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Abstract. By adapting the algebraic notion of universal connection to the

setting of unbounded KK-cycles, we show that the Kasparov product of such

cycles can be defined directly, by an algebraic formula. In order to achieve
this it is necessary to develop a framework of smooth algebras and a notion of

differentiable C∗-module. The theory of operator spaces provides the required

tools. Finally, the above mentioned KK-cycles with connection can be viewed
as the morphisms in a category whose objects are spectral triples.
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Introduction

Spectral triples [8] are a central notion in Connes’ noncommutative geometry.
The data for a spectral triple consist of a Z/2-graded C∗-algebra A, acting on a
likewise graded Hilbert space H , and a selfadjoint unbounded odd operator D in
H , with compact resolvent, such that the subalgebra

A := {a ∈ A : [D, a] ∈ B(H )},
is dense in A. The above commutator is understood to be graded. The motivating
example is the Dirac operator acting on the Hilbert space of L2-sections of a com-
pact spin manifold M . The C∗-algebra in question is then just C(M). Over the
years, many noncommutative examples of this structure have arisen, in particular
in foliation theory [11] and examples dealing with non-proper group actions.

Shortly after Connes introduction of spectral triples as cycles for K-homology
[9], Baaj and Julg [2] generalized this notion to a bivariant setting, by replacing
the Hilbert space H by a C∗-module E over a second C∗-algebra B. The notion
of unbounded operator with compact resolvent extends to C∗-modules, and the
commutator condition is left unchanged. Such an object (E , D) can be thought of
as a field of spectral triples parametrized by B. Baaj and Julg showed, moreover,
that such objects can be taken as the cycles for Kasparov’s KK-theory [19], and
the external product in KK-theory simplifies in this picture. It is given by an
algebraic formula.

The results in this paper are twofold. We show that by adapting the notion
of universal connection as defined by Cuntz and Quilen [13] to the setting of un-
bounded KK-cycles, a category of such cycles arises. More precisely, if (A,H , D)
and (B,H ′, D′) are spectral triples then a morphism from D′ to D is given by
(the unitary ismorphism class of) an unbounded bimodule (E , S,∇) with universal
connection

∇ : E1 → E1⊗̃BΩ1(B),
such that

• [∇, S] is a completely bounded operator,
• H ∼= E⊗̃BH ′,
• D = S ⊗ 1 + 1⊗∇ D′ as unbounded operators.

The operator 1⊗∇ D′ is defined by

1⊗∇ D′(e⊗ f) := (−1)∂e(e⊗D′f +∇D′(e)f),

where
∇D′ : E1 → E1⊗̃BΩ1

D′ ,
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is the connection induced by ∇ from the derivation

δ : B → B(H )

b 7→ [D′, b].

The module E1 ⊂ E is a dense B-submodule with properties analoguous to that of
a C∗-module, in particular it has the property that

E1⊗̃BH ′ = E⊗̃BH ′.

This type of module has been studied extensively by Blecher ([4], [5]) and turns out
to provide the right framework for noncommutive geometry for dense subalgebras of
C∗-algebras given by spectral triples. The Haagerup tensor product plays a crucial
role in this theory, and we base the definition of Ω1(A) on it, instead of the default
Grothendieck projective tensor product. The notion of morphism thus obtained
can be captured in a diagram:

A → (H , D) � C

↓ ‖

(E , S,∇) C

�� ‖

B → (H ′, D′) � C.
We use the notation E � B to indicate that E is a C∗-module over B. This also
emphasizes the asymmtery, and hence the direction, of the morphsims. The notion
can be extended to unbounded bimodules by considering diagrams

A → (F , D) � A′

↓ ↓

(E , S,∇) E ′

�� ��

B → (F ′, D′) � B′.

Here the C∗-algebra A′ acts on the C∗-module E ′ by compact endomorphisms. In
this setting one requires F ⊗̃A′E ′ ∼= E⊗̃BF ′, and the operator identities suggested by
the diagram. It seems appropriate to refer to a bimodule with connection (E , S,∇)
as a geometric correspondence. We show these correspondences can be composed to
yield a category. By developing a theory of smooth algebras and smooth modules,
generalizing the notion of smoothness defined in [8], we show that the composition
law can be viewed as a pullback construction on generalized Sobolev chains.
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The second result is that the composition of geometric correspondences is the un-
bounded version of the Kasparov product in KK-theory. Recall that the Kasparov
product ([19])

KKi(A,B)⊗KKj(B,C)→ KKi+j(A,C),

allows one to view the KK-groups as morphisms in a category whose objects are
all C∗-algebras. KK is a triangulated category and is universal for C∗-stable, split-
exact functors on the category of C∗-algebras [17]. The degree of a KK-cycle is
determined by the action of a Clifford algebra. In particular spectral triples can be
assigned a degree. If we denote the set of unitary isomorphism classes of geometric
correspondences the above spectral triples, which we assume to have degrees i and
j, respectively, by Cor(D,D′), then the main result of this paper states that the
bounded transform b : D 7→ D(1 +D2)−1 defines a functor

b : Cor(D,D′)→ KKi−j(A,B)

(E , S,∇) 7→ [(E , b(D))].

In particular it follows that the map Kj(B)→ Ki(A) defined by the correspondence
maps the K-homology class of (B,H ′, D′) to that of (A,H , D). The construction
of this category, and the bounded tranform functor to KK is one possible answer
to a question raised in [10], and can as such be viewed as motivic.

The structure of the paper is as follows. In the first three sections we review the
theory of C∗-modules, unbounded operators, KK-theory and operator modules.
Although most of this material is well known, we include some results that are not
stated explicitly in the literature, or emphasize the interconnection of the theories.
This should make the second part of the paper an easier read. In section 4 we
introduce a notion of smoothness for spectral triples that generalizes the definition
used by Connes [8]. For theoretical purposes this notion is easier to work with and
it allows for the definiton of a general notion of smooth C∗-module. In section 5 we
adapt the Cuntz-Quillen theory of universal connections to the operatore module
setting and obtain results on the structure of the graphs of unbounded operators
twisted by such a connection. This is used in section 6 to show that the twisting
construction is in fact the Kasparov product in disguise. That in turn leads to the
definition of the category of spectral triples described above.

Acknowledgements. My appreciation goes out to Matilde Marcolli, both as a
mathematician and as a human being. This paper was written and conceived during
my Ph.D. studies at the Max Planck Institut fuer Mathematik in Bonn, Germany,
under her supervision. I thank the Max Planck Geselschaft for the financial sup-
port of my Ph.D.studies. I also thank Florida State University and the California
Institute of Technology for their hospitality and support. Many thanks as well to
Nigel Higson, for useful and motivating correspondence and conversations. I thank
Saad Baaj for his effort in clarifying to me part of the proof of theorem 2.3.2. I
am indebted to Alain Connes for bringing lemma 1.3.4 to my attention, as well
as pointing out its usefulness in dealing with resolvent operators. Finally I thank
Javier Lopez and Nikolay Ivankov for several useful conversations we had in the
course of this project.
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1. C∗-modules

From the Gelfand-Naimark theorem we know that C∗-algebras are a natural gen-
eralization of locally compact Hausdorff topological spaces. In the same vein, the
Serre-Swan theorem tells us that finite projective modules are analogues of locally
trivial finite-dimensional complex vector bundles over a topological space.The sub-
sequent theory of C∗-modules, pioneered by Paschke and Rieffel, should be viewed
in the light of these theorems. They are like Hermitian vector bundles over a space.

1.1. C∗-modules and their endomorphism algebras. In the subsequent review
of the established theory, we will assume all C∗-algebras and Hilbert spaces to be
separable, and all modules to be countably generated. This last assumption means
that there exists a countable set of generators whose algebraic span is dense in the
module.

Definition 1.1.1. Let B be a C∗-algebra. A right C∗-B-module is a complex
vector space E which is also a right B-module, equipped with a bilinear pairing

E × E → B

(e1, e2) 7→ 〈e1, e2〉,

such that
• 〈e1, e2〉 = 〈e2, e1〉∗,
• 〈e1, e2b〉 = 〈e1, e2〉b,
• 〈e, e〉 ≥ 0 and 〈e, e〉 = 0⇔ e = 0,
• E is complete in the norm ‖e‖2 := ‖〈e, e〉‖.

We use Landsman’s notation ([22]) E � B to indicate this structure.

For two such modules, E and F , one can consider operators T : E → F . As
opposed to the case of a Hilbert space (B = C), such operators need not always
have an adjoint with respect to the inner product. As a consequence, we consider
two kinds of operator between C∗-modules.

Definition 1.1.2. Let E ,F be C∗-B-modules. The Banach algebra of continuous
B-module homomorphims from E to F is denoted by HomB(E ,F ). Furthermore
let

Hom∗B(E ,F ) := {T : E → E : ∃T ∗ : E → E , 〈Te1, e2〉 = 〈e1, T ∗e2〉}.

Elements of Hom∗B(E ,F ) are called adjointable operators.

Similarly we let EndB(E) and End∗B(E) denote the continuous, respectively ad-
jointable endomorphisms of the C∗-module E .

Proposition 1.1.3. Let T ∈ Hom∗B(E ,F ). Then End∗B(E) is a closed subalgebra of
EndB(E), and it is a C∗-algebra in the operator norm and the involution T 7→ T ∗.

The concept of unitary isomorphism of C∗-modules is the obvious one: Two
C∗-modules E and F over B are unitarily isomorphic if there exists a unitary
u ∈ Hom∗B(E ,F ). E and F are said to be merely topologically isomorphic if there
exists an invertible element S ∈ HomB(E ,F ). An isometric isomorphism is a
topological isomorphism that is isometric. The following remarkable result is due
to M.Frank.
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Theorem 1.1.4 ([15]). Two countably generated C∗-modules are unitarily ismor-
phic if and only if they are isometrically isomorphic if and only if they are topolog-
ically isomorphic.

End∗B(E) contains another canonical C∗-subalgebra. Note that the involution
on B allows for considering E as a left B-module via be := eb∗. The inner product
can be used to turn the algebraic tensor product E ⊗B E into a ∗-algebra:

e1 ⊗ e2 ◦ f1 ⊗ f2 := e1〈e2, f1〉 ⊗ f2, (e1 ⊗ e2)∗ := e2 ⊗ e1.

This algebra is denoted by FinB(E). There is an injective *-homomorphism

FinB(E)→ End∗B(E),

given by e1⊗ e2(e) := e1〈e2, e〉. The closure of FinB(E) in the operator norm is the
C∗-algebra of B-compact operators on E . It is denoted by KB(E).

A grading on a C∗-algebra B is a self-adjoint unitary γ ∈ AutB. If such a
grading is present, B decomposes as B0 ⊕ B1, where B0 is the C∗-subalgebra of
even elements, and B1 the closed subspace of odd elements. We have BiBj ⊂ Bi+j
for i, j ∈ Z/2Z. For b ∈ Bi, we denote the degree of b by ∂b ∈ Z/2Z. From now on,
we assume all C∗-algebras to be graded, possibly trivially, i.e. γ = 1.

Definition 1.1.5. A C∗-module E � B is graded if it comes equipped with a
selfadjoint unitary γ ∈ Aut∗B(E) such that

• γ(eb) = γ(e)γ(b),
• 〈γ(e1), γ(e2)〉 = γ〈e1, e2〉.

In this case E also decomposes as E0 ⊕ E1, and we have E iBj ⊂ E i+j for
i, j ∈ Z/2Z. The algebras EndB(E),End∗B(E) and KB(E) inherit a natural grading
from E by setting γφ(e) := φ(γ(e)). For e ∈ E i, we denote the degree of e by
∂e ∈ Z/2Z.From now on we assume all C∗-modules to be graded, possibly trivially.

1.2. Tensor products. For a pair of C∗-modules E � A and F � B, the vector
space tensor product E ⊗ F (over C, which will be always supressed in the nota-
tion) can be made into a C∗-module over the minimal C∗-tensor product A⊗B.
The minimal or spatial C∗-tensor product is obtained as the closure of A ⊗ B in
B(H ⊗ K ), where H and K are graded Hilbert spaces that carry faithful graded
representations of A and B respectively. In order to make A⊗B into a graded
algebra, the multiplication law is defined as

(1.1) (a1 ⊗ b1)(a2 ⊗ b2) = (−1)∂b1∂a2a1a2 ⊗ b1b2.

The completion of E ⊗ F in the inner product

〈e1 ⊗ f1, e2 ⊗ f2〉 := 〈e1, e2〉 ⊗ 〈f1, f2〉,

is a C∗-module denoted by E⊗F . It inherits a grading by setting γ := γE ⊗ γF .
The graded module so obtained is the exterior tensor product of E and F . The

graded tensor product of maps φ ∈ End∗A(E) and ψ ∈ End∗B(F ) is defined by

φ⊗ ψ(e⊗ f) := (−1)∂(e)∂(ψ)φ(e)⊗ ψ(f),

gives a graded inclusion

End∗A(E)⊗End∗B(F )→ End∗A⊗B(E⊗F ),
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which restricts to an isomorphism

KA(E)⊗KB(F )→ KA⊗B(E⊗F ).

A *-homomorphism A→ End∗B(E) is said to be essential if

AE := {
n∑
i=0

aiei : ai ∈ A, ei ∈ E , n ∈ N},

is dense in E . If a graded essential *-homomorphism A → End∗B(F ) is given, one
can complete the algebraic tensor product E ⊗A F to a C∗-module E⊗̃AF over B.
The norm in which to complete comes from the B-valued inner product

(1.2) 〈e1 ⊗ f1, e2 ⊗ f2〉 := 〈e1, 〈f1, f2〉e2〉.
There is a *-homomorphism

End∗A(E) → End∗B(E⊗̃AF )
T 7→ T ⊗ 1,

which restricts to a homomorphism KA(E) → KB(E⊗̃AF ). The standard module
HB absorbs any countably generated C∗-module. The direct sum E ⊕ F of C∗-B-
modules becomes a C∗-module in the inner product

〈(e1, f1), (e2, f2)〉 := 〈e1, e2〉+ 〈f1, f2〉.

Theorem 1.2.1 (Kasparov [19]). Let E � B be a countably generated graded
C∗-module. Then there exists a graded unitary isomorphism E ⊕ HB

∼−→ HB.

1.3. Unbounded operators. Similar to the Hilbert space setting, there is a notion
of unbounded operator on a C∗-module. Many of the already subtle issues in
the theory of unbounded operators should be handled with even more care. This
is mostly due to the fact that closed submodules of a C∗-module need not be
orthogonally complemented. We refer to [1], [21] and [27] for detailed expositions
of this theory.

Definition 1.3.1 ([2]). Let E ,F be C∗-B-modules. A densely defined closed op-
erator D : DomD → F is called regular if

• D∗ is densely defined in F
• 1 +D∗D has dense range.

Such an operator is automatically B-linear, and DomD is a B-submodule of E .
There are two operators, r(D), b(D) ∈ Hom∗B(E ,F ) canonically associated with a
regular operator D. They are the resolvent of D

(1.3) r(D) := (1 +D∗D)−
1
2 ,

and the bounded transform

(1.4) b(D) := D(1 +D∗D)−
1
2 .

Proposition 1.3.2. If D : DomD → F is regular, then D∗D is selfadjoint and
regular. Moreover, DomD∗D is a core for D and Imr(D) = DomD.

It follows that D is completely determined by b(D), as r(D)2 = 1− b(D)∗b(D).
Due to this fact, selfadjoint regular regular operators share many properties with
selfdajoint closed operators on Hilbert space. In particular, they admit a functional
calculus.
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Theorem 1.3.3 ([1],[21]). Let E � B be a C∗-module, and D a selfadjoint regular
operator in E. There is a *-homomorphism f 7→ f(D), from C(R) into the regular
operators on E, such that (x 7→ x) 7→ D and (x 7→ x(1+x2)−

1
2 ) 7→ b(D). Moreover,

it restricts to a *-homomorphism C0(R)→ End∗B(E).

This theorem allows us to derive a useful formula for the resolvent of D. We
include it here for later reference.

Corollary 1.3.4. Let D be a selfadjoint regular operator on a C∗-module E. Then
the equality

r(D)2 = (1 +D2)−1 =
∫ ∞

0

e−x(1+D
2)dx,

holds in End∗B(E).

Proof. We have to check convergence of the integral at x = 0 and for x → ∞. To
this end, let s ≤ t and compute:

‖
∫ t

s

e−x(1+D
2)dx‖ ≤

∫ t

s

‖e−x(1+D
2)‖dx

≤
∫ t

s

sup
y∈R
|e−x(1+y

2)|dx

=
∫ t

s

e−xdx

= e−t − e−s.

Hence the integral converges for both t→ 0 and s→∞. �

Recall that a submodule F ⊂ E is complemented if E ∼= F ⊕ F ⊥, where

F ⊥ := {e ∈ E : ∀f ∈ F 〈e, f〉 = 0}.

Contrary to the Hilbert space case, closed submodules of a C∗-module need not be
complemented.

The graph of D is the closed submodule

G(D) := {(e,De) : e ∈ Dom(D)} ⊂ E ⊕ F .

There is a canonical unitary v ∈ HomB(E ⊕ F ,F ⊕ E), defined by v(e, f) :=
(−f, e).Note that G(D) and vG(D∗) are orthogonal submodules of E ⊕ F . The
following algebraic characterization of regularity is due to Woronowicz .

Theorem 1.3.5 ([27]). A densely defined operator D : E → F is regular if and
only if G(D)⊕ vG(D∗) ∼= E ⊕ F .

The isomorphism is given by coordinatewise addition. Moreover, the operator

(1.5) pD :=
(

r(D)2 Dr(D)2

Dr(D)2 D2r(D)2

)
satisfies p2

D = p∗D = pD, i.e. it is a projection, and pD(E⊕F ) = G(D). G(D), which
is naturally in bijection with Dom(D), inherits the structure C∗-module from E⊕F ,
and hence so does DomD. We denote its inner product by 〈·, ·〉1. Since D commutes
with r(D), D maps r(D)G(D) into G(D). We denote this operator by D1.
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Proposition 1.3.6. Let D : DomD → E be a selfdajoint regular operator. Then
D1 : r(D)G(D)→ G(D) is a selfadjoint regular operator.

Proof. From proposition 1.3.2 it follows that

r(D)G(D) = r(D)2E = DomD2.

D1 is closed as an operator in G(D) for if r(D)2en → r(D)2e and Dr(D)2en → e′

in the topology of G(D), then it follows immediatley that

e′ = D(Dr(D)2e) = D2r(D)2e.

It is straightforward to check that D1 is symmetric for the inner product of G(D).
Hence it is regular, because (1 + D2)r(D)4E = r(D)2E . To prove selfadjointness,
suppose y ∈ DomD is such that there exists z ∈ DomD such that for all x ∈ r(D)2E
〈D1x, y〉1 = 〈x, z〉1. Then z = Dy, because

〈Dx, y〉1 = 〈Dx, y〉+ 〈D2x,Dy〉
= 〈Dr(D)2e, y〉+ 〈D2r(D)2e,Dy〉
= 〈r(D)2e,Dy〉+ 〈D2r(D)2e,Dy〉
= 〈e,Dy〉.

A similar computation shows that 〈x, z〉1 = 〈e, z〉. Since r(D)2 is injective this
holds for all e ∈ E , and hence z = Dy. Therefore

DomD∗1 = {y ∈ DomD : Dy ∈ DomD} = DomD2 = r(D)2E = DomD1,

so D1 is selfadjoint. �

Corollary 1.3.7. A selfadjoint regular operator D : DomD → E induces a mor-
phism of inverse systems of C∗-modules:
· · · - Ei+1

- Ei - Ei−1
- · · · - E1

- E

· · · - Ei+1
-

D
i+

1

-

Ei -

D
i

-

Ei−1
-

D
i−

1

-

· · · -

D
i−

2

-

E1
-

D
1

-

E

D

-

Proof. Set Ei = G(Di−1). Then the maps Ei → Ei−1 are just projection on the first
coordinate, whereas the maps Di : Ei+1 → Ei are the projections on the second
coordinates. These maps are adjointable,and we have

D∗i (ei) = (Dir(Di)2ei, D2
i r(Di)2ei), φ∗i (ei) = (r(Di)2, Dir(Di)2).

These are exactly the components of the Woronowicz projection 1.5. �

We will refer to this inverse system as the Sobolev chain of D.

2. KK-theory

Kasparov’s bivariant K-theory KK [19] has become a central tool in noncom-
mutative geometry since its creation. It is a bifunctor on pairs of C∗-algebras,
associating to (A,B) a Z/2Z-graded group KK∗(A,B). It unifies K-theory and
K-homology in the sense that

KK∗(C, B) ∼= K∗(B) and KK∗(A,C) ∼= K∗(A).
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Much of its usefulness comes from the existence of internal and external product
structures, by which KK-elements induce homomorphisms between K-theory and
K-homology groups. In Kasparov’s original approach, the definition and computa-
tion of the products is very complicated. In order to simplify the external product,
Baaj and Julg [2] introduced another model for KK, in which the external product
is given by a simple algebraic formula. The price one has to pay is working with
unbounded operators. We will describe both models, and their relation, together
with some results on the structure of KK as a category.

2.1. C∗-correspondences. In view of our aim of constrcuting a category of spec-
tral triples, we now describe a natural bimodule category of C∗-algebras. The
Kasparov bimodules used to define KK-theory in the next two sections, especially
in the unbounded case, should be viewed as refinements of the bimodules described
here.

Noncommutative rings behave very differently from commutative rings in many
ways. In particular, a given noncommutative ring can have very few ideals, or none
at all. Mn(C) for instance, is a simple algebra, and it is a not at all pathological
object.The ordinary notion of homomorphism does not give an adequate categorical
setting for noncommutative rings, because of the above mentioned lack of ideals.
In pure algebra, a more flexible notion of morphism is given by bimodules, whose
composition is the module tensor product. We now describe a category of such
correspondences for C∗-algebras, taking into account the topology of these objects.
The resulting category is slightly different from the usual category C∗, in which
morphisms are essential ∗-homomorphisms.

Definition 2.1.1. Let A,B be C∗-algebras. A C∗-correspondence from A to B
consists of a C∗-B-module E together with an essential ∗-homomorphism π : A→
End∗B(E), written A � E � B.
Two such correspondences are called isomorphic when there exists a unitary in
Hom∗B(E ,F ) intertwining the A-representations.

We can compose correspondences A � E � B and B � F � C via the
internal tensor product. Denote by CorC∗(A,B) the set of isomorphism classes of
correspondences from A to B. It is straightforward to check that the correpondences
A � A � A are units for the composition operation modulo unitary equivalence.

Proposition 2.1.2. Composition of correspondences as described above is asso-
ciative on isomorphism classes of correspondences. Therefore the sets CorC∗(A,B)
are the morphism sets of a category CorC∗ , whose objects are all C∗-algebras.

The proof of this result is straightforward, as unitary equivalence provides enough
freedom for associativity and identity to hold. There is a functor C∗ → CorC∗ , which
is the identity on objects. To a *-homomorphism π ∈ C∗(A,B) it associates the
correspondence A � B � B ∈ CorC∗(A,B).

Definition 2.1.3. Let A,B be C∗-algebras. A and B are said to be strongly Morita
equivalent if there exists a correspondence A � E � B such that π : A→ End∗B(E)
is an isomorphism onto KB(E).

Strong Morita equivalence is amongst the most important equivalence relations
for C∗-algebras. Two commutative C∗-algebras are strongly Morita equivalent if
and only if they are isomorphic. As such the relation can be viewed as an extension
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(via the Gelfand-Naimark theorem) of the notion of homeomorphism for locally
compact Hausdorff spaces. The following result supports that view.

Theorem 2.1.4. Two C∗-algebras A,B are isomorphic in CorC∗ if and only if they
are strongly Morita equivalent.

The reader can consult [22] for a proof. KK-theory arises by equipping C∗-
correspondences with some extra structure in the form of a generalized Fredholm
operator, and taking homotopy classes of such correspondences. It yields a category
with remarkable properties. The subsequent sections are devoted to the bounded
and unbounded descriptions of KK-theory.

2.2. The bounded picture. The main idea behind Kasparov’s approach to K-
homology and KK-theory is that of a family of abstract elliptic operators. This was
an idea pioneered by Atiyah, in his construction of K-homology for spaces and the
family index theorem. We will consider bimodules A→ E � B, without assuming
the action of A to be essential, nor the inner product to be full.

Definition 2.2.1. For p ∈ N, the complex Clifford algebra Cp is the complex unital
graded C∗-algebra generated by symbols εj , j = 1, . . . , n, of degree 1, satisfying the
following relations:

ε∗j = −εj , ε2j = −1, [εi, εj ] = 0.
Here we assume i 6= j, and the commutator is graded.

The algebra Cp is generated by the 2n monomials εj1 . . . εjk , 0 ≤ k ≤ n and
j1 < · · · < jk. Considering these monomials as an orthonormal basis, the left
regular representation of Cp on itself equips it with a C∗-norm. It is a well known
fact that Cp+2

∼= M2(Cp). This is sometimes referred to as formal Bott periodicity.

Definition 2.2.2. Let A → E � B be a graded bimodule and F ∈ End∗B(E) an
odd operator. (E , F ) is a Kasparov (A,B)-bimodule if, for all a ∈ A,

• [F, a], a(F 2 − 1), a(F − F ∗) ∈ KB(E).

We denote by Ej(A,B) the set of Kasparov modules for (A,B⊗̃Cj) modulo
unitary equivalence. Unitary equivalence is defined by the existence of a unitary
intertwining the action of the algebras and the operators. An ungraded C∗-module
E � B equipped with a left action of A and an operator F satisfying the relations
from definition 2.2.2 defines an element [(E ′, F )] ∈ E1(A,B). This is done by setting

(2.6) E ′ := E ⊕ E , γ :=
(

1 0
0 −1

)
, F ′ :=

(
0 F
F 0

)
, ε1 7→

(
0 i
i 0

)
.

Here ε1 is the generator of the Clifford algebra C1. Ungraded modules of this kind
are therefore referred to as odd Kasparov modules.

The set of degenerate elements consists of bimodules for which

∀a ∈ A : [F, a] = a(F 2 − 1) = a(F − F ∗) = 0.

Denote by ei : C[0, 1]⊗B → B the evalution map at i ∈ [0, 1]. Two Kasparov
(A,B)-bimodules (Ei, Fi) ∈ Ej(A,B), i = 0, 1 are homotopic if there exists a Kas-
parov (A,C[0, 1]⊗B)-module (E , F ) ∈ Ej(A,C[0, 1]⊗B) for which (E⊗ei B,F ⊗1)
is unitarily equivalent to (Ei, Fi), i = 0, 1. It is an equivalence relation, denoted ∼.
Define

KKj(A,B) := Ej(A,B)/ ∼ .



12 BRAM MESLAND

KKj is a bifunctor, contravariant in A, covariant in B, taking values in abelian
groups. It is not hard to show that KK∗(C, A) and KK∗(A,C) are naturally iso-
morphic to the K-theory and K-homology of A, respectively. Moreover, Kasparov
proved the following deep theorem.

Theorem 2.2.3 ([19]). For any C∗-algebras A,B,C there exists an associative
bilinear pairing

KKi(A,B)⊗Z KKj(B,C) ⊗B−−→ KKi+j(A,C).

Therefore, the groups KK∗(A,B) are the morphism sets of a category KK whose
objects are all C∗-algebras.

The standard module An, viewed as an (Mn(A), A)-bimodule, defines an in-
vertible element for the Kasparov product. Hence, in both variables, the KK-
groups of A and Mn(A) are isomorphic. In fact, the KK-groups of A and K⊗A
are naturally isomorphic, which is referred to as the stability property of KK-
theory. Combining this with formal Bott periodicity yields a natural isomorphism
KKi(A,B) ∼−→ KKi+2(A,B). It follows that KK-theory can be defined using just
E0 and E1. Moreover KK1 can be defined using just odd (that is, ungraded) Kas-
parov modules. Because of this result we will refer to elements of E0(A,B) as even
Kasparov modules. There also is a notion of external product in KK-theory.

Theorem 2.2.4 ([19]). For any C∗-algebras A,B,C,D there exists an associative
bilinear pairing

KKi(A,C)⊗Z KKj(B,D) ⊗−→ KKi+j(A⊗B,C⊗D).

The external product makes KK into a symmetric monoidal category

The category KK has more remarkable properties. Although we will not use
them in this paper, we do believe they deserve a brief mention. It was shown by
Cuntz and Higson ([12],[17]) that the category KK is universal in the sense that any
split exact stable functor from the category of C∗-algebras to, say, that of abelian
groups, factors through the category KK. Altough it fails to be abelian, KK is a
triangulated category. This allows for the development of homological algebra in it,
which has special interest in relation to the Baum-Connes conjecture, an approach
pursued by Nest and Meyer [24].

2.3. The unbounded picture. One can define KK-theory using unbounded op-
eratros on C∗-modules. As the bounded definition corresponds to abstract order
zero elliptic pseudodifferential operators, the unbounded version corrseponds to
order one operators.

Definition 2.3.1 ([2]). Let A→ E � B be a graded bimodule and D : DomD → E
an odd regular operator. (E , D) is an unbounded (A,B)-bimodule if, for all a ∈ A,
a dense subalgebra of A

• [D, a], extends to an adjointable operator in End∗B(E)
• ar(D) ∈ KB(E).

Denote the set of unbounded bimodules for (A,B⊗̃Ci) modulo unitary equiv-
alence by Ψi(A,B). An ungraded module equipped with an operator satisfying
the relations from definition 2.3.1 is called an odd unbounded (A,B)-bimodule. As
in the bounded case, they define elements in Ψ1(A,B), by replacing F with D in
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2.6. As in the bounded case, we will refer to elements of Ψ0 as even unbounded
bimodules. In [2] it is shown that (E , b(D)) is a Kasparov bimodule, and that
every element in KK∗(A,B) can be represented by an unbounded bimodule. The
motivation for introducing unbounded modules is the following result.

Theorem 2.3.2 ([2]). Let (Ei, Di) be unbounded bimodules for (Ai, Bi), i = 1, 2.
The operator

D1 ⊗ 1 + 1⊗D2 : DomD1 ⊗DomD2 → E ⊗ F ,

extends to a selfadjoint regular operator with compact resolvent. Moreover, the
diagram

Ψi(A1, B1)×Ψj(A2, B2) - Ψi+j(A1⊗A2, B1⊗B2)

KKi(A1, B1)×KKj(A2, B2)

b

? ⊗- KKi+j(A1⊗A2, B1⊗B2)

b

?

commutes.

Consequently, we can define the external product in this way, using unbounded
modules, and this is what we will do. Note that lemma 1.3.4 can be used to show
that the resolvent of the operator D1 ⊗ 1 + 1 ⊗ D2 is compact. Indeed, writing
s = D1⊗̃1 and t = 1⊗̃D2, we have [s, t] = 0, i.e. s and t anticommute, and hence

Dom(s+ t) = Doms ∩Domt, 1 + (s+ t)2 = 1 + s2 + t2, [s2, t2] = 0.

Now

(2 + s2 + t2)−1 =
∫ ∞

0

e−x(2+s
2+t2)dx =

∫ ∞
0

e−x(1+s
2)e−x(1+t

2)dx,

and e−x(1+s
2)e−x(1+t

2) = e−x(1+D
2
1) ⊗ e−x(1+D

2
2) is compact because both the

e−x(1+D
2
i ) are. Hence by lemma 1.3.4, (2 + s2 + t2)−1 is a limit of compact op-

erators, which is compact.

In [20], Kucerovsky gives sufficient conditions for an unbounded module (E⊗̃AF , D)
to be the internal product of (E , S) and (F , T ). For each e ∈ E , we have an operator

Te : F → E⊗̃AF

f 7→ e⊗ f.

Its adjoint is given by T ∗e (e′ ⊗ f) = 〈e, e′〉f . We also need the concept of semi-
boundedness which carries over from the Hilbert space setting.

Definition 2.3.3 ([20]). Let D be a symmetric operator in a C∗-module E � B.
D is semi-bounded below if there exists a real number κ such that 〈De, e〉 ≥ κ〈e, e〉.
If κ ≥ 0, D is form-positive.

It is immediate that D is semibounded below if and only if it is the sum of an
operator in End∗B(E) and a form positive operator. Kucerovsky’s result now reads
as follows.

Theorem 2.3.4 ([20]). Let (E⊗̃AF , D) ∈ Ψ0(A,C). Supppose that (E , S) ∈
Ψ0(A,B) and (F , T ) ∈ Ψ0(B,C) are such that



14 BRAM MESLAND

• For e in some dense subset of AE, the operator[(
D 0
0 T

)
,

(
0 Te
T ∗e 0

)]
is bounded on Dom(D ⊕ T );
• DomD ⊂ DomS⊗̃1 ;
• 〈Sx,Dx〉+ 〈Dx, Sx〉 ≥ κ〈x, x〉 for all x in the domain.

Then (E⊗̃AF , D) ∈ Ψ0(A,C) represents the internal Kasparov product of (E , S) ∈
Ψ0(A,B) and (F , T ) ∈ Ψ0(B,C).

This theorem only gives sufficient conditions, and tells us very little about the
actual form of the product of two given cycles. By equipping unbounded bimodules
with some extra differential structure, we will obtain an algebriac description of
the product cycle. To this end, we need to extend our scope from C∗-modules to a
class of similar objects, defined over a larger class of topological algebras.

3. Operator modules

When dealing with unbounded operators, it becomes necessary to deal with dense
subalgebras of C∗-algebras and modules over these. The theory of C∗-modules,
which is the basis of Kasparov’s approach to bivariant K-theory for C∗-algebras,
needs to be extended in an appropriate way. The framework of operator spaces and
the Haagerup tensor product provides with a category of modules over operator
algebras which is sufficiently rich to accomodate for the phenomana occurring in
the Baaj-Julg picture of KK-theory.

3.1. Operator spaces. We will frequently deal with algebras and modules that
are not C∗, and with operators that are not adjointable. In this section we discuss
the basic notions of the theory of operator spaces, in which all of our examples
will fit. The intrinsic approach presented here was taken from [16]. In the classic
literature, operator spaces are described using matrix norms. These are globalized
to yield the approach involving compact operators given here.

Definition 3.1.1. An operator space is a linear space X together with a norm ‖ · ‖
on the algebraic tensor product K⊗X such that

• For all b ∈ B(H ) and v ∈ K⊗X, max{‖bv‖, ‖vb‖} ≤ ‖b‖‖v‖,
• For all orthogonal projections p, q ∈ K and v, w ∈ K ⊗X, ‖pxp + qyq‖ =

max{‖pxp‖, ‖qyq‖},
• For each rank one projection p ∈ K, X is complete in the norm ‖x‖ :=
‖p⊗ x‖.

A linear map φ : X → Y between operator spaces is called completely bounded,
resp. completely contractive, resp. completely isometric if the induced map

1⊗ φ : K⊗X → K⊗ Y,

is bounded, resp. contractive, resp isometric.

The following theorem is very important in identifying operator spaces in prac-
tice.

Theorem 3.1.2 ([25]). For every operator space X there exists a Hilbert space H
and and a complete isometry φ : X → B(H ).
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Hence an alternative definition of an operator space is that of a complete normed
space X that is isometrically isomorphic to a closed subspace of a C∗-algebra. The
(unique) C∗-tensor norm on K ⊗X would then equip X with the structure of an
operator space in the sense of definition 3.1.1.

Example 3.1.3. Any C∗-module E over a C∗-algebra B is an operator space, as
it is isometric to K(E , B), which is a closed subspace of K(B ⊕ E).

Example 3.1.4. Let (E , D) be an unbounded cycle for (A,B) and δ : A →
End∗B(E) the closed densely defined derivation a 7→ [D, a]. Then A can be made
into an operator space via

π : A →M2(End∗B(E))

a 7→
(

a 0
δ(a) a

)
.

Note that, actually A ⊂ EndB(G(D)), but that π is not *-homomorphism. This
example is tantamount in our discussion of the Kasparov product, and it is also the
main example of a non-selfadjoint operator algebra.

Definition 3.1.5. For operator spaces X,Y, Z, a bilinear map φ : X × Y → Z is
called completely bounded, resp. completely contractive, resp. completely isometric
if the operator

K⊗X ×K⊗ Y → K⊗ Z
(m⊗ x, n⊗ y) 7→ (mn⊗ φ(x, y)),(3.7)

is bounded, resp. contractive, resp. isometric.
An operator algebra is an operator space A with a completely contractive multi-
plication m : A × A → A. An operator module over an operator algebra A is an
operator space X with a completely contractive A-module structure X ×A → X.

Of course, C∗-algebras and -modules are examples that fit this definition. The
module G(D) ⊂ E ⊕ E from example 3.1.4 is a (left)-operator module over A.
The natural choice of morphisms between operator modules are the completely
bounded module maps. If E and F are operator modules over an operator algebra
A, we denote the set of these maps by Homc

A(E,F ).

3.2. The Haagerup tensor product. For operator spaces X and Y , one can de-
fine their spatial tensor product X ⊗ Y as the norm closure of the algebraic tensor
product in the spatial tensor product of some containing C∗-algebras. This gives
rise to an exterior tensor product of operator modules.

The internal tensor product of C∗-modules is an example of the Haagerup ten-
sor product for operator spaces. This tensor product will be extremely important
in what follows.

Definition 3.2.1. Let X,Y be operator spaces. The Haagerup norm on K⊗X⊗Y
is defined by

‖u‖h := inf{
n∑
i=0

‖xi‖‖yi‖ : u = m(
∑

xi ⊗ yi), xi ∈ K⊗X, yi ∈ K⊗ Y }.

Here m : K⊗X ⊗K⊗ Y → K⊗X ⊗ Y is the linearization of the map 3.7.
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Theorem 3.2.2. The norm on X ⊗ Y induced by the Haagerup norm is given by

‖u‖h = inf{‖x‖‖y‖ : x ∈ Xn+1, y ∈ Y n+1, u =
n∑
i=0

xi ⊗ yi},

and the completion of X ⊗ Y in this norm is an operator space.

This completion is denoted X⊗̃Y and is called the Haagerup tensor product of
X and Y . By construction, the multiplication in operator algebra A induces a
continuous map A⊗̃A → A. A similar statement holds for operator modules.

Now suppose M is a right operator A-module, and N a left operator A-module.
Denote by IA ⊂M⊗̃N the closure of the linear span of the expressions (ma⊗ n−
m⊗ an). The module Haagerup tensor product of M and N over A is

M⊗̃AN := M⊗̃N/IA,
equipped with the quotient norm, in which it is obviously complete. Moreover, if M
also carries a left B operator module structure, and N a right C operator module
structure, then M⊗̃AN is an operator B, C-bimodule. Graded operator algebras
and -modules can be defined by the same conventions as in definition 1.1.5 and the
discussion preceding it. If the modules and operator algebras are graded, so are
the Haagerup tensor products, again in the same way as in the C∗-case, as in the
discussion around equation 1.1. The following theorem resolves the ambiguity in
the notation for the interior tensor product of C∗-modules and the Haagerup tensor
product of operator spaces.

Theorem 3.2.3 ([5]). Let E ,F be C∗-modules over the C∗-algebras A and B re-
spectively, and π : A → End∗B(F ) a nondegenrate *-homomorphism. Then the
interior tensor product and the Haagerup tensor product of E and F are completely
isometrically isomorphic.

This result provides us with a convenient description of algebras of compact
operators on C∗-modules. The dual module of a C∗-module E is equal to E as a
linear space, but we equip it with a left C∗-A-module structure using the involution:

ae := ea∗, (e1, e2) 7→ 〈e1, e2〉∗.

Theorem 3.2.4 ([5]). There is a complete isometric isomorphism

KA(E⊗̃F ) ∼−→ E⊗̃AKB(F )⊗̃AE∗.

In particular KA(E) ∼= E⊗̃AE∗.

The notion of direct sum of operator modules turns out to be a problematic issue
[6]. In the C∗-module case, the existence of a canonical inner product on direct
sums prevents us from running into problems. This is one of the reasons to work
with a more restricted class of modules, resembling C∗-modules in many ways.

3.3. Approximate projectivity of C∗-modules. The work of Blecher [5] pro-
vides a metric description of C∗-modules which is useful in extending the theory
to non C∗-algebras. We will discuss some of his work on these extensions in the
next section. The motivating observation for this generalization is the characteriza-
tion of C∗-modules as ”approximately projective” modules, which we now describe.

For a countably generated C∗-A-module E , the algebra KA(E) has a countable
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approximate unit {uα}α∈N consisting of elements in FinA(E). Replacing uα by
u∗αuα if necessary, we may assume

uα =
nα∑
i=1

xαi ⊗ xαi .

For each nα we get operators φα ∈ KA(E , Anα), defined by

(3.8) φα : e 7→
nα∑
i=1

ei〈xαi , e〉,

where ei denotes the standard basis of Anα .We have

(3.9) φ∗α : x 7→
nα∑
i=1

xαi 〈ei, x〉,

and hence φ∗α ◦φα → idE pointwise. This structure determines the E completely as
a C∗-module.

Theorem 3.3.1 ([5]). Let A be a C∗-algebra and E be a Banach, (operator) space
which is also a right (operator) module over A. E is (completely) isometrically
isomorphic to a countably generated C∗-module if and only if there exists a sequence
{nα} of positive integers and contractive module maps

φα : E → Anα , ψα : Anα → E ,

such that ψα ◦ φα converges pointwise to the identity on E. In this case the inner
product on E is given by

〈e, f〉 = lim
α→∞

〈φα(e), φα(f)〉.

For this reason we can think of C∗-modules as approximately finitely generated
projective modules. Also note that the maps φα, ψα are by no means unique, and
that different maps can thus give rise to the same inner product on E .

3.4. Rigged modules. Blecher’s characterization of C∗-modules as approximately
finitely generated projective modules allows for a generalization of C∗-modules
to non-selfadjoint operator algebras. The resulting theory is only slightly more
involved than that for the C∗-case, and is exposed in [4]. The following definition
is modelled on theorem3.3.1.

Definition 3.4.1. Let A be an operator algebra and E a right A-operator module.
E is an A-rigged module if there exists a sequence of positive integers {nα} and
completely contractive A-module maps

ψα : E → Anα , φα : Anα → E,

such that
• ψα and ψα are completely contractive ;
• ψα ◦ φα → idE strongly on E ;
• ψα is A-essential ;
• ∀β : φβ ◦ ψα ◦ φα → φβ uniformly.

Subsequently define the dual rigged module of E by

E∗ := {e∗ ∈ Homc
A(E,A) : e∗ ◦ ψα ◦ φα → e∗},

and the algebra of A-compact operators as KA(E) := E⊗̃AE∗.



18 BRAM MESLAND

It is immediate from this definition that E∗ = KA(E, ,A). A rigged module
can be viewed as the direct limit of the spaces Anα , by letting the transition maps
tαβ : Anβ → Anα be defined as tαβ := ψα ◦ φβ . As such it has the following uni-
versal property: If completely contractive module maps gα : Anα → W into some
operator space are given, satisfying gαtαβ → gβ , then there is a unique completely
contractive morphism g : E →W .

Emphasizing both the absence of a genuine inner product and the similarites
with C∗-modules, Blecher choose to revive Rieffel’s terminology of rigged modules.
Instead of an inner product, we do have at our disposal the duality pairing E×E∗ →
A. By abuse of notation, we will denote this pairing by (e, e∗) 7→ 〈e, e∗〉. Rigged
modules can be characterized using this pairing, yielding a description that is closer
to the direct definition of a C∗-module.

Theorem 3.4.2. Suppose A,B are operator algebras, E a (B,A)-operator bimodule
and Ẽ an (A,B)-operator bimodule. Suppose there exist completely contractive pair-
ings E × Ẽ → B and Ẽ × E → A, such that 〈e, ẽ〉f = e〈ẽ, f〉 and 〈ẽ, e〉f̃ = ẽ〈e, f̃〉.
If B has an approximate identity of the form

uβ =
nβ∑
i=0

〈xβi , x̃
β
i 〉, ‖(xβi )‖ ≤ 1, ‖(x̃βi )‖ ≤ 1.

Then E is a right A-rigged module, B ∼= KA(E), and Ẽ ∼= E∗. Moreover every
right A-rigged module arises in this way.

This description will be the one useful for us in dealing with unbounded bivariant
K-theory. There is an analogue of adjointable operators on rigged modules. Their
defintion is straightforward.

Definition 3.4.3. A completely bounded operator T : E → F between rigged
modules is called adjointable if there exists an operator T ∗ : F ∗ → E∗ such that

∀e ∈ E, f∗ ∈ F ∗ : 〈Te, f∗〉 = 〈e, T ∗f∗〉.

The space of adjointable operators from E to F is denoted End∗A(E,F ).

The compact and adjointable operators satisfy the usual relation End∗A(E) =
M (KA(E)), where M denotes the multiplier algebra. The direct sum of rigged
modules is canonically defined. If (E,ψEα , φ

E
α ) and (F,ψFα , φ

F
α ) are rigged modules,

(E ⊕ F,ψEα ⊕ ψFα , φEα ⊕ φEα ) equips E ⊕ F with the structure of a rigged module.
For the constrcution of general infinite direct sums, see [4]. As can be expected
from theorem 3.2.3, the Haagerup tensor product of rigged modules behaves like
the interior tensor product of C∗-modules.

Theorem 3.4.4. Let E be a right A-rigged module and F an (A,B) rigged bimod-
ule. Then E⊗̃AF is a B-rigged module and KB(E⊗̃AF ) ∼= E⊗̃AKB(F )⊗̃E∗.

If B = B happens to be a C∗-algebra, then E⊗̃AF is a C∗-module. The rigged
structure on E⊗̃AF can be implemented by the approximate unit

nα,nβ∑
i,j=1

eαi ⊗ f
β
j ⊗ f

β
j ⊗ ẽ

α
i ,
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where
nα∑
i=1

eαi ⊗ ẽαi and
nβ∑
j=1

fβj ⊗ f
β
j ,

are approximate units for KA(E) and KB(F ), respectively. The inner product on
E⊗̃AF is then given by

〈e⊗ f, e′ ⊗ f ′〉 : = lim
α,β

nα,nβ∑
i,j=1

〈〈ẽαi , e〉f, f
β
j 〉〈f

β
j , 〈ẽ

α
i , e〉f〉

= lim
α

nα∑
i=1

〈〈ẽαi , e〉f, 〈ẽαi , e〉f〉.(3.10)

In this way one constructs C∗-modules from noninvolutive representations A →
End∗B(F ).

Example 3.4.5 (The standard module). Let H be an infinite dimensional separable
Hilbert space and A an operator algebra. Then the HA := H ⊗̃A is the standard
rigged module over A.

The Haagerup tensor product can be used to define a notion of projective rigged
module, which in the finitely generated case coincides with the usual algebraic
notion of projectivity. This notion is different from Connes topological projective
modules [9], but the definition is completely analoguous.

Definition 3.4.6. Let E be a rigged module over an operator algebra A. E is
a projective rigged module if there exists a Hilbert space space H such that E is
completely isometrically isomorphic to a direct summand in H ⊗̃A.

Such an E has the usual properties of a projective object in a category. We will
state one of them.

Proposition 3.4.7. An A-rigged module P is projective if and only if any diagram
of completely bounded A-module maps

P

M
ψ - N

φ

?

such that ψ admits a completely bounded linear splitting, can be completed to a
diagram

P

M
ψ -

�

χ

N.

φ

?

Proof. ⇒ Let Q be such that P ⊕Q ∼= H ⊗̃A and replace φ, ψ by φ⊕ id : P ⊕Q→
M ⊕Q and ψ⊕ id : M ⊕Q→ N ⊕Q. Then the hypotheses on these maps are still
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valid, and we can define
HA →M ⊕Q
eα 7→ ψ−1 ◦ φ(eα),

where eα is a basis for H . This fills in the diagram.
⇐ If any such diagram can be filled in, we chose N = P and M = H ⊗̃A, where
H = `2(X) , where X is a generating set for P . �

4. Smoothness

There are several definitions of smoothness to be found in the literature. We
adopt the philosophy that a smooth structure on a C∗-algebra should come from
a spectral triple (or, equivalently, from an unbounded bimodule). The most im-
portant feature of a smooth subalgebra is stability under holomorphic functional
calculus, implying K-equivalence. We will show our smooth algebras satisfy this
property. Moreover, we give sufficient conditions for an unbounded module to define
a smooth structure. Subsequently, we turn to the notion of a smooth C∗-module
over a C∗-algebra equipped with a smooth structure. In this and subsequent sec-
tions, unless otherwise stated, all operator algebras will be assumed to have a unit.

4.1. Smooth algebras. The following notion of smoothness will be used. It is
slightly more general than Connes’ notion of smoothness for spectral triples.

Definition 4.1.1. Let E be an unbounded (A,B)-bimodule and view the Sobolev
modules Ei as submodules of E . E is said to be (left) smooth if the subalgebra

A :=
∞⋂
i=0

{a ∈ A : [Di, a] ∈ End∗B(Ei)},

is dense in A.

If A ⊂ Dom∞(adD), the bimodule will be referred to as being naively smooth.
Recall that Connes calls a spectral triple (A ,H, D) smooth if both A and [D,A ]
are in Dom∞ad|D|.

Lemma 4.1.2. Let (E , D) be an unbounded (A,B)-bimodule. Then for (E , D) to
be smooth it suffices that it be naively smooth or smooth in the sense of Connes.

Proof. Since naive smoothness implies smoothness in the sense of Connes, we show
that the latter implies smoothness in the sense of definition 4.1.1. Note that for
any unbounded regular operator S, DomS = Dom|S| as C∗-modules, since r(S) =
r(|S|). Connes conditions assure that A → End∗B(Dom|D|i), and hence the module
is smooth in our sense. �

Denote by πi : A → End∗B(Ei ⊕ Ei) the representations

a 7→
(

a 0
[Di, a] a

)
.

Let Ai be the closure of A in the norm inherited via πi. It is clear that the Ai are
operator algebras and that A equals their inverse limit. Hence it carries a Fréchet
topology.

Proposition 4.1.3. The inclusions Ai+1 → Ai are completely contractive.
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Proof. We have to show that for all a ∈ Ai, for all n, ‖πni (a)‖ ≤ ‖πni+1(a)‖ , where
πni : Mn(Ai)→ End∗B(

⊕n
j=1 Ei) and

πni+1 : Mn(Ai+1)→ End∗B(
2n⊕
j=1

Ei)

(akn) 7→ (πi(akm)).

Denote by ι : Ei → Ei⊕Ei the inclusion in the first coordinate, and by p : Ei⊕Ei →
Ei the projection on the first coordinate. Set

ιn := ⊕nj=1ι :
n⊕
j=1

Ei →
2n⊕
j=1

Ei, pn := ⊕nj=1p :
2n⊕
j=1

Ei →
n⊕
j=1

Ei.

Then we have

‖πni (a)‖ = ‖pnπni+1(a)ιn‖ ≤ ‖p‖‖πni+1(a)‖‖ιn‖ = ‖πni+1(a)‖,

as desired. �

Now we turn to spectral invariance of the Ai. The following definition is a
modification of [3], definition 3.11:

Definition 4.1.4. Let A be an algebra with Banach norm ‖ · ‖. A norm ‖ · ‖α on
A is said to be analytic with respect to ‖ · ‖ if for each x ∈ A, with ‖x‖ < 1 we
have

lim sup
n→∞

ln ‖xn‖α
n

≤ 0.

The reason for introducing the concept of analyticity is that analytic inclusions
are spectral invariant.

Proposition 4.1.5 ([3]). Let Aβ → Aα be a continuous dense inclusion of unital
Banach algebras. If ‖ · ‖β is analytic with respect to ‖ · ‖α, then for all a ∈ Aβ we
have Spβ(a) = Spα(a).

Proof. It suffices to show that if x ∈ Aβ is invertible in Aα, then x−1 ∈ Aβ . To this
end choose y ∈ Aβ with ‖x−1 − y‖ < 1

2‖x‖α . Then ‖2− 2xy‖α < 1. By analyticity,
there exists n such that ‖(2− 2xy)n‖β < 1, and hence 2 /∈ Spβ(2− 2xy). But then
0 /∈ Spβ(2xy), hence 2xy has an inverse u ∈ Aβ . Therefore x−1 = 2yu. �

In order to prove spectral invariance of the inclusions Ai+1 → Ai we need the
following straightforward result, whose proof we include for the sake of complete-
ness.

Lemma 4.1.6. Let A be a Banach algebra and δ : Aα →M a densely defined closed
derivation into a Banach A-module M . Then ‖a‖α := ‖a‖+‖δ(a)‖ is analytic with
respect to ‖ · ‖.
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Proof. Let ‖x‖ < 1. We have ‖δ(xn)‖ ≤ n‖δ(x)‖, by an obvious induction. Then

lim sup
n→∞

ln ‖xn‖α
n

= lim sup
n→∞

ln(‖xn‖+ ‖δ(xn)‖)
n

≤ lim sup
n→∞

ln(1 + n‖δ(x)‖)
n

≤ lim sup
n→∞

lnn
n

+
ln(1 + ‖δ(x)‖)

n

= 0.

�

Theorem 4.1.7. Let (E , D) be a smooth unbounded (A,B) bimodule. Then all
inclusions Ai+1 → Ai are spectral invariant, and hence A and all the Ai are stable
under holomorphic functional calculus in A.

Proof. Observe that

‖πi+1(a)‖ ≤ ‖πi(a)‖+ ‖πi+1(a)−
(
a 0
0 a

)
‖ ≤ 2‖πi(a)‖+ ‖πi+1(a)‖ ≤ 3‖πi+1(a)‖;

and ‖πi+1(a) −
(
a 0
0 a

)
‖ = ‖[Di, a]‖. Thus, by lemma 4.1.6, ‖ · ‖i+1 is equivalent

to a norm analytic with respect to ‖ · ‖i. �

In the sequel, by a smooth structure on a C∗-algebra A we shall mean an inverse
system of operator algebras

· · · → Ai+1 → Ai → · · · → A

where the maps are spectral invariant complete contractions with dense range. In
that, denote A = lim←Ai. A smooth C∗-algebra shall be a C∗-algebra with a
smooth structure coming from a smooth unbounded bimodule.

4.2. Smooth C∗-modules. In differential geometry, a finite dimensional topolog-
ical vector bundle over a smooth manifold M can always be smoothened, i.e. it
can be equipped with a smooth structure. From the algebro-analytic perspective
this can be understood in terms of the spectral invariance of the algebra of smooth
functions C∞(M) ⊂ C(M). This spectral invariance passes to the matrix algebras,
and any projection p ∈ Mk(C(M)) is close to a smooth projection q. By a now
standard result, the bundles defined by p and q are isomorphic, giving the smooth
structure. For infinite dimensional bundles the situation is more complicated, and
I am not aware of any results of this kind in this setting. Thefore we will demand
our modules to be smooth.

Definition 4.2.1. Let B be a smooth C∗-algebra, with smooth structure {Bi}. A
C∗-B-module E is a Ck-B-module, if there is an approximate unit

uα :=
nα∑
i=0

xαi ⊗ xαi ∈ FinB(E),

such that for each α and 0 ≤ i, j ≤ nα, 〈xαi , xαj 〉 ∈ Bk, and ‖〈xαi , xαj 〉‖k ≤ 1. It is a
smooth C∗-module if there is such an approximate unit that makes it a Ck-module
for all k.
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Proposition 4.2.2. Let B be a smooth C∗-algebra and E a smooth C∗-B-module,
with corresponding approximate unit uα :=

∑nα
i=0 x

α
i ⊗ xαi . Then

Ek := {e ∈ E : 〈xαi , e〉 ∈ Bk, sup
α
‖
nα∑
i=1

ei〈xαi , e〉‖k <∞},

is a rigged Bk-module. Moreover, the inclusions Ek+1 → Ek are completely con-
tractive with dense range, and Ek+1⊗̃Bk+1Bk ∼= Ek.

Proof. Recall the discussion before theorem 3.3.1. The maps φα, φ∗α of 3.8,3.9 re-
strict to maps

φkα : Bnαi → Ek, ψkα : Ek → Bnαk .

These are completely contractive for the matrix norms on Ek given by

‖(eij)‖ := sup ‖(ψαk (eij))‖,

and Ek is (by definition) complete in these matrix norms. It is straightforward
to check that Ek is a rigged-Bk-module in this way. For the last statement, the
isomorphism will be implemented by the multiplication map

m : Ek+1⊗̃Bk+1Bk → Ek

e⊗ b 7→ eb.

The inverse to this map is constructed via the direct limit property of Ek. Via the
identification Anαk ∼= A

nα
k+1⊗̃Ak+1Ak define maps

m−1
α : Bnαk → Ek+1⊗̃Bk+1Bk

ei 7→ φk+1
α (ei)⊗ 1.

They obviously satisfy the compatibility condition mentioned after definition 3.4.1
and induce a map m−1 : Ek → Ek+1⊗̃Bk+1Bk, inverting m. �

IfB is a smooth C∗-algebra and (E , D) a left smooth unbounded (A,B)-bimodule
(E , D), the appropriate notion of smoothness is the following. For each k, the
Sobolev module Ei is smooth over B, and, denoting the associated inverse system by
{Eki }, the adjointable operator Di : Ei+1 → Ei restricts to an adjointable operator
Di,k : Eki+1 → Eki . We then require the algebra

Ai :=
∞⋂
i=0

{a ∈ Ai : [Di,j , a] ∈ End∗Bi(E
j
i )},
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to be dense in Ai, for each i. We will call an unbounded bimodule smooth if it is
smooth in this sense. This can be visualized by a diagram

...
...

...
...

· · · - Ej+1
i+1

?
- Ej+1

i

?
- Ej+1

i−1

?
- · · · - Ej+1

?

· · · - Eji+1

?
- Eji

?
- Eji−1

?
- · · · - Ej

?

...

?
...

?
...

?
...

?

· · · - Ei+1

?
- Ei
?

- Ei−1

?
- · · · - E .

?

Here each Eji is a rigged (Aji ,Bj)-bimodule. The bottom row is just the Sobolev
chain of D.

4.3. Inner products and stabilization. For any operator algebra A, a dual
algebra A∗ is defined, obtained via its realization as a non selfadjoint subalgebra of
some C∗-algebra. A∗ is the algebra of adjoints in this C∗-algebra. In general, A and
A∗ are not completely isometrically isomorphic. Ck-algebras do have this property,
which makes working with rigged modules over them very similar to working with
C∗-modules.

Proposition 4.3.1. Let A be a smooth C∗-algebra with smooth structure {Ai}. For
i, Ai ∼= A∗i completely isometrically. In particular, the involution on Ai induces an
anti-isomorphism of Ai with itself.

Proof. The operator algebra structure of A∗i is given by

a 7→
(
a −[D, a]
0 a

)
.

This means that A∗ = vAv∗ ⊂ End∗B(E), where v is the unitary (x, y) 7→ (−y, x).
This isomorphism clearly extends to matrix algebras over A∗. �

Since the Ai are anti isomorphic to themselves, any right rigged Ai-module has
a canonically associated left rigged Ai-module E. As a linear space, this is just
E with the left module structure ae := ea∗. The rigged structure comes from
considering the modules Anα as left modules via the same trick. The structural
maps φα, ψα then become left-module maps having the desired properties.
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Corollary 4.3.2. Let E be a smooth C∗-module over a smooth C∗-algebra B with
smooth structure {Bi}. There is an isomorphism of rigged modules E ∼= E∗ given
by restrcition of the inner product pairing on E.

Proof. The inner product on E induces an injection Ei → E∗i . Conversely, for
f∗ ∈ E∗i we have

f∗(e) = lim
α

nα∑
i=0

f∗(xαi 〈xαi , e〉).

Thus, if we define f := limα

∑nα
i=0 x

α
i f
∗(xαi ), it satifies f∗(e) = 〈f, e〉. �

As a consequence, Ck-modules over a Ck-algebra can be constructed similarly
to C∗-modules, by defining a nondegenerate innerproduct pairing satisfying all the
properties of definition 1.1.1 and then completing. Stability under holomorphic
functional calculus assures us that many properties of C∗-modules carry over to
the smooth setting. In particular we can think of adjointable operators in the same
way as we do in C∗-modules, and also the notion of unbounded regular operator
makes perfect sense. Kasparov’s stabilization theorem is a key tool in C∗-modules
and KK-theory. There is no such result for general rigged modules over operator
algebras, see [4], but in the case of smooth C∗-algebras the result does hold.

Theorem 4.3.3. Let B be a smooth graded C∗-algebra, and E a countably generated
smooth graded C∗-module. Then E ⊕ HB is smoothly isomorphic to HB. That is,
there is an isomorphism of graded inverse systems

· · · - Ei+1 ⊕ HBi+1
- Ei ⊕ HBi - · · · - E ⊕ HB

· · · - HBi+1

?
- HBi

?
- · · · - HB

?

Proof. The proof is based on the method of almost orthogonalization as described
in [14]. We incorporate it in the proof. For simplicity we ignore the gradings,
but note that the proof can be adapted as to respect all gradings involved. Let
uα :=

∑nα
i=0 x

α
i ⊗ xαi be an approximate unit for KB(E) implementing the smooth

structure. The xαi form a generating set for E . Denote by {ei} the standard basis
of HB . Let {xn} ⊂ {en} ∪ {xαi } be a sequence which meets all the en, and all the
xαi infinitely many times. We proceed by induction. Suppose that orthonormal
ellements h1, ..., hn and the number m(n) have been constructed in such a way that

• {h1, ..., hn} ⊂ spanA {x1, ..., xn, e1, ..., em(n)}
• d(xk, spanA {h1, ..., hn}) ≤ 1

k , k = 1, ..., n.
There exists m′ > m(n) such that em′ ⊥ {xn+1, h1, ..., hn}. Let

x′ := xn+1 −
n∑
i=1

hi〈hi, xn+1〉, x′′ = x′ +
1

n+ 1
em′ .

Then 〈x′′, x′′〉 = 〈x′, x′〉 + 1
(n+1)2 > 0, and hence this element is invertible in A ,

and 〈x′′, x′′〉− 1
2 ∈ A by 4.1.7. Set hn+1 := x′′〈x′′, x′′〉− 1

2 . Then

hn+1 ∈ spanA {x′, em′} ⊥ {h1, ..., hn}.



26 BRAM MESLAND

Thus {h1, ..., hn+1} is an orthonormal set. Moreover,

x+
1

n+ 1
em′ ∈ spanA {h1, ..., hn+1},

so

d(xn+1, spanA {h1, ..., hn+1}) ≤
1

n+ 1
.

Thus, by setting m′ = m(n+1) we complete the induction step. The sequence {hi}
thus constructed is orthonormal and its A span is dense in each of the modules
Ei ⊕ HBi . �

5. Universal connections

Connections on Riemannian manifolds are a vital tool for differentiating func-
tions and vector fields over the manifold. Cuntz and Quillen [13] developed a purely
algebraic theory of connections on modules, which is gives a beautiful characteriza-
tion of projective modules. They are exactly those modules that admit a universal
connection. We review their results, but will recast everything in the setting of op-
erator modules. This is only straightforward, because the Haagerup tensor product
linearizes the multiplication in an operator algebra in a continuous way. We then
proceed to construct a category of modules with connection, and finally pass to
inverse systems of modules.

5.1. Universal forms. The notion of universal differential form is widely used in
noncommutative geometry, especially in connection with cyclic homology [9]. For
topological algebras, their exact definition depends on a choice of topological tensor
product. The default choice is the Grothendieck projective tensor product, because
it linearizes the multiplication in a topological algebra continuously. However, when
dealing with operator algebras, the natural choice is the Haagerup tensor product.

Definition 5.1.1. Let A be an operator algebra. The module of universal 1-forms
over A is defined as

Ω1(A) := ker(m : A⊗̃A → A).

By definition, there is an exact sequence of operator bimodules

0→ Ω1(A)→ A⊗̃A m−→ A → 0.

When A is graded, Ω1(A) inherits a grading from A⊗̃A. The map

d : A → Ω1(A)

a 7→ 1⊗ a− (−1)∂aa⊗ 1

is a graded bimodule derivation. Ω1(A) carries a natural involution, defined by

(5.11) (adb)∗ := −(−1)∂bdb∗a∗.

Lemma 5.1.2. The derivation d is universal. For any completely bounded graded
derivation δ : A → M into an A operator bimodule, there is a unique completely
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bounded bimodule homomorphism jδ : Ω1(A)→M such that the diagram

A
δ - M

Ω1(A)

j δ

-

d
-

commutes.

Proof. Set jδ(da) = δ(a). This determines jδ because da generates Ω1(A) as a
bimodule. �

Any derivation δ : A →M has its associated module of forms

Ω1
δ := jδ(Ω1(A)) ⊂M.

The inner product on E induces a pairing

E × E⊗̃AΩ1(A)→ Ω1(A)

(e1, e2 ⊗ ω) 7→ 〈e1, e2〉 ⊗ ω.

By abuse of notation we write 〈e1, e2 ⊗ ω〉 for this pairing. A pairing

E⊗̃AΩ1(A)× E → Ω1(A),

is obtained by setting 〈e1 ⊗ ω, e2〉 := 〈e2, e1 ⊗ ω〉∗.

Definition 5.1.3. Let δ : A →M be a derivation as above, and E a right operator
A-module. A δ-connection on E is a completely bounded linear map

∇δ : E → E⊗̃AΩ1
δ ,

satifying the Leibniz rule

∇(ea) = ∇(e)a+ e⊗ δ(a).

If δ = d, the connection will be denoted∇, and referred to as a universal connection.
If moreover E is a C∗-module, a connection is Hermitian if

〈e1,∇(e2)〉 − 〈∇(e1), e2〉 = d〈e1, e2〉.

Note that a universal connection ∇ on a module E gives rise to δ-connections
for any completely bounded derivation δ, simply by setting ∇δ := 1⊗ jδ ◦∇. If δ is
of the form δ(a) = [S, a], for S ∈ EndC(X,Y ), where X and Y are left A-operator
modules, we write simply ∇S for ∇δ.

Not all modules admit a universal connection. Cuntz and Quillen showed that
universal connections characterize algebraic projectivity. Their proof shows that
projective rigged modules admit universal connections, but the class of modules
admitting a connection might be larger. for our purposes however, this is sufficient.

Proposition 5.1.4 ([13]). A right A operator module E admits a universal con-
nection if and only if the multiplication map m : E⊗̃A → E is A-split.
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Proof. Consider the exact sequence

0 - E⊗̃AΩ1(A)
j- E⊗̃A

m - E - 0,

where m is the multiplication map and j(s⊗ da) = sa⊗ 1− s⊗ a. A linear map

s : E → E⊗̃A
determines a linear map

∇ : E → E⊗̃AΩ1(A)
by the formula s(e) = e⊗ 1− j(∇(e)), since j is injective. Now

s(ea)− s(e)a = j(∇(e)a+ e⊗ da−∇(ea)),

whence s being an A-module map is equivalent to ∇ being a connection. �

Corollary 5.1.5. A C∗-module E � A admits a Hermitian connection.

Proof. By the stabilization theorem 1.2.1 E is an orthogonal direct summand in
HA = H ⊗̃A, i.e. E = pHa, with p2 = p∗ = p ∈ End∗(HA). Observe that
HA⊗̃AΩ1A ∼= H ⊗̃Ω1(A).The Levi-Cevita connection

∇ : HA → H ⊗̃Ω1(A)
h⊗ a 7→ h⊗ da,

is clearly Hermitian, and since p is a projection, so is p∇p : E → E⊗̃AΩ1(A). �

5.2. Inverse systems and smoothness. As we have seen in corollary 1.3.7, an
unbounded operator can be viewed as a morphism of inverse systems of C∗-modules,
namely its Sobolev chain.

Definition 5.2.1. Let {Ei, φi} be an inverse system of A rigged modules. A
connection on {Ei, φi} is a family of connections ∇i : Ei → Ei⊗̃Ω1(A) such that
φi+1 ⊗ 1 ◦ ∇i+1 = ∇i ◦ φi+1.

Definition 5.2.2. Let (E , D) be an unbounded bimodule and ∇ : E → E⊗̃BΩ1(B)
a Hermitian connection. ∇ is said to be a D-connection if [∇, D] extends to a
completely bounded operator E :→ E⊗̃BΩ1(B). ∇ is said to be a smooth D -
connection if it is a Di-connection, for all i, where we view the Sobolev modules Ei
as dense submodules of E .

Proposition 5.2.3. Let (E , D) be an unbounded (A,B)-bimodule and ∇ : E →
E⊗̃BΩ1(B) a smooth D-connection. Then ∇ induces a connection {∇i} on the
Sobolev chain of D.

Proof. We apply the usual trick. Define {∇i} inductively by

∇i+1 :=
(
∇i 0

[Di,∇i] ∇i

)
.

By definition of smoothness this defines a connection on the Sobolev chain of D. �

Using the smooth stabilization theorem 4.3.3, we get:

Corollary 5.2.4. A smooth C∗-module E � A admits a Hermitian connection.

A smooth D-connection is said to be simply a smooth connection if it restricts
to a Di−1,k-connection ∇i,k : Eki → Eki ⊗̃BkΩ1(Bk).
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5.3. Product connections. We now proceed to connections on tensor products of
projective modules. Anticipating the use of connections on unbounded bimodules,
a category of modules with connection is constructed.

Proposition 5.3.1. Let P be a right projective rigged A-module with a universal
connection ∇, P ′ a right projective rigged (A − B)-bimodule with universal con-
nection ∇′. Then P ⊗A P ′ is B-projective, and ∇ and ∇′ determine a universal
B-connection on P ⊗AP ′. If both connections are Hermitian, then so is the induced
connection.

Proof. Let, Q,Q′ be such that P ⊕Q ∼= H ⊗̃A, P ′ ⊕Q′ ∼= H ′⊗̃B. Then:

P ⊗̃AP ′ ⊕Q⊗̃AP ′ ⊕ H ⊗̃Q′ ∼= H ⊗̃H ′⊗̃B.

Thus P ⊗̃AP ′ is projective. Consider the derivation

δ : A → EndB(P ′, P ′⊗̃BΩ1(B))

a 7→ [∇′, a].

By universality there is a unique map

jδ : Ω1(A)→ Ω1
δ ,

intertwining d and δ. Thus, ∇ induces a connection

∇δ : P → P ⊗̃AΩ1
δ ,

by composing with jδ. Subsequently define

∇⊗̃A∇′ : P ⊗̃AP ′ → P ⊗̃AP ′⊗̃BΩ1(B)

p⊗ p′ 7→ ∇′(p′) +∇δ(p)p′,

which is a connection. It is a straightforward calculation to check that this connec-
tion is Hermitian if ∇ and ∇′ are. �

We will refer to the connection of proposition 5.3.1 as the product connection.
Taking product connections is associative up to isomorphism.

Theorem 5.3.2. Let P, P ′, P ′′ be right projective rigged A,B and C-modules re-
spectively, with universal connections ∇,∇′,∇′′. Suppose P ′, P ′′ are left A and B
modules, respectively. The natural isomorphism

P ⊗̃A(P ′⊗̃BP ′′)
∼−→ (P ⊗̃AP ′)⊗̃BP ′′

intertwines the product connections ∇⊗̃A(∇′⊗̃B∇′′) and (∇⊗̃A∇′)⊗̃B∇′′
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Proof. The two product connections on M = P ⊗̃AP ′⊗̃BP ′′ correspond to splittings
of the universal exact sequence given by the follwing diagram:

0 - ker(1⊗B m) - MA⊗̃P ′′ ⊗ C
1⊗B m-� MA⊗̃BP ′′ - 0

0 - M⊗̃CΩ1(C)
?

j - M⊗̃C
?

m - M

∼
6

- 0

0 - ker(m⊗A 1)

6

- P ⊗̃MB⊗̃C

6

1⊗A m-� P ⊗̃AMB

∼

?
- 0.

Here MA = P ⊗̃AP ′ and MB = P ′⊗̃BP ′′. To show that this diagram commutes,
observe that the given connections induce natural splittings for the maps

P ⊗̃P ′⊗̃P ′′ → P ⊗̃AMB and P ⊗̃P ′⊗̃P ′′ →MA⊗̃BP ′′.

They correspond to the decompositions

P ⊗̃P ′⊗̃P ′′ ∼= P ⊗̃AMB ⊕Q⊗̃AMB ⊕ P ⊗̃Q′⊗̃BP ′′,

and
P ⊗̃P ′⊗̃P ′′ ∼= MA⊗̃BP ′′ ⊕QA⊗̃BP ⊕Q⊗̃AP ′⊗̃P ′′,

where Q,Q′ and QA are such that

P ⊕Q ∼= P ⊗̃A, P ′ ⊕Q′ ∼= P ′⊗̃B, MA ⊕QA ∼= MA⊗̃B.

That is, Q and Q′ come from ∇ and ∇′ respectively, and QA from ∇⊗̃A∇′.
Therefore, the given connections induce natural splittings for the maps

P ⊗̃P ′⊗̃P ′′ → P ⊗̃AMB and P ⊗̃P ′⊗̃P ′′ →MA ⊗B P ′′.

These splittings correspond to the factorizations

P ⊗̃P ′⊗̃P ′′

MA⊗̃P ′′
�

P ⊗̃MB

-

P ⊗̃AP ′⊗̃BP ′′
�

-

of the map P ⊗̃P ′⊗̃P ′′ → P ⊗̃AP ′⊗̃BP ′′. These factorizations are exactly the ones
that give rise to the product connections ∇⊗̃A(∇′⊗̃B∇′′) and (∇⊗̃A∇′)⊗̃B∇′′.
Therefore the different splittings in the first diagram coincide under the intertwining
isomorphisms. �
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The upshot of theorems 5.3.1 and 5.3.2 is that there is a category whose objects
are operator algebras, and whose morphisms Mor(A,B) are given by pairs (P,∇)
consisting of a right projective (A,B)-bimodule P with a universal B connection.
The identiy morphisms are the pairs (1A, d) consisiting of the trivial bimodule 1A
and the universal derivation d : A → Ω1(A). Of course this category is described
equivalently as the category of pairs (P, s) of bimodules together with a splitting s
of the universal exact sequence.

5.4. Induced operators and their graphs. One can proceed to enrich the cat-
egory described above by considering triples (P, T,∇) consisting of right projective
bimodules with connection and a distinguished endomorphism T ∈ EndB(P ). De-
note by 1⊗̃∇T the operator

1⊗∇ T (p⊗ p′) := (−1)∂T∂p(p⊗ T (p′) +∇T (p)p′),

which is well defined on P ⊗̃AP ′. The composition law then becomes

(P, S,∇) ◦ (P ′, T,∇′) := (P ⊗̃BP ′, S⊗̃1 + 1⊗̃∇T,∇⊗̃B∇′).
Associativity of this composition is implied by the following proposition.

Proposition 5.4.1. Let P be a right projective rigged A-module, P ′ a right projec-
tive rigged (A,B)-bimodule and ∇,∇′ universal connections. Furthermore let E,F
be (B, C)-bimodules, and D ∈ EndC(E,F ). Then

1⊗̃∇1⊗̃∇′D = 1⊗̃∇⊗̃A∇′D,
under the intertwining isomorphism.

Proof. Recall the formula for the product connection

∇⊗̃A∇′(p⊗ p′) := p⊗∇′(p′) +∇δ(p)p′.
Morevoer, write ∇D for ∇∇′D . It is straightforward to check that

(∇⊗̃A∇′)D(p⊗ p′) = p⊗∇′D(p′) +∇D(p)p′.

Therefore we have
1⊗∇⊗̃A∇′ D(p⊗ p′ ⊗ e) = p⊗ p′ ⊗De+∇⊗∇′(p⊗ p′)e

= p⊗ p′ ⊗De+ p⊗∇′D(p′)e+∇D(p)(p′ ⊗ e).
On the other hand

1⊗̃∇1⊗̃∇′D(p⊗ p′ ⊗ e) = p⊗ (1⊗̃∇′D)(p′ ⊗ e) +∇1⊗̃∇′D(p)(p′ ⊗ e)
= p⊗ p′ ⊗De+ p⊗∇′D(p′)e+∇1⊗̃∇′D(p)(p′ ⊗ e),

thus, it suffices to show that ∇D = ∇1⊗̃∇′D. To this end, observe that

[1⊗̃∇′D, a] = [∇′D, a] : P ⊗A P ′ → P ⊗A P ′,

which gives a natural isomorphism Ω1
∇′D

∼−→ Ω1
1⊗̃∇′D

intertwining the derivations.
By universality this gives a commutative diagram

Ω1(A)

Ω1
1⊗̃∇′D

∼ -
�

Ω1
∇′D

,

-
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which shows that ∇D = ∇1⊗̃∇′D. �

As we have seen, a connection ∇ : E → E⊗̃BΩ1(B) can be used to trans-
fer operators on F to E ⊗B F . We now show that this algebraic procedure is
well behaved for selfadjoint regular operators T in F , and describe the graph
G(1⊗̃∇T ) ⊂ E⊗̃BF ⊕ E⊗̃BF as a topological C∗-module, in terms of the graph of
T .

Lemma 5.4.2. Let E ,F be C∗-modules over B and C respectively, and ∇ : E →
E⊗̃Ω1(B) a Hermitian connection. Suppose F is a left B-module and T : Dom(T )→
F a selfadjoint regular operator such that [T, b] ∈ End∗B(F ) for all b ∈ B1 ⊂ B, a
dense subalgebra of B. If ∇ and E are C1 with respect to B1, then the operator
1⊗̃∇T is selfadjoint and regular. The map

E1⊗̃B1G(T )→ G(1⊗̃∇T )

e⊗ (f, Tf) 7→ (e⊗ f, 1⊗̃∇T (e⊗ f))

is a topological isomorphism of C∗-modules.

Proof. Observe that E1⊗̃B1F ∼= E⊗̃BF , since E = E1⊗̃B1B. To see that t :=
1⊗∇T is selfadjoint regular, stabilize E , and denote by ∇̃ the Levi-Civita connection
on HB . Then, via the stabilization isomorphism ∇′ := ∇⊕ ∇̃ defines a Hermitian
connection on HB ∼= E ⊕ HB . Since the difference ∇′ − ∇̃ is a completely bounded
module map, it suffices to prove regularity of t when ∇ is the Levi-Civita connection
on HB . But in that case, for e =

∑∞
i=1 ei ⊗ bi,

t : HB1⊗̃B1F → HB1⊗̃B1F

e⊗ f 7→
∞∑
i=1

ei ⊗ T (bif),

which is clearly selfadjoint regular. For the statement on the topological type of
G(t), it again suffices to consider the Levi-Civita connection HB. We have R :=
∇′T − ∇̃T ∈ End∗C(E⊗̃BF ) and hence

G(t) ∼−→ G(t+R)

(x, tx) 7→ (x, (t+R)x)

topologically, due to the fact that (i+ t+ R)(i+ t)−1 ∈ Aut∗C(E⊗̃BF ). Note that
the standard orthonormal basis {ei}i∈N of HB defines a C1-approximate unit for
KB(HB). The inner product on HB1⊗̃B1G(T ) is thus given by

〈e⊗ (f, Tf), e′ ⊗ (f ′, Tf ′)〉 : = lim
n→∞

n∑
i=1

〈〈ei, e〉(f, Tf), 〈ei, e′〉(f ′, T f)〉

=
∞∑
i=1

〈(bif, T bif), (b′if
′, T bif)〉

=
∞∑
i=1

〈bif, b′if ′〉+ 〈Tbif, T b′if ′〉.

Therefore the map

HB1⊗̃B1G(T )→ G(t)

e⊗ (f, Tf) 7→ (e⊗ f, t(e⊗ f)),



UNBOUNDED BIVARIANT K-THEORY AND CORRESPONDENCES IN NONCOMMUTATIVE GEOMETRY33

is unitary. �

If the module E comes equipped with a regular operator S, the operators S⊗̃1
and 1⊗̃∇T almost anticommute. That is, they anticommute up to a bounded
operator. This implies that their sum is well defined as a regular operator.

Proposition 5.4.3. Let A,B,C be C∗-algebras, (E , S) and (F , T ) be (A,B)- and
(B,C)-bimodules equipped with selfadjoint regular operators S and T , respectively,
such that [T, b] ∈ End∗B(F ) for all b ∈ B1 ⊂ B, a dense subalgebra of B. If
∇ : E → E⊗̃BΩ1(B) is a C1- connection, then the operator

S ⊗ 1 + 1⊗∇ T
is selfadjoint and regular.

Proof. It is a well known fact that s := S ⊗ 1 is a regular operator on E ⊗B F and
we saw that t := 1⊗∇ T is regular. Thus, s and t are selfadjoint regular operators
whose domains intersect densely, and the graded commutator [s, t] is an adjointable
operator. To show that s+ t is regular we have to show that G(s+ t)⊕ vG(s+ t) ∼=
E⊗̃BF ⊕ E⊗̃BF . Write ri(s) := (s+ i)−1 and consider the endomorphism

g :=
(

ri(s)ri(t) −(s+ t)ri(t)∗ri(s)∗

(s+ t)ri(s)ri(t) ri(t)∗ri(s)∗

)
∈M2(EndB(E ⊗B F )).

The maps (s+ t)ri(t)∗ri(s)∗ and (s+ t)ri(s)ri(t) are well defined because [s, ri(t)∗]
and [t, ri(s)] are bounded. This follows from the fact that [s, t] is bounded:

0 = [s, 1]

= [s, ri(t)∗(t− i)]
= ri(t)∗[s, (t− i)] + [s, ri(t)∗](t− i)
= ri(t)∗[s, t] + [s, ri(t)∗](t− i),

hence [s, ri(t)∗](t− i) is bounded and so is [s, ri(t)∗]. Computing g∗g gives

g∗g = r +
(

ri(t)∗ri(s)∗(s+ t)2ri(s)ri(t) 0
0 ri(s)ri(t)(s+ t)2ri(t)∗ri(s)∗

)
.

The operator

r =
(

ri(t)∗r(s)2ri(t) 0
0 ri(s)r(t)2ri(s)∗

)
is positive and has dense range, and r ≤ g∗g, so g∗g has dense dense range, and
hence g does so too. Since g maps E ⊗B F 2 into G(s + t) ⊕ vG(s + t), this is a
dense and closed submodule, hence all of E ⊗B F ⊕E ⊗B F . Selfadjointness follows
from the fact that s and t anticommute up to an adjointable operator. Hence
Dom(s+ t) = Doms ∩Dom(t), and s and t are selfadjoint. �

Of course the case of unbounded bimodules is contained in this theorem. It will
be the case we focus on the next section.

Corollary 5.4.4. Let A,B,C be C∗-algebras, (E , S) an unbounded (A,B) bimodule
and (F , T ) an unbounded (B,C)-bimodule. Let ∇ : E → E⊗̃BΩ1(B) be a C1-
connection on E. Then the operator

S ⊗ 1 + 1⊗∇ T
is selfadjoint and regular.
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The product construction preserves selfadjointness and regularity. On the level
of the graphs of the operators, we now show it can be viewed as a pull-back con-
struction of topological C∗-modules. By Frank’s theorem 1.1.4, this yields a unitary
isomorphism of the modules involved. This suggests the product construction might
be defined intrinsically, without reference to the connection. However, the pull back
need not be the graph of an operator.

Theorem 5.4.5. Let A,B,C be C∗-algebras, (E , S) and (F , T ) be (A,B)- and
(B,C)-bimodules equipped with selfadjoint regular operators S and T , respectively.
Suppose that [T, b] ∈ End∗B(F ) for all b ∈ B1 ⊂ B, a dense subalgebra of B. Let
∇ : E → E⊗̃BΩ1(B) be a C1- connection, and G the universal solution to the
diagram

G - G(S)⊗̃BF

E1⊗̃B1G(T )
?

- E⊗̃BF .
?

Then the natural map

G(S⊗̃1 + 1⊗̃∇T )→ G ,

is a topological isomorphism of C∗-modules.

Proof. As usual, write s = S⊗̃1 and t = 1⊗̃∇T . Since G(S)⊗̃BF ∼= G(
√

2s) and
E1⊗̃B1G(T ) ∼= G(

√
2t), we may replace G by the pull back of the diagram

G - G(
√

2s)

G(
√

2t)
?

- E⊗̃BF .
?

Thus

G = {((x,
√

2sx), (x,
√

2tx)) : x ∈ Dom(s+ t)},

and

〈((x,
√

2sx), (x,
√

2tx)), ((x′,
√

2sx′), (x′,
√

2tx′))〉 = 2(〈x, x′〉+ 〈sx, sx′〉+ 〈tx, tx′〉).

Using

g :=
(

r(s+ t)2 −(s2 + t2)r(s+ t)2

(s2 + t2)r(s+ t)2 r(s+ t)2

)
∈M2(EndB(E ⊗B F )),

it follows that s2 + t2 is selfadjoint regular by the same reasoning as in proposition
5.4.3. Since the operator (i + |s2 + t2| 12 )(i + s + t)−1 ∈ Aut∗(E⊗̃BF ), the result
follows. �

If the module F is smooth, i.e. induces a smooth structure {Bi} on B, and E is a
smooth C∗-module for this smooth structure, the Sobolev chain ofD = S⊗̃1+1⊗̃∇T
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can be computed from the Sobolev chains of S and T by the following diagram:
...

...
...

...

· · · - G(D2)
?

- G(t)D1

?
- G(t1)D

?
- E3⊗̃F3

?

· · · - G(s)D1

?
- G(D1)

?
- G(t)D

?
- E2⊗̃F2

?

· · · - G(s1)D
?

- G(s)D
?

- G(D)
?

- E1⊗̃F1

?

· · · - E3⊗̃F
?

- E2⊗̃F
?

- E1⊗̃F
?

- E⊗̃F
?

The Sobolev chain of D is on the diagonal, that of s = S⊗̃1 is the bottom row, and
that of t = 1⊗̃∇T is the right vertical row. The upper triangular part consists of the
Sobolev chains of t viewed as an operator in G(Di), and the lower triangular part
of the Sobolev chains of s viewed as an operator in G(Di). Moreover, all squares
all pull back squares.

6. Correspondences

Universal connections can be employed to give a transparent construction of the
Kasparov product, on the level of unbounded bimodules. This observation leads to
the construction of a category of spectral triples and even of unbounded bimodules
themselves. They give a notion of morphism of noncommutative geometries, in
such a way that the bounded transform induces a functor from correspondences
to KK-groups. By considering several levels of differentiability and smoothness
on correspondences, one gets subcategories of correspondences of Ck- and smooth
C∗-algebras.

6.1. The Trotter-Kato formula. When dealing with addition of noncommuting
unbounded operators s and t, on a Hilbert space H , several subtleties arise. First
of all one needs to check closability and density of the domain of s + t. If these
things are in order, one would like to obtain information about e−x(s+t), the one
parameter group generated by s + t, and its resolvent. These questions can be
tantalizingly difficult and involve some deep analysis. Under favourable conditions,
though, a satisfactory description of e−x(s+t) can be given in terms of e−xs and
e−xt. It is quite striking that one might as well use other functions of s and t
instead of exponentials. For our purposes it is enough to consider the function
f(s) = (1 + s)−1.
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Theorem 6.1.1 ([26]). Let f be either one of the functions s 7→ e−s or s 7→
(1 + s)−1. Suppose s and t are nonnegative selfadjoint operators on a Hilbert space
H , such that their sum s+ t is selfadjoint on Dom(s) ∩Dom(t). Then

lim
n→∞

(f(
xs

2n
)f(

xt

n
)f(

xs

2n
))n = e−x(s+t),

in norm for x in compact intervals in (0,∞). If s + t is strictly positive, the
convergence holds for x ∈ [ε,∞) for any ε > 0.

We now argue that a similar result holds for unbounded operators in C∗-modules.
Let s and t be nonnegative regular operators in a C∗-B-module E , such that their
sum s+ t is densely defined and regular. By representing B faithfully and nonde-
generate on a Hilbert space H ′, one obtains a second Hilbert space H := E⊗̃BH ′

and operators s ⊗ 1, t ⊗ 1 and (s + t) ⊗ 1 = s ⊗ 1 + t ⊗ 1. Moreover, End∗B(E)
is faithfully represented on H , and f(s) ⊗ 1 = f(s ⊗ 1) for any f ∈ C0(R). Also,
s⊗ 1, t⊗ 1 and (s+ t)⊗ 1 are positive whenever s, t, s+ t are. Therefore we have

Corollary 6.1.2. Let f be either one of the functions s 7→ e−s or s 7→ (1 + s)−1.
Suppose s and t are nonnegative selfadjoint regular operators on a C∗-module E,
such that their sum s+ t is selfadjoint and regular on Dom(s) ∩Dom(t). Then

lim
n→∞

(f(
xs

2n
)f(

xt

n
)f(

xs

2n
))n = e−x(s+t),

in norm for x in compact intervals in (0,∞). If s + t is strictly positive, the
convergence holds for x ∈ [ε,∞) for any ε > 0.

The Trotter-Kato formula in C∗-modules will be a crucial tool in what follows.

6.2. The KK-product. Everything is in place now to establish that compact
resolvents are preserved under taking products. Then we will see that the product
operator satisfies Kucerovsky’s conditions for an unbounded Kasparov product.
Thus, if two unbounded bimodules are compatible in the sense that there exists a
C1-connection for them, the KK-product of these modules is given by an explicit
algebraic formula. Let us put the pieces together.

Lemma 6.2.1. Let s, t be selfadjoint regular operators on a C∗-module E, and
R ∈ End∗B(E) be a selfadjoint element. If (1 + s2)−1(t + i)−1 ∈ KB(E), then
(1 + s2)−1(t+R+ i)−1 ∈ KB(E).

Proof. One has the identity

(1 + s2)−1(i+ t+R)−1 = (1 + s2)−1(i+ t)−1(1−R(t+ i)−1),

which is a compact operator. �

We now employ the Trotter-Kato formula from the previous section to show
that the product of cycles is a cycle. Note that this result is a generalization of
the stability property of spectral triples proved in [7]. There it was shown that
tensoring a given spectral triple by a finitely generated projective module yields
again a spectral triple.

Proposition 6.2.2. Let A,B,C be C∗-algebras, (E , S) an unbounded (A,B) bi-
module and (F , S) an unbounded (B,C)-bimodule. Let ∇ : E → E⊗̃BΩ1(B) be a
C1-connection on E. Then the operator

S ⊗ 1 + 1⊗∇ T
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has compact resolvent.

Proof. The operator s2 + t2 is selfadjoint and regular, as we saw in the proof of
theorem 5.4.5. Moreover, since s2 + t2 is positive we have

s2 + t2 = |s2 + t2|.

Since (s+t)2 is a bounded perturbation of s2+t2, for s+t to have compact resolvent
it is sufficient that (1 + s2 + t2)−1 be compact. By applying lemma 1.3.4 to the
operator |s2 + t2| 12 , we get the identity

(2 + s2 + t2)−1 =
∫ ∞

0

e−x(2+s
2+t2)dx.

By this same lemma it suffices to show that the integrand e−x(2+s
2+t2) is compact

for x > 0. The Trotter-Kato formula 6.1.2 gives the equality

e−x(2+s
2+t2) = lim

n→∞
((1 +

x

2n
s2)−1(1 +

x

n
t2)−1(1 +

x

2n
s2)−1)n.

Therefore it suffices to show that (1 + 1
2s

2)−1(i+ t)−1 is compact. By the previous
lemma, we only have to check this in case ∇ is the Levi-Civita connection on HB .
In that case

(1 +
1
2
s2)−1(i+ t)−1 =

∞∑
i=0

(1 +
1
2
S2)−1ei ⊗ (i+ T )−1 ⊗ ei,

which is a norm convergent series in KC(HB⊗̃F ) = HB⊗̃KC(F )⊗̃HB . �

At this point, we would like to note that for a given pair of cycles (E , S) and
(F , T ), the existence of a C1-connection is not guaranteed. In the presence of such
a connection, we have the follwoing result.

Theorem 6.2.3. The diagram

Ψ0(A,B)×Ψ0(B,C)
(S, T ) 7→ S ⊗ 1 + 1⊗∇ T- Ψ0(A,C)

KK0(A,B)⊗KK0(B,C)

b

? ⊗B - KK0(A,C)

b

?

commutes, whenever the composition in the top row is defined.

Proof. We just need to check that the unbounded bimodules (E , S), (F , T ) and
(E⊗̃BF , S⊗̃1 + 1 ⊗∇ T ) satisfy the conditions of theorem 2.3.4. If we write D for
S ⊗+1⊗∇ T , we have to check that

J :=
[(
D 0
0 T

)
,

(
0 Te
T ∗e 0

)]
is bounded on Dom(D ⊕ T ). This is a straightforward calculation:

J

(
e′ ⊗ f ′
f

)
=
(

Se⊗ f + (−1)∂e∇T (e)f
〈e, Se′〉f + [T, 〈e, e′〉]f + (−1)−∂e

′〈e,∇T (e′)〉f

)
=
(
Se⊗ f + (−1)∂e∇T (e)f
〈Se, e′〉f + 〈∇T (e), e′〉f

)
.
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This is valid whenever e ∈ E1
1 , which is dense in E .

The second condition Dom(D) ⊂ Dom(S⊗̃1) is obvious, so we turn the semibound-
edness condition

(6.12) 〈S⊗̃1x,Dx〉+ 〈Dx, S⊗̃1x〉 ≥ κ〈x, x〉,
must hold for all x in the domain. The expression 6.12 is equal to

〈[D,S⊗̃1]x, x〉 = 〈[s, t]x, x〉 ≥ −‖[s, t]‖〈x, x〉,
and the last estimate is valid since [s, t] is in End∗C(E⊗̃BF ). �

6.3. Formal Bott periodicity. We obtained a description of the KK-product of
even unbounded bimodules, in the presence of a connection. This construction can
be lifted to Ψi(A,B) for each i. The way to go is indicated by the following result
of Kasparov.

Theorem 6.3.1 ([19]). For all j, the map

Ψi(A,B)→ Ψi+j(A⊗̃Cj , B)

(E , D) 7→ (E⊗̃Cj , D⊗̃1),

induces an isomorphism KKj(A,B)→ KKi+j(A⊗̃Cj , B).

Using this, we can define the composition of two unbounded bimodules with
connection as the composition

Ψi(A,B)×Ψj(B,C)→ Ψi(A,B)×Ψi+j(B⊗̃Ci, C)→ Ψi+j(A,C).

From theorem 6.2.3 we directly obtain the analoguous result in all degrees, whenever
a connection for two given cycles exists.

Theorem 6.3.2. The diagram

Ψi(A,B)×Ψj(B,C)
(S, T ) 7→ S ⊗ 1 + 1⊗∇ T- Ψi+j(A,C)

KKi(A,B)⊗KKj(B,C)

b

? ⊗B - KKi+j(A,C)

b

?

commutes, whenever the composition in the top row is defined.

In order to obtain a useful formula in the case of odd modules, we only have to
delve a little deeper into formal Bott periodicity. Recall that elements of Ψi(A,B)
by definition equals Ψ0(A,B⊗̃Ci). Hence its elements are given by unbounded
(A,B⊗̃Ci) bimodules (E , D). Thus, D is an operator that commutes with the
action of B and the action of Ci. From (E , D) we can construct (E ′, D′) in the
following way (cf.[18], appendix A.3):

E ′ := E ⊕ E , D′ :=
(

0 D
D 0

)
,

as in 2.6. The action of Ci+2 is given by

εj :=
(
εj 0
0 εj

)
, εi+1 :=

(
0 1
−1 0

)
, εi+1 :=

(
0 i
i 0

)
.
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Here j = 1, . . . , i. In view of 2.6 we could denote the set of odd Kasparov modules by
Ψ−1(A,B). The map Ψi(A,B) → Ψi+2(A,B) so defined is the formal periodicity
map, and induces an isomorphism KKi(A,B) → KKi+2(A,B). It’s inverse, on
the level of unbounded bimodules (E , D) ∈ Ψi+2(A,B), with i ≥ 1, is given by
compressing the operator D to the +1 eigenspace of the involution −iεi+1εi+2. For
i = −1, one compresses to the +1 eigenspace of ε1. Applying this procedure to the
case of two composable odd modules (E , S,∇) and (F , T ) yields that the product
operator is (

0 S⊗̃1− i⊗̃∇T
S⊗̃1 + i⊗̃∇T 0

)
,

on the module E⊗̃BF ⊕ E⊗̃BF .

6.4. The nonunital case. So far, we have only been working with unital C∗-
algebras. In this section we show that this restriction, imposed for the sake of
clarity, is harmless. In [23] it is shown that any operator algebra is contained in a
unital operator algebra, and that the operator norms on the unization are uniquely
defined.

Definition 6.4.1. Let A be an operator algebra and A → B(H ) a complete
isometry. Its unitization A+ is the algebraic unitization A ⊕ C with product
(a, z)(b, w) = (ab+ aw + zb, zw). Identifying A+ with

{a+ λ · 1 : a ∈ A, λ ∈ C},
A+ becomes an operator algebra.

This definition is independent of the choice of complete isometry [23].The stan-
dard C∗-unitization is a special case of this. Now note that a rigged module over A
is automatically a rigged module over A+. Hence for a smooth C∗-algebra A, with
smooth structure {Ai}, any smooth C∗-module E is a direct summand in HA+ .
Hence a smooth Hermitian connection ∇ : E → E⊗̃AΩ1(A+) always exists. Since

Ei+1⊗̃A(i+1)+Ai+ = Ei,

and the modules Ei ⊂ E are Ai-essential, the property Ei+1⊗̃Ai+1Ai = Ei of
proposition 4.2.2 remains valid:

Ei = EiAi ∼= Ei+1⊗̃Ai+1+Ai+Ai = Ei+1⊗̃Ai+1Ai.
A smooth connection on a smooth KK-cycle (E , D) for (A,B) is now a connec-

tion ∇ : E → E⊗̃B+Ω1(B+), such that [∇, Di] is completely bounded for all i. If B
was already unital, then B+ decomposes as B ⊕ C, so Ω1(B) is a direct summand
in Ω1(B+) in this case. A connection ∇+ : E → E⊗̃B+Ω1(A+) therefore induces
a connection ∇ : E → E⊗̃BΩ1(B) and vice versa. Although this is not a bijective
correspondence, the ambiguity is irrelevant, as the subsequent discussion shows.

Let (E , S,∇) and (F , T,∇′) be nonunital unbounded bimodules, with connec-
tions. The tensor product E⊗̃BF equals E⊗̃B+F , by definition. To show that the
product of nonunital cycles is again a cycle, only the compact resolvent property
needs some care. Thus we have to show that a(S⊗̃1 + 1⊗̃∇T ) is compact, using
compactness of a(1 + S2)−1 and b(1 + T 2)−1, for a ∈ A, b ∈ B. The argument
in proposition 6.2.2 carries through up to the reduction of the necessity to show
that a(1 + 1

2s
2)−1(i + t)−1 is compact for a ∈ A. To achieve this, one employs an
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approximate unit eα for B. The operators a(1 + 1
2s

2)−1eα(i+ t)−1 are shown to be
compact in the the same way as before. Then, a(1 + 1

2s
2)−1(i+ t)−1 is their norm

limit, hence compact. The validity of theorem 6.2.3 follows readily from this.

6.5. A category of spectral triples. Let A and B be smooth C∗-algebras.
The results from 5.4 suggest that triples (E , D,∇) consisting of a smooth (A,B)-
bimodule equipped with a smooth regular operator D and a smooth connection ∇
form a category, in which the composition law is

(E , D,∇) ◦ (E ′, D′,∇′) := (E⊗̃F , D⊗̃1 + 1⊗̃∇D′,∇⊗̃B∇′).

An essential piece for this statement to hold is missing, and we will prove it now.

Proposition 6.5.1. Let A,B,C be C∗-algebras, (E , S,∇) and (F , T,∇′) be (A,B)-
and (B,C)-bimodules equipped with selfadjoint regular operators S and T , and C1-
connections ∇ and ∇′, respectively. Suppose that [T, b] ∈ End∗B(E) for all b ∈
B1 ⊂ B, a dense subalgebra of B. Then the product connection ∇⊗̃B∇′ is an
S⊗̃1 + 1⊗̃∇T -connection.

Proof. Since

[∇⊗̃B∇′, S⊗̃1 + 1⊗̃∇T ] = [∇⊗̃B∇′, S⊗̃1] + [∇⊗̃B∇′, 1⊗̃∇T ],

and [∇⊗̃B∇′, S⊗̃1] = [∇, S]⊗̃1, which is completely bounded, we compute

(−1)∂e[∇⊗̃B∇′, 1⊗̃∇T ](e⊗ f)

to find

e⊗ [∇′, T ]f +∇∇′(e)Tf +∇⊗̃B∇′(∇T (e)f)−∇T (e)∇′(f)− 1⊗̃∇T (∇∇′(e)f).

The first term is completely bounded, and in working out the last four terms write
∇(e) =

∑
ei ⊗ dbi. Then

∇∇′(e)Tf =
∑

ei ⊗ [∇′, bi]Tf,(6.13)

∇T (e)∇′(f) =
∑

ei ⊗ [T, bi]∇′(f),(6.14)

∇⊗̃B∇′(∇T (e)f) =
∑

ei ⊗∇′[T, bi]f +∇∇′(ei)[T, bi]f,(6.15)

1⊗̃∇T (∇∇′(e)f) =
∑
i

ei ⊗ T [∇′, bi]f +∇T (ei)[∇′, bi]f.(6.16)

Combining 6.13,6.14 and the first terms on the right hand sides of 6.15 and 6.16
give a term ∑

i

ei ⊗ [[∇′, T ], bi]f = ∇[∇′,T ](e)f,

and the terms remaining from 6.15 and 6.16 give a term

(∇∇′∇T −∇T∇∇′)(e⊗ f).

Thus, we have shown that

[∇⊗̃B∇′, 1⊗̃∇T ] = 1⊗̃∇[∇′, T ] + [∇∇′ ,∇T ],

which is a completely bounded map E⊗̃BF → E⊗̃BF ⊗̃CΩ1(C). �
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Definition 6.5.2. Let A and B be C∗-algebras, and (H , D) and (H ′, D′) be smooth
spectral triples for A and B respectively. A Ck-correspondence (E , S,∇) between
(H , D) and (H ′, D′) is an unbounded Ck-(A,B)-bimodule with Ck-connection ,
such that [S,Ai+1] ⊂ End∗Bi(E

i) and H ∼= E⊗̃BH ′ and Di = (S⊗̃1 + 1⊗̃∇D′)i
for i = 0, ..., k under this isomorphism. The correspondence is smooth if it is
Ck for all k. Two correspondences are said to be equivalent if they are Ck- or
smoothly unitarily isomorphic such that the unitary intertwines the operators. The
set of isomorphism classes of such correspondences is denoted by Cork(D,D′) or
Cor(D,D′) in the smooth case.

The requirement [S,Ai+1] ⊂ End∗Bi(E
i) can be viewed as a transversality condi-

tion.

Theorem 6.5.3. There is a category whose objects are Ck-spectral triples and
whose morphisms are the sets Cork(D,D′). The bounded transform b(E , D,∇) =
(E , b(D)) defines a functor Cork → KK.

Proof. Composition of correspondences (E , S,∇) and (F , T,∇′) is defined by

(E⊗̃BF , S⊗̃1 + 1⊗̃∇T,∇⊗̃B∇′).

This is associative by theorem 5.3.2 and proposition 5.4.1, and defines a corre-
spondence again by by propositions 5.4.3 and 6.2.2. That the composite of two
Ck-correspondences is again a Ck-correspondence, follows by examining the dia-
gram the diagram after theorem 5.4.5 and using the transversality condition. �

As mentioned in the introduction, a category with unbounded cycles as ob-
jects can be constructed in a similar way. A morphism of unbounded cycles
A → (E , D) � B and A′ → (E ′, D′) � B′ is given by a correspondence A →
(F , S,∇) � A′ and a bimodule B → F ′ � B′, where B is represnted by compact
operators. The bounded transform functor then takes values in the morphim cate-
gory KK2.

Furthermore, we would like to note that the category of spectral triples con-
structed is a 2-category. A morphism of morphisms f : (E , D,∇) → (E ′, D′∇′) is
given by an element F ∈ Hom∗B(E ,F ), commuting with the left A-module struc-
tures and making the diagrams

E
F - E ′ E

F - E ′

E

D

? F - E ′

D′

?
E⊗̃BΩ1(B)

∇

?
F- E ′⊗̃BΩ1(B),

∇′

?

commutative.

The external product of correspondences is defined in the expected way:

(E , D,∇)⊗ (E ′, D′∇′) := (E⊗E ′, D⊗1 + 1⊗D′,∇⊗1 + 1⊗∇).

In this way, Cor becomes a symmetric monoidal category.
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Definition 6.5.4. Let (E , S) and (F , T ) be unbounded (A,B)-bimodules. They
are said to be weakly equivalent if there exists a unitary in u ∈ Hom∗B(E ,F ) with
the property that u∗Tu− S is densely defined and extends to a bounded operator
in End∗B(E).

Weak equivalence is an equivalence relation. On the level of correspondences, all
compatible connections (if they exist) become equivalent. The resulting category
WCor, is the category of weak correspondences of spectral triples (or unbounded
bimodules). The functor Cor → KK factors through the quotient map Cor →
WCor. When one is merely interested in obtaining K-theoretic information of
some sort, working in WCor can be much easier than working in Cor.
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