
Quartic Thue Equations

Shabnam Akhtari

Max-Planck-Institut für Mathematik, P.O.Box: 7280, 53072 Bonn, Germany

Ryotaro Okazaki

Doshisha University, Department of Mathematics, Kyotanabe, Kyoto 610-0394, Japan

Abstract

We will give upper bounds upon the number of integral solutions to binary
quartic Thue equations. We will also study the geometric properties of a
specific family of binary quartic Thue equations to establish sharper upper
bounds.

Key words: Thue Equation; Linear Forms in Logarithms; The Thue-Siegel
Principle

Email addresses: akhtari@mpim-bonn.mpg.de (Shabnam Akhtari),
rokazaki@dd.iij4u.or.jp (Ryotaro Okazaki)

Preprint submitted to Elsevier September 14, 2009



Quartic Thue Equations

Shabnam Akhtari

Max-Planck-Institut für Mathematik, P.O.Box: 7280, 53072 Bonn, Germany

Ryotaro Okazaki

Doshisha University, Department of Mathematics, Kyotanabe, Kyoto 610-0394, Japan

1. Introduction

In this paper, we will consider irreducible binary quartic forms with in-
teger coefficients; i.e. polynomials of the shape

F (x, y) = a0x
4 + a1x

3y + a2x
2y2 + a3xy

3 + a4y
4.

In [1], the first author showed that when the so-called catalecticant invariant

JF = 2a3
2 − 9a1a2a3 + 27a2

1a4 − 72a0a2a4 + 27a0a
2
3

vanishes and F splits in R, the equation

|F (x, y)| = 1 (1)

has at most 12 solutions in integers x, y. In this paper we will give upper
bounds for the number of integral solutions to (1) with large discriminant
and no restriction on J . We will use some ideas of Stewart [14] to prove

Theorem 1.1. Let F (x, y) be an irreducible binary form with integral coeffi-
cients and degree 4. The Diophantine equation (1) has at most 61 solutions
in integers x and y (with (x, y) and (−x,−y) regarded as the same), provided
that the discriminant of F is greater than D0, where D0 is an effectively
computable constant.
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We also combine some analytic methods from [14] with some geometric
methods from [12] to show that

Theorem 1.2. Let F (x, y) be an irreducible binary form with integral coeffi-
cients and degree 4 that splits in R. Then the Diophantine equation (1) has
at most 37 solutions in integers x and y (with (x, y) and (−x,−y) regarded
as the same), provided that the discriminant of F is greater than D0, where
D0 is an effectively computable constant.

We remark here that D0 can be computed effectively. To use our method
(linear forms in logarithms) to prove Theorem 1.2, we need to take D0 >
10500. However, to prove Theorem 1.1, using the Thue-Siegel principle, we
don’t really need to take D0 very large. Here we choose to work with the
same D0 to be consistent. Propositions 2.3 and 2.4 together with Theorem
6.9 give an algorithm to compute D0.

Note that if (x, y) is a solution to (1) then (−x,−y) is also a solution to
(1). So here we will only count the solutions with y ≥ 0.

The equation

F (x, y) = x4 − 4x3y − x2y2 + 4xy3 + y4 = 1

has exactly 8 solutions (x, y) = (0, 1), (1, 0), (1, 1), (−1, 1), (4, 1), (−1, 4), (8, 7), (−7, 8)
(see [11] for a proof). The authors are not aware of any binary quartic forms
F (x, y) for which the equation F (x, y) = 1 has more than 8 solutions.

Let
F (x, y) = a0(x− α1y)(x− α2y)(x− α3y)(x− α4y).

We call forms F1 and F2 equivalent if they are equivalent under GL2(Z)-
action; i.e. if there exist integers a1 , a2 , a3 and a4 such that

F1(a1x+ a2y, a3x+ a4y) = F2(x, y)

for all x, y, where a1a4 − a2a3 = ±1. We denote by NF the number of
solutions in integers x and y of the Diophantine equation (1). If F1 and F2

are equivalent then NF1 = NF2 and DF1 = DF2 .
Suppose there is a solution (x0, y0) to the equation (1). Since

gcd(x0, y0) = 1,

there exist integers x1, y1 ∈ Z with

x0y1 − x1y0 = 1.
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Then
F ∗(1, 0) = 1,

where,
F ∗(x, y) = F (x0x+ x1y, y0x+ y1y).

Therefore, F ∗ is a monic form equivalent to F . From now on we will assume
F is monic.

In this paper we give an upper bound for the number of integral solutions
to F (x, y) = ±1. For the equation

F (x, y) = h

of degree 4, one may use an argument of Bombieri and Schmidt [2] to prove
that if N is a given bound in the special case h = 1, then N4ν is a corre-
sponding bound in the general case, where ν is the number of distinct prime
factors of h.

2. Heights

For any algebraic number α, we define the (naive) height of α, denoted
by H(α), by

H(α) = H (f(x)) = max (|an|, |an−1|, . . . , |a0|)

where f(x) = anx
n + . . .+ a1x+ a0 is the minimal polynomial of α. Suppose

that over C,
f(x) = an(x− α1) . . . (x− αn).

We put

M(α) = |an|
n∏
i=1

max(1, |αi|).

M(α) is known as the M ahler measure of α. We have the following result of
Landau:

Lemma 2.1. Let α be an algebraic number of degree n. then

M(α) ≤ (n+ 1)1/2H(α).
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For any polynomial G in C[z1, . . . , zn] that is not identically zero the
Mahler measure M(G) is defined by

M(G) = exp

∫ 1

0

dt1 . . .

∫ 1

0

dtn log
∣∣G(e2πit1 , . . . , e2πitn)

∣∣ .
Thus if n = 1 and G(z) = an(z − α1) . . . (z − αn) with an 6= 0, by Jensen’s
theorem,

M(G) = |an|
n∏
i=1

max(1, |ai|).

In [8], Mahler showed, for polynomial G of degree n and discriminant DG,
that

M(G) ≥
(
DG

nn

) 1
2n−2

. (2)

Following Matveev [9, 10], we will define the absolute logarithmic height of
an algebraic number. Let Q(α1)

σ be the embeddings of the real number field
Q(α1) in R, 1 ≤ σ ≤ n, where {α1, α2, . . . , αn} are roots of F (x, 1) = 0. We
respectively have n Archimedean valuations of Q(α1):

|ρ|σ =
∣∣ρ(σ)

∣∣ , 1 ≤ σ ≤ n.

We enumerate simple ideals of Q(α) by indices σ > n and define non-
Archimedean valuations of Q(α) by the formulas

|ρ|σ = (Norm p)−k,

where
k = ordp(α), p = pσ, σ > n,

for any ρ ∈ Q∗(α). Then we have the product formula :

∞∏
1

|ρ|σ = 1, ρ ∈ Q(α).

Note that |ρ|σ 6= 1 for only finitely many ρ. We should also remark that if
σ2 = σ̄1, i.e.,

σ2(x) = σ̄1(x) for x ∈ Q(α),

then the valuations | . |σ1 and | . |σ2 are equal. We define the absolute loga-
rithmic height of ρ as

h(ρ) =
1

2n

∞∑
σ=1

|log |ρ|σ| .
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Lemma 2.2. Suppose α is an algebraic number of degree n over Q. Then

h(α) =
1

n
logM(α).

Proof. It is well-known that∏
σ

max(1, |α|σ) = M(α).

Since

h(ρ) =
1

2n

∞∑
σ=1

|log |ρ|σ| ,

by the product formula,

h(α) =
2

2n
log
∏
σ

max(1, |α|σ).

Therefore,

h(α) =
1

n
logM(α).

Let α and β be two algebraic numbers. Then the following inequalities
hold (see [3]):

h(α + β) ≤ log 2 + h(α) + h(β) (3)

and
h(αβ) ≤ h(α) + h(β). (4)

Let us call strongly equivalent the polynomials f(x) and f ∗(x) ∈ Z if
f ∗(x) = f(x+ a) for some a ∈ Z. Two algebraic integers α and α′ are called
(strongly) equivalent if their minimal polynomials are (strongly) equivalent.

Proposition 2.3. (Győry [5]) Suppose that f(x) is a monic polynomial in
Z[x] with degree n ≥ 2 and non-zero discriminant D. There is a polynomial
f ∗(x) ∈ Z strongly equivalent to f(x) so that

H (f ∗(x)) < exp{n4n12|D|6n8} < exp exp{4 (log |D|)13}.

This allows us to assume H (F (x, 1)) < exp{4413|D|6(48)}, for our quartic
form F (x, y). In fact, from now on, we will work with a monic irreducible
quartic binary form F (x, y) so that H (F (x, 1)) satisfies the above inequality.
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Proposition 2.4. (Győry [6]) Suppose that f(x) is a monic polynomial in
Z[x] with degree n ≥ 2 and non-zero discriminant D. Then for every constant
χ > 9(n−1)(n−2)/2 there exists a polynomial f ∗(x) ∈ Z strongly equivalent
to f(x) which satisfies

H (f ∗(x)) < exp(cDχ),

where c = c(n, χ) is a positive computable constant.

A much more precise estimate is given for H(f) in terms of D(f) by
Evertse [4]. It is, however, partially ineffective.

Proposition 2.5. (Evertse [4]) Let F (x, y) be a binary form with degree
n ≥ 2 and non-zero discriminant D. Assume that H (F (x, 1)) ≤ H (G(x, 1))
for every G(x, y) equivalent to F (x, y). Then

H (F (x, 1)) ≤ c |D|21/(r−1) ,

where c is an ineffective constant depending on n.

Lemma 2.6. (Mahler [8]) If a and b are distinct zeros of polynomial P (x)
with degree n, then we have

|a− b| ≥
√

3(n+ 1)−nM(P )−n+1,

where M(P ) is the Mahler measure of P .

Since M(P ) ≤ (n+ 1)1/2H(P ), we have

|a− b| ≥
√

3(n+ 1)−(2n+1)/2H(P )−n+1.

3. The Thue-Siegel Principle

Let α be an algebraic number of degree n and f be its minimal polynomial
over the integers. Let t and τ be positive numbers such that t <

√
2/n and√

2− nt2 < τ < t, and put λ = 2
t−τ and

A1 =
t2

2− nt2
(

logM(α) +
n

2

)
.

Suppose that λ < n. A rational number x
y

is said to be a very good approx-
imation to α if

|α− x/y| <
(
4 eA1 max(|x|, |y|)

)−λ
.

The following result of Bombieri and Schmidt [2] is based on a classical work
of Thue and Siegel.
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Proposition 3.1. (Thue-Siegel principle) If α is of degree n ≥ 3 and x/y
and x′/y′ are two very good approximations to α then

log
(
4eA1

)
+ log (max(|x′|, |y′|)) ≤ γ−1

(
log
(
4eA1

)
+ log (max(|x|, |y|))

)
,

where γ = nt2+τ2−2
n−1

.

We also need the following refinement of an inequality of Lewis and
Mahler [7]:

Lemma 3.2. Let F be a binary form of degree n ≥ 3 with integer coefficients
and nonzero discriminant D. For every pair of integers (x, y) with y 6= 0

min
α

∣∣∣∣α− x

y

∣∣∣∣ ≤ 2n−1nn−1/2 (M(F ))n−2 |F (x, y)|
|D(F )|1/2|y|n

,

where the minimum is taken over the zeros α of F (z, 1).

Proof. This is Lemma 3 of [14].

4. Large Solutions

We will now estimate the number of solutions (x, y) of (1) with y >
M(F )2. Suppose that (x, y) is an integral solution to (1). Then we have

(x− α1y)(x− α2y)(x− α3y)(x− α4y) = ±1.

Therefore, for some 1 ≤ i ≤ 4,

|x− αiy| < 1.

Definition. We say the pair of solutions (x, y) is related to αi if

|x− αiy| = min
1≤j≤4

|x− αjy| .

Suppose (x1, y1), (x2, y2), . . . are the solutions to (1) which are related to αi
with yj > M(F )2, for j = 1, 2, . . ., ordered so that y1 ≤ y2 ≤ . . .. By Lemma
3.2, ∣∣∣∣αi − xj

yj

∣∣∣∣ ≤ 210M(F )2

|D(F )|1/2y4
j

(5)
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for j = 1, 2, . . .. Therefore,∣∣∣∣xj+1

yj+1

− xj
yj

∣∣∣∣ ≤ 211M(F )2

|D(F )|1/2y4
j

Since |xj+1yj − xjyj+1| ≥ 1, assuming D > 222, we have

y3
j

M(F )2
≤ yj+1. (6)

To each solution (xj, yj), we associate a real number δj > 1 by

yj = M(F )1+δj . (7)

From (6), we have
3δj ≤ δj+1.

Therefore,
3j−1 ≤ δj. (8)

Moreover, if the pairs of solutions (xk, yk) and (xk+l, yk+l) are both related
to αi then

3lδk ≤ δk+l. (9)

Let us now apply the Thue-Siegel principle (Proposition 3.1) with

t =

√
2

4.01

and
τ = 1.2

√
2− 4t2 = 0.12 t.

Then

λ =
2

t− τ
=

2

0.88t
< 3.22,

A1 = 100 (log(M(F )) + 2)

and
γ−1 < 1368, (10)

where, γ = 4t2+τ2−2
3

. Since we have assumed
∣∣∣αi − xj

yj

∣∣∣ < 1,

|xj| < |yj|(|αi|+ 1) ≤ 2M(F )yj,
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whereby
H(xj, yj) < 2M(F )yj.

By (2) and since D > 10500, we have

8eA1 = 8e200M(F )100 < M(F )102, (11)

so by (7),
(4eA1H(xj, yj))

λ < M(F )(103+δj)λ. (12)

From (5), ∣∣∣∣αi − xj
yj

∣∣∣∣ < M(F )−4δj .

Hence,
xj

yj
is a very good approximation to αi whenever

4δj ≥ (103 + δj)λ.

Since λ ≤ 3.22, if δj > 414 then
xj

yj
is a very good approximation to αi. So

by (8), whenever

k > 1 +
log 415

log 3
,

xk

yk
is a very good approximation to αi. This means there are at most 6 large

solutions (x1,y1),. . . , (x6, y6) to (1) which are related to αi for which x1

y1
,. . . ,

x6

y6
are not good approximations to αi. Suppose that there are l pairs of

solutions (x7, y7), . . . , (x6+l, y6+l) (l > 1) which are both related to αi, and
for which

xj

yj
are very good approximations to αi. Then by the Thue-Siegel

principle (Lemma (3.1)) and (10),

log
(
4eA1

)
+ log y7+l ≤ 1368

(
log
(
4eA1

)
+ log(2M(F )y8)

)
,

and so, by (11),

log y7+l ≤ 1368 (103 logM(F ) + log(y8))− 102 logM(F ) + log(2).

Since δ8 > 414, by (7) and (9),

3l−1δ8 ≤ δ7+l < 1368 δ8 + 139435 < 336 δ8.

Thus,

l ≤ log 336

log 3
+ 1 ≤ 6.30.

This means there are at most 12 large solution related to each root of F (x, 1).
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5. Small Solutions

Here we will count the number of solutions to (1) with 1 ≤ y ≤ M(F )2.
We will follow Stewart’s [14] results for Thue inequalities with arbitrary de-
gree and sharpen them for quartic Thue equations. Suppose that Y0 is a fixed
positive number. For each root αi of F (x, 1), let (x(i), y(i)) be the solution
to (1) related to αi with the largest value of y among those with 1 ≤ y ≤ Y0

. Let X be the set of solutions of (1) with 1 ≤ y ≤ Y0 minus the elements
(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), (x(4), y(4)). From inequality (60) of [14], we
have ((

2

7

)4

M(F )

)|X|
≤ Y 4

0 , (13)

where |X| denotes the cardinality of X. By (2), when D > 10500, we have(
2

7

)4

M(F ) ≥M(F )64/65.

By (13),

|X| < 4
65 log Y0

64 logM(F )
. (14)

So when Y0 = M(F )2, we have |X| ≤ 8. Therefore the number of small
solutions does not exceed 12.

We have seen that there are at most 48 large solutions and 12 small ones
to (1), when the discriminant is large. Since we assumed the quartic form
F (x, y) is monic, (1, 0) is also a solution to (1). Thus, the proof of Theorem
1.1 is complete.

In the next section, we will consider quartic forms F (x, y) for which all
roots of F (x, 1) are real. There we will call a solution (x, y) a large solution
if y > M(F )6.

Lemma 5.1. There are at most 14 solutions to (1) with 1 ≤ y ≤M(F )6.

Proof. Choose θ > 0 such that

65

16

(
8

3
+ θ

)
< 11.

From (13), we conclude that (1) has at most 10 solutions with 1 ≤ y <

M(f)
8
3
+θ. Further, by (6), equation (1) has at most 4 solutions withM(f)

8
3
+θ ≤

y < M(f)6. So altogether (1) has at most 14 solutions with 1 ≤ y < M(f)6.
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6. Forms With Real Roots

In this section, we will assume αi, the roots of F (x, 1), are real.
Define

φm(x, y) = log

∣∣∣∣∣D
1
12 (x− yαm)

|f ′(αm)|
1
3

∣∣∣∣∣ (15)

and
φ(x, y) = (φ1(x, y), φ2(x, y), φ3(x, y), φ4(x, y)) .

Let
‖φ(x, y)‖

be the L2 norm of the vector φ(x, y).

Lemma 6.1. Suppose that (x, y) is a solution to the equation F (x, y) = 1
for the binary form F in Theorem 1.2. If

|x− αiy| = min
1≤j≤4

|x− αjy|

Then

‖φ(x, y)‖ ≤ 6 log
1

|x− αiy|
+ 4 log

(
D

1
12 (5)4M(F )3

√
3

)
.

Proof. Let us assume that∣∣x− αsj
y
∣∣ < 1, for 1 ≤ j ≤ p

and
|x− αbky| ≥ 1, for 1 ≤ k ≤ 4− p,

where 1 ≤ p, sj, bk ≤ 4. We have∏
k

|x− αbky| =
1∏

j

∣∣x− αsj
y
∣∣ .

Therefore, for any 1 ≤ k ≤ 4− p, we have

log |x− αbky| ≤ p log
1

|x− αiy|
.

Since
|x− αiy| = min

1≤j≤4
|x− αjy| ,
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we also have ∣∣log
∣∣x− αsj

y
∣∣∣∣ ≤ |log |x− αiy|| .

From here, we conclude that

‖φ(x, y)‖ ≤
4∑

m=1

log

∣∣∣∣∣ D
1
12

|f ′(αm)|
1
3

∣∣∣∣∣+ (4− p)p |φi(x, y)|+ p |φi(x, y)|

=
4∑

m=1

log

∣∣∣∣∣ D
1
12

|f ′(αm)|
1
3

∣∣∣∣∣+ (5p− p2) |φi(x, y)| .

The function f(p) = 5p − p2 is at most 6 for p ∈ {1, 2, 3, 4}. Our proof is
complete by recalling the fact that if a and b are distinct zeros of f(x) =
F (x, 1) , then by Lemma 2.6, we have

|a− b| ≥
√

3

54
M(f)−3. (16)

6.1. Exponential Gap Principle

Here, our goal is to show

Theorem 6.2. Suppose that (x1, y1), (x2, y2) and (x3, y3) are three pairs of
non-trivial solutions to (1) with

|xj − α4yj| < 1

and |yj| > M(F )6, for j ∈ {1, 2, 3}. If r1 ≤ r2 ≤ r3 then

r3 > exp
(r1

6

)
2
√

3 log4 1 +
√

5

2
,

where rj = ‖φ(xj, yj)‖.

We note that for three pairs of solutions in Theorem 6.2, the three points
φ1 = φ(x1, y1), φ2 = φ(x2, y2) and φ3 = φ(x3, y3) form a triangle ∆. To
establish Theorem 6.2, we will find a lower bound and an upper bound for
the area of ∆. Then comparing these bounds, Theorem 6.2 will be proved.
The length of each side of ∆ is less than 2r3. Lemma 6.3 gives an upper
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bound for the height of ∆. Suppose that (x, y) 6= (1, 0) is a solution to (1)
and let t = x

y
. We have

φ(x, y) = φ(t) =
4∑
i=1

log
|t− αi|
|f ′(αi)|

1
3

bi,

where,

b1 =
1

4
(3,−1,−1,−1), b2 =

1

4
(−1, 3,−1,−1),

b3 =
1

4
(−1,−1, 3,−1), b4 =

1

4
(−1,−1,−1, 3),

Without loss of generality, we will suppose that for the solution (x, y) we
have

|x− α4y| < 1.

We may write

φ(x, y) = φ(t) =
3∑
i=1

log
|t− αi|
|f ′(αi)|

1
3

ci + E4b4, (17)

where, for 1 ≤ i ≤ 3,

ci = bi +
1

3
b4, E4 = log

|t− α4|
|f ′(α4)|

1
3

− 1

3

3∑
i=1

log
|t− αi|
|f ′(αi)|

1
3

One can easily observe that

ci ⊥ b4, for 1 ≤ i ≤ 4.

Lemma 6.3. Let

L4 =
3∑
i=1

log
|α4 − αi|
|f ′(αi)|

1
3

ci + zb4, z ∈ R.

Suppose that (x, y) 6= (1, 0) is a solution to (1) with

|x− α4y| = min
1≤j≤4

|x− αjy|

and y ≥ M(F )6. Then the distance between φ(x, y) and the line L4 is less
than

exp

(
−r
6

)
,

where r = ‖φ(x, y)‖.
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Proof. The distance between φ(x, y) and L4 is equal to∥∥∥∥∥
3∑
i=1

log
|t− αi|
|α4 − αi|

ci

∥∥∥∥∥ ,
where t = x

y
. If |t− αi| > |α4 − αi|, then∣∣∣∣log
|t− αi|
|α4 − αi|

∣∣∣∣ = log
|t− αi|
|α4 − αi|

≤ log

(
|t− α4|
|α4 − αi|

+ 1

)
<
|t− α4|
|αi − α4|

.

If |t− αi| < |α4 − αi|, then∣∣∣∣log
|t− αi|
|α4 − αi|

∣∣∣∣ = log
|α4 − αi|
|t− αi|

≤ log

(
|t− α4|
|t− αi|

+ 1

)
<
|t− α4|
|αi − t|

.

Note that when i 6= 3, either

|t− αi| > |α4 − αi|

or
|t− αi| > |α3 − αi|.

Therefore, for i 6= 3, ∣∣∣∣log
|t− αi|
|α4 − αi|

∣∣∣∣ < |t− α4|
m

,

where m = mini 6=j{|αj − αi|}. Moreover, since we assumed t is closer to α4,

|t− α3| ≥
|α4 − α3|

2
.

Consequently, ∣∣∣∣log
|t− α3|
|α4 − α3|

∣∣∣∣ < 2|t− α4|
m

.

Therefore ∥∥∥∥∥
3∑
i=1

log
|t− αi|
|α4 − αi|

ci

∥∥∥∥∥ < 4

√
2

3

|u|
m
, (18)

where u = t− α4. On the other hand, by Lemma 6.1

r − 4 log

(
D

1
12 54M(F )3

√
3

)
≤ 6 log

1

|x− α4y|
,
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which implies

log |yu| < −r
6

+
16

25
log

(
D

1
12 54M(F )3

√
3

)
.

Therefore,

|u| < exp

(
−r
6

) exp

(
16
25

log

(
D

1
12 54M(F )3√

3

))
|y|

Comparing this with(18), since |y| > M(F )6 and (by (2)) we have

D1/12 < 41/3M(F )1/12,

our proof is complete (note that by (2.6), m ≥
√

3
54M(f)3

).

Lemma 6.3 shows that the height of ∆ is at most

2 exp

(
−r1

6

)
.

Therefore, the area of ∆ is less than

2r3 exp

(
−r1

6

)
. (19)

To estimate the area of ∆ from below, we appeal to Pohst’s lower bound
for units. Since

F (x, y) = (x− α1y)(x− α2y)(x− α3y)(x− α4y) = ±1,

we conclude that x− αiy is a unit in Q(αi) when (x, y) is a solution to (1).
Suppose that (x1, y1) and (x2, y2) are two pairs of non-trivial solutions to (1).
Then

φ(x1, y1)− φ(x2, y2) =

(
log

x1 − α1y

x2 − α1y2

, . . . , log
x1 − α4y1

x2 − α4y2

)
= ~e.

Since x1−αiy
x2−αiy2

is a unit in Q(αi), we have

‖~e‖ ≥ 4 log2 1 +
√

5

2

16



(see exercise 2 on page 367 of [13]). Now we can estimate each side of ∆ from
below to conclude that the area of the triangle ∆ is greater than

16

√
3

4
log4 1 +

√
5

2
.

Comparing this with (19) we conclude that

2 r3 exp

(
−r1

6

)
> 16

√
3

4
log4 1 +

√
5

2
.

Theorem 6.2 is immediate from here.

6.2. Geometry Of The Curve φ(t)

In order to study the curve φ(t), we will consider some well-known geomet-
ric properties of the unit group U of Q(α), where α is a root of F (x, 1) = 0.

Theorem 6.4 (Dirichlet’s Unit Theorem). Let K be an algebraic number
field of degree n. Let r be the number of real conjugate fields of K and 2s
the number of complex conjugate fields of K. Then the ring of integers OK

contains r+ s− 1 fundamental units ε1, . . . , εr+s−1 such that each unit of OK

can be expressed uniquely in the form uεn1
1 . . . ε

nr+s−1

r+s−1 , where u is a root of
unity in OK and n1, . . . , nr+s−1 are integers.

For a real algebraic number field Q(α) of degree 4, in Dirichlet’s Unit
Theorem we have r = 4 and s = 0. By Dirichlet’s unit theorem, we have a
sequence of mappings

τ : U 7−→ V ⊂ R4 (20)

and
log : V 7−→ Λ, (21)

where V is the image of the map τ , Λ is a 3-dimensional lattice, τ is the
obvious restriction of the embedding of Q(α) in R4, and the mapping log is
defined as follows:
For (x1, x2, x3, x4) ∈ V ,

log(x1, x2, x3, x4) = (log |x1|, log |x2|, log |x3|, log |x4|).

If (x, y) is a pair of solutions to (1) then

(x− αjy)

17



is a unit in Q(αi). Suppose that

λ2, λ3, λ4

are fundamental units of Q(αi) and are chosen so that

log (τ(λ2)) , log (τ(λ3)) , log (τ(λ4))

form a reduced basis for the lattice Λ. Let us assume that

‖log (τ(λ2))‖ ≤ ‖log (τ(λ3))‖ ≤ ‖log (τ(λ4))‖ .

φ(x, y) = φ(1, 0) +
4∑

k=2

mk log (τ(λk)) mk ∈ Z (22)

Lemma 6.5. For every fixed integer m, there are at most 6 solutions (x, y)
to (1) for which in (22), m4 = m.

Proof. Let S be the 3-dimensional affine space of all points φ(1, 0)+
∑4

i=2 µi log (τ(λi))
(µi ∈ R). Let µ4 = m. Then the points

φ(1, 0) +
3∑
i=2

µi log (τ(λi)) +m log (τ(λ4))

form a linear subvariety S1 of S. Let

~N = (N1, N2, N3, N4) ∈ S

be the normal vector of S1. Then the number of times that the curve φ(t)
intersects S1 equals the number of solutions in t to

~N.φ(t) = 0, (23)

where ~N.φ(t) is the inner product of two vectors ~N and φ(t). We have

d

dt

(
~N.φ(t)

)
=
P (t)

F (t)
,

where
F (t) = (t− α1)(t− α2)(t− α3)(t− α4)

18



and P (t) is a polynomial of degree 3. Therefore, since

lim
t→α+

i

log |t− αi| = −∞

and
lim
t→α−i

log |t− αi| = −∞,

the derivative has at most 3 zeros and consequently, the equation (23) can
not have more than 6 solutions.

Definition of the set A. Assume that equation (1) has more than 6
solutions. Then we can list 6 solutions (xi, yi) (1 ≤ i ≤ 6), so that ri =
‖φ(xi, yi)‖ are the smallest among all ‖φ(x, y)‖, where (x, y) varies over all
non-trivial pairs of solutions. We call the set of all these 6 solutions A.

Corollary 6.6. Let (x, y) 6∈ A be a solution to (1). Then

‖log (τ(λ2))‖ ≤ ‖log (τ(λ3))‖ ≤ ‖log (τ(λ4))‖ ≤ 2 ‖φ(x, y)‖ .

Proof. Since we have assumed that ‖log (τ(λ2))‖ ≤ ‖log (τ(λ3))‖ ≤ ‖log (τ(λ4))‖,
it is enough to show that ‖log (τ(λ4))‖ ≤ ‖φ(x, y)‖. By Lemma 6.5, there is
at least one solution (x0, y0) ∈ A so that

φ(x, y)− φ(x0, y0) =
4∑
i=2

ki log (τ(λi)) ,

with k4 6= 0. Since {log (τ(λi))} is a reduced basis for the lattice Λ in (21),
we conclude that

‖log (τ(λ4))‖ < ‖φ(x, y)− φ(x0, y0)‖
≤ 2 ‖φ(x, y)‖ .

Lemma 6.7. Suppose (x, y) 6∈ A. Then for r(x, y) = ‖φ(x, y)‖, we have

r(x, y) ≥ 1

2
log

(
|D|1/12

2

)
.
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Proof. Let (x′, y′) ∈ A be a pair of solutions to equation (1) and αi and αj
be two distinct roots of quartic polynomial F (x, 1). We have∣∣∣eφi(x

′,y′)−φi(x,y) − eφj(x
′,y′)−φj(x,y)

∣∣∣ =

∣∣∣∣x′ − y′αix− yαi
− x′ − y′αj

x− yαj

∣∣∣∣
=
|αi − αj| |xy′ − yx′|
|x− yαi||x− yαj|

≥ |αi − αj|
|x− yαi||x− yαj|

.

The last inequality follows from the fact that |xy′ − yx′| is a non-zero integer.
Since |φi| < ‖φ‖ = r and r(x′, y′) < r(x, y), we may conclude

(
2e2r(x,y)

)6 ≥ ∏
1≤i<j≤4

∣∣∣∣x′ − y′αix− yαi
− x′ − y′αj

x− yαj

∣∣∣∣ ≥ √D.

Let us define Ti,j(t) := log
∣∣∣ (t−αi)(α4−αj)

(t−αj)(α4−αi)

∣∣∣ , so that for a pair of solutions

(x, y) 6= (1, 0),

Ti,j(x, y) = Ti,j(t) = log

∣∣∣∣α4 − αi
α4 − αj

∣∣∣∣+ log

∣∣∣∣t− αjt− αi

∣∣∣∣
= log

∣∣∣∣α4 − αi
α4 − αj

∣∣∣∣+ log

∣∣∣∣x− αjyx− αiy

∣∣∣∣
= log |λi,j|+

4∑
k=2

mi log
|λk|
|λ′k|

, (24)

where t = x
y
,

λi,j = log

∣∣∣∣α4 − αi
α4 − αj

∣∣∣∣
and λk and λ′k are fundamental units in Q(αj) and Q(αi), respectively. Note
that the mk ∈ Z in (22) and (24) are the same integers. We will end this
section by giving an upper bound for |T | and will estimate |T | from below in
the next section.
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Lemma 6.8. Let (x, y) be a pair of solutions to (1) with |y| > M(F )6. Then
there exists a pair (i, j) for which

|Ti,j(x, y)| < exp

(
−r
6

)
,

where r = ‖φ(t)‖.

Proof. Let us define

βi =

{
αi if i ≤ 3
βi−3 if i ≥ 4.

Note that

2∑
k=1

3∑
i=1

log2

∣∣∣∣(t− βi)(α4 − βi+k)
(α4 − βi)(t− βi+k)

∣∣∣∣
= 4

3∑
i=1

log2

∣∣∣∣ (t− αi)
(α4 − αi)

∣∣∣∣− 4
∑
i 6=j

log

∣∣∣∣ (t− αi)
(α4 − αi)

∣∣∣∣ log

∣∣∣∣ (t− αj)
(α4 − αj)

∣∣∣∣
= 4

3∑
i=1

log2

∣∣∣∣ (t− αi)
(α4 − αi)

∣∣∣∣− 2
3∑
i=1

log

∣∣∣∣ (t− αi)
(α4 − αi)

∣∣∣∣∑
j 6=i

log

∣∣∣∣ (t− αj)
(α4 − αj)

∣∣∣∣
= 4

3∑
i=1

log2

∣∣∣∣ (t− αi)
(α4 − αi)

∣∣∣∣− 2
3∑
i=1

log

∣∣∣∣ (t− αi)
(α4 − αi)

∣∣∣∣ log

∣∣∣∣ (α4 − αi)
y4f ′(α4)(t− α4)(t− αi)

∣∣∣∣
= 6

3∑
i=1

log2

∣∣∣∣ (t− αi)
(α4 − αi)

∣∣∣∣− 2 log

∣∣∣∣ 1

ynf ′(α4)(t− αn)

∣∣∣∣ 3∑
i=1

log

∣∣∣∣ (t− αi)
(α4 − αi)

∣∣∣∣
= 6

3∑
i=1

log2

∣∣∣∣ (t− αi)
(α4 − αi)

∣∣∣∣− 2 log2

∣∣∣∣ 1

y4f ′(α4)(t− α4)

∣∣∣∣
On the other hand, from the proof of Lemma 6.3 the distance between φ(x, y)
and the line

L4 =
3∑
i=1

log
|α4 − αi|
|f ′(αi)|

1
3

ci + zb4, z ∈ R

is equal to
∥∥∥∑3

i=1 log |t−αi|
|α4−αi|ci

∥∥∥ and by the definition of ci in section 6.1, we
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have ∥∥∥∥∥
3∑
i=1

log
|t− αi|
|α4 − αi|

ci

∥∥∥∥∥
2

=

∥∥∥∥∥
3∑
i=1

log

(
|t− αi|
|α4 − αi|

− 1

3

∣∣∣∣log
1

y4f ′(α4)(t− α4)

∣∣∣∣) ei

∥∥∥∥∥
2

=
3∑
i=1

log2

(
|t− αi|
|α4 − αi|

− 1

3

∣∣∣∣log
1

y4f ′(α4)(t− α4)

∣∣∣∣)

=
3∑
i=1

log2

∣∣∣∣ (t− αi)
(α4 − αi)

∣∣∣∣− 1

3
log

∣∣∣∣ 1

y4f ′(α4)(t− α4)

∣∣∣∣ 3∑
i=1

log

∣∣∣∣ (t− αi)
(α4 − αi)

∣∣∣∣
where {ei} is the standard basis for R3. So there must be a pair (i, j), for
which

log2

∣∣∣∣(t− αi)(α4 − αj)
(t− αj)(α4 − αi)

∣∣∣∣
<

1

6

2∑
k=1

3∑
i=1

log2

∣∣∣∣(t− βi)(α4 − βi+k)
(α4 − βi)(t− βi+k)

∣∣∣∣
=

∥∥∥∥∥
3∑
i=1

log
|t− αi|
|α4 − αi|

ci

∥∥∥∥∥
2

.

Therefore, by Lemma 6.3

|Ti,j(x, y)| =
∣∣∣∣log

∣∣∣∣(t− αi)(α4 − αj)
(t− αj)(α4 − αi)

∣∣∣∣∣∣∣∣ < exp

(
−r
6

)
.

6.3. Linear Forms In Logarithms

Theorem 6.9 (Matveev). Suppose that K is a real algebraic number field
of degree d. We are given numbers α1, . . . αn ∈ K∗ with absolute logarithm
heights h(αj). Let logα1 , . . . , logαn be arbitrary fixed non-zero values of
the logarithms. Suppose that

Aj ≥ max{dh(αj), | logαj|}, 1 ≤ j ≤ n.
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Now consider the linear form

L = b1 logα1 + . . .+ bn logαn,

with b1, . . . , bn ∈ Z and with the parameter B = max{1,max{bjAj/An : 1 ≤
j ≤ n}} . Put

Ω = A1 . . . An,

C(n) =
16

n!
en(2n+ 2)(n+ 2)(4n+ 4)n+1(

1

2
en),

C0 = log(e4.4n+7n5.5d2 log(en)),

W0 = log(1.5eBd log(ed)).

If bn 6= 0, then
log |L| > −C(n)C0W0d

2Ω.

Proof. See [10] for the proof.

Let index σ be the isomorphism from Q(αi) to Q(αj) such that σ(αi) =
αj. We may assume that σ(λi) = λ′i for i = 2, 3, 4. Let (x1, y1) , (x2, y2) ,
(x3, y3),(x4, y4),(x5, y5) be five distinct large solutions to (1) with (xk, yk) 6∈ A,

yk > M(F )6

and
|xk − α4yk| = min

1≤i≤4
|xk − αiyk| k ∈ {1, 2, 3, 4, 5}

and r1 ≤ r2 ≤ r3 ≤ r4 ≤ r5 where rk = ‖φ(xk, yk)‖. We will apply Matveev’s
lower bound to

Ti,j(x5, y5) = log |λi,j|+
4∑

k=2

mk log
|λk|
|λ′k|

,

where (i, j) is chosen so that Lemma 6.8 is satisfied and mk ∈ Z. In the
above representation, λk are multiplicatively dependent if and only if λi,j is
a unit. If λi,j is a unit then we can write Ti,j(x, y) as a linear form in 3
logarithms. Since theorem 6.9 gives a better lower bound for linear forms
in 3 logarithms, we will assume that λi,j, λ2, λ3 and λ4 are multiplicatively
independent and Ti,j(x, y) is a linear form in 4 logarithms.
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Suppose that λ is a unit in the number field and λ′ is its algebraic conju-
gate. We have

h(λ′) = h(λ) =
1

8
|log (τ(λ))|1 ,

where h is the logarithmic height and | |1 is the L1 norm on R4 and the
mappings τ and log are defined in (20) and (21) . So we have

h(λ) =
1

8
|log (τ(λ))|1 ≤

√
4

8
‖log (τ(λ))‖ ,

where ‖‖ is the L2 norm on R4. Since α4, αi and αj have degree 4 over Q,
the number field Q(α4, αi, αj) has degree d ≤ 24 over Q. So when λ is a unit

max{dh(
λ

λ′
),

∣∣∣∣log(

∣∣∣∣ λλ′
∣∣∣∣)∣∣∣∣} ≤ max{24h(

λ

λ′
), | log(

∣∣∣∣ λλ′
∣∣∣∣)|} ≤ 12 ‖log (τ(λ))‖ .

(25)
Therefore, to apply Theorem 6.9 to Ti,j(x, y), by Corollary 6.6, we may take

Ai = 24r1, for 2 ≤ i ≤ 4.

By Lemma 2.2, Proposition 2.3 (see the comment after this proposition), (3)
and (4), we may take

A1

24
= 2 log 2 + 4413+1D393216

(note that α1, αi , αj are algebraic conjugates and the degree of α1 is 4). To
estimate B, we note that since λi (2 ≤ i ≤ 4) form a reduced basis for the
lattice Λ, we have

mi ‖log τ(λi)‖ ≤ ‖φ(x5, y5)‖+ ‖φ(1, 0)‖

≤ r5 + 2 logD1/12 + 2 log
54M(F )3

√
3

≤ r5 + 2 logD1/12 + 2 log
511/2H(F )3

√
3

,

where the inequalities are from Lemmas 2.1 and (16). Therefore, by Propo-
sition 2.3,

B = max{1,max{bjAj/A1 : 1 ≤ j ≤ n}} < r5.
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Theorem 6.9 implies that for a constant number K,

log Ti,j(x5, y5) > −KD393216r3
1 log r5.

Comparing this with Lemma 6.8, we have(
−r5

6

)
> −KD393216r3

1 log r5,

or
r5

log r5
< 6KD393216r3

1.

Thus we may compute the constant number K1, so that

r5 < K1D
393216r3

1, (26)

This is because r5 is large enough by Lemma 6.7. Using Lemma 6.2 twice,
we obtain

r5 > exp

(
2
√

3

6
exp(r1/6) log4 1 +

√
5

2

)
2
√

3 log4 1 +
√

5

2
.

Comparing with (26, we get a contradiction. For by Lemma 6.7,

r1 ≥
1

2
log

(
|D| 1

12

2

)
.

Thus, there are at most 16 solutions (x, y) 6∈ A with y > M(F )6. By Lemma
5.1 and since |A| = 6, counting the solution (1, 0), Theorem 1.2 is proven.
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