfunctions of q-deformed $\mathfrak{g l}_{\ell+1}$-Toda chain Hamiltonians:

$$
\begin{equation*}
\mathcal{H}_{r}^{\mathfrak{g} \mathfrak{g}_{\ell+1}}\left(\underline{p}_{\ell+1}\right) \Psi_{z_{1}, \ldots, z_{\ell+1}}^{\mathfrak{g l}_{\ell+1}}\left(\underline{p}_{\ell+1}\right)=\left(\sum_{I_{r}} \prod_{i \in I_{r}} z_{i}\right) \Psi_{z_{1}, \ldots, z_{\ell+1}}^{\mathfrak{g r}_{\ell+1}}\left(\underline{p}_{\ell+1}\right), \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{H}_{r}^{\mathfrak{g}_{\ell+1}}\left(\underline{p}_{\ell+1}\right)=\sum_{I_{r}}\left(X_{i_{1}}^{1-\delta_{i_{2}-i_{1}, 1}} \cdot \ldots \cdot X_{i_{r-1}}^{1-\delta_{i_{r}-i_{r-1}, 1}} \cdot X_{i_{r}}^{1-\delta_{i_{r+1}-i_{r}, 1}}\right) T_{i_{1}} \cdot \ldots \cdot T_{i_{r}} . \tag{3.2}
\end{equation*}
$$

Here the sum is over ordered subsets $I_{r}=\left\{i_{1}<i_{2}<\ldots<i_{r}\right\} \subset\{1,2, \ldots, \ell+1\}, i_{r+1}:=\ell+2$. We use the following notations

$$
\begin{gathered}
T_{i} f\left(\underline{p}_{\ell+1}\right)=f\left(\widetilde{p}_{\ell+1}\right), \quad \widetilde{p}_{\ell+1, k}=p_{\ell+1, k}+\delta_{k, i}, \quad i, k=1, \ldots, \ell+1, \\
X_{i}=1-q^{p_{\ell+1, i}-p_{\ell+1, i+1}+1}, \quad i=1, \ldots, \ell
\end{gathered}
$$

and $X_{\ell+1}=1$. We also assume $q \in \mathbb{C}^{*},|q|<1$. For example, the first nontrivial Hamiltonian has the following form:

$$
\begin{equation*}
\mathcal{H}^{\mathfrak{g}_{\ell+1}}\left(\underline{p}_{\ell+1}\right)=\sum_{i=1}^{\ell}\left(1-q^{p_{\ell+1, i}-p_{\ell+1, i+1}+1}\right) T_{i}+T_{\ell+1} . \tag{3.3}
\end{equation*}
$$

The main result of [GLO3] is a construction of common eigenfunctions of quantum Hamiltonians (3.2) satisfying the "class one" condition (important for arithmetic interpretations [CS]). Thus one shall have

$$
\begin{equation*}
\Psi_{\underline{z}^{\mathfrak{g} \mathfrak{l}_{\ell+1}}\left(\underline{p}_{\ell+1}\right)=0, ~, ~, ~} \tag{3.4}
\end{equation*}
$$

outside dominant domain $p_{\ell+1,1} \geq \ldots \geq p_{\ell+1, \ell+1}$. Denote by $\mathcal{P}^{(\ell+1)} \subset \mathbb{Z}^{\ell(\ell+1) / 2}$ a subset of integers $p_{n, i}, n=1, \ldots, \ell+1, i=1, \ldots, n$ satisfying the Gelfand-Zetlin conditions $p_{k+1, i} \geq p_{k, i} \geq p_{k+1, i+1}$ for $k=1, \ldots, \ell$. In the following we use the standard notation $(n)_{q}!=(1-q) \ldots\left(1-q^{n}\right)$.

Theorem 3.1 Let $\mathcal{P}_{\ell+1, \ell}$ be a set of $\underline{p}_{\ell}=\left(p_{\ell, 1}, \ldots, p_{\ell, \ell}\right)$ satisfying the conditions $p_{\ell+1, i} \geq p_{\ell, i} \geq$ $p_{\ell+1, i+1}$. The following recursive relation holds:

$$
\Psi_{z_{1}, \ldots, \chi_{\ell+1}}^{\mathfrak{g} \mathrm{I}_{\ell+1}}\left(\underline{p}_{\ell+1}\right)=\sum_{\underline{p}_{\ell} \in \mathcal{P}_{\ell+1, \ell}} \Delta\left(\underline{p}_{\ell}\right) z_{\ell+1}^{\sum_{i} p_{\ell+1, i}-\sum_{i} p_{\ell, i}} Q_{\ell+1, \ell}\left(p_{\ell+1}, \underline{p}_{\ell} \mid q\right) \Psi_{z_{1}, \ldots, z_{\ell}}^{\mathfrak{g} l_{\ell}}\left(\underline{p}_{\ell}\right),
$$

where

$$
\begin{gather*}
Q_{\ell+1, \ell}\left(\underline{p}_{\ell+1}, \underline{p}_{\ell} \mid q\right)=\frac{1}{\prod_{i=1}^{\ell}\left(p_{\ell+1, i}-p_{\ell, i}\right)_{q}!\left(p_{\ell, i}-p_{\ell+1, i+1}\right)_{q}!}, \tag{3.5}\\
\Delta\left(\underline{p}_{\ell}\right)=\prod_{i=1}^{\ell-1}\left(p_{\ell, i}-p_{\ell, i+1}\right)_{q}!
\end{gather*}
$$

The representation (3.5) is a q-analog of Givental's integral representation of the classical $\mathfrak{g}_{\ell+1^{-}}$ Whittaker function given in Theorem 1.1 and turns into (1.8) after taking appropriate limit $q \rightarrow 1$.

Proposition 3.1 There exists a $\mathbb{C}^{*} \times G L(\ell+1, \mathbb{C})$-module V such that the common eigenfunction constructed in Theorem 3.1 allows the following representation for $p_{\ell+1,1} \leq p_{\ell+1,2} \leq \ldots p_{\ell+1, \ell+1}$:

$$
\begin{equation*}
\Psi_{\underline{\lambda}}^{\mathfrak{g l}_{\ell+1}}\left(\underline{p}_{\ell+1}\right)=\operatorname{Tr}_{V} q^{L_{0}} \prod_{i=1}^{\ell+1} q^{\lambda H_{i}} \tag{3.6}
\end{equation*}
$$

Here $z_{j}=q^{\lambda_{j}}, H_{i}, i=1, \ldots, \ell+1$ are Cartan generators of $\mathfrak{g l}_{\ell+1}=\operatorname{Lie}(G L(\ell+1, \mathbb{C}))$ and L_{0} is a generator of $\operatorname{Lie}\left(\mathbb{C}^{*}\right)$.

Define a degenerate q-deformed $\mathfrak{g l}_{\ell+1}$-Whittaker function as a specialization of the q-deformed $\mathfrak{g l}_{\ell+1}$-Whittaker function

$$
\begin{equation*}
\Psi_{z_{1}, \ldots, z_{\ell+1}}^{\mathfrak{g l}_{\ell+1}}(n, k):=\Psi_{z_{1}, \ldots, z_{\ell+1}}^{\mathfrak{g l}_{\ell+1}}(n+k, k, \ldots, k) . \tag{3.7}
\end{equation*}
$$

This degenerate q-Whittaker function is an analog of the calssical degeenrate Whittake function (1.13) and has explicit representations analogous to (1.13) and (1.15)

$$
\begin{align*}
\Psi_{z_{1}, \ldots, z_{\ell+1}}^{\mathfrak{g}_{\ell+1}}(n, k) & =\left(\prod_{i=1}^{\ell+1} z_{i}^{k}\right) \sum_{n_{1}+\ldots+n_{\ell+1}=n} \frac{z_{1}^{n_{1}}}{\left(n_{1}\right)_{q}!} \cdots \cdots \cdot \frac{z_{\ell+1}^{n_{\ell+1}}}{\left(n_{\ell+1}\right)_{q}!}, \\
& =\left(\prod_{i=1}^{\ell+1} z_{i}^{k}\right) \oint_{t=0} \frac{d t}{2 \pi \imath t} t^{-n} \prod_{i=1}^{\ell+1} \Gamma_{q}\left(z_{i} t\right), \tag{3.8}
\end{align*}
$$

for $n \geq 0$ and $\Psi_{z_{1}, \ldots, z_{\ell+1}}^{\mathfrak{g l}_{\ell+1}}(n, k)=0$ for $n<0$. Here we use a q-version of Γ-function

$$
\Gamma_{q}(x)=\prod_{n=0}^{\infty} \frac{1}{1-q^{n} x}=\sum_{n=0}^{\infty} \frac{t^{n}}{(n)_{q}!}
$$

Simialrly to (1.15) the q-version of degenerate Whittaker function is expressed through the q versions of a local L factor

$$
\begin{equation*}
L_{q}(s \mid V)=\operatorname{det}_{V} \Gamma_{q}\left(q^{s-\Lambda}\right) \tag{3.9}
\end{equation*}
$$

where $V=\mathbb{C}^{\ell+1}$ and $\Lambda=\left(\Lambda_{1}, \ldots, \Lambda_{\ell+1}\right)$. Thus defined L_{q}-factors allow a representation as a trace analogous to the representation (3.6) for Whittaker functions. The representation (3.6) can be considered as q-version of the Shintani-Casselman-Shalika formula [CS] representing nonArchimedean Whittaker function as trace of Frobenius over a finite-dimensional representation of the local Galois group. Indeed in the limit $q \rightarrow 0$ the Whittaker given in Theorem 3.1 reduces to a character of an irreducible finite-dimensional representations of $G L_{\ell+1}$ corresponding to a partition $p_{\ell+1,1} \leq \ldots \leq p_{\ell+1, \ell+1}$

$$
\begin{equation*}
\Psi_{\underline{\lambda}}^{\mathfrak{g}_{\ell+1}}\left(\underline{p}_{\ell+1}\right)=\chi_{\underline{\underline{p}}_{\ell+1}}^{\mathfrak{g}_{\ell+1}}(\underline{z}):=\sum_{p_{k, i} \in \mathcal{P}^{\ell+1}} \prod_{k=1}^{\ell+1} z_{k}^{\left(\sum_{i=1}^{k} p_{k, i}-\sum_{i=1}^{k-1} p_{k-1, i}\right)}, \tag{3.10}
\end{equation*}
$$

where we set $z_{i}=q^{\lambda_{i}}, i=1, \ldots, \ell+1$ and the notation $\underline{z}=\left(z_{1}, z_{2}, \ldots, z_{\ell+1}\right)$ is used. Thus for $q=0$ (3.6) reproduces the non-Archimedean expression [CS]. In the next Sections we elucidate the nature of the $\mathbb{C}^{*} \times G L_{\ell+1}$-modules V apearing in (3.6).

$4 \quad q$-Whittaker function and spaces of quasimaps

In this Section we provide an interpretation of the trace type representation (3.6) for the degenerate q-Whittaker function (3.7) and an analog of (3.6) for L_{q}-factors (3.9). Consider the space $\mathcal{M}_{d}\left(\mathbb{P}^{\ell}\right)$ of holomorphic maps of \mathbb{P}^{1} to \mathbb{P}^{ℓ} of degree d. Explicitly, it can be described as a set of collections of $(\ell+1)$ relatively prime polynomials of degree d, up to a common constant factor. The space $\mathcal{M}_{d}\left(\mathbb{P}^{\ell}\right)$ allows a compactification by the space of quasi-maps $\mathcal{Q} \mathcal{M}_{d}\left(\mathbb{P}^{\ell}\right)=\mathbb{P}^{(\ell+1)(d+1)-1}$ defined as a set of collections of $(\ell+1)$ polynomials of degree d, up to a common constant factor. On the space $\mathcal{Q} \mathcal{M}_{d}\left(\mathbb{P}^{\ell}\right)$ there is a natural action of the group $\mathbb{C}^{*} \times G L_{\ell+1}$ (and, thus, of its maximal compact subgroup $S^{1} \times U_{\ell+1}$) where the action of $G L_{\ell+1}$ is induced by the standard action on \mathbb{P}^{ℓ} and the action of \mathbb{C}^{*} is induced by the action of \mathbb{C}^{*} on \mathbb{P}^{1}. The space of sections of the line bundle $\mathcal{O}(n)$ on $\mathcal{Q} \mathcal{M}_{d}\left(\mathbb{P}^{\ell}\right)$ is naturally a $\mathbb{C}^{*} \times G L_{\ell+1}$-module. Let $T \in G L_{\ell+1}$ be a Cartan torus, $H_{1}, \ldots, H_{\ell+1}$ be a basis in $\operatorname{Lie}(T)$, and L_{0} be a generator of $\operatorname{Lie}\left(\mathbb{C}^{*}\right)$. Let \mathcal{L}_{k} be a one-dimensional $G L_{\ell+1}$-module such that $H_{i} \mathcal{L}_{k}=k \mathcal{L}_{k}$, for $i=1, \ldots, \ell+1$. Cohomology groups $H^{*}\left(\mathcal{Q} \mathcal{M}_{d}\left(\mathbb{P}^{\ell}\right), \mathcal{O}(n)\right) \otimes \mathcal{L}_{k}$ have a natural structure of $\mathbb{C}^{*} \times G L_{\ell+1}(\mathbb{C})$-module. Let $\mathcal{M}_{d}\left(\mathbb{C}, \mathbb{C}^{\ell+1}\right)$ be a space of holomorphic maps of \mathbb{C} to $\mathbb{C}^{\ell+1}$ defined as a set of collections of $(\ell+1)$ polynomials of degree d and let \mathcal{W}_{d} be a space of polynomial functions on $\mathcal{M}_{d}\left(\mathbb{C}, \mathbb{C}^{\ell+1}\right)$.

Proposition 4.1 For the $\mathbb{C}^{*} \times G L_{\ell+1}$-character of the module $\mathcal{V}_{n, k, d}=H^{0}\left(\mathcal{Q} \mathcal{M}_{d}\left(\mathbb{P}^{\ell}\right), \mathcal{L}_{k} \otimes \mathcal{O}(n)\right)$, $n \geq 0$ the following integral representation holds

$$
\begin{equation*}
\operatorname{Tr}_{\mathcal{V}_{n, k, d}} q^{L_{0}} e^{\sum \lambda_{i} H_{i}}=\left(\prod_{i=1}^{\ell+1} z_{i}^{k}\right) \oint_{t=0} \frac{d t}{2 \pi \imath t^{n+1}} \prod_{m=1}^{\ell+1} \prod_{j=0}^{d} \frac{1}{\left(1-t q^{j} z_{m}\right)} \tag{4.1}
\end{equation*}
$$

where $\underline{z}=\left(z_{1}, \ldots, z_{\ell+1}\right), z_{m}=e^{\lambda_{m}}, H_{i}, i=1, \ldots, \ell+1$ are Cartan generators of $\mathfrak{g l}_{\ell+1}=\operatorname{Lie}(G L(\ell+$ $1, \mathbb{C})$) and L_{0} is a generator of $\operatorname{Lie}\left(\mathbb{C}^{*}\right)$.

Let us remark that the r.h.s. can be interpreted as a Riemann-Roch-Hirzebruch formula for G equivariant holomorphic Euler characteristic of the line bundle $\mathcal{L}_{k}(n)=\mathcal{L}_{k} \otimes \mathcal{O}(n)$

$$
\begin{equation*}
\chi_{G}\left(\mathcal{Q} \mathcal{M}_{d}\left(\mathbb{P}^{\ell}\right), \mathcal{L}_{k}(n)\right)=\left\langle\operatorname{Ch}_{G}\left(\mathcal{L}_{k}(n)\right) \operatorname{Td}_{G}\left(\mathcal{T} \mathcal{Q} \mathcal{M}_{d}\left(\mathbb{P}^{\ell}\right)\right),\left[\mathcal{Q} \mathcal{M}_{d}\left(\mathbb{P}^{\ell}\right)\right]\right\rangle \tag{4.2}
\end{equation*}
$$

using the standard model for equivariant K-theory of projective spaces

$$
\begin{equation*}
K\left(\mathbb{P}^{N}\right)=\mathbb{C}\left[t, t^{-1}\right] /(1-t)^{N+1}, \quad K_{U_{N+1}}\left(\mathbb{P}^{N}\right)=\mathbb{C}\left[t, t^{-1}, z, z^{-1}\right] / \prod_{j=1}^{N+1}\left(1-t z_{j}\right) \tag{4.3}
\end{equation*}
$$

Using this Proposition, q-deformed degenerate $\mathfrak{g l}_{\ell+1}$-Whittaker functions can be expressed in terms of holomorphic sections of line bundles on a space $\mathcal{L} \mathbb{P}_{+}^{\ell}$ defined as an appropriate limit of $\mathcal{Q} \mathcal{M}_{d}\left(\mathbb{P}^{\ell}\right)$ when $d \rightarrow+\infty$. Geometrically $\mathcal{L} \mathbb{P}_{+}^{\ell}$ should be considered as a space of algebraic disks in \mathbb{P}^{ℓ}.

Theorem 4.1 (i) Let $\Psi_{\underline{Z}}^{\mathfrak{g l}_{\ell+1}}(n, k)$ be a degenerate Whittaker function (3.7). Then the following holds

$$
\begin{equation*}
\Psi_{\underline{z}}^{\mathfrak{g} \mathfrak{l}_{\ell+1}}(n, k)=\lim _{d \rightarrow \infty} \operatorname{Tr} \mathcal{V}_{n, k, d} q^{L_{0}} e^{\sum \lambda_{i} H_{i}}=\left(\prod_{j=1}^{\ell+1} z_{j}^{k}\right) \oint_{C} \frac{d t}{2 \pi \imath t^{n+1}} \prod_{i=1}^{\ell+1} \Gamma_{q}\left(t z_{i}\right) \tag{4.4}
\end{equation*}
$$

where the integration contour C encircles all poles except $t=0$.
(ii) The following expression for a q-version of the local L-factor (3.9) holds

$$
\begin{equation*}
L_{q}(s \mid V):=\operatorname{det}_{V} \Gamma_{q}\left(q^{s-\Lambda}\right)=\lim _{d \rightarrow \infty} \operatorname{Tr} \mathcal{W}_{d} q^{L_{0}} q^{\sum \lambda_{i} H_{i}} \tag{4.5}
\end{equation*}
$$

where $V=\mathbb{C}^{\ell+1}$ and $\Lambda=\left(\Lambda_{1}, \ldots, \Lambda_{\ell+1}\right), \Lambda_{j}=s-\lambda_{j}$.
Taking a limit $d \rightarrow \infty$ at the level of underlying vector spaces $\mathcal{V}_{n, k, d}$ and \mathcal{W}_{d} can be naturally understood in terms of topological field theory interpretation of representation given in Theorem 4.1. In the following Section we provide such interpretation for q-deformed L-function (4.5).

$5 \quad \Gamma_{q}$-function via equivariant linear sigma model on $D \times S^{1}$

In Section 2 we describe functional integral representation of a Γ-function as an equivariant symplectic volume of the space of holomorphic maps $D \rightarrow \mathbb{C}$. According to the standard Correspondence Principle in quantum/statistical mechanics such equivariant volumes provide asymptotics of the partition functions of quantum theories. Applying this reasoning to the equivariant volume considered in Section 2 and using the standard path integral interpretation of quantum mechanics we obtain the following functional representation of the q-version of Γ-function.

Theorem 5.1 Consider a three-dimensional topological linear sigma model on $N=S^{1} \times D$ with the action

$$
\begin{equation*}
S=S_{0}+\mathcal{O} \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{0}=\imath \int_{S^{1} \times D} d^{2} z d \tau\left(\partial_{\bar{z}} \chi \bar{\psi}_{z}+\bar{F}_{z} \partial_{\bar{z}} \varphi+\partial_{z} \bar{\chi} \psi_{\bar{z}}+F_{\bar{z}} \partial_{z} \bar{\varphi}\right), \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{O}=\frac{\imath}{2} \beta \int_{\partial N=S^{1} \times S^{1}} d \tau d \sigma\left(\bar{\chi} \chi+\bar{\varphi}\left(\hbar \partial_{\sigma}+2 \pi \imath \beta^{-1} \partial_{\tau}+\imath \lambda\right) \varphi\right) \tag{5.3}
\end{equation*}
$$

Then the functional integral with free boundary conditions defined using ζ-function regularization is equal to

$$
\begin{equation*}
Z(t, q)=\prod_{n=0}^{+\infty} \frac{1}{1-t q^{n}}=\Gamma_{q}(t) \tag{5.4}
\end{equation*}
$$

where $t=e^{-\beta \lambda}, q=e^{-\beta \hbar}$.
Note that similar to the two-dimensional topological theory considered in Section 2 this threedimensional theory is also invariant with respect to odd transformations

$$
\begin{gathered}
\delta_{G_{0}} \varphi=\chi, \quad \delta_{G_{0}} \chi=-\left(\hbar \partial_{\sigma}+2 \pi \imath \beta^{-1} \partial_{\tau}+\imath \lambda\right) \varphi, \\
\delta_{G_{0}} \psi_{\bar{z}}=F_{\bar{z}}, \quad \delta_{G_{0}} F_{\bar{z}}=-\left(\hbar \partial_{\sigma}+2 \pi \imath \beta^{-1} \partial_{\tau}+\imath \lambda\right) \psi_{\bar{z}} .
\end{gathered}
$$

Finally note the the functional integral (5.1) defined using ζ-function regularization gives a proper interpretation of the $d \rightarrow \infty$ limit considered in the previous Section.

6 Concluding remarks

The construction of the functional integral representation of local Archimedean L-factors uses an integral representation of the Γ-function. This functional integral representation should be compared with the standard Euler integral representation. One can show that the Euler integral representation naturally arises as a disk partition function in the equivariant type B topological Landau-Ginzburg model on a disk with the target space \mathbb{C} and the superpotential $W(\xi)=e^{\xi}+\lambda \xi$, $\xi \in \mathbb{C}$. This result is not surprising in view of a mirror symmetry between type A and type B topological sigma model. Thus we have two integral representations of Γ-function, one is in terms of an infinite-dimensional equivariant symplectic volume and another is given by a finitedimensional complex integral. Taking into account the mirror symmetry relating the two underlying topological theories, the two integral representations should be considered on equal footing. These two integral representations of Γ-functions are similar to two different constructions (arithmetic and automorphic) of local Archimedean L-factors. The equivalence of the resulting L-factors is a manifestation of local Archimedean Langlands correspondence. The analogy between mirror symmetry and local Archimedean Langlands correspondence looks not accidental and can eventually imply that local Archimedean Langlands correspondence follows from the mirror symmetry.

References

[CS] W. Casselman, J. Shalika, The unramified principal series of p-adic groups II. The Whittaker function. Comp. Math. 41, pp. 207-231 (1980).
[D1] C. Deninger, On the Γ-factors attached to motives, Invent. Math. 104 (1991), pp. 245-261.
[D2] C. Deninger, Local L-factors of motives and regularized determinants, Invent. Math. 107 (1992), pp. 135-150
[GLO1] A. Gerasimov, D. Lebedev, S. Oblezin, Baxter operator and Archimedean Hecke algebra, Comm. Math. Phys. DOI 10.1007/s00220-008-0547-9; [arXiv:0706.347], 2007.
[GLO2] A. Gerasimov, D. Lebedev, S. Oblezin, Baxter Q-operators and their Arithmetic implications, Lett. Math. Phys. DOI 10.1007/911005-008-0285-0; [arXiv:0711.2812].
[GLO3] A. Gerasimov, D. Lebedev, S. Oblezin, On q-deformed $\mathfrak{g l}_{\ell+1}$-Whittaker functions I,II,III, [arXiv:0803.0145], [arXiv:0803.0970], [arXiv:0805.3754].
[GLO4] A. Gerasimov, D. Lebedev, S. Oblezin, Archimedean L-factors and Topological Field Theories, [arXiv:0906.1065].
[GKLO] A. Gerasimov, S. Kharchev, D. Lebedev, S. Oblezin, On a Gauss-Givental representation of quantum Toda chain wave function, Int. Math. Res. Notices, (2006), Article ID 96489, [arXiv:0505310].
[Gi1] A. Givental, Homological geometry I. Projective hypersurfaces, Selecta Mathematica, New Series Volume 1, 2, pp. 325-345, 1995.
[Gi2] A. Givental, Equivariant Gromov - Witten Invariants, Internat. Math. Res. Notices 1996, no. 13, pp. 613-663, [arXiv:9603021].
[Gi3] A. Givental, Stationary Phase Integrals, Quantum Toda Lattices, Flag Manifolds and the Mirror Conjecture. Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser., 2 180, American Mathematical Society, Providence, Rhode Island, 1997, pp. 103-115 [arXiv:9612001].
[GiL] A. Givental, Y.-P. Lee, Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups, Invent. Math. 151 (2003), pp. 193-219; [arXiv:0108105].
A.G. Institute for Theoretical and Experimental Physics, 117259, Moscow, Russia; School of Mathematics, Trinity College, Dublin 2, Ireland; Hamilton Mathematics Institute, Trinity College, Dublin 2, Ireland;
D.L. Institute for Theoretical and Experimental Physics, 117259, Moscow, Russia; E-mail address: lebedev@itep.ru
S.O. Institute for Theoretical and Experimental Physics, 117259, Moscow, Russia;

E-mail address: Sergey.Oblezin@itep.ru

TROPICAL GEOMETRY

GRIGORY MIKHALKIN

This Arbeitstagung 2009 talk surveys the current state of development of Tropical Geometry. We do not make an attempt to make an exhausting survey, but rather choose some particular topics to make it a collection of some short stories from the area.

1. Introduction and a (basic) Example

Recall that as Mathematics operates with rather abstract notions, many notions may admit several different-looking (and perhaps still sufficiently abstract) realizations.

For example, let us consider (algebro-geometric) curves. These are 1-dimensional algebraic varieties. Their classical realization (XIX century) is provided by Riemann surfaces, i.e. smooth 2-dimensional manifolds with a choice of complex structure in their tangent bundle. The story generalizes to higher-dimensional algebraic varieties, but it is especially easy is dimension 1 . In this dimension the complex structure is given by an endomorphism J in every tangent space with the property that $J^{2}=-1$ (i.e. an almost complex structure). Furthermore, a complex structure on a Riemann surface may be described by a metric of constant curvature. Projective curves correspond to compact surfaces. The genus of a curve is one half of its first Betti number (i.e. the number of cycles). It can also be computed as the dimension of the space of holomorphic 1 -forms on the surface.

Compact tropical curves can be realized as so-called metric graphs (considered up to an equivalence). These are finite graphs where the interior of each edge is enhanced with an inner metric. We impose the requirement that the length of an edge adjacent to a 1 -valent vertex must be infinite. Such an edge is called a leaf edge. The genus of a tropical curve is the number of cycles. It can be also computed as the dimension of the space of tropical 1-forms on the graph.

To get tropical curves we consider metric graphs equivalent if one can obtained from the other by contracting a leaf edge. Clearly genus depends only on an equivalence class. Note that all genus 0 curves are equivalent. Thus the tropical rational curve is unique just as in the classical case. Curves of positive genus $g>0$ admit unique minimal

Figure 1. Equivalent elliptic curves
models - graphs without leaves. Generically such graphs are 3-valent and have $3 g-3$ edges of some length. Thus the space of all curves of genus $g>1$ is $(3 g-3)$-dimensional.

It is easy to see that tropical curves possess many other properties that we can expect from projective curves. In particular, any curve of genus smaller than 3 admits a hyperelliptic involution. In the same time a generic genus 3 curve is not hyperellptic, but trigonat, etc. To a tropical curve we may associate its Picard group, its jacobian varieties. Many classical 19th century theorems about Riemann surfaces (such as Abel-Jacobi, Riemann-Roch, the Riemann theorem on Θ-divisor, etc) admit straightforward and easy-to-visualize tropical counterparts, cf. [9].

Figure 2. A genus 2 curve as a Θ-divisor in its Jacobian variety

2. Tropical varieties and morphisms, the balancing CONDITION

As a set tropical numbers \mathbb{T} coincide with the half-open real line $[-\infty,+\infty)$. There are two tropical arithmetic operations (which we denote in quotation marks to distinguish them from standard arithmetic
operations): tropical addition " $x+y$ " $=\max \{x, y\}$ and tropical multiplication " $x y$ " $=x+y$. Clearly we get tropical division " x / y " $=x-y$. However there is no chance for tropical subtraction as tropical addition is idempotent: $x+x=x$. Actually in most geometric constructions we can easily avoid using arithmetics at all.

Let us consider the affine n-space \mathbb{T}^{n} and the n-torus $\left(\mathbb{T}^{\times}\right)^{n}=\mathbb{R}^{n}$. Here $\mathbb{T}^{\times}=\mathbb{T} \backslash\left\{0_{\mathbb{T}}\right\}=\mathbb{R}$ as the neutral element under addition is $0_{\mathbb{T}}=$ $-\infty$. Tropical structure in these spaces is given by the sheaf of tropical regular functions that are obtained from tropical rational functions by restricting them to open sets where they are convex. The geometric structure that encodes such a sheaf is the integer-affine structure on \mathbb{R}^{n}. Thus tropical varieties can be thought as polyhedral complexes enhanced with an integer-affine structure.

There are local and global conditions on such an enriched polyhedral complex (X, \mathcal{O}). Locally we require that (X, \mathcal{O}) is equivalent to $\left(\mathbb{T}^{n}, \mathcal{O}_{\mathbb{T}^{n}}\right)$. Equivalence here is generated by smooth divisors, i.e. those that are themselves smooth $(n-1)$-dimensional tropical varieties. Globally we require a certain finite type condition. The resulting object is a (smooth) tropical manifold. Tropical manifolds come with (equivalent) local embeddings to $\mathbb{T}^{N}, N \geq n$, that exhibit them as piecewise-linear polyhedral complexes $Q \subset \mathbb{R}^{N}$ (or, rather their closures in $\mathbb{T}^{N} \supset \mathbb{R}^{N}$). By a piecewise-linear polyhedral complex we mean a union of convex polyhedra in \mathbb{R}^{N}. Furthermore, we require that the slope of each face E is integer, i.e. the vector subspace $V_{E} \subset \mathbb{R}^{N}$ parallel to E is generated by integer vectors.

Any local model polyhedron complex $Q \subset \mathbb{R}^{n}$ is balanced. This is a property at $(n-1)$-dimensional faces of Q. Let $E \subset Q$ be an $(n-1)$-face and F_{1}, \ldots, F_{k} be the n-facets adjacent to Q. Each F_{j} defines a vector v_{j} in the quotient vector space $\mathbb{R}^{N-n}=\mathbb{R}^{N} / V_{E}$, namely a primitive integer vector parallel to the image of F_{j} in the projection. The balancing condition is formulated as

$$
\sum_{j} v_{j}=0 \in \mathbb{R}^{N} / V_{E}
$$

It is always satisfied if Q is locally equivalent to \mathbb{T}^{n}. Furthermore we have some additional (finer) properties at faces of codimension greater than 1.

Alternatively, we may define a class of tropical n-spaces where we only impose the balancing condition at the faces of codimension 1 and no additional conditions at higher codimensions. Furthermore, at the n-faces we may put integer weights. These are the so-called tropical cycles. A cycle is effective if the weights are positive. We may define

Figure 3. Balancing condition
positive multiplicities at the points of such cycles. If all these multiplicities equal to one then the cycle is called a homological tropical variety (or a pseudomanifold). Such spaces are locally given by matroids and their local realizability by complex effective cycles depends on the realizability of the corresponding matroid, cf. [7].

All morphisms between homological varieties are given by integer affine-linear maps of the ambient varieties. Morphisms between smooth tropical manifolds are more restricted, they are given by regular functions. E.g. scaling by 2 of all the edges is induced by an integer affine-linear map of the ambient \mathbb{R}^{2}, but is not an endomorphism of a tripod graph (as a smooth tropical 1-manifold). Note that the number of critical points of this would-be endomorphism is negative and thus it is never approximated by a complex map.

Figure 4. A (realizable) degree 2 map from an elliptic curve to $\mathbb{T} \mathbb{P}^{1}$.

3. Interactions between tropical and classical worlds

Connection between complex and tropical numbers is provided by $\log _{t}: \mathbb{C} \rightarrow \mathbb{T}, z \mapsto \log _{t}|z|$. When $t \rightarrow \infty$ the map becomes more and
more homomorphism-like. Images of complex affine varieties under the map

$$
\log _{t}: \mathbb{C}^{n} \rightarrow \mathbb{T}^{n}
$$

obtained by coordinate-wise application of $\log _{t}$ are called amoebas and carry significant information about geometry of complex varieties. Even better picture is obtained after consideration of images of families $V_{t} \subset \mathbb{C}^{n}$ under $\log _{t}$ when $t \rightarrow \infty$. The limits of these images are (perhaps singular) tropical varieties.

More generally, tropical varieties X sometimes can be obtained as a result of collapse $\lambda_{t}: \mathcal{X}_{t} \rightarrow X$ of families of complex varieties \mathcal{X}_{t}. Such a collapse is easy to produce in the case when X is a tropical curve (with the help of decomposition into pairs-of-pants) or if X is a smooth tropical complete intersection (by tropicalizing the defining equations). Tropical varieties may be enhanced with phases responsible for gluing data. The phase-tropical structure can also be included in the approximation data.

For curves the phase data amount to the twist for gluing pairs-ofpants. If the curve is given by a 3 -valent graph and we fix a cyclic orientation for the edges adjacent to every 3 -valent vertex we have a canonical (untwisted) choice of gluing. E.g. if we have a plane curve h : $C \rightarrow \mathbb{T P}^{2}$ the cyclic order is given by the ambient plane. The untwisted phase-tropical curves give the so-called simple Harnack curves, cf. [5].

Figure 5. A Harnack curve of degree 10.

Suppose that $h: C \rightarrow X$ is a tropical morphism, where C is a curve and X is a complete intersection. We may approximate C by a complex family \mathcal{C}_{t} and X with a complex family \mathcal{X}_{t}. But can we approximate h with a family of holomorphic maps $H_{t}: \mathcal{C}_{t} \rightarrow \mathcal{X}_{t}$. It turns out that it is not always so. Nevertheless the following theorem provides a criterion for such realizability.

It can be shown (with the help of the tropical Riemann-Roch theorem) that any tropical curve $h: C \rightarrow X$ in X has a deformation space of dimension at least $-K_{X} \cdot[h(C)]+(1-g)(\operatorname{dim} X-3)$.
Definition 3.1. A tropical map $h: C \rightarrow X$ is called regular if the dimension of the deformation space of h is $-K_{X} \cdot[h(C)]+(1-g)(\operatorname{dim} X-$ 3). Otherwise h is called superabundant.

Theorem 1 ([6]). A regular tropical morphism $h: C \rightarrow X$ is approximable by a family of holomorphic maps $H_{t}: \mathcal{C}_{t} \rightarrow \mathcal{X}_{t}$.

There are many examples of non-realizable superabundant curves. For example a map $h: C \rightarrow \mathbb{T} \mathbb{P}^{1}$ from an elliptic curve depicted on Figure 6 is realizable only if the lengths a and b are equal. This is a special case of a realizability of genus 1 curves found by David Speyer [10].

Figure 6. A non-realizable superabundant map from an elliptic curve to $\mathbb{T P}^{1}$.

4. Applications to complex and real enumerative GEOMETRY

Theorem 1 allows to replace certain (regular) enumerative problems in classical (complex and real) geometry with the corresponding tropical problems. Often the latter problems are much more manageable combinatorially.

For example, consider the problem of finding the number of complex (or real) curves of degree d and genus g passing through $3 d-1+$
g generic points in \mathbb{P}^{2} or $2 d$ points in \mathbb{P}^{3}. In the case of the real enumerative problems the curves have to be counted with signes defined by Welschinger [12], [13] in the case of genus 0 (in the case of positive genus we do not consider the real case at all as at the moment there is no corresponding real invariant defined).

Theorem 1 may be used to reduce both complex and real problem to enumeration of tropical curve passing through the corresponding collection of points in $\mathbb{T P}^{2}$ or $\mathbb{T} \mathbb{P}^{3}$. Each such tropical curve acquires a multiplicity that might be different for the instances of real and complex enumeration.

In the corresponding tropical enumerative problem we may choose the points to be well stretched vertically. Tropical curves passing through such points are described by the so-called floor diagrams, see [1]. Every floor diagram (with marking) encodes a unique tropical curve. Without the marking the floor diagram is an even better-looking combinatorial object. As it was shown in [2] in the planar genus 0 case it corresponds to a tree on d vertices, so there is d^{d-2} of them. Thus the number of corresponding complex and real curve (the genus 0 Gromov-Witten and Welschinger numbers for \mathbb{P}^{2}) can be interpreted as two (different) statistics on trees. Both of this statistics are nonnegative and coincide on trees corresponding to floor diagrams where the weight of all edges are equal to 1 (otherwise they differ by scaling depending on these weights). In particular, this implies the results of Itenberg-Kharlamov-Shustin [4] on logarithmic asymptotics of the Welschinger invariants.

Figure 7. Floor diagrams computing the number of complex and real rational cubic curves through 8 generic points in \mathbb{P}^{2}.

5. Patchworking of real varieties

Yet another direction of applications of tropical geometry is based on interpretation of Theorem 1 as a generalization of Viro's patchworking theorem [11]. Recall that the Viro theorem allows to find real curves embedded to the plane with controlled topology in the context of the first part of Hilbert's 16th problem. Theorem 1 allows to generalize this construction to immersed curves in the plane as well as to algebraic knots and links in $\mathbb{R P}^{3}$.

To illustrate what happens with the analogue of Hilbert's question in dimension 3 (particularly in the positive genus case) we list a classification of smooth curves of degree 5 and genus 1 in $\mathbb{R P}^{3}$ recently obtained by Mikhalkin and Orevkov [8]. All topological types in this case are depicted on Figure 8.

Figure 8. Topological types of degree 5 genus 1 knots in $\mathbb{R} \mathbb{P}^{3}$.
As it was shown by Harnack [3] the number of components of a real curve of genus g can not exceed $g+1$. The following theorem comes as an application of Theorem 1 and allows to represent any projective link in $\mathbb{R P}^{3}$ by an algebraic curve of the minimal possible genus (without specifying the degree).
Theorem 2. Let $L \subset \mathbb{R P}^{3}$ be a link in $g+1$ components (i.e. a smoothly embedded disjoint union of $g+1$ circles). There exists a smooth algebraic curve of genus g isotopic to L.

Clearly this theorem provides a generalization for the well-known theorem that any knot can be approximated by a rational curve. Finding the minimal degree of an algebraic realization for most simple knots and links in $\mathbb{R} \mathbb{P}^{3}$ is a challenging question.

I would like to finish this talk with the question on the knot type of rational curves passing through $2 d$ points in $\mathbb{R} \mathbb{P}^{3}$. A rational curve of odd degree in $\mathbb{R} \mathbb{P}^{3}$ is homologous to $\left[\mathbb{R P}^{1}\right] \in H_{1}\left(\mathbb{R} \mathbb{P}^{3}\right)$. We say that it is knotted if it is not isotopic to $\mathbb{R} \mathbb{P}^{1} \subset \mathbb{R P}^{3}$.

Question 1. Suppose that d is a large odd degree. Is it true that for any generic collection of $2 d$ points in $\mathbb{R P}^{3}$ there exists a knotted rational curve passing through the points. Are there any knot types that are forced to appear in such enumeration?

In this question we restrict to the case odd degree as 3 -dimensional Welschinger invariant is non-trivial then. (An easy symmetry considerarion shows that it is zero if d is even.) Perhaps a similar question is also sensible for the even degree.

References

[1] E. Brugallé, G. Mikhalkin, Enumeration of curves via floor diagrams , 1. C. R. Math. Acad. Sci. Paris 345 (2007), 329-334.
[2] S. Fomin, G. Mikhalkin, Labeled floor diagrams, to appear.
[3] A. Harnack, Uber Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann. 10 (1876), 189-199.
[4] I. Itenberg, V. Kharlamov, and E. Shustin, Welschinger invariant and enumeration of real rational curves, Int. Math. Res. Not. 2003 no. 49 (2003), 26392653.
[5] G. Mikhalkin, Real algebraic curves, moment map and amoebas, Ann. of Math. (2) 151 (2000), no. 1, 309-326.
[6] G. Mikhalkin, Tropical Geometry and its application, Proceedings of the ICM 2006 Madrid, Spain, 827-852.
[7] G. Mikhalkin, What are tropical counterparts of algebraic varieties?, Oberwolfach Report 26/2008, 36-38, http://www.mfo.de/programme/schedule/2008/24/OWR_2008_26.pdf.
[8] G. Mikhalkin, S. Orevkov, Topology of algebraic curves of degree 5 in $\mathbb{R} \mathbb{P}^{3}$, to appear.
[9] G. Mikhalkin, I. Zharkov, Tropical curves, their Jacobians and Theta functions, in "Curves and Abelian Varieties" (V. Alexeev, A. Beauville, H. Clemens and E. Izadi (Eds.)), Contemporary Math 465 (2008), AMS, 203-230.
[10] D. Speyer, Uniformizing Tropical Curves I: Genus Zero and One, Preprint arXiv:0711.2677v1 [math.AG](2007).
[11] O. Ya. Viro, Real plane algebraic curves: constructions with controlled topology, Leningrad Math. J. 1 (1990), no. 5, 1059-1134.
[12] J.-Y. Welschinger. Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005), 195-234.
[13] J.-Y. Welschinger, Spinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants, Duke Math. J. 127 (2005), 89-121.

Discontinuous Groups on pseudo-Riemannian Spaces

Mathematische Arbeitstagung 2009 at MPI Bonn 5-11 June 2009

Toshiyuki Kobayashi
(the University of Tokyo)
http://www.ms.u-tokyo.ac.jp/~ toshi/

Compact quotients $\Gamma \backslash S L(n) / S L(m)$

Problem (Existence problem for uniform lattice):

Does there exist compact Hausdorff quotients of

$$
S L(n, \mathbb{F}) / S L(m, \mathbb{F}) \quad(n>m, \mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H})
$$

by discrete subgps Γ of $S L(n, \mathbb{F})$?

Compact quotients for $S L(n) / S L(m)$

Uniform lattice does not exist for the following (n, m) :

$$
S L(n) / S L(m) \text { case }
$$ uniform lattice for $S L(n) / S L(m)$.

Affirmative results:
K- criterion of proper actions $\frac{n}{3}>\left[\frac{m+1}{2}\right]$
Zimmer orbit closure thm (Ratner) $n>2 m$
Labourier-Mozes-Zimmer
ergodic action
$n \geq 2 m$
Benoist criterion of proper actions
$n=m+1, m$ even
Margulis unitary representation
($n \geq 5, m=2$)
Shalom unitary representation
$n \geq 4, m=2$

Non-Riemannian homo. spaces

Discrete subgp $\stackrel{\nLeftarrow}{\Leftarrow}$ Discontinuous gp

for non-Riemannian homo. spaces

General Problem

How does a local geometric structure affect the global nature of manifolds?

New phenomena \& methods?

2. Complex symmetric structure

$G / K:$	Riemannian symmetric space	
	$\\|$ complexification	
$G_{\mathbb{C}} / K_{\mathbb{C}}:$	complex symmetric space	

Fact (Borel 1963) Compact quotients exist for ${ }^{\forall}$ Riemannian symm sp. G / K.

Conj. Compact quotients exist for $G_{\mathbb{C}} / K_{\mathbb{C}}$ $\Longleftrightarrow G_{\mathbb{C}} / K_{\mathbb{C}} \approx S_{\mathbb{C}}^{7}$ or complex group mfd
\Leftarrow proved by K-Yoshino 05,
\Rightarrow remaining case $S_{\mathbb{C}}^{4 k-1}, k \geq 3$ (Benoist, K-)

Space forms (examples)

Space form $\cdots\left\{\begin{array}{l}\text { Signature }(p, q) \text { of pseudo-Riemannian metric } g \\ \text { Curvature } \kappa \in\{+, 0,-\}\end{array}\right.$
E.g. $\quad q=0$ (Riemannian mfd)

$$
\begin{array}{ccc}
\text { sphere } S^{n} & \mathbb{R}^{n} & \text { hyperbolic sp } \\
\kappa>0 & \kappa=0 & \kappa<0
\end{array}
$$

E.g. $\quad q=1$ (Lorentz mfd)
de Sitter sp Minkowski sp anti-de Sitter sp
$\kappa>0$
$\kappa=0$
$\kappa<0$

Space form problem

Space form problem for pseudo-Riemannian mfds

Local Assumption
signature (p, q), curvature $\kappa \in\{+, 0,-\}$
\Downarrow

Global Results

- Do compact forms exist?
- What groups can arise as their fundamental groups?

Compact space forms

(p, q) : signature of metric, curvature $\kappa \in\{+, 0,-\}$
Assume $p \geq q$ (without loss of generality).

- $\kappa>0$: Calabi-Markus phenomenon
(Calabi, Markus, Wolf, Wallach, Kulkarni, K-)
- $\kappa=0$: Auslander conjecture
(Bieberbach, Auslander, Milnor, Margulis, Goldman, Abels, Soifer, ...)
- $\kappa<0$: Existence problem of compact forms

2-dim'l compact space forms

Riemannian case $\quad(\Longleftrightarrow$ signature $(2,0)$)

curvature

$$
\kappa>0
$$

$\kappa=0$
$\kappa<0$

Lorentz case $\quad(\Longleftrightarrow$ signature $(1,1)$) compact forms do NOT exist
for $\kappa>0$ and $\kappa<0$

Compact space forms $(\kappa<0)$

- Riemannian case ... hyperbolic space

Compact quotients

$\Longleftrightarrow \quad$ Cocompact discont. gp for $O(n, 1) / O(n) \times O(1)$
$\Longleftrightarrow \quad$ Cocompact discrete subgp of $O(n, 1)$
(uniform lattice)

Exist by $\underbrace{\text { Siegel, Borel-Harish-Chandra, Mostow-Tamagawa, }}$ arithmetic
 $\underbrace{\text { Vinberg, Gromov-Piateski-Shapiro }}$.
 non-arithmetic

Existence of compact forms

- For pseudo-Riemannian mfd of signature (p, q)

Thm Conjecture Compact space forms of $\kappa<0$ exist

$$
\begin{array}{ll}
\Longleftrightarrow(1) q \text { any, } p=0 & (\leftrightarrow \kappa>0) \\
\left.\begin{array}{ll}
\text { (2) } q=0, p \text { any } & \\
\text { (3) } q=1, p \equiv 0 \bmod 2 \\
\text { (4) } q=3, p \equiv 0 \bmod 4 \\
\text { (5) } q=7, p=8
\end{array}\right\} & \text { (pseudo-Riemannian) }
\end{array}
$$

True (Proved (1950-2005))
(1)(2) (Riemmanian) ; (3)4(5) (pseudo-Riemannian) Kulkarni, K-)

Partial answers:
$q=1, p \leq q$, or $p q$ is odd
Hirzebruch's proportionality principle (K-Ono)

Infinitesimal approximation

$$
G=K \exp \mathfrak{p} \Longrightarrow G_{\theta}=K \ltimes \mathfrak{p} \quad \text { (Cartan motion gp) }
$$

$$
G / H=O(p, q+1) / O(p, q) \Longrightarrow G_{\theta} / H_{\theta}
$$

Thm (K-Yoshino, 2005)
Compact forms of G_{θ} / H_{θ} exist $\Longleftrightarrow p \equiv 0 \bmod 2^{\varphi(q)}$
Here, $\varphi(q)=\left[\frac{q}{2}\right]+\left\{\begin{array}{lll}0 & (q \equiv 0,6,7 & \bmod 8) \\ 1 & (q \equiv 1,2,3,4,5 & \bmod 8)\end{array}\right.$

$$
\begin{aligned}
& \text { E.g. } q=0 \quad p \text { any } \\
& q=1 \quad \varphi(1)=1 \quad p \equiv 0 \bmod 2 \\
& q=3 \quad \varphi(3)=2 \quad p \equiv 0 \bmod 4 \\
& q=7 \quad \varphi(7)=3 \quad p \equiv 0 \bmod 8
\end{aligned}
$$

Radon-Hurwitz number (1922)

Def. (Radon-Hurwitz number)

$$
\begin{aligned}
& \rho(p):=8 \alpha+2^{\beta} \\
& \text { if } p=u \cdot 2^{4 \alpha+\beta}(u: \text { odd, } 0 \leq \beta \leq 3)
\end{aligned}
$$

$$
p \equiv 0 \bmod 2^{\varphi(q)} \Longleftrightarrow q<\rho(p)
$$

Radon-Hurwitz number (1922)

 \DownarrowAdams: vector fields on sphere (1962)
\Downarrow
Uniform lattice for G_{θ} / H_{θ} (2005)

General idea: Compact-like actions

Non-compact Lie groups

occasionally behave nicely
 when embedded in ∞-dim groups as if they were

compact groups
(very nice behaviours)

Compact-like linear/non-linear actions

$L^{\curvearrowright} \mathcal{H}$ (linear)
Unitarizability
$=$ existence of L-invariant inner product
Discrete decomposability
= no continuous spectrum
in the L-irreducible decomposition
$L^{\curvearrowright} M$ (non-linear)
Proper acions/properly discontinuous actions
$=$ The action map $\begin{gathered}L \times M \rightarrow M \times M \\ (g, x) \mapsto(x, g \cdot x)\end{gathered}$ is proper.

Compact-like linear/non-linear actions

> \mathcal{H} : Hilbert space, unitary reprn.
> $L^{\curvearrowright} \mathcal{H} \quad$ discrete decomposability

$\cdots L$ behaves nicely in $\underline{U(\mathcal{H})}$ (unitary operators) as if it were a compact group

M: topological space
 $L^{\curvearrowright} M \quad$ proper actions

... L behaves nicely in $\operatorname{Homeo}(M)$
as if it were a compact group

Criterion of admissible restriction

Theorem A (Criterion) (K- Ann Math '98, Progr Math '05)
Let $G^{\prime} \subset \quad G$ and $\pi \in \widehat{G}$. If
\qquad
(夫)

$$
\underline{\mu\left(T^{*}\left(K / K^{\prime}\right)\right)} \cap \underline{\operatorname{AS}_{K}(\pi)}=\{0\} \quad \text { in } \sqrt{-1} t^{*},
$$

$\left.\Longleftrightarrow \pi\right|_{K^{\prime}}$ is K^{\prime}-admissible.
In particular, the restriction $\left.\pi\right|_{G^{\prime}}$ is G^{\prime}-admissible.
(discretely decomposable \& of finite multiplicities)
Proof uses micro-local analysis.

\pitchfork and \sim (definition)

$L \subset G \supset H$
Idea: forget even that L and H are group
Def. (K-)

1) $L \pitchfork H \Longleftrightarrow \overline{L \cap S H S}$ is compact for ${ }^{\forall}$ compact $S \subset G$
2) $L \sim H \Longleftrightarrow{ }^{\exists}$ compact $S \subset G$ s.t. $L \subset S H S$ and $H \subset S L S$.

\pitchfork and ~

$L \subset G \supset H$
Forget even that L and H are group

1) $L \pitchfork H \Longleftrightarrow$ generalization of proper actions
2) $L \sim H \Longleftrightarrow$ economy in considering

Meaning of \pitchfork :

$$
L \pitchfork H \Longleftrightarrow L^{\curvearrowright} G / H \text { proper action }
$$

for closed subgroups L and H
\sim provides economies in considering \pitchfork

$$
H \sim H^{\prime} \Longrightarrow H \pitchfork L \Longleftrightarrow H^{\prime} \pitchfork L
$$

Criterion for \pitchfork and \sim

G : real reductive Lie group
$G=K \exp (\mathfrak{a}) K$: Cartan decomposition
$\nu: G \rightarrow \mathfrak{a}$: Cartan projection (up to Weyl gp.)

Thm B (K- , Benoist)

1) $L \sim H$ in $G \Longleftrightarrow \nu(L) \sim \nu(H)$ in \mathfrak{a}.
2) $L \pitchfork H$ in $G \quad \Longleftrightarrow \quad \nu(L) \pitchfork \nu(H)$ in \mathfrak{a}.
abelian
Special cases include
(1)'s \Rightarrow : Uniform bounds on errors in eigenvalues when a matrix is perturbed.
(2)'s \Leftrightarrow : Criterion for properly discont. actions.

Criterion for compact-like actions

$G:$	reductive Lie group	$\supset K$
\cup	$\cup \cup$	
$G^{\prime}:$	reductive subgp	$\supset K^{\prime}$

$\mu: \quad T^{*}\left(K / K^{\prime}\right) \rightarrow \sqrt{-1} \mathfrak{k}^{*}$ momentum map
Thm A $\pi \in \widehat{G}, G^{\prime} \subset G$ $\mu\left(T^{*}\left(K / K^{\prime}\right)\right) \cap \operatorname{AS}_{K}(\pi)=\{0\}$
$\left.\Longrightarrow \pi\right|_{G^{\prime}}$ is discrete decomposable.
$G:$ reductive Lie gp, $G \supset L, H$ (subsets) $\nu: G \rightarrow \mathfrak{a} \quad$ (Cartan projection)
Thm B (proper action)
$L \pitchfork H$ in $G \Longleftrightarrow \nu(L) \pitchfork \nu(H)$ in \mathfrak{a}

Compact-like linear/non-linear actions

\mathcal{H} : Hilbert space

$L^{\curvearrowright} \mathcal{H} \quad$ discrete decomposability
$\cdots L$ behaves nicely in $\underline{U(\mathcal{H})}$ (unitary operators) as if it were a compact group

M: topological space

$L^{\curvearrowright} M \quad$ proper actions
$\cdots L$ behaves nicely in $\operatorname{Homeo}(M)$ as if it were a compact group

Local \Longrightarrow Global

$G \supset H$ reductive Lie groups
$\Longrightarrow \quad G / H$ pseudo-Riemannian homo. sp
Cor (Criterion for the Calabi-Markus phenomenon)
Any discont. gp for G / H is finite
$\Longleftrightarrow \operatorname{rank}_{\mathbb{R}} G=\operatorname{rank}_{\mathbb{R}} H$

Application (space form of signature $(p, q), \kappa<0$)
Exists a space form M s.t. $\left|\pi_{1}(M)\right|=\infty$
$\Longleftrightarrow p>q$ or $(p, q)=(1,1)$
(Calabi, Markus, Wolf, Kulkarni, Wallach)
$p>q+1 \Longrightarrow{ }^{\exists} M$ with free non-commutative $\pi_{1}(M)$

Rigidity, stability, and deformation

Suppose Γ^{\prime} is 'close to' Γ

$$
\begin{array}{ll}
\text { (R) (local rigidity) } & \Gamma^{\prime}=g \Gamma g^{-1}\left({ }^{\exists} g \in G\right) \\
\text { (S) (stability) } & \Gamma^{\prime} \curvearrowright X \text { properly discont. }
\end{array}
$$

In general,

- $(R) \Rightarrow(S)$.
- (S) may fail (so does (R)).

Local rigidity and deformation

$\Gamma \subset G^{\curvearrowright} X=G / H$ cocompact, discontinuous gp

General Problem

1. When does local rigidity (R) fail?
2. Does stability (S) still hold?

Point: for non-compact H

1. (good aspect) There may be large room for deformation of Γ in G.
2. (bad aspect) Properly discontinuity may fail under deformation.

Rigidity Theorem

(1) $\quad \Gamma^{\curvearrowright} G /\{e\} \Longleftrightarrow(\Gamma \times 1)^{\curvearrowright}(G \times G) / \Delta G$ (2)

 $\Gamma \subset G$ simple Lie gpFact (Selberg-Weil's local rigidigy, 1964)
${ }^{\exists}$ uniform lattice Γ admitting continuous deformations for (1) $\Longleftrightarrow G \approx S L(2, \mathbb{R})$ (loc. isom).

Thm (K-)
${ }^{\exists}$ uniform lattice Γ admitting continuous deformations for (2)
$\Longleftrightarrow G \approx S O(n+1,1)$ or $S U(n, 1)(n=1,2,3, \ldots)$.
Local rigidity (R) may fail. Stability (S) still holds.
... Solution to Goldman's stability conjecture (1985), 3-dim case

Compact-like linear/non-linear actions

$$
\begin{aligned}
& \mathcal{H}= L^{2}(G / H), L^{2}(G / \Gamma) \text { : Hilbert space } \\
& L^{\curvearrowright} \mathcal{H} \quad \text { discrete decomposability } \\
& \cdots L \text { behaves nicely in } U(\mathcal{H}) \text { (unitary operators) } \\
& \quad \text { as if it were a compact group }
\end{aligned}
$$

$M=G / H$: topological space
$L^{\curvearrowright} M \quad$ proper actions
$\cdots L$ behaves nicely in $\mathrm{Homeo}(M)$ as if it were a compact group

Interacting example

$$
(G, L, H)=(S O(4,2), S O(4,1), U(2,1))
$$

Tessellation of pseudo-Riemannian mfd X

$$
X=S O(4,2) / U(2,1) \quad\left(\underset{\text { open }}{\subset} \mathbb{P}^{3} \mathbb{C}\right)
$$

π : discrete series of G with GK-dim 5 (quarternionic discrete series)
$\left.\Longrightarrow \pi\right|_{L}$ is L-admissible

References

1) Pure \& Appl. Math. Quarterly 1 (2005) Borel Memorial Volume

2) Sugaku Expositions, Amer. Math. Soc. (2009) translated by Miles Reid
3) Contemp. Math., Amer. Math. Soc., (2009), pp. 73-87.
4) Invent. Math. (1994), Ann. Math. (1998), Invent. Math. (1998)

For more references:
http://www.ms.u-tokyo.ac.jp/~~ toshi

Counting Lattices

Arbeitstagung, Bonn, June 2009
Mikhail Belolipetsky

Let H be a non-compact simple Lie group endowed with a fixed Haar measure μ. Let $\mathrm{L}_{H}(x)$ (resp. $\left.\mathrm{AL}_{H}(x)\right)$ denote the number of conjugacy classes of lattices (resp. arithmetic lattices) in H of covolume at most x.

A classical theorem of Wang [W] asserts that if H is not locally isomorphic to $\mathrm{SL}_{2}(\mathbb{R})$ or $\mathrm{SL}_{2}(\mathbb{C}), \mathrm{L}_{H}(x)$ is finite for every x. This is also true for $\mathrm{AL}_{H}(x)$ even for $H=\mathrm{SL}_{2}(\mathbb{R})$ or $\mathrm{SL}_{2}(\mathbb{C})$ by a result of Borel $[\mathrm{Bo}]$.

Recent years there has been a growing interest in the asymptotic behavior of these functions.

In [BGLM] the rate of growth of torsion-free lattices was determined for $H=$ $\mathrm{SO}(n, 1), n \geq 4$; it is super-exponential. The lower bound there is already obtained by considering a suitable single lattice in $\mathrm{SO}(n, 1)$ and its finite index subgroups. The upper bound is proved by geometric methods.

In [BGLS] we give a very precise super-exponential estimate for $\mathrm{AL}_{H}(x)$ for $H=\mathrm{SL}_{2}(\mathbb{R})$. Our main result states that $\lim _{x \rightarrow \infty} \frac{\log \mathrm{AL}_{H}(x)}{x \log x}=\frac{1}{2 \pi}$. Here again the full rate of growth is already obtained by considering the finite index subgroups of a single lattice - the main challenge is in proving the upper bound.

In [GLP] and [LN] (see also [GLNP]) precise asymptotic estimates were given for the growth rate of the number of congruence subgroups in a fixed lattice Λ in H. (Some of the results there are conditional on the GRH). That rate of growth turns out to depend only on H and not on Λ.

All this suggested that the rate of growth of the finite index subgroups within one lattice is the main contribution to $\mathrm{L}_{H}(x)$. This led to the following conjecture (see e.g. [GLNP]):

Let H be a non-compact simple Lie group of real rank at least 2. Then

$$
\lim _{x \rightarrow \infty} \frac{\log \mathrm{~L}_{H}(x)}{(\log x)^{2} / \log \log x}=\gamma(H), \quad \text { with } \quad \gamma(H)=\frac{(\sqrt{h(h+2)}-h)^{2}}{4 h^{2}}
$$

where h is the Coxeter number of the (absolute) root system corresponding to H (i.e. the root system of the split form of H).

In $[\mathrm{B}]$ it is shown that the growth rate of the maximal arithmetic lattices in H is very small (conjecturally polynomial, and indeed a polynomial bound is given there for the maximal non-uniform lattices and a slightly weaker bound of the form $x^{(\log x)^{\epsilon}}$ is proved for all maximal lattices). This gave a further support to the conjecture.

In [BL2] we show that the conjecture is essentially true for non-uniform lattices but in [BL1] we prove, somewhat surprisingly, that it is false in general. In fact, we discover here a new phenomenon: the main contribution to the growth of uniform lattices in H does not come from subgroups of a single lattice. As it will be explained below, it comes from a "diagonal counting" when we run through different arithmetic groups Γ_{i} defined over number fields k_{i} of different degrees d_{i}, and for each Γ_{i} we count some of its subgroups. The difference between the uniform and
non-uniform cases relies on the fact that all non-uniform lattices in H are defined over number fields of a bounded degree over \mathbb{Q}. On the other hand, uniform lattices may come from number fields k_{i} of arbitrarily large degrees, i.e., $d_{i} \rightarrow \infty$.

We now briefly describe the line of the argument. If Γ is an arithmetic lattice, there exists a number field k with ring of integers \mathcal{O} and the set of archimedean valuations V_{∞}, an absolutely simple, simply connected k-group G and an epimorphism $\phi: G=\prod_{v \in V_{\infty}} \mathrm{G}\left(k_{v}\right)^{o} \rightarrow H$, such that $\operatorname{Ker}(\phi)$ is compact and $\phi(\mathrm{G}(\mathcal{O}))$ is commensurable with Γ. G. Prasad $[\mathrm{P}]$ gave an explicit formula for the covolume of such $\phi(\mathrm{G}(\mathcal{O}))$ in H. The analysis of this formula and also the growth of the low-index congruence subgroups of $\phi(\mathrm{G}(\mathcal{O}))$ shows that we can expect fast subgroup growth if we consider groups over fields of growing degree with relatively slow growing discriminant \mathcal{D}_{k}. More precisely, we can combine this two entities together into the so-called root-discriminant $r d_{k}=\mathcal{D}_{k}^{1 / \operatorname{deg} k}$ and then look for a sequence of number fields k_{i} with degrees growing to ∞ but with bounded $r d_{k_{i}}$. In a seminal work Golod and Shafarevich [GS] came up with a construction of infinite class field towers. It is such a tower of number fields k_{i} that we use to define our arithmetic subgroups Γ_{i}. Galois cohomology methods show the existence of suitable k_{i}-algebraic groups G_{i} which give rise to arithmetic lattices $\Gamma_{i}=\mathrm{G}_{i}\left(\mathcal{O}_{i}\right)$ in H whose covolume is bounded exponentially in $d_{i}=\operatorname{deg} k_{i}$. We then present $c^{d_{i}^{2}}$ congruence subgroups of Γ_{i} whose covolume is still bounded exponentially in d_{i}. Using the theory of Bruhat-Tits buildings we can show that sufficiently many of such congruence subgroups are not conjugate to each other in H. This completes the proof of the lower bound $\log \mathrm{L}_{H}(x) \geq a(\log x)^{2}$ for some positive constant $a=a(H)$ at least for most real simple Lie groups H. The remaining cases require further consideration: for example, if H is a complex Lie group, the fields k_{i} should be replaced by suitable extensions obtained via the help of the theory of Pisot numbers. These fields do not form a class field tower any more but still have bounded root discriminant.

The proof of the upper bound $\log \mathrm{L}_{H}(x) \leq b(\log x)^{2}$ for groups H of real rank at least 2 which satisfy Serre's congruence subgroup conjecture in [BL1] presents a new type of difficulty: this time we need to obtain a uniform upper bound on growth which does not depend on the degrees of the defining fields. (This is what makes the growth rate $x^{\log x}$ instead of $x^{\log x / \log \log x}$.) The new bound requires some new "subgroup growth" methods which we develop in [BL1]. A key ingredient of the proof is an important theorem of Babai, Cameron and Pálfy (see [LS, Theorem 4, p. 339]) which bounds the size of permutation groups with restricted Jordan-Holder components. We are taking advantage of the fact that this restriction applies uniformly for the profinite completions of all the lattices in a given group H.

On the other hand, the result of [BL2] shows that if one restricts attention only to non-uniform lattices then the original conjecture is true for most higher rank simple groups H (and conjecturally for all). Thus, let us assume that if G is a split form of H, then the center of the simply connected cover of G is a 2-group, and that H is not a triality. This is the case for most H 's. In fact, it says that H is not of type E_{6} or D_{4}, and if it is of type A_{n}, then n is of the form $n=2^{\alpha}-1$ for some $\alpha \in \mathbb{N}$. For such H we can show that $\lim _{x \rightarrow \infty} \frac{\log L_{H}^{n u}(x)}{(\log x)^{2} / \log \log x}=\gamma(H)$, where $\gamma(H)$ is defined as above and $\mathrm{L}_{H}^{n u}(x)$ denotes the number of conjugacy classes of non-uniform lattices in H of covolume at most x.

The proof of of this result uses Gauss's Theorem which gives a bound for the 2 -rank of the class groups of quadratic extensions. In order to be able to extend the
result to all simple groups H we would need similar bounds for l-ranks for $l>2$. In fact, we show in [BL2] that it is essentially equivalent to such bounds.

References

[B] M. Belolipetsky, Counting maximal arithmetic subgroups (with an appendix by J. Ellenberg and A. Venkatesh), Duke Math. J. 140 (2007), no. 1, 1-33.
[BGLS] M. Belolipetsky, T. Gelander, A. Lubotzky, A. Shalev, Counting arithmetic lattices and surfaces, preprint arXiv:0811.2482v1 [math.GR].
[BL1] M. Belolipetsky, A. Lubotzky, Counting manifolds and class field towers, preprint arXiv:0905.1841v1 [math.GR].
[BL2] M. Belolipetsky, A. Lubotzky, Counting non-uniform lattices, in preparation.
[Bo] A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa (4) 8 (1981), 1-33.
[BGLM] M. Burger, T. Gelander, A. Lubotzky, S. Mozes, Counting hyperbolic manifolds, Geom. Funct. Anal. 12 (2002), 1161-1173.
[GLNP] D. Goldfeld, A. Lubotzky, N. Nikolov, L. Pyber, Counting primes, groups and manifolds, Proc. of National Acad. of Sci. 101 (2004), 13428-13430.
[GLP] D. Goldfeld, A. Lubotzky, L. Pyber, Counting congruence subgroups, Acta Math. 193 (2004), 73-104.
[GS] E. S. Golod, I. P. Shafarevich, On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261-272 [Russian].
[LN] A. Lubotzky, N. Nikolov, Subgroup growth of lattices in semisimple Lie groups, Acta Math. 193 (2004), 105-139.
[LS] A. Lubotzky, D. Segal, Subgroup growth, Progr. Math. 212, Birkhäuser Verlag, Basel, 2003.
[P] G. Prasad, Volumes of S-arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math., 69 (1989), 91-117.
[W] H. C. Wang, Topics on totally discontinuous groups, in Symmetric spaces (St. Louis, Mo., 1969-1970), Pure Appl. Math. 8, Dekker, New York, 1972, 459-487.

Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK;
Sobolev Institute of Mathematics, Koptyuga 4, 630090 Novosibirsk, Russia
E-mail address: mikhail.belolipetsky@durham.ac.uk

Quasi-conformal geometry and word hyperbolic

 Coxeter groupsMarc Bourdon (joint work with Bruce Kleiner)

Arbeitstagung, 11 june 2009

In [6] J. Heinonen and P. Koskela develop the theory of (analytic) modulus in metric spaces, and introduce the notion of Loewner space. They establish that many results concerning the classical quasi-conformal geometry on Euclidean spaces are valid for on Loewner spaces. In geometric group theory the regularity properties of quasi-symmetric homeomorphisms between Loewner spaces are responsible for several rigidity phenomena generalizing Mostow's rigidity. Otherwise only few examples of Loewner spaces are known, these include the boundaries of rank one symmetric spaces, the boundaries of some fuchsian buildings, and some exotic self-similar spaces.

Cannon's conjecture states that every word hyperbolic group whose boundary is homeomorphic to the 2 -sphere acts by isometries properly discontinuously and cocompactly on the real hyperbolic space \mathbb{H}^{3}. It can be seen as a group theoretical analogue of Thurton's hyperbolization conjecture recently solved by G. Perelman. As a tool to approach Cannon's conjecture, various notions of combinatorial modulus have been developed by several authors (e.g. [3], [4], [1], [5])).

This talk will focus on the combinatorial modulus. It reports on a recent joint work with B. Kleiner [2]. A combinatorial version of the Loewner property, called the combinatorial Loewner property, is presented. It is weaker than Heinonen-Koskela's, indeed if Z is a Q-Loewner space then every metric space quasi-symmetrically homeomorphic to Z satisfies the combinatorial Q-Loewner property. We suspect that in most of the interesting cases - like the boundaries of word hyperbolic groups - a converse is also true, namely that if a metric space admits the combinatorial Q-Loewner property then it is quasi-symmetrically homeomorphic to a Q-Loewner space.

Our main results concern the combinatorial modulus on boundaries of word hyperbolic Coxeter groups. We obtain a sufficient condition for such
a boundary to satisfy the combinatorial Loewner property, and use this to exhibit a number of examples, some old and some new. As an application of our techniques we obtain a proof of Cannon's conjecture in the special case of Coxeter groups. This result was essentially known. Our view is that the principal value of the proof is that it illustrates the feasibility of the asymptotic approach (using the ideal boundary and modulus estimates), and it may suggest ideas for attacking the general case. It gives also a new proof of the Andreev's theorem about the Coxeter hyperbolic polytopes in \mathbb{H}^{3}, in the case when the prescribed dihedral angles are submultiples of π.

References

[1] M. Bonk, B. Kleiner, Quasisymmetric parametrizations of twodimensional metric spheres, Invent. Math., 150 (2002), 1247-1287.
[2] M. Bourdon, B. Kleiner, Combinatorial modulus, combinatorial Loewner property and Coxeter groups, Preprint (2009).
[3] J. W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), no. 2, 155-234.
[4] J. W. Cannon, W.J. Floyd, W.R. Parry, Sufficiently rich families of planar rings, Ann. Acad. Sci. Fenn. Math. 24 (1999), no. 2, 265-304.
[5] P. Haïssinsky, Empilements de cercles et modules combinatoires, Annales de l'Institut Fourier, to appear.
[6] J. Heinonen, P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1-61.

Marc Bourdon, Université Lille 1, Département de mathématiques, Bat. M2, 59655 Villeneuve d'Ascq, France, bourdon@math.univ-lille1.fr .

GEOMETRY OVER THE FIELD WITH ONE ELEMENT

OLIVER LORSCHEID

1. Motivation

Two main sources have led to the development of several notions of F_{1}-geometry in the recent five years. We will concentrate on one of these, which originated as remark in a paper by Jacques Tits ([10]). For a wide class of schemes X (including affine space \mathbb{A}^{n}, projective space \mathbb{P}^{n}, the Grassmannian $\operatorname{Gr}(k, n)$, split reductive groups G), the function

$$
N(q)=\# X\left(\mathbb{F}_{q}\right)
$$

is described by a polynomial in q with integer coefficients, whenever q is a prime power. Taking the value $N(1)$ sometimes gives interesting outcomes, but has a 0 of order r in other cases. A more interesting number is the lowest non-vanishing coefficient of the development of $N(q)$ around $q-1$, i.e. the number

$$
\lim _{q \rightarrow 1} \frac{N(q)}{(q-1)^{r}}
$$

which Tits took to be the number $\# X\left(\mathbb{F}_{1}\right)$ of " \mathbb{F}_{1}-points" of X. The task at hand is to extend the definition of the above mentioned schemes X to schemes that are "defined over $\mathbb{F}_{1} "$ such that their set of \mathbb{F}_{1}-points is a set of cardinality $\# X\left(\mathbb{F}_{1}\right)$. We describe some cases, and suggest an interpretation of the set of \mathbb{F}_{1}-points:

- $\# \mathbb{P}^{n-1}\left(\mathbb{F}_{1}\right)=n=\# M_{n}$ with $M_{n}:=\{1, \ldots, n\}$.
- $\# \operatorname{Gr}(k, n)\left(\mathbb{F}_{1}\right)=\binom{n}{k}=\# M_{k, n}$ with $M_{k, n}=\left\{\right.$ subsets of M_{n} with k elements $\}$.
- If G is a split reductive group of rank $r, T \simeq \mathbb{G}_{m}^{r} \subset G$ is a maximal torus, N its nomalizer and $W=N(\mathbb{Z}) / T(\mathbb{Z})$, then the Bruhat decomposition $G\left(\mathbb{F}_{q}\right)=$ $\coprod_{w \in W} B w B\left(\mathbb{F}_{q}\right)$ (where B is a Borel subgroup containing T) implies that $N(q)=$ $\sum_{w \in W}(q-1)^{r} q_{w}^{d}$ for certain $d_{w} \geq 0$. This means that $\# G\left(\mathbb{F}_{1}\right)=\# W$.
In particular, it is natural to ask whether the group law $m: G \times G \rightarrow G$ of a split reductive group may be defined as a "morphism over \mathbb{F}_{1} ". If so, one can define "group actions over $\mathbb{F}_{1} "$. The limit as $q \rightarrow 1$ of the action

$$
\operatorname{GL}\left(n, \mathbb{F}_{q}\right) \times \operatorname{Gr}(k, n)\left(\mathbb{F}_{q}\right) \longrightarrow \operatorname{Gr}(k, n)\left(\mathbb{F}_{q}\right)
$$

induced by the action on $\mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)$ should be the action

$$
S_{n} \times M_{k, n} \longrightarrow M_{k, n}
$$

induced by the action on $M_{n}=\{1, \ldots, n\}$.
The other, more lofty motivation for \mathbb{F}_{1}-geometry stems from the search for a proof of the Riemann hypothesis. In the early 90s, Deninger gave criteria for a category of motives that would provide a geometric framework for translating Weil's proof of the Riemann hypothesis for global fields of positive characteristic to number fields. In particular, the Riemann zeta function $\zeta(s)$ should have a cohomological interpretation, where an H^{0}, an H^{1} and an H^{2}-term are involved. Manin proposed in [7] to interpret the H^{0}-term as the zeta function of the "absolute point" Spec \mathbb{F}_{1} and the H^{2}-term as the zeta function of the "absolute Tate motive" or the "affine line over \mathbb{F}_{1} ".

2. OVERVIEW OVER RECENT APPROACHES

We give a rough description of the several approaches towards \mathbb{F}_{1}-geometry, some of them looking for weaker structures than rings, e.g. monoids, others looking for a category of schemes with certain additional structures. In the following, a monoid always means a abelian mutliplicative semi-group with 1. A variety is a scheme X that defines, via base extension, a variety X_{k} over any field k.
2.1. Soulé, 2004 ([9]). This is the first paper that suggests a candidate of a category of varieties over \mathbb{F}_{1}. Soulé consideres schemes together with a complex algebra, a functor on finite rings that are flat over \mathbb{Z} and certain natural transformations and a universal property that connects the scheme, the functor and the algebra. Soulé could prove that smooth toric varieties provide natural examples of \mathbb{F}_{1}-varieties. In [6] the list of examples was broadened to contain models of all toric varieties over \mathbb{F}_{1}, as well as split reductive groups. However, it seems unlikely that Grassmannians that are not projective spaces can be defined in this framework.
2.2. Connes-Consani, 2008 ([1]). The approach of Soulé was modified by Connes and Consani in the following way. They consider the category of scshemes together with a functor on finite abelian groups, a complex variety, certain natural transformations and a universal property analogous to Soulé's idea. This category behaves only slightly different in some subtle details, but the class of established examples is the same (cf. [6]).
2.3. Deitmar, 2005 ([3]). A completely different approach was taken by Deitmar who uses the theory of prime ideals of monoids to define spectra of monoids. A \mathbb{F}_{1}-scheme is a topological space together with a sheaf of monoids that is locally isomorphic the spectrum of a ring. This theory has the advantage of having a very geometric flavour and one can mimic algebraic geometry to a large extent. However, Deitmar has shown himself in a subsequent paper that the \mathbb{F}_{1}-schemes whose base extension to \mathbb{Z} are varieties are nothing more than toric varieties.
2.4. Toën-Vaquié, 2008 ([11]). Deitmar's approach is complemented by the work of Toën and Vaquié, which proposes locally representable functors on monoids as \mathbb{F}_{1}-schemes. Marty shows in [8] that the Noetherian \mathbb{F}_{1}-schemes in Deitmar's sense correspond to the Noetherian objects in Toën-Vaquié's sense. We raise the question: is the Noetherian condition necessary?
2.5. Borger, in progress. The category investigated by Borger are schemes X together with a family of morphism $\left\{\psi_{p}: X \rightarrow X\right\}_{p \text { prime }}$, where the ψ_{p} 's are lifts of the Frobenius morphisms Frob ${ }_{p}: X \otimes \mathbb{F}_{p} \rightarrow X \otimes \mathbb{F}_{p}$ and all ψ_{p} 's commute with each other.

There are further approaches by Durov ([4], 2007) and Haran ([5], 2007), which we do not describe here. In the following section we will examine more closely a new framework for \mathbb{F}_{1}-geometry by Connes and Consani in spring 2009.

3. \mathbb{F}_{1}-SChemes ì La Connes-Consani and torified varieties

The new notion of an \mathbb{F}_{1}-scheme due to Connes and Consani ([2]) combines the earlier approaches of Soulé and of themselves with Deitmar's theory of spectra of monoids and Toën-Vaquié's functorial viewpoint. First of all, Connes and Consani consider monoids with 0 and remark that the spaces that are locally isomorphic to spectra of monoids with 0 , called M_{0}-schemes, are the same as locally representable functors of monoids with 0 . (Note that they do not make any Noetherian hypothesis). There is a natural notion of morphism in this setting. The base extension is locally given by taking the semi-group ring, i.e. if A is a monoid with zero 0_{A} and $X=\operatorname{Spec} A$ is its spectrum, then

$$
X_{\mathbb{Z}}:=X \otimes_{\mathbb{F}_{1}} \mathbb{Z}:=\operatorname{Spec}\left(\mathbb{Z}[A] /\left(1 \cdot 0_{A}-0_{\mathbb{Z}[A]}\right)\right)
$$

An \mathbb{F}_{1}-scheme is a triple $\left(\tilde{X}, X, e_{X}\right)$, where \tilde{X} is an M_{0}-scheme, X is a scheme and $e_{X}: \tilde{X}_{\mathbb{Z}} \rightarrow X$ is a morphism such that $e_{X}(k): \tilde{X}_{\mathbb{Z}}(k) \xrightarrow{\sim} X(k)$ is a bijection for all fields k.

Note that an M_{0}-scheme \tilde{X} defines the \mathbb{F}_{1}-scheme $\left(\tilde{X}, \tilde{X}_{\mathbb{Z}}, \mathrm{id}_{\tilde{X}_{\mathbb{Z}}}\right)$. We give first examples of \mathbb{F}_{1}-schemes of this kind. The affine line $\mathbb{A}_{\mathbb{F}_{1}}^{1}$ is the spectrum of the monoid $\left\{T^{i}\right\}_{i \in \mathbb{N}} \amalg\{0\}$ and, indeed, we have $\mathbb{A}_{\mathbb{F}_{1}}^{1} \otimes_{\mathbb{F}_{1}} \mathbb{Z} \simeq \mathbb{A}^{1}$. The multiplicative group $\mathbb{G}_{m, \mathbb{F}_{1}}$ is the spectrum of the monoid $\left\{T^{i}\right\}_{i \in \mathbb{Z}} \amalg\{0\}$, which base extends to \mathbb{G}_{m} as desired. Both examples can be extended to define $\mathbb{A}_{\mathbb{F}_{1}}^{n}$ and $\mathbb{G}_{m, \mathbb{F}_{1}}^{n}$ by considering multiple variables T_{1}, \ldots, T_{n}. More generally, all \mathbb{F}_{1}-schemes in the sense of Deitmar deliver examples of M_{0} and thus \mathbb{F}_{1}-schemes in this new sense. In particular, toric varieties can be realized.

To obtain a richer class of examples, we recall the definition of a torified variety as given in a joint work with Javier López Peña ([6]). A torified variety is a variety X together with morphism $e_{X}: T \rightarrow X$ such that $T \simeq \coprod_{i \in I} \mathbb{G}_{m}^{d_{i}}$, where I is a finite index set and d_{i} are non-negative integers and such that for every field k, the morphism e_{X} induces a bijection $T(k) \xrightarrow{\sim} X(k)$. We call $e_{X}: T \rightarrow X$ a torification of X.

Note that T is isomorphic to the base extension $\tilde{X}_{\mathbb{Z}}$ of the M_{0}-scheme $\tilde{X}=\coprod_{i \in I} \mathbb{G}_{m, \mathbb{F}_{1}}^{d_{i}}$. Thus every torified variety $e_{X}: T \rightarrow X$ defines an \mathbb{F}_{1}-scheme $\left(\tilde{X}, X, e_{X}\right)$.

In [6], a variety of examples are given. Most important for our purpose are toric varieties, Grassmannians and split reductive groups. If X is a toric variety of dimension n with fan $\Delta=\left\{\right.$ cones $\left.\tau \subset \mathbb{R}^{n}\right\}$, i.e. $X=\operatorname{colim}_{\tau \in \Delta} \operatorname{Spec} \mathbb{Z}\left[A_{\tau}\right]$, where $A_{\tau}=\tau^{\vee} \cap \mathbb{Z}^{n}$ is the intersection the dual cone $\tau^{\vee} \subset \mathbb{R}^{n}$ with the dual lattice $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$. Then the natural morphism $\coprod_{\tau \in \Delta} \operatorname{Spec} \mathbb{Z}\left[A_{\tau}^{\times}\right] \rightarrow X$ is a torification of X.

The Schubert cell decomposition of $\operatorname{Gr}(k, n)$ is a morphism $\coprod_{w \in M_{k, n}} \mathbb{A}^{d_{w}} \rightarrow \operatorname{Gr}(k, n)$ that induces a bijection of k-points for all fields k. Since the affine spaces in this decomposition can be further decomposed into tori, we obtain a torification $e_{X}: T \rightarrow \operatorname{Gr}(k, n)$. Note that the lowest-dimensional tori are 0 -dimensional and the number of 0 -dimensional tori is exactly $\# M_{k, n}$.

Let G be a split reductive group of rank r with maximal torus $T \simeq \mathbb{G}_{m}^{r}$, normalizer N and Weyl group $W=N(\mathbb{Z}) / T(\mathbb{Z})$. Let B be a Borel subgroup containing T. The Bruhat decomposition $\coprod_{w \in W} B w B \rightarrow G$, where $B w B \simeq \mathbb{G}_{m}^{r} \times \mathbb{A}^{d_{w}}$ for some $d_{w} \geq 0$, yields a torification $e_{G}: T \rightarrow G$ analogously to the case of the Grassmannian. This defines a model $\mathcal{G}=\left(\tilde{G}, G, e_{G}\right)$ over \mathbb{F}_{1}. Note that in this case the lowest-dimensional tori are r-dimensional and that the number of r-dimensional tori is exactly $\# W$.

Clearly, there is a close connection between torified varieties and the \mathbb{F}_{1}-schemes in the sense of Connes and Consani with the idea that Tits had in mind. However, the natural choice of morphism in this category is a morphism $\tilde{f}: \tilde{X} \rightarrow \tilde{Y}$ of M_{0}-schemes together with a morphism $f: X \rightarrow Y$ of schemes such that

commutes. Unfortunately, the only reductive groups G whose group law $m: G \times G \rightarrow G$ extends to a morphism $\mu: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ in this sense such that (\mathcal{G}, μ) becomes a group object in the category of \mathbb{F}_{1}-schemes are algebraic groups of the form $G \simeq \mathbb{G}_{m}^{r} \times$ (finite group). In the following section we will show how to modify the notion of morphism to realize Tits' idea.

4. Strong morphisms

Let $\mathcal{X}=\left(\tilde{X}, X, e_{X}\right)$ and $\mathcal{Y}=\left(\tilde{Y}, Y, e_{Y}\right)$ be \mathbb{F}_{1}-schemes. Then we define the rank of a point x in the underlying topological space \tilde{X} as $\operatorname{rk} x:=\operatorname{rk} \mathcal{O}_{X, x}^{\times}$, where $\mathcal{O}_{X, x}$ is the stalk
(of monoids) at x and $\mathcal{O}_{X, x}^{\times}$denotes its group of invertible elements. We define the rank of X as $\operatorname{rk} X:=\min _{x \in \tilde{X}}\{\operatorname{rk} x\}$ and we let

$$
\tilde{X}^{\mathrm{rk}}:=\coprod_{\mathrm{rk} x=\mathrm{rk} \tilde{X}} \operatorname{Spec} \mathcal{O}_{X, x}^{\times},
$$

which is a sub- M_{0}-scheme of \tilde{X}. A strong morphism $\varphi: \mathcal{X} \rightarrow \mathcal{Y}$ is a pair $\varphi=(\tilde{f}, f)$, where $\tilde{f}: \tilde{X}^{\mathrm{rk}} \rightarrow \tilde{Y}^{\mathrm{rk}}$ is a morphism of M_{0}-schemes and $f: X \rightarrow Y$ is a morphism of schemes such that

commutes.
This notion comes already close to achieving our goal. In the category of \mathbb{F}_{1}-schemes together with strong morphisms, the object $\left(\operatorname{Spec}\{0,1\}, \operatorname{Spec} \mathbb{Z}, \operatorname{id}_{\operatorname{Spec} \mathbb{Z}}\right)$ is the terminal object, which we should define as $\operatorname{Spec} \mathbb{F}_{1}$. We define

$$
\mathcal{X}\left(\mathbb{F}_{1}\right):=\operatorname{Hom}_{\text {strong }}\left(\operatorname{Spec} \mathbb{F}_{1}, \mathcal{X}\right)
$$

which equals the set of points of $\tilde{X}^{\text {rk }}$ as every strong morphism $\operatorname{Spec} \mathbb{F}_{1} \rightarrow \mathcal{X}$ is determined by the image of the unique point $\{0\}$ of $\operatorname{Spec}\{0,1\}$ in $\tilde{X}^{\text {rk }}$. We see at once that $\# \mathcal{X}\left(\mathbb{F}_{1}\right)=\# M_{k, n}$ if \mathcal{X} is a model of the Grassmannian $\operatorname{Gr}(k, n)$ as \mathbb{F}_{1}-scheme and that $\# \mathcal{G}\left(\mathbb{F}_{1}\right)=\# W$ if $\mathcal{G}=\left(\tilde{G}, G, e_{G}\right)$ is a model of a split reductive group G with Weyl group W.

Furthermore, if the Weyl group can be lifted to $N(\mathbb{Z})$ as group, i.e. if the short exact sequence of groups

$$
1 \longrightarrow T(\mathbb{Z}) \longrightarrow N(\mathbb{Z}) \longrightarrow W \longrightarrow 1
$$

splits, then from the commutativity of

we obtain a morphism $\tilde{m}: \tilde{G}^{\mathrm{rk}} \times \tilde{G}^{\mathrm{rk}} \rightarrow \tilde{G}^{\mathrm{rk}}$ of M_{0}-schemes such that $\mu=(\tilde{m}, m)$: $\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ is a strong morphism that makes \mathcal{G} into a group object.

However, $\mathrm{SL}(n)$ provides an example where the Weyl group cannot be lifted. This leads us, in the following section, to introduce a second kind of morphisms.

5. WEAK MORPHISMS

The morphism Spec $\mathcal{O}_{X, x}^{\times} \rightarrow *_{M_{0}}$ to the terminal object $*_{M_{0}}=\operatorname{Spec}\{0,1\}$ in the category of M_{0}-schemes induces a morphism

$$
\tilde{X}^{\mathrm{rk}}=\coprod_{x \in \tilde{X}^{\mathrm{rk}}} \operatorname{Spec} \mathcal{O}_{X, x}^{\times} \longrightarrow * \mathcal{X}:=\coprod_{x \in \tilde{X}^{\mathrm{rk}}} *_{M_{0}}
$$

Given $\tilde{f}: \tilde{X}^{\mathrm{rk}} \rightarrow \tilde{Y}^{\mathrm{rk}}$, there is a unique morphism $*_{\mathcal{X}} \rightarrow \mathcal{Y}_{\mathcal{Y}}$ such that

commutes. Let X^{rk} denote the image of $e_{X}: \tilde{X}^{\mathrm{rk}} \rightarrow X$. A weak morphism $\varphi: \mathcal{X} \rightarrow \mathcal{Y}$ is a pair $\varphi=(\tilde{f}, f)$, where $\tilde{f}: \tilde{X}^{\mathrm{rk}} \rightarrow \tilde{Y}^{\mathrm{rk}}$ is a morphism of M_{0}-schemes and $f: X \rightarrow Y$
is a morphism of schemes such that

commutes.
The key observation is that a weak morphism $\varphi=(\tilde{f}, f): \mathcal{X} \rightarrow \mathcal{Y}$ has a base extension $f: X \rightarrow Y$ to \mathbb{Z}, but also induces a morphism $\tilde{f}_{*}: \mathcal{X}\left(\mathbb{F}_{1}\right) \rightarrow \mathcal{Y}\left(\mathbb{F}_{1}\right)$. With this in hand, we yield the following results.

6. Algebraic groups over \mathbb{F}_{1}

The idea of Tits' paper is now realized in the following form.
Theorem 6.1. Let G be a split reductive group with group law $m: G \times G \rightarrow G$ and Weyl group W. Let $\mathcal{G}=\left(\tilde{G}, G, e_{G}\right)$ be the model of G as described before as \mathbb{F}_{1}-scheme. Then there is morphism $\tilde{m}: \tilde{G} \times \tilde{G} \rightarrow \tilde{G}$ of M_{0}-schemes such that $\mu=(\tilde{m}, m)$ is a weak morphism that makes \mathcal{G} into a group object. In particular, $\mathcal{G}\left(\mathbb{F}_{1}\right)$ inherits the structure of a group that is isomorphic to W.

We have already seen that $\mathcal{X}\left(\mathbb{F}_{1}\right)=M_{k, n}$ when \mathcal{X} is a model of $\operatorname{Gr}(n, k)$ as \mathbb{F}_{1}-scheme. Furthermore, we have the following.

Theorem 6.2. Let \mathcal{G} be a model of $G=\operatorname{GL}(n)$ as \mathbb{F}_{1}-scheme and let \mathcal{X} be a model of $X=\operatorname{Gr}(k, n)$ as \mathbb{F}_{1}-scheme. Then the group action

$$
f: \operatorname{GL}(n) \times \operatorname{Gr}(k, n) \longrightarrow \operatorname{Gr}(k, n),
$$

induced by the action on \mathbb{P}^{n-1}, can be extended to a strong morphism $\varphi: \mathcal{G} \times \mathcal{X} \rightarrow \mathcal{X}$ such that the group action

$$
\varphi\left(\mathbb{F}_{1}\right): S_{n} \times M_{k, n} \longrightarrow M_{k, n}
$$

of $\mathcal{G}\left(\mathbb{F}_{1}\right)=S_{n}$ on $\mathcal{X}\left(\mathbb{F}_{1}\right)=M_{k, n}$ is induced by the action on $M_{n}=\{1, \ldots, n\}$.

REFERENCES

[1] A. Connes, C. Consani. On the notion of geometry over \mathbb{F}_{1}. arXiv: 0809.2926 [math.AG], 2008.
[2] A. Connes, C. Consani. Schemes over \mathbb{F}_{1} and zeta functions. arXiv:0903.2024v2 [math.AG], 2009.
[3] A. Deitmar. Schemes over \mathbb{F}_{1}. Number fields and function fields-two parallel worlds, Progr. Math., vol. 239, 2005.
[4] N. Durov. A New Approach to Arakelov Geometry. arXiv: 0704.2030v1 [math.AG], 2007.
[5] S. M. J. Haran. Non-additive geometry. Compositio Math. Vol. 143 (2007) 618-688.
[6] J. López Peña, O. Lorscheid. Torified varieties and their geometries over \mathbf{F}_{1}. arXiv:0903.2173 [math.AG], 2009.
[7] Y. Manin. Lectures on zeta functions and motives (according to Deninger and Kurokawa). Astérisque No. 228 (1995), 4, 121-163.
[8] F. Marty. Relative Zariski open objects. arXiv:0712.3676 [math.AG], 2007.
[9] C. Soulé. Les variétés sur le corps à un élément. Mosc. Math. J. 4 (2004), 217-244.
[10] J. Tits. Sur les analogues algébriques des groupes semi-simples complexes. Colloque d'algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956 (1957), pp. 261-289.
[11] B. Toën and M. Vaquié. Au-dessous de Spec \mathbb{Z}. Journal of K-Theory (2008) 1-64.
Max-Planck Institut Für Mathematik, Vivatsgasse, 7. D-53111, Bonn, Germany
E-mail address: oliver@mpim-bonn.mpg.de

[^0]: *mellit@gmail.com

[^1]: Date: June 10, 2009.

[^2]: ${ }^{*}$ Talk given by the second author at Arbeitstagung 2009, MPIM, Bonn.

