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Abstract

We classify all non-self-intersecting closed geodesics on regular do-
decahedra and give some results and conjectures regarding the self-
intersecting case. Geodesics on regular polyhedra of all other types
were studied in [2].

1 Introduction.

Let S be a polyhedron in space. A geodesic on S is a locally shortest curve
not passing through the vertices (the second condition follows from the first
one if the surface is convex). Obviously, within any face, any geodesic is
straight, and at the point of intersection with an edge, a geodesic forms equal
angles with the edge in the two adjacent faces. (Conversely, a polygonal line
with these properties is a geodesic.)

It is convenient to study geodesics on polyhedra using their planar de-
velopments. Let a geodesic on a polyhedron S start at a point X of an edge
AB and then go into a face ABC ... of the polyhedron. Let it arrive at
some point Y at another edge of the same face, DF, and then pass to a new
face, DEF'.... Draw the faces ABC'... and DEF ... sharing the edge DE
in a plane, and continue doing this along our geodesic (Figure 1).

If the polyhedron is convex, we can visualize this process as a rolling
of the polyhedron along the plane in such a way that the geodesic always
touches the plane. The development of the polyhedron shown in Figure 1
consists of the traces of the faces of the polyhedron and the geodesic. The
geodesic becomes a straight line, and it is closed if this straight line arrives
at the initial face ABC'..., at the point X’ at the same position as X on
the edge AB, and the new face ABC'... is the translation image of the old
one.

Remark It is clear (and also shown in Figure 1) that every closed

geodesic on a polyhedron belongs to a family of “parallel” geodesics which
travel through the same faces and have the same length.



Figure 1: The development of a geodesic

It seems plausible that a polyhedron should be sufficiently symmetric
to have a rich family of closed geodesics (see [2] for explanations). Hence,
the first case to be studied is that of regular polyhedra. The cases of cubes
and regular tetrahedra, octahedra and icosahedra was studied in detail in
article [2] (some of results were obtained in an earlier article [1]). In these
four cases, the development of geodesics, both closed and non-closed, follow
the squares or equilateral triangles from the most classical tilings of the
plane, which essentially reduces the problems of classification of geodesics
to algebraic problems concerning finite groups.

Here are the results of [2]. In the case of a regular tetrahedron all
(non-multiple) closed geodesics are non-self-intersecting, their lengths are
unbounded. In the case of a cube, a full description of non-self-intersecting
closed geodesics and an almost full description of all closed geodesics are
given (with one natural question remaining open). For regular octahedra, [2]
contains a full description of both self-intersecting and non-self-intersecting
geodesics. For regular icosahedra only partial results including a description
of non-self-intersecting geodesics are obtained. It should be mentioned also
that (up to rotations and parallelism), there are three closed geodesics on a
cube (the squares of their lengths are 16, 18, and 20), two closed geodesics
on a regular octahedron (the squares of the lengths are 9 and 12), and three
closed geodesics on a regular icosahedron (the squares of the lengths are 25,
27, and 28) (in all cases, we assume that the edge of the regular polyhedron
has the length 1.

The case of a dodecahedron is very different. There is no such a thing as
a tiling of the plane by regular pentagons. The developments of geodesics



(see Figures 2, 6, and 8 below) involve chains of regular pentagons in which
even-numbered and odd-numbered members are translationally equivalent.
This shows, among other things, that within a face, a geodesic (closed or not)
can have 5 directions (differing by multiples of 72°). Informally speaking,
the variety of closed geodesics on a regular tetrahedron is more rich than
a similar variety for other types of regular polyhedra. We prove below
that there are precisely 5 essentially different non-self-intersecting closed
geodesics on a regular dodecahedron (Section 3) and present some results.
both proved and experimental, about all closed geodesics. In particular, we
prove that there are infinitely many non-equivalent simple closed geodesics
(Section 4).

This work was all done during my stay at the Max Planck Institute at
Bonn, and I take this opportunity to express my deep gratitude to the Insti-
tute for its hospitality. It is worth mentioning that the regular icosahedron
is the logo of the Max Planck Institute, so it seems the most appropriate to
publish this study of geodesics on regular dodecahedra in the MPIM preprint
series.

In what follows, a geodesic always means a geodesic on a regular dodec-
ahedron, whether it is stated explicitly or not.

2 Lengths and directions of closed geodesics.

2.1 Lengths.

Proposition 2.1 The square of the length of any closed geodesic on a reg-
ular dodecahedron with edges of length 1 has the form a + bt where a,b are
integers and T 1is the golden ratio.

Proof Let AB be the development of a closed geodesic on the plane (see
Fig. 1). We assume that the endpoints A, B (representing the same point
of the geodesic) lie on horizontal sides of two parallel faces with the centers
P,Q. Then |AB| = |PQ)|.

—
The vector P() is the sum of even number, 2n, of vectors of the same

length, cot % and each of them forms with the horizontal direction the angle

k
of the form 1—7(; with £ odd. Moreover, the numbers k1, ko, ..., ko, cor-

responding to these 2n vectors have alternating residues modulo 4 (and
ko, = 5mod 20, but this is not important for us at the moment). For
k=-9,-7,-5/...,7,9, let n, = #{m | ky, = k mod 20}; the alternating



Figure 2: To Proof of Proposition 1

property above impliues that
n_g—n_7+n_5—---—ng=0.

Thus,

and the square of the length of this vector is

9
k m=1

where N, = > ngny. Using the equalities
k—0=2m

2 3+4
2cosz:7', 2cos—7r:7'—1, cot? L = + T,
5 5 5 5

T(B+4r)=4+4+71, (1—1)(3+47) =1+37

we get

5IPQ|? = (3+47) X n2  +(4+ 77)(Ny — Ny — Ng + Ny)
+(1 +3T)(N2 - N3 - N7 + Ng) - (6 +8T)N5

.Subtracting
0 =@B+47)(n_g—n_7+n_5— - —mng)?
=@B+47)> n2 +2(3+47)(—N1 + Na — -+ — Ny),
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we get
51PG||? = (10 + 157)(Ny — Ny — N + No) — (5 + 57)(No — N3 — Ny + Ng),

which implies our statement.

Remark It is not hard to prove that the integers a, b in Proposition 1 are
both non-negative. We do not need this statement and do not prove it.

2.2 Directions.

Let v be an oriented geodesic on a regular dodecahedron (closed or not).
When ~ enters a face, it crosses an edge, and we can compute the angle
from the edge (edges have canonical orientations within every face) to the
geodesic. Along the geodesic, these angles form a sequence oy, s, as, ...,
periodic if the geodesic is closed. The following fact is obvious:

k
Vn, apy1 = ap + ?ﬂ, where k = +1 or +3.

(By the way, this formula implies the fact which is obvious anyhow: the
number of edges of a closed geodesic is always even.)

Let ¢ be the primitive 20-th root of unity, € = cos 177_0 + ¢sin 110 and let

w be a non-zero complex number of the form
pe + q€3 + 1’ 4 se” 4 te?

where p,q,r,s,t are integers with p —q+r — s+t = 0. We call preferred
angles the arguments of such numbers w.

Proposition 2.2 All the angles formed by a closed geodesic with edges are
preferred angles. The squares of cotangents of preferred angles are integral
fractional linear functions of T.

The first part of Proposition is obvious, the second part (which will not
be used by us) is proved by a computation similar to that in the proof of
Proposition 1.1.

Conjecture 2.3 If a geodesic forms a preferred angle with some edge (equiv-
alently: all the angles of a geodesic with edges are preferred), then the
geodesic is closed.

This conjecture which is confirmed by a huge amount of computer exper-
iments, remains unproved. The relations between the angles and the lengths
of closed geodesics remain unclear even at the experimental level.



3 Non-self-intersecting closed geodesics.

3.1 The number of edges.

Lemma 3.1 If a geodesic hits some face at least twice then it is self-inter-
secting.

Proof Consider two non-empty components of the intersection of a geodesic
with a face. As we have noticed before, the angle between them is a multiple
of 11 Let us continue these intervals in the direction in which they do not
diverge. If they end up on the same edge and are not parallel, then they
pass to an adjacent face and cross either there or in the next face (since the
angle between them is at least 110; see Figure 2a). If they are parallel, then
we continue them until there appears a vertex between them (if it never
appears, then the development of our geodesic contains two infinite lines
which means that this is not a connected geodesic). In all cases, we arrive
at the following situation (Figure 2b).

Figure 3: To Proof of Lemma 2

Two parallel or converging segments arrive at points, K, L, of two edges
of a pentagon with precisely one vertex, C', between them. They form angles
«, B with the edges BC,C'D and their continuations meet at some point M
(maybe, infinitely distant) at the angle v. Counting the sum of the angles

7
of the quadrilateral K M LC, we find that a+ 6+~v+ o 27, which shows

5
3 3
that o + 0 = ?ﬂ -7 < ?ﬂ which shows, in turn, that o or 3, let it be « is
3
< 1—7(; Hence, in AKCP, /K < ZP, and hence |CP| < |CK].



3.2 Classification of closed non-self-intersecting geodesics.

Lemma 2 shows that a closed non-self-intersecting geodesic has at most 12
edges. All geodesics of this length may be constructed by a simple computer
program. This computation results in the following statement.

Theorem 3.2 Up to parallelism and automorphisms of the dodecahedron,
there are 5 classes of closed non-self-intersecting geodesics; they have, cor-
respondingly, 6,8,8,8, and 10 edges, and their lengths are

34 37,2V5+ 77, V18 + 297, V19 + 297, 57.

The 6-gonal and 10-gonal geodesics are especially simple: they are (par-
allel to) sections of the dodecahedron by two symmetry planes: one is par-
allel to two opposite faces and the other one is parpendicular to a longest
diagonal (see Figure 3).

Figure 4: Two planar closed geodesics

The three 8-gonal geodesics are shown in Figure 4.
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Figure 5: Three 8-gonal closed geodesics



Their developments are shown in Figure 5. The first of the three geodesics
shown is orthogonal to two edges. We will return to this case in the next
section.

4 Self-intersecting closed geodesics

4.1 Weakly parallel geodesics. Examples.

We will call two geodesics weakly parallel, if, maybe, after applying a dodec-
ahedron automorphism to one of them, they have have parallel segments in
at least one face.

angle: 18°
length: /18 + 297 =~ 8.0575

angle: 25.5075°
length: /19 + 297 ~ 8.1193

angle: 13.614°

Figure 6: Developments of the 8-gonal geodesics

Proposition 4.1 The weak parallelism is an equivalence relation.

Proof. We need only to check that this relation is transitive. The tran-
sitivity is implied by the following obvious fact. Let intervals ~1,72,... be
consecutive intersections of a geodesic with faces, and Fi, F5,... be these



faces. If ¢ = j mod 2, then there exists an automorphism of the dodecahe-
dron which takes F} into F; and takes «; into an interval parallel to ~;.

Conjecture 4.2 A geodesic weakly parallel to a closed geodesic is closed.

This statement is a weaker version of Conjecture 1.3 and it has the
same status. Even it is true, it does not establish any relation between
the number of edges of weakly parallel closed geodesics (this makes the
case of a dodecahedron different from the cases of other regular polyhedra,
since for all of those weakly parallel closed geodesics have the same number
of edges). To begin with, let us notice that the two geodesics in Figure
3 are weakly parallel, but they have different numbers of edges: 6 and
10. A more interesting example: the first of the three 8-gonal geodesics
shown in Figure 4 is parallel to a self-intersecting 20-gonal geodesic shown
in Figure 6 (together with the image on the standard planar development of
the regular dodecahedron). Notice that every edge of this 20-gonal geodesic
is perpendicular to one if the sides of the containing it face. The length of
this 20-gonal geodesic is 5y/7 + 117 ~ 24.899.

P

Figure 7: The 20-gonal geodesic

To illustrate in a more convincing way the parallelism of the two geodesics
we show in the next drawing their developments.

REARTARTRTARS

Figure 8: The developments of two parallel geodesics



We conclude this section with drawings of three longer geodesics. The
two (weakly parallel) geodesics shown in Figure 8 have, correspondingly 60

and 170 edges.

Figure 9: Two longer weakly parallel geodesics

A still longer geodesics is shown in Figure 9. It has 410 edges. To make
the picture less messy, we do not show the parts on the invisible side of the
dodecahedron (thus, on our picture, the dodecahedron is not transparent).

For a more clear image, we show also this 410-gonal geodesic on the
planar development of the dodecahedron (Figure 10).

722

7 ¥4
Z !;!;g_,,g;"' N

//,;7;;7’;-4,’,,, N
LYz 7
g )] ///\\

o\
e u..'%,:ﬁ“,;‘-’%
Yy ———

=
NN
R

Figure 10: A 410-gonal geodesic
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By the way, this 410-gonal geodesic is weakly parallel to some 52-gonal
geodesic.

The following statements appear interesting, but their proofs are long
and do not deserve the attention of the reader. (1) Every self-intersecting
geodesic has at least 20 edges. (2) Twelve shortest non-equivalent geodesics
have, correspondingly, 20, 20, 22, 22, 24, 24, 30, 30, 30, 30, 30, and 32 edges.
(3) There are 47 equivalence classes of geodesics with the number of edges
between 20 and 60. The equivalence meant in statements (2) and (3) is the
combination of rotations and parallel translations.

Figure 11: The image of the previous geodesic on the planar development
of the dodecahedron

For a final remark, observe that in all our examples the geodesics fill
the surface of the dodecahedron very unevenly. In particular, there are two
opposite faces never visited by the 410-gonal geodesic above. I do not know
not only how to prove, but even how to formulate this statement.

4.2 There are infinitely many geodesics.

The fact in the title follows from conjecture 1.3. But since this conjecture
has not been proved yet, I prefer to construct explicitly an infinite sequence
of different non-self-repeating geodesics. The geodesics in the sequence will
be denoted as v,k = 0,1,2,.... The geodesic v, has 8(2k + 1) edges
and 2k(k + 1) self-intersection points. The geodesic vy is the (non-self-
intersecting) 8-gonal geodesic of the length 21/57 + 7 (the left geodesic in
Figure 4 and also the upper one in the Figure 5.) The structure of the
geodesic vy is clear from Figure 11 which presents 4 on the development of
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the dodecahedron.

Figure 12: The geodesic 4

Here are the details of the construction. The two diagram in Figure
11 are obviously symmetric to each other, so it is sufficient to describe
the left one. The geodesic v intersects the edge C'D in 2k + 1 points
A g, A1, Ay, Ay, ..., A and intersects the edge FF in 2k 4+ 1 points
B_g,...,B_1,By, Bi,..., By (see Figure 12). These points are determined
by the formulas

1 s 1 s

A =(s-m——)C+ (4 =)D,
2 (2k+1D)r * 2+(2k+1)7
1 s 1 s

B, =(=— E+(z4+—2
SRR R R Oy

where —k < s < k (and 7 is the golden ratio). The (acute) angle between
the geodesic 7, and the edge C'D (the same at all 2k + 1 intersection point)
is arctan((2k + 1)A) where A is a constant,

A= (3 sin ¢+ 2sin 110) = VAT 1 767 ~ 13.037
(for big k this angle is very close to 90°; in particular, for k = 4, it is

~ 89.51°, and this is why the geodesic seems perpendicular to the edge C'D
in Figure 11). The length of the geodesic vy is

V/(18k2 + 18k + 5) + (29k2 + 29k + 7)T.
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Remark in conclusion that, according to our experimentation, the geodesic
v, is weakly parallel to a unique (up to the equivalence) geodesic I'y not
equivalent to v, and I'y, has 30(2k + 1) edges and the length

5v/ (4Tk2 + 4Tk + 12) + (76k2 + 76k + 19)T
(compare with the formula for A above).
Bij_k Biji+k

FE =\‘= f F
B_y |Bo | By

Figure 13: Construction of 4
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