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Abstract
In [TVa], Bertrand Toën and Michel Vaquié defined a scheme theory for a closed monoidal category (C,⊗, 1). In this article, we
define a notion of smoothness in this relative (and not necessarily additive) context which generalizes the notion of smoothness
in the category of rings. This generalisation consists practically in changing homological finiteness conditions into homotopical
ones using Dold-Kan correspondence. To do this, we provide the category sC of simplicial objects in a monoidal category and
all the categories sA−mod, sA− alg (A ∈ sComm(C)) with compatible models structures using the work of Rezk in [R]. We
give then a general notions of smoothness in sComm(C). We prove that this notion is a generalisation of the notion of smooth
morphism in the category of rings, is stable under compositions and homotopic pushouts and we provide some examples of
smooth morphisms, in particular in N− alg and Comm(Set).
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Introduction
In [TVa], Bertrand Toën and Michel Vaquié defined a scheme theory for a closed monoidal category (C,⊗, 1). In this
article, we define a notion of smoothness in this relative context which generalizes the notion of smoothness in the
category of rings. The motivations for this work are that interesting objects in the non additive contexts C = Ens or
N−mod are expected not to be schemes but Stacks. The first step is to get a definition for smooth morphism.
The following theorem gives the good definition of smoothness that can be generalised to a relative context:
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Theorem 1. Assume C = Z−mod. A morphism of rings A→ B is smooth if and only if

i. The ring B is finitely presented in A− alg.

ii. The morphism A→ B is flat.

iii. The ring B is a perfect complex of B ⊗A B-modules.

The flatness of A → B is in fact equivalent to TordimAB = 0 hence the two last conditions are homological
finiteness conditions. By the correspondence of Dold-Kan, the second condition can then be translated in an homo-
topical condition. Finally, a result from [TV] asserts that B is a perfect complex in ch(B ⊗A B) if and only if it is
homotopically finitely presented in sB ⊗A B −mod.
We provide then the category sC of simplicial objects in a monoidal category and all the categories sA − mod,
sA − alg with models structures using the work of Rezk in [R]. The classical functors between the categories
A − mod,A − alg, A ∈ sComm(C) induce Quillen functors between the corresponding simplicial categories. We
give the following general definition for smoothness

Definition 2. A morphism A→ B is smooth if and only if

i. The simplical algebra B is homotopically finitely presented in sA− alg.

ii. The simplicial algebra B has Tor dimension 0 on A.

iii. The morphism B ⊗hA B → B is homotopically finitely presented in sB ⊗hA B −mod.

The first condition implies the first condition of 1 ([TV], 2.2.2.4) and there is equivalence for smooth morphisms
of rings. When A,B are rings, the Tor dimension 0 imply that the derived tensor product is weakly equivalent to the
tensor product. The equivalence with previous theorem for rings is then clear.

We prove that relative smooth morphisms are stable under composition and pushouts of Algebras. We finally
provide examples of smooth morphism in relative non-additive contexts , for C = N−mod or C = Set. In particular
the affine line F1 → N and the scheme Gm,F1 w Spec(Z) are smooth in sComm(Set). Similarly, the affine line
N → N[X] and the scheme Gm,N are smooth in sN−mod. We conclude by proving that a cofibration with cofibrant
source and goal which is a Zariski open immersion is smooth.

Preliminaries
Let (C,⊗, 1) be a complete and cocomplete closed symmetric monoidal category. In the category C, there exists a notion
of commutative monoid and for a given commutative monoid A, of A-module. Let Comm(C) denotes the category of
commutative monoids (with unity) in C. For A ∈ Comm(C), A −mod denotes the category of A-modules. It is well
known that the category A −mod is a closed monoidal tensored and cotensored category, complete and cocomplete.
The category Comm(A−mod) will be denoted by A−alg and is described by the equivalence A/Comm(C) w A−alg.
A pushout in A−alg is a tensor product in the sense that for commutative monoids B,C ∈ A−alg B⊗AC w B

∐
A C.

All along this work, (C,⊗, 1) is a locally finitely presentable monoidal category i.e. verifies that the full
subcategory of finitely presented objects, denoted C0, is essentially small, that the (Yoneda) functor i : C → Pr(C0),
is fully faithful, that C0 is stable under tensor product and contains the unity 1. The functor HomC(1,−), denoted
(−)0 : X → X0 is called ”underlying set functor”. For k ∈ C0, the functors HomC(k,−), denoted (−)k : X → Xk are
called ”weak underlying set functor”. It is known that if C is a locally finitely presentable monoidal category, so are
its categories of modules A−mod, A ∈ sComm(C)

There are two fundamental adjunctions:

C

(−⊗A)//
A−mod

i
oo C

L //
Comm(C)

i
oo

where the forgetful functor i is a right adjoint and the functor ”free associated monoid” L is defined by L(X) :=∐
n∈N X

⊗n/Sn. In these adjunctions, C can be replaced by B − mod for B ∈ Comm(C), and L by LB defined by
LB(M) :=

∐
n∈N M

⊗Bn/Sn. Let ϕ (resp ϕB) and ψ (resp ψB) denote these adjunctions for the category C (resp
B −mod). For X ∈ C and M ∈ A−mod, ϕ : HomC(X,M)→ HomA−mod(X ⊗A,M) is easy to describe :

ϕ : f → µM ◦ IdA ⊗ f
ϕ−1 : g → g ◦ (IdX ⊗ iA) ◦ r−1

X
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Let sC denotes the category of simplicial objects in C. There is a functor ”constant simplicial object” denoted k from
C to sC which is right adjoint to the functor π0 from sC to C defined by π0(X) := Colim( X[1]

//
// X[0]oo ). The

tensor product of C induces a tensor product on sC, its unity element is k(1). For A in Comm(C), sA − mod and
sA−alg will denote respectively the simplicial categories sk(A)−mod and sk(A)−alg. As sComm(C) w Comm(sC),
we will always refer to simplicial category of commutative monoids in sC as sComm(C). The functor induced by L on
simplical categories will be denoted sL. The functor i : C→ Pr(C0) induces a functor si : sC→ sPr(sC0).

We need finally hypotheses to endow sC, sComm(C), and for A ∈ sComm(C), sA − mod and sA − alg with
compatible model structures. Let J denotes the family of isomorphism classes of the objects of C0. As C0 is essentially
small, it is a set. One solution of this question is to assume that the natural functors from sC and sComm(C) to sSetJ
are monadic. The characterisation of monadic functors of [Bc] implies that for any commutative simplicial monoid A,
the induced functors from sA−mod to sSetJ is also monadic.

1 General Theory

1.1 Simplicial Categories and Simplicial Theories
Definition 1.1. A simplicial theory is a monad (on sSetJ) commuting with filtered colimits.

Theorem 1.2. (Rezk)
Let T be a simplicial theory in sSetJ , then T − alg admits a simplicial model structure. f is a Weak equivalence or a
fibration in T − alg if and only if so is its image in sSetJ (for the projective model structure). Moreover, this Model
category is right proper.

Proposition 1.3. Model structures on the simplicial categories.

i. Let A = (Ap) be a commutative monoid in sC. The monadic adjunctions Ap −mod
//
SetJoo induce a

monadic adjunction sA−mod
//
sSetJoo i.e. there is an equivalence sA −mod w TA − alg = where TA is

the monad induced by adjunction. In particular sC w T1 − alg.

ii. Let A = (Ap) be a commutative monoid in sC. The monadic adjunctions Ap − alg
//
EnsJoo induce a

monadic adjunction sA− alg //
sSetJoooo i.e. there is an equivalence sA − alg w T cA − alg where T cA is the

monad induced by adjunction. In particular sComm(C) w T c1 − alg.

Proof
As explained in the preliminaries, this is due to the characterisation of monadic functors ([Bc]).

�

Remark 1.4. The right adjoints functors all commute with filtered colimits. So do the monads which are then simplicial
theories on sSetJ .

Corollary 1.5. Let A be a commutative monoid in sC. The categories sC and sA−mod and sComm(C) are models
categories. Moreover, the functors (A ⊗ −) and sL are left Quillen and their adjoints preserve by construction weak
equivalences and fibrations.

Theorem 1.6. The Category sC (resp sA−mod) is a monoidal model category

Proof:
The proof for sC and sA −mod are similar, so let us prove it for sC. Let I, I ′ be respectively the sets of generating
cofibration and generating trivial cofibration. I and I ′ are the image by the left adjoint functor respectively of
generating cofibration and generating trivial cofibration in sSetJ . We juste have to prove (cf [H] chap IV) that I�I
is a set of cofibrations and I�I ′ and I ′�I are sets of trivial cofibrations. It is true for generating cofibration and
generating trivial cofibration in sSetJ , which are all morphisms concentrated in one level. Moreover, it is easy to
verify that the functor sK commutes with � of morphisms concentrated in one level. So it is true in sC. The second
axiom is clearly verified, as 1 is cofibrant.

�
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1.2 Compactly Generated Model categories
Definition 1.7. Let M be a cofibrantly generated simplicial model category and I be the set of generating cofibrations.

i. An object X ∈ I − cell is strictly finite if and only if there exists a finite sequence

∅ = X0
// X1

// ... // Xn = X

and ∀ i a pushout diagram:

Xi
//

��

Xi+1

��
A ui

// B

with ui ∈ I.

ii. An object X ∈ I − cell is finite if and only if it is weakly equivalent to a strictly finite object.

iii. An object X is homotopically finitely presented if and only if for any filtered diagram Yi, the morphism :

HocolimiMap(X,Yi)→Map(X,HocolimiYi)

is an isomorphism in Ho(sSet)

iv. A model category M is compactly generated if it is cellular, cofibrantly generated and if the domains and
codomains of generating cofibration and generating trivial cofibration are cofibrant, ω-compact and ω-small
(Relative to M).

Proposition 1.8. ([TV])
Let M be a compactly generated model category.

i. For any filtered diagram Xi, the natural morphism HocolimiXi → ColimiXi is an isomorphism in Ho(M).

ii. Assume that filtered colimits are exact in M. Then homotopically finitely presented objects in M are exactly
objects equivalent to weak retracts of strictly finite I − cell objects.

Proposition 1.9. i. The simplicial model category sSetJ is compactly generated.

ii. The categories of simplicial algebras over a simplicial theory are compactly generated.

Lemma 1.10. Let A be in sComm(C). Let uj be the family of images by the left adjoint functor in sA−mod (resp
sA − alg) of elements ∗j of sSetJ defined by ∗ on level j and ∅ on other levels. Any codomains of a generating
cofibrations of sA−mod (resp sA− alg) is weakly equivalent to an object uj. Any domain of a generating cofibration
is weakly equivalent, for a given element j in J , to an object obtained from the initial object (denoted ∅) and uj in a
finite number of homotopic pushouts.

Proof:
Generating cofibrations of sA−mod are images of generating cofibrations of sSetJ by the left adjoint functor. Gen-
erating cofibrations of sSet are morphisms δ∆p → ∆p. Their codomain is contractible, thus so are the codomains
of generating cofibrations of sSetJ for the projective model structure, and their image by the left adjoint is weakly
equivalent to the unity 1. For the domains, consider the relation δ∆p+1 w ∆p+1

∐h
δ∆p ∆p+1 w ∗

∐h
δ∆p ∗ and δ∆0 = ∅.

Domains of generating cofibration in sSetJ for the projective model structure are objects (δ∆p,j)p∈N, j∈V defined in
level i 6= j by ∅ and in level j by δ∆p and verifying the relation

(δ∆p,j) w ∗j
∐h

(δ∆p−1,j) ∗j

Clearly δ∆0,j = ∅ and δ∆1,j = ∗j . Let up,j denote the image of δ∆p,j . For all j, up,j is obtained in a finite number of
pushouts from ∅ and uj .

�
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Corollary 1.11. of proposition 1.9 and lemma 1.10.

i. The Simplicial Model categories sC, sA −mod (A ∈ sComm(C)), sComm(C) and sA − alg (a ∈ sComm(C))
are compactly generated.

ii. Homotopically finitely presented objects of sA−mod (respsA−alg) are exactly objects weakly equivalent to weak
retracts of strictly finite I − Cell objects.

iii. The sub-category of Ho(sA −mod) (resp Ho(sA − alg)) Ho(sA −mod)c (resp Ho(sA − alg)c) Consisting of
homotopically finitely presented objects is the smallest full sub-category of Ho(sA −mod) (resp Ho(sA − alg))
containing the family (uj)j∈J (resp (ujA := LA(uj))j∈J), and stable under retracts and homotopic pushouts.

Proof of iii:
Let D be the smallest full sub-category of Ho(sC) containing (uj)j∈J (resp (ujA)j∈J), the initial object ∅ and stable

under retracts and homotopic pushouts. Clearly, by ii, as (∅ → uj)j∈J are generating cofibrations of sC, Ho(sC)c
contains the family (uj)j∈J , and is stable under retracts and homotopic pushouts. Thus D ⊂ Ho(sC)c. Reciprocally,
let X be an object of Ho(sC)c, by ii, X is isomorphic to a weak retract of a strictly finite I − cell object. Therefore,
there exists n and X0...Xn such that:

∅ = X0
// X1

// ... // Xn = X

and ∀k ∈ {0, .., n− 1}, ∃K → L, a generating cofibration such that:

Xk
// Xk+1

K //

OO

L

OO

is a pushout diagram. Now, as domains and codomains of generating cofibrations are in D, X is in D.
�

1.3 Categories of Modules and Algebras
Proposition 1.12. Let A be in sComm(C) and B be a simplicial monoid in sA− alg, cofibrant in sA−mod .

i. The forgetful functor from sB −mod to sA−mod preserves cofibrations

ii. The forgetful functor from sA− alg to sA−mod preserves cofibrations whose domain is cofibrant in sA−mod.
In particular, it preserves cofibrant objects.

Proof
In each case, we just have to prove it for generating cofibrations and then generalize it to any cofibration by the small
object argument.

Proof of i: First, we choose a generating cofibration in sB − mod. As generating cofibration of sB − mod are
images of generating cofibrations of sSetJ , we juste have to set L → M , a generating cofibration in sSetJ . Let KA,
KB denotes respectively the left adjoint functors (from sSetJ) for sA −mod and sB −mod. The axiom of stability
under � implies that the morphism (∅ → B)�(KA(L)→ KA(M)) is a cofibration in sA−mod. This morphism is in
fact KB(L) = B⊗AKA(L)→ B⊗AKA(M) = KB(M), hence generating cofibrations of sB−mod are cofibrations in
sA−mod.

Proof of ii: As for i, let N →M be a generating cofibration in sSetJ . Let Ls denotes the functor ” free associated
commutative monoid” of sSetJ . The functors L (resp sLA in sA − mod) and KA are defined by colimits and so
commute up to isomorphisms. That means that KA ◦ Ls w sLA ◦ KA. So the generating cofibration of sA − alg
corresponding to N → M is isomorphic to KA(L(N)) → KA(L(M)). To prove that it is a cofibration in sA −mod,
we have then to prove that the morphism L(N) → L(M) is injective levelwise and this is clear as any morphism
N⊗n/Sn → M⊗n/Sn is injective. Thus any generating cofibration of sA − alg is a cofibration in sA −mod. In fact
it is a generating cofibration of sA−mod. To use the small object argument (of sA− alg), we need to verify that it
preserves cofibrations in sA−mod. In fact, we need to check that an homotopic pushout in sA−alg of a cofibration in
sA−mod is still a cofibration in sA−mod. We let the reader verify that it is a consequence of the axiom of stability
by �. Finally, the forgetful functor preserves cofibrations and, as A is cofibrant in sA−mod, any cofibrant object of
sA− alg is also cofibrant in sA−mod.

�
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Lemma 1.13. Let A→ B ∈ sComm(C) be a trivial cofibration between cofibrant objects. The categories of modules
are equivalent i.e. Ho(sA−mod) w Ho(sB −mod).

Proof:
We must prove that for X cofibrant in sA − mod and Y fibrant in sB − mod, ϕA(f) : X ⊗A B → Y is a weak
equivalence in sB−mod if and only if so is f : X → Y in sA−mod. By previous lemma, A→ B is a trivial cofibration
in sA−mod. Thus as X is cofibrant, using the axiom of stability under �, g : X → B ⊗A X is a weak equivalence in
sA−mod. By construction of the adjunction ϕA, the following diagram is commutative :

X //

f

33X ⊗A B //

ϕA(f)

))
Y ⊗A B // Y

Thus f = g ◦ ϕA(f). Finally, ϕA(f) is a weak equivalence in sA−mod if and only if so is it in sB −mod and the two
out of three axiom ends the proof.

�

Proposition 1.14. Let f : A → B ∈ sComm(C) be a weak equivalence between cofibrant objects. The categories of
modules are equivalent i.e. Ho(sA−mod) w Ho(sB −mod).

Let rc be the fibrant replacement of sComm(C), then by previous lemma, the homotopical categories of modules
over A and rcA (resp B and rcB) are equivalent. Thus A and B can be taken fibrant and f is an homotopy equivalence
i.e. ∃ g such that f ◦ g and g ◦ f are homotopic to identity. The following diagrams are commutative:

B
Id

  A
AA

AA
AA

A

i0

��
B1

h // B

B

i1

OO

f◦g

>>}}}}}}}}

Ho(B −mod)

Ho(B1 −mod)

i∗0

OO

i∗1
��

Ho(B −mod)
(f◦g)∗

vvmmmmmmmmmmmmmh∗
oo
Id

hhQQQQQQQQQQQQQ

Ho(B −mod)

where i0 and i1 are cofibrations and have the same right inverse p i.e. such that p ◦ i1 = p ◦ i0 = IdB . the morphism h
is a trivial fibration thus i0 is a weak equivalence. By previous lemma, i∗0 is an equivalence of categories. Thus so is p∗.
As i∗1 and i∗0 are both inverses of p∗, they are isomorphic and i∗1 is also an equivalence. Finally, h∗ is an equivalence
and so is (f ◦ g)∗. The same method prove that (g ◦ f)∗ is an equivalence.

�

1.4 Finiteness Conditions
Definition 1.15. Let qc be a cofibrant replacement in sComm(C) and f : A→ B be a morphism in sComm(C).

. The morphism f is homotopically finite (denoted hf) if B is homotopically finitely presented in sqcA−mod.

. The morphism f is homotopically finitely presented (denoted hfp) if B is homotopically finitely presented in
sqcA− alg.

Remark 1.16. The morphism A→ B is hf (resp hfp) if and only if the morphism qcA→ qcB is hf (resp hfp). The
morphism qcB → B is always hf .

Lemma 1.17. The hf (resp hfp) morphisms are stable under composition.

Proof
The proofs for hf morphisms and hfp morphisms are analogous so let us prove it for hf morphisms. Let A→ B → C
be the composition of two hf morphisms. There is a diagram

qcA //

��

qcB //

��

qcC

��
A // B // C

6



and forgetful functors F1 : sqcC−mod→ sqcB−mod and F2 : sqcB−mod→ sqcA−mod. The image F1(qcC) of qcC
is homotopically finitely presented in sqcB −mod hence weakly equivalent to a retract of a finite homotopical colimit
of qcB in Ho(sqcB −mod). The forgetful functor F2 preserves retracts, equivalences, finite colimits, cofibrant objects
and cofibrations whose domain is cofibrant. Thus it also preserves finite homotopical colimit and sends qcC to a retract
of a finite homotopical colimit of qcB in Ho(sqcA−mod). As qcB is homotopically finitely presented in sqcA−mod,
and as homotopically finitely presented objects are stable under retracts, equivalences and finite homotopical colimit,
C is sent by F2 ◦ F1 in sqcA−modc. Hence A→ C is finite.

�

Lemma 1.18. The hf (resp hfp) morphims are stable under homotopic pushout of simplicial monoids.

Proof:
The proofs for hf morphisms and hfp morphisms are analogous so let us prove it for hf morphisms. Let A → B
and A → C be in sComm(C) such that the first is finite. Let qcA be the cofibrant replacement of qcA − alg, it is
weakly equivalent to qc and the object qcAB is homotopically finitely presented in sqcA − mod. Let us prove that
B ⊗hA C w qcAB ⊗qcA qcC (in Ho(qcA − mod), Reedy lemma) is homotopically finitely presented in qcC − mod.
The forgetful functor sqcC −mod→ sqcA−mod preserves filtered colimits and weak equivalences hence it preserves
homotopical filtered colimits. Thus the derived functor −⊗qcA qcC preserves homotopically finitely presented objects.
So B ⊗hA C is homotopically finitely presented in Ho(qcC).

�

1.5 A Definition for Smoothness
Definition 1.19. A morphism A→ B in sComm(C) is formally smooth if the morphism B ⊗hA B → B is hf .

Remark 1.20. This definition does not generalise the definition of formal smoothness in the sense of rings. However,
the corresponding notion of smoothness is a generalisation of the classical notion of smoothness, as it will be proved
in this article.

Proposition 1.21. Formally smooth morphisms are stable under composition.

Proof:
By previous remarks, it can be assumed that A is cofibrant in sComm(C), B is cofibrant in sA−alg and C is cofibrant
in sB − alg. Let A→ B → C be the composition of two formally smooth morphisms . The morphisms B

∐
AB → B

and C
∐
B C → C are hf . The following diagram commutes and is clearly cocartesian :

C

C
∐
A C

OO

// C
∐
B C

ffLLLLLLLLLLL

B
∐
AB

OO

// B

OO

Thus, if it is cofibrant for the Reedy stucture, it will be homotopically cocartesian. The morphisms B w B
∐
AA →

B
∐
AB and B

∐
AB → C

∐
A C are images by the left Quillen functor colim, of clear Reedy cofibrations (see [A] for

a descriptions of these cofibrations), thus are cofibrations. In particular B
∐
AB and C

∐
A C are cofibrant and the

diagram considered is Reedy cofibrant. Finally, the morphism C
∐
A C → C

∐
B C is hf as a pushout of hf morphisms

and C
∐
A C → C is hf as a composition of hf morphisms.

�

Proposition 1.22. Formally smooth morphism are stable under homotopic pushout.

Proof:
Let u : A → B be a formally smooth morphism and C be a commutative A-algebra. By previous remarks it can be
assumed that A and c are cofibrants in sComm(C) and that B is cofibrant in sA− alg. Let D denote the homotopic
pushout of B ⊗A C and u′ denote the morphism from B to D. Clearly:

D ⊗C D w B ⊗A C ⊗C B ⊗A C w B ⊗A D

Thus the following diagram commutes :

7



B ⊗A B

xxrrrrrrrrrr
Id⊗Af
��

mB // B

f

��
D ⊗C D // B ⊗A DmD

// D

And is cocartesian :

B ⊗B⊗AB B ⊗A B ⊗A C w B ⊗A C w D

Moreover it is clearly cofibrant as B⊗A− preserve cofibrations. Finally by stability of hf morphism under homotopic
pushout, the morphism C → D is formally smooth.

�

Definition 1.23. Let A be in sComm(C) and M be in sA−mod.

i. The object M is n-truncated if MapsC(X,M) is n-truncated in sSet, ∀ X ∈ sC.

ii. The Tor-Dimension of M in sA−mod is defined by

TordimA(M) = inf{n st M ⊗hA X is n+ p− truncated ∀ X ∈ sA−mod p− truncated}

iii. A morphism of monoids A→ B has Tor dimension n if TordimA(B) = n.

Lemma 1.24. Tor dimension zero morphisms are stable under composition and homotopic pushout.

Proof:
Let A→ B → C be the composition of two Tor dimension zero morphisms. Let M be a p truncated A-module,

M ⊗A C wM ⊗A B ⊗B C.

As TordimA(B) = 0, M ⊗A B is a p truncated B-module. As TordimB(C) = 0, (M ⊗A B) ⊗B C is a p truncated
C-module. Thus TordimA(C) = 0.

Let A → B be a Tor dimension zero morphism and A → C be a morphism in Comm(C). Let M be in C-mod
and let D denote the pushout B ⊗A C. We have

M ⊗C D wM ⊗A B.

Thus, TordimA(B) = 0 implies TordimC(D) = 0.
�

Definition 1.25. A morphism A → B in Comm(C) is smooth if it is formally smooth, hfp and has Tor-Dimension
zero. A morphism of affine scheme is smooth if the corresponding morphism of monoids is smooth. We say that an
affine scheme X is smooth if the morphism X → Spec(1) is smooth.

Theorem 1.26. Smooth morphisms are stable under composition and homotopic pushout.

Proof:
This a a corollary of 1.24, 1.21, 1.22, 1.17 and 1.18.

�
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2 Simplicial Presheaves Cohomology
In the article [T1], B. Toën defines a cohomology for a connected and pointed simplicial presheaf. We will define here
a cohomology for a general simplicial presheaf. This theory will be used to find examples of smooth morphisms of
commutative monoids (in sets). The references cited in this section are [T1], [GJ] and [J].

2.1 Definitions
In this section, D is a category and sPr(D) is the category of simplicial presheaves over D.

Definition 2.1. ([GJ]V I.3)
Soit F ∈ sPr(D). The tower of n-truncations of F is a Postnikov tower:

... // τ≤nF // τ≤n−1F // ... // τ≤1F // τ≤0F .

Definition 2.2. Let F be a simplicial presheaf.

. The functor π0(F ) : D→ Ens is defined by π0(F ) := X → π0(F (X)).

. The category (D/F )0 is the full subcategory of sPr(D)/F whose objects are in D.

. The functor πn(F ) : (D/F )0 → Ens is defined by πn(F )(X,u) := πn(F (X), u).

Definition 2.3. Let G be a simplicial group.

. The bisimplicial set E(G, 1) is defined by E(G, 1)p,q = Gqp.

. The classifying space of G, denoted K(G, 1), is given by the diagonal of the bisimplicial set E(G, 1)/G. More
precisely K(G, 1)n = Gnn/Gn. It is abelian if G is abelian.

. The endofunctor of abelien groups K(G, 1)◦n is denoted K(G,n).

Remarks 2.4. As the diagonal of E(G, 1) is pointed (by identity), the simplicial set K(G, 1) is also pointed. In
particular, πn(K(G, 1), ∗) w πn−1(G, eg). This construction is functorial (in G) and then extends to presheaves of
simplicial groups.

2.2 Simplicial presheaves Cohomology
It is necessary to work in the proper category to construct a cohomology for a simplicial presheaf F which is not
connected or pointed. In fact the 1-truncation of F is the nerve NG of a groupoid G and in the category sPr(D)/NG,
F becomes connected and pointed. But in this category, there is no clear construction for classifying spaces. The
solution of this problem is given by a Quillen equivalence with the category sPr(D/G), for a well chosen category
D/G. We choose now a simplicial presheaf F .

The Category of Presheaves

The left adjoint functor (̃−)

Definition 2.5. The category D/G is the Grothendieck construction associated to G, i.e. is the category whose objects
are couples (X,x), x : X → NG, and whose morphisms from (X,x) to (Y, y) are couples (f, u) where f : X → Y and
u : y ◦ f w x in G(X) w π1F (X).

Next step is to construct a functor (̃−) : D/G→ sPr(D)/NG.

Definition 2.6. Let (X,x, ) be in D/G. Define a presheaf of groupoids GX,x on D. The image of S ∈ D is the
groupoid described as follow

- The objects are triples (u, y, h), u : S → X, y ∈ G(S), and h : x ◦ u w y ∈ G(S).

- A morphism from (u, y, h) to (u′, y′, h′) is an endomorphism k of S such that k∗(h : x◦u→ y) = h′ : x′◦u′ → y′.

Let X̆ denote the nerve of this groupoid.

Remark 2.7. There is a commutative diagram of presheaves of groupoids

9



X
x //

j ""D
DD

DD
DD

D G

GX,x

l

==zzzzzzzz

where l is the projection on G and j is given for S ∈ D by j(S) : u ∈ HomD(S,X)→ (u, x ◦ u, Id) ∈ GX,x.
Applying the functor nerve, one get a morphism x̆ := Nl : X̆ → G. It defines a functor

˘(−) : D/G→ sPr(D)/NG
(X,x)→ (X̆, x̆)

Definition 2.8. The functor (̃−) : D/G→ sPr(D)/NG is defined by

(̃−) : (X,x)→ (X̃, x̃) := Q(X̆, x̆)

where Q is a cofibrant replacement in sPr(D)/NG.

Remarks 2.9. This functor has a kan extension to sPr(D/G), still denoted

(̃−) : sPr(D/G)→ sPr(D)/NG.

In facts, the category sPr(D/G) is equivalent to the category sPr(D)NG defined in [J] and the equivalence of category
we are constructing is constructed in a different way and a more general situation in [J].

The right adjoint functor (−)1 We construct now the (right) adjoint of (̃−), denoted (−)1.

Definition 2.10. The functor (−)1 : sPr(D)/NG→ sPr(D/G) is defined by

(−)1 : (H,u)→ H1 := (X,x)→ Hom∆
sPr(D)/NG((X̃, x̃), (H,u))

where Hom∆ is the simplicial Hom. As (X̃, x̃) is constructed cofibrant, the functor (−)1 is right Quillen and its
adjoint is then left Quillen. We prove now that R(−)1 commutes with homotopy colimits. We need to recall first some
properties.

Definition 2.11. Let (H,h) be in sPr(D)/NG and (X,x) be in D/G. Define an object (HX , hx) by the homotopy
pullback diagram

HX
//

��

H

h

��
X x

// NG

Lemma 2.12. Let (H, f) be an homotopy colimit, H w Hocolim(Hi), in sPr(D)/NG and let (X,x) be in D/G.

� There is an isomorphism HX w Hocolim(Hi)X in Ho(sPr(D)/NG).

� There is an isomorphism RH1(X) wMapsPr(D)/X((X, Id), (HX , hx)).

Corollary 2.13. The functor R(−)1 commutes with homotopy colimits.

Proof:
Let H be isomorphic to Hocolim(Hi) and (X,x) be in D/G.

RH1(X) wMapsPr(D)/X((X, Id), ([Hocolim(Hi)]X , [Hocolim(hi)]x))
wMapsPr(D)/X((X, Id), (Hocolim[(Hi)X ], Hocolim[(hi)x])) w Hocolim(R(Hi)1(X)).

�
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The Equivalence

Proposition 2.14. The Quillen functors (̃−) and (−)1 define a Quillen equivalence.

Proof:
The functor (̃−) commutes with homotopy colimits and as any object in sPr(D/G) is an homotopy colimit of
representable objects H w Hocolim(Xi), its image can be computed in terms of representable objects, i.e. H̃ w
Hocolim(X̃i). The short exact sequence H1 → H → τ≤1H proves that (−)1 preserves weak equivalences. Then

(H̃)1 w (Hocolim(X̃i))1 w Hocolim(Xi) w H.

If H is cofibrant in sPr(D/G) and H ′ is fibrant in sPr(D)/NG, we consider a morphism between short exact sequences

H //

��

H̃

��

// NG

Id

��
H ′1 // H ′ // NG

Applying the functors πi, it is clear that if H̃ → H ′ is an equivalence, so is H → H ′1 and reciprocally, if H → H ′1 is
an equivalence, the homotopic fibers of H̃ → H ′ upon NG are equivalences thus so is H̃ → H ′.

�

The Cohomology

Definition 2.15. Let F be in sPr(D), a local system on F is a presheaf of abelian groups on D/G, where G verifies
NG w τ≤1F . A Morphism of local systems is a morphism of presheaves of abelian groups. The category of local
systems on F will be denoted sysloc(F ). The n-th classifying space of M is denoted K(M,n) and its image by L(̃−)
is denoted LK̃(M,n).

Remark 2.16. The object LK̃(M,n) is characterised up to equivalence by the isomorphisms

πn(LK̃(M,n)) wM , π1(LK̃(M,n)) w π1(F )

π0(LK̃(M,n)) w π0(F ), πk(LK̃(M,n)) w ∗, k 6= 0, 1, n

Definition 2.17. Let F be in sPr(D) andM be a local system on F . The n-th cohomology group of F with coefficient
in M is

Hn(F,M) := π0MapsPr(D)/NG(F,LK̃(M,n))

The standard example of local system is πn. Indeed, it has been defined on (D/F )0 but it clearly lifts to D/G.
The important theorem is here.

Theorem 2.18. Let G be a groupoid. For all m, the functor

Hm(NG,−) : Sysloc(NG)→ Ab

M → Hm(NG,M)

is isomorphic to the n-th derived functor of the functor H0(NG,−).

Proof:
There is an equivalence between the category of simplicial abelian group presheaves, denoted sAb(D/G), on D/G and
the category of complexes of abelian group presheaves with negative or zero degree, denoted C−(D/G,Ab). This is a
generalisation of Dold-Kan correspondence. There is a correspondence between quasi-isomorphisms of complexes and
weak equivalences of simplicial presheaves, and then an induced equivalence between the homotopical categories :

Γ : D−(D/G,Ab) w Ho(sAb(D/G))

The derived functors of H0 are then given by

Hm
der(D/G,M) w HomD−(D/G,Ab)(Z,M [m])

11



Where Z is regarded as a complex concentrated in degree zero and M [m] is concentrated in degree −m, with value M .
As Γ(Z) is the constant presheaf with fiber Z, still denoted Z, and as Γ(M [m]) is equivalent to K(M,m), Γ induces
an isomorphism :

HomD−(D/G,Ab)(Z,M [m]) w HomHo(sAb(D/G))(Z,K(M,m))

Finally, the adjunction between the abelianisation functor,denoted Z(−) from sPr(D/G) to sAb(D/G) and the forgetful
functor gives

HomD−(D/G,Ab)(Z,M [m]) w HomHo(sPr(D/G))(∗,K(M,m)) w Hm(NG,M).

�

Obstruction Theory

There is an homotopic pullback diagram in sPr(D/G):

τ≤nF1
//

��

*

��
τ≤n−1F1

// K(πn(F ), n+ 1)

As F1 is 1-connex, this pullback diagram is a (functorial) generalisation to presheaves of the diagram given by the
proposition 5.1 of [GJ]. By the Quillen equivalence ((−)1, (̃−)), there is an homotopic pullback diagram:

τ≤nF //

��

NG

��
τ≤n−1F // LK̃(πn(F ), n+ 1)

If H → τ≤n−1F is a morphism in Ho(sPr(D)/NG), it has a lift to τ≤nF if and only if it is sent to a zero element in
the group

π0MapsPr(D)/NG(H,LK̃(πn(F ), n+ 1))

This group can be described in terms of cohomology. Indeed, if G′ is a groupoid such that NG′ w τ≤1H. Let u denote
the morphism u : NG′ → NG. To simplify the notations, we still write H for what we should call u∗H. There is a
Quillen adjunction:

sPr(D)/NG′
u∗ //

D/NG
−×NGNG′
oo

which induces an isomorphism

MapsPr(D)/NG(H,LK̃(πn(F ), n+ 1)) wMapsPr(D)/NG′(H,LK̃(πn(F ), n+ 1)×NG NG′).

There is a clear weak equivalence LK̃(πn(F ), n+ 1)×NG NG′ w LK̃(πn(F ) ◦ u∗, n+ 1), thus :

π0MapsPr(D)/NG(H,LK̃(πn(F ), n+ 1)) w Hn+1(H,πn(F ) ◦ u∗)

2.3 Simplicial Modules Cohomology
It is well known that for a commutative monoid B in (Set,×,F1), there is an equivalence

sPr(BB) w sB −mod

where BB is the category with one object with a set of endomorphisms isomorphic to B. We will identify these two
categories in this part. Let now A be a commutative monoid in sets and B → A be a morphism of commutative
monoids. We are in a particular case of previous section, the category D is BB and the presheaf of groupoids G is
just A. Let M be a local system on BB, there is an isomorphism

Hn(A,M) w π0MapsB−mod/A(A,LK̃(M,n+ 1)).
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Let Z denote the abelianization functor from B−mod/A to the category of abelian group objects in B−mod/A, denoted
Ab(B −mod/A). There is an equivalence between Ab(B −mod/A) and the category of A graduated Z(B)-modules,
denoted Z(B)−modA−grad. The following functor realizes this equivalence, its inverse is the forgetful functor.

Θ : ( M
f // A ) ∈ Ab(sB −mod/A)→ ⊕m∈Af−1(m) ∈ Z(B)−modA−grad

This equivalence lifts to simplicial categories and it is easy to see that

Hn+1(A,M) w π0MapZ(B)−modA−grad(Z(A), LK̃(M,n+ 1)) (1)

Here is the proposition that interrests us.

Proposition 2.19. Let B → A be a morphism of commutative monoids in sets. The morphism B → A is hf if and
only if

� Z(A) is homotopically finitely presented in Z(B)−modA−grad.

� A is homotopically finitely presented for the 1-truncated model structure i.e. in the category B −Gpd.

Proof
Let us prove first the easiest part. Let A be an homotopically finitely presented object in sB−mod. Let sB−mod≤1

denotes the category sB −mod endowed with its 1-truncated model structure. In the adjunctions

sB −mod
Id //

sB −mod≤1

Id
oo

sB −modZ
//
sZ(B)−mod/A

i
oo

sB −mod/AZ
Z //
sZ(B)−modA−grad

i
oo

the left adjoint functors preserve weak equivalences and cofibrations thus the right adjoints preserve homotopically
finitely presentable objects.

Let us now prove the hardest part. We start with this lemma:

Lemma 2.20. There exists m0 ∈ N such that for any local system M and all n ≥ m0

Hn(A,M) w ∗.

Proof
The isomorphism 1 proves that the cohomology of A is isomorphic to the Ext functors of Z(A) in sZ(B)−modA−grad.
Moreover, there is an equivalence of abelian categories

sZ(B)−modA−grad w C−(BB/A,Ab)

which induces by 2.18 an equivalence with the derived functors of H0. In particular as Z(A) is homotopically finitely
presented, the derived functors of H0 vanished after a set rank denoted m0.

�

Remark 2.21. Two corollaries comes now. They are a consequence of this lemma and the following short exact
sequence, C ∈ A/sB −mod

MapsB−mod/τ≤n−1C(A, τ≤nC) // MapsB−mod(A, τ≤nC)

��
MapsB−mod/NG(A,LK̃(πn(C), n+ 1)) MapsB−mod(A, τ≤n−1C)oo

Corollary 2.22. Let A
v // C be in A/sB −mod. For all i ≥ 1, for all n ≥ ni = n0 + i+ 1

π0MapsB−mod(A, τ≤n−1C) w π0MapsB−mod(A, τ≤nC)

πi(MapsB−mod(A, τ≤n−1C), v) w πi(MapsB−mod(A, τ≤nC), v)
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Proof
We first prove that the simplicial set MapsB−mod/τ≤n−1C(A, τ≤nC) is not empty. There are pushout squares :

A×h
L eK(πn(C),n+1)

NG //

��

τ≤nC //

��

NG

s

��
A // ττ≤n−1C // LK̃(πn(C), n+ 1)

p

[[

where p ◦ s = Id. There are then equivalences

MapsB−mod/τ≤n−1F (A, τ≤nC) wMapsB−mod/L eK(πn(C),n+1)(A,NG) wMapsB−mod/A(A,A×h
L eK(πn(C),n+1)

NG).

Let f be the morphism from A to LK̃(πn(C), n+ 1). There is a morphism p ◦ f : A→ NG. As the cohomology of A
vanished for n ≥ n0, the elements s ◦ p ◦ f and f of the cohomology group are equals and thus

p ◦ f ∈ π0MapsB−mod/L eK(πn(C),n+1)(A,NG).

Then, for i = 0, the corollary is a clear consequence of lemma 2.20 and the short exact sequence of remark 2.21.
Now, Let us study the case i > 0. As NG×h

L eK(πn(C),n+1)
NG w LK̃(πn(C), n+ 1), we obtain

A×h
L eK(πn(C),n+1)

NG w LK̃(πn(C) ◦ v∗, n)

Thus

πi(MapsB−mod/τ≤n−1C(A, τ≤nC), v) w πi((MapsB−mod/A(A,LK̃(πn(C) ◦ v∗, n)), q) w Hn−i(A, πn(C))

where q is the natural morphism from A to LK̃(πn(C) ◦ v∗, n). We deduce then the result from lemma 2.20 and the
short exact sequence of remark 2.21.

�

Corollary 2.23. Let A
v // C be in A/sB −mod. The pointed tower of fibrations

(MapsB−mod(A, τ≤nC), v)

converges completly in the sense of [GJ].

Proof
It can be checked with the corollary 2.21 of the complete convergence lemma of [GJ].

�

Corollary 2.24. For all i ≥ 0, all n ≥ ni and all A
v // C in A/sB −mod, there are isomorphisms

πi(MapsB−mod(A,C), v) w limn∈Nπi(MapsB−mod(A, τ≤nC), v) w πi(MapsB−mod(A, τ≤niC), v)

Proof
The first isomorphism is a consequence of Milnor exact sequence ([GJ], 2.15) and the vanishing of the lim1 induced
by the complete convergence. The second isomorphism is a consequence of corollary 2.22

�

Let us now recall a well known lemma with which we will prove the last technical lemma necessary for the proof
of 2.19.

Lemma 2.25. Let

X
f //

��

Y

��
Z g

// T

be a commutative square in sSet where g is a weak equivalence. The morphism f is a weak equivalence if and only if
for all z ∈ Z, the homotopic fibers Xz and Yg(z) are simultaneously empty and equivalent when not empty.
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Here is the last technical lemma:

Lemma 2.26. Let C w Hocolimα∈Θ(Cα) be an homotopical filtered colimit. There is a weak equivalence in sSet

MapsB−mod(A,C) w HocolimMapsB−mod(A,Cα).

Proof
By induction on the truncation level n of C. This is an hypothesis of 2.19 for n = 1. Let us assume that is is true
for n− 1. Let C be an n-truncated object in sB −mod and ū be in HocolimMapsB−mod(A, τn−1Cα), represented by
u ∈ MapsB−mod(A, τn−1Cα0). Let ũ denote its image in MapsB−mod(A,C). The filtered hocolimit along Θ is weak
equivalent to the hocolimit along α0/θ. We will use previous lemma, computing the fibers along u as in the following
diagram:

Hocolimα0/ΘMapsB−mod/τn−1Cα((A, uα), Cα) //

��

MapsB−mod/τn−1C((A, ũn−1), C)

��
Hocolimα0/ΘMapsB−mod(A,Cα) //

��

MapsB−mod(A,C)

��
Hocolimα0/ΘMapsB−mod(A, τn−1Cα) // MapsB−mod(A, τn−1C)

Where uα : A
u // Cα0

// Cα and ũn−1 : A
ũ // C // τn−1C .

Let us show first that the fibers are simultaneously empty. The naturel morphism

Hocolimα0/ΘMapsB−mod(A, τn−1Cα)→MapsB−mod(A, τn−1C)

ū→ ũ

induces the naturel morphism on cohomology groups

Hocolimα0/ΘH
n+1(A, πnCα)→ Hn+1(A, πnC)

which is a weak equivalence. Indeed, the Hn are isomorphic to Ext functors in sZ(B)−modA−grad which commute
with filtered hocolimits by the first hypothesis of 2.19. The images of ū and ũ in the cohomology groups vanish then
simultaneously, and the fibers are simultaneously empty.

Let us assume now that the fibers are unempty and prove that they are equivalent. The functors πi commute with
homotopical filtered colimits, applying them on the fibers, we get the following natural morphism

colimα0/ΘπiMapsB−mod/τn−1Cα((A, uα), Cα)→ πiMapsB−mod/τn−1C((A, ũn−1), C)

As these πi are in fact isomorphic to Hn−1, these morphisms are isomorphisms. By 2.25, this ends the proof of the
lemma.

�

Let us now end the proof of 2.19.
Let v : A→ C be in A/sB −mod such that C w Hoclolim(Cα). Let us prove that the morphism

Hocolim(MapsB−mod(A,Cα))→MapsB−mod(A,C)

is a weak equivalence. Let i be a positive integer, to check if the image of this morphism by πi is an isomorphism, we
can just consider the case C n-truncated by 2.24. As the truncation commuta with homotopical filtered colimits, this
is a consequence of 2.26. This ends the proof of 2.19.

�
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3 Examples

3.1 The Category (Z−mod,⊗Z, Z)

In classical algebraic geometry, the notion of (projective) resolution is obtained using chain complex of modules or
rings. In facts, considering the correspondence of Dold-Kan this method is equivalent to taking cofibrant resolution
in the simplical category (cf [Q]).

Theorem 3.1. (Dold-Kahn correspondance)
Let A be a ring. There is an equivalence of categories:

sA−mod w Ch(A−mod)≥0 and ∀i πi(Map(Z, X)) w Hi(X).

In particular, it induces a correspondence between weak equivalences and quasi-isomorphisms.

Remark 3.2. Let A be a ring. Generating cofibrations of Ch(A−mod)≥0 are levelwise equal to {0} → A or IdA.

Definition 3.3. Let A be a rings, M,N be two A-modules.

i. Define TorA∗ (M,N) := H∗(M ⊗LA N).

ii. Define Ext∗A(M,N) := H∗(RHomA−mod(M,N)).

iii. Define the projective dimension of M by:

ProjDimA(M) := inf{n st Extn+1
A (M,−) = {0}}.

iv. Define the Tor-dimension of M by:

TorDimA(M) := inf{n st ∀ X p− truncated TorAi (M,X) = {0} ∀i > n+ p}

Remark 3.4. The functor of Dold-Kan correspondence is a strong monoidal functor, as a consequence the Tor dimension
can be computed with πi instead of Hi.

Lemma 3.5. Let X be in Ho(sSet) and M be in sZ−mod (resp sA−mod, for A a ring)

� The object X is n-truncated if and only if Map(∗, X) wMap(Si, X) ∀ i > n in Ho(sSet).

� The object M is n-truncated if and only if MapsZ−mod(Z,M) (resp MapsA−mod(A,Z)) is n-truncated in
Ho(sSet).

Proof
For the first statement, by2.25, we can consider equivalently the homotopic fibers of this morphism upon Map(∗, X).
The fiber ofMap(∗, X) is a point and the fiber ofMap(Si, X) isMapsSet/∗(Si, X). As πjMapsSet/∗(Si, X) w πi+j(X),
the equivalence is clear.

For the second statement, any object in sZ−mod is an homotopical colimit of free objects, i.e. ∀ N ∈ sZ−mod
there exists a family of sets (λi)i∈I such that qN w hocolimI

∐
λi

Z in Ho(sZ−mod) . Assume thatMapsZ−mod(Z,M)
is n-truncated. MapsZ−mod(N,M) w holimI

∏
λi

(MapsZ−mod(Z,M)), hence is an homotopical limit of n-truncated
objects. by i, n-truncated objects in sSet are clearly stable under homotopical limits.

�

Lemma 3.6. (cf [TV]) Let u : A→ B be in sZ−mod. The morphism u is flat if and only if

i. The natural morphism π∗(A)⊗π0(A) π0(B)→ π0(B) is an isomorphism.

ii. The morphism π0(u) is flat.

In particular, if A is cofibrant and n-truncated, u flat implies B n-truncated.

Remark 3.7. [TV] Let A→ B be in Z− alg. The morphism A→ B is flat if and only if TorDimA(B) = 0.
We give now the lemmas necessary to the theorem of comparison of the notions of smoothness in rings and relative

smoothness.

Lemma 3.8. Let A→ B be a smooth morphism of rings. There exists a pushout square

A′ //

��

B′

��
A // B
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such that A′ → B′ is a smooth morphism of noetherian rings.

Proof:
This is the affine case in the corollary 17.7.9(b) of [EGAIV].

�

Lemma 3.9. Let A → B and A → C be two morphisms in Z − alg. If B is a perfect complex of B ⊗A B modules
then D := B ⊗A C is a perfect complex of D ⊗C D modules.

Proof:
Perfect complexes are clearly stable under base change. As D ⊗C D w B ⊗A D, the natural morphism D ⊗C D → D
is a pushout of B ⊗A B → B hence D is a perfect complex.

�

Lemma 3.10. Let A be a noetherian ring. Every flat A-module of finite type is projective.

Lemma 3.11. Assume that A is a noetherian ring and consider A → B ∈ Z − alg, B of finite type. There is an
equivalence between

i. The ring B is of finite Tor-dimension on A.

ii. The ring B is of finite projective dimension on A.

The part ii⇒ i is clear, if B has a finite projective resolution 0→ Pn → ...→ B, then for i ≥ n, Tori+1(M,−) w
Tori−n(Pn+1,−) and Pn+1 = 0.

Reciprocally, if TorDimAb < +∞, let ...→ Pn → ...→ B be a free resolution of B. The module Pn/im(Pn+1) has
Tor dimension 0 by previous formula hence is flat by 3.7. As A is noetherian and B is of finite type, it is projective
and we have a clear finite projective resolution.

�

Lemma 3.12. Let u : A→ B be in rings. Assume that A is an algebraically closed field, then there is an equivalence

� The morphism u is formally smooth in the sense of rings.

� Any morphism x : B → A in rings provides A with a structure of B-module of finite projective dimension over
B.

Lemma 3.13. Let u : A → B be a finitely presented flat morphism in rings. The morphism u is smooth if and only
if for all algebraically closed field K under A, K → K ⊗A B is smooth.

Theorem 3.14. A morphism A→ B in Z− alg is smooth in the sense of rings if and only if

i. The ring B is finitely presented in A− alg.

ii. The morphism A→ B is flat.

iii. The ring B is a perfect complex of B ⊗A B-modules.

Proof:
Let us now prove the first part of the theorem. Assume that A→ B is smooth. i and ii are clear.

Let us prove iii. By 3.8, as iii is stable under pushout, we just have to prove it for A and B noetherian. Let us
prove first that B ⊗A B → B is of finite Tor dimension (hence of finite projective dimension by 3.11).
Let L be an algebraically closed field in A− alg. Set BL := B ⊗A L. Clearly

B ⊗B⊗AB L w BL ⊗BL⊗LBL L

hence computing the Tor dimension of B over B⊗AB is equivalent to compute the Tor dimension of BL over BL⊗LBL.
The morphism L → BL → BL ⊗L BL is smooth, by composition of smooth morphisms, over an algebraically closed
field. The ring BL ⊗L BL is then smooth on afield, hence regular. Now, BL is a module of finite type on this regular
ring thus it is a perfect complex on it. In particular, it is of finite projective dimension hence of finite Tor dimension.
Finally, B is of finite Tor dimension hence of finite projective dimension over B ⊗A B. As previously, B of finite type
over B ⊗A B. As these rings are noetherian, B is a perfect complex. Indeed, B has a finite projective resolution by
(Pi). Each Pi is of finite Tor dimension hence of finite projective dimension.

Let us prove the second part of the theorem. Let A→ B be a morphism of rings verifying i, ii and iii. Let K be
an algebraically closed field under A. We will use 3.13 and 3.12.
Let x : B → K be in Z− alg. The following commutative diagram is an homotopic pushout:
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B ⊗K B
Id⊗Kx//

��

B ⊗K K w B

x

��
B x

// K

Thus K has finite projective dimension in B −mod. Finally, by 3.13, K → B is smooth in the sense of rings. As it is
true for any K, by 3.12, A→ B is smooth in the sense of rings.

�

Here is now the comparison theorem.

Theorem 3.15. Let A→ B be a morphism of rings. It is smooth if and only if it is smooth in the sense of rings.

Proof
The two following lemmas, and remark 3.7 prove the theorem.

Lemma 3.16. [TV] Let A→ B be a morphism in Z− alg.

i. if A→ B is hfp, then it is finitely presented in Z− alg.

ii. if A→ B is smooth and finitely presented, then it is hfp.

Lemma 3.17. [TV] Let A→ B be a morphism of rings. The ring B is a perfect complex of B-modules if and only if
A→ B is hf .

�

3.2 The Category Set

The most difficult problem consists in finding examples of formally smooth morphisms. The Lemma 2.19 gives us a
characterisation of these morphisms in the relative context C = Set.
The functor nerve and the functor "fundamental groupoid" define a Quillen equivalence between the category sB−mod
endowed with its 1-truncated model structure and the category B − Gpd. Moreover, this last category is compactly
generated and thus its filtered Hocolim can be computer as filtered colimits. Here is the formula to do this

Lemma 3.18. Let I be a filtered diagram and F : I→ Gpd. The colimit of F consists of

� On objects

(ColimF )0 := Colim(u ◦ F )

where u is the forgetful functor from Gpd to Set.

� On morphisms, for x̄, ȳ ∈ Colim(u ◦ F ) represented by x ∈ F (i) and y ∈ F (i′). There exists k under i and i′
such that

HomHocolim(F )(x̄, ȳ) := Colimk/I(HomF (j)((li,j)∗)(x), (li′,j)∗)(y))

where li,j : i→ j and li′,j : i′ → j.

We also need to describe the derived enriched Homs.

Lemma 3.19. Let B be a monoid in Set. There is an equivalence of categories between Ho(B−Gpd) and the category
[B −Gpd] whose objects are B-groupoids and morphisms are isomorphism classes of functors. In particular, for two
B-groupoids G and G′, RHom∆≤1

B−gpd(G,G
′) w Hom∆≤1

[B−gpd](G,G
′) in Ho(Gpd), where the exponent ∆ ≤ 1 means that

the Homs are enriched on groupoids.

Lemma 3.20. The commutative monoid N is homotopically finitely presented for the 1-truncated model structure i.e.
in the category (N× N)−Gpd.

Let N2 denotes N× N. Let F : J→ Gpd be a funnctor from a filtered diagram I to Gpd. We have to prove

Hocolim(Hom∆≤1
[N2−Gpd](N, F (−))) w Hom∆≤1

[N−Gpd](N, Hocolim(F ))

We let the reader verify that the following functor denoted ϕ define an equivalence of groupoids.
Let H̄ be in Hocolim(Hom∆≤1

[N2−Gpd](N, F (−))) represented by H ∈ Hom[N2−gpd](N, F (j)). We define ϕ on objects
by
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ϕ : H̄ → Ĥ := n→ ¯H(n)

Now, by construction, any morphism η̄ in Hocolim(Hom∆≤1
[N2−Gpd](N, F (−))) has a representant η : G → G′ ∈

HomHom[N2−gpd](N,F (j))(G,G′). We define ϕ on morphisms by

ϕ : η̄ → η̂ := n→ η̄n

�

Lemma 3.21. The commutative group Z is homotopically finitely presented for the 1-truncated model structure i.e.
in the category (Z× Z)−Gpd.

Proof
This is the same proof as previous lemma, replacing N by Z.

�

Corollary 3.22. The morphisms F1 → N and F1 → Z are smooth. In particular, the affine scheme Gl1,F1 w Spec(Z),
also denoted Gm,F1 in [TVa], is smooth.

Proof
They are clearly hfp and of Tor dimension zero. Their diagonal is hf for the 1-truncated model structure, thus, we
just have to check that the diagonal of their abelianisation is hf in the simplicial graduated category given in 2.19.
The abelianisation of N is Z[X] and the abelianisation of Z is Z(X), and the morphisms Z[X] ⊗Z Z[X] → Z[X] and
Z(X)⊗Z Z(X)→ Z(X) are hf respectively in s(Z[X]⊗Z Z[X])−ModN−grad and s(Z(X)⊗Z Z(X))−ModZ−grad.

�

Remark 3.23. The scheme Gln,F1 is not affine but, according to its description in [TVa] and last corollary, it will be
possible to call it smooth as soon as a proper definition of smooth morphisms for relative schemes (or schemes over
F1) is written.

3.3 Some Other examples
If (C,⊗, 1) is a symmetric monoidal category as described in the preliminaries, its associated category of simplcial
objects has simplicial Homs,denoted Hom∆, and there is an adjunction

sC

Hom∆(1,−)//
sSet

sK0

oo

where sK0((Xn)n∈N) = (
∐
Xn

1)n∈N. One verifies easily that as 1 is cofibrant, finitely presentable, and as Hom∆(1,−)
preserves weak equivalences (by construction of the model structure on C), the functor sK0 preserve homotopically
finitely presentable objects. In particular, sK0 preserves hf morphisms and formally smooth morphisms. Restricting
the adjunction to the categories of algebra, where weak equivalences and homotopical filtered colimits are obtained with
the forgetful functor, it is also clear that sK0(u) preserves hfp morphisms. We write then the following proposition.

Proposition 3.24. Let u : A → B be a smooth morphism in Comm(Set), then sK0(u) is smooth if and only if
sK0(B) is of finite Tor dimension over sK0(A).

This gives particular examples. Indeed, in every context the affine line correspond to the morphism 1→ 1[X] :=∐
N 1 and the scheme Gm to the morphism 1→ 1(X) :=

∐
Z 1. We write then the following theorem.

Theorem 3.25. The affine line and the scheme Gm are smooth in any context where, respectively, 1[X] and 1(X) are
of finite Tor dimension over 1.

This theorem can be applied in particular to the context N − mod. The following lemma provides us, in this
context, examples of morphisms of Tor-dimension 0.

Lemma 3.26. Let A → B be in Comm(N −mod) such that B is free over A. The monoid B has Tor-dimension 0
over A.

Proof :
Let M ∈ A−mod be a n-truncated module. There exists a set λ such that B w

∐
λA. Thus B⊗LAM ′ w CoprodλQM

in QcA−mod where Q,Qc are cofibrant replacement respectively in QcA−mod and Comm(N−mod). Thus as this
coproduct is a product in set, we get
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B ⊗LAM ′ w Colimλ′fini⊂λ
∏
λ′ QM

As functors πi commute with products in sets and filtered colimits, the Tor dimenson of B over A is zero.
�

Theorem 3.27. Examples in N−mod.

� The affine line in N−mod, A1
N, is smooth.

� The scheme Gm,N relative to N−mod is smooth.

We conclude with a last theorem

Theorem 3.28. Let C be a relative context in the sense of [M] and A→ B be a Zariski open immersion in Comm(C),
with A cofibrant in Comm(C) and B cofibrant in A− alg. The morphism A→ B is smooth.

Proof
A Zariski open immersion is always formally smooth, its diagonal is even an isomorphism. Thus we will need to prove
that it is hfp and of Tor dimension zero. First, if there exists f ∈ A0,an object of the underlying set of A, such that
B w Af , the result is clear. Indeed, Af is given by a filtered colimit of A thus is of Tor dimension zero. Let us prove
that it is hfp. It is clear that A → A[X] is homotopically finitely presented, then as everything is cofibrant, we can
write Af as a finite colimit of A[X] ([M]) which is in facts a finite homotopical colimit and thus finally A→ Af is hfp.

Now if B define a Zariski open object of A, we can write B it as a cokernel of products of Af . As functors πi
commute with products, the products preserve weak equivalences and it is then clear that A→ B is hfp. For the Tor
dimension, recall that there is a finite family of functor reflecting isomorphisms B −mod → Af −mod. Let M be a
p-truncated A-module. This family sends M ⊗LA B and its n-truncations,n > p to the same module QMf (Q is the
cofibrant replacement of A−mod) thus clearly M ⊗LA B is p truncated and TorDimA(B) = 0.

�
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