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Preface

Let S be a set, and let  be a map from S x S to the power set of S. For any
two elements p and ¢ of S, we write pq instead of u(p, ¢) and assume that pg
is not empty.

For any two nonempty subsets P and @ of S, we define the complex product
PQ to be the union of the sets pg with p € P and ¢ € Q. If one of the two
factors in a complex product consists of a single element, say s, we write s
instead of {s} in that product.

Following (and generalizing) Frédéric Marty’s terminology in [3] we call S a
hypergroup (with respect to p) if the following three conditions hold.

H1 For any three elements p, ¢, and 7 in S, we have p(qr) = (pq)r.

H2 The set S possesses an element e such that se = {s} for each element
sin S.

H3 For each element s in S, there exists an element s* in S such that
p € rq* and g € p*r for any three elements p, ¢, and r in S satisfying

T € pq.

The present text is a first attempt to see how far a theory of hypergroups can
be developed.

The interest in hypergroups is motivated by the observation that each associ-
ation scheme satisfies the above three axioms H1, H2, and H3; cf. [9; Lemma
1.3.1], [9; Lemma 1.3.3(ii)], and [9; Lemma 1.3.3(i)]. Thus, hypergroups gen-
eralize association schemes. In particular, they generalize groups.

The above observation would not be so exciting if not a significant part of
scheme theory relies just on the above three axioms. A closer look at scheme
theory reveals that most (if not all) of the reasoning in scheme theory consists
of a part that refers only to the complex multiplication in schemes (and,
therefore, just relies on the above three axioms) and a part that requires
the analysis of the underlying set of the scheme under investigation and its
arithmetic. In fact, quite a few results in scheme theory do not make use
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at all of the underlying set, so that, in reality, these results are results on
hypergroups. It is natural that one wishes to conceptually isolate the first
(algebraic) part from the latter (geometric) part of the theory.

The analysis of scheme theory that was mentioned in the previous paragraph
implies of course that many themes of the first three chapters of these notes
(not all) are just formal generalizations of results in [9]. However, putting
them here in the right place of the theory might have its own value.

An additional motive for investigating hypergroups is the fact that (via as-
sociation schemes) hypergroups provide a natural conceptual framework for
buildings and twin buildings. This topic will be discussed in the final (sixth)
chapter of these notes. Chapter 3 and 4 show how natural buildings are em-
bedded in the theory of hypergroups when viewed as closed subsets generated
by Coxeter sets.

The contents of the individual chapters and a motivation for the choice of the
topics will be previewed in the introduction of the corresponding chapters.

There are two topics which have been left out in these notes and which would
make the notes more complete. Firstly, we have not considered quotient hy-
pergroups, although the definition and first results should be straightforward.
Secondly, it would be interesting to have sufficient and necessary conditions
for a hypergroup to be a scheme. In [10; Theorem A], there was given a suf-
ficient and necessary condition for a scheme to be schurian, and it would be
nice to have a similar criterion for a hypergroup to be a scheme.

The major part of these notes originates from a five month stay at the Max-
Planck-Institut fiir Mathematik at Bonn. The author gratefully acknowledges
the kind hospitality and the comfortable working environment at this institu-
tion.

Bonn, May 2010 Paul-Hermann Zieschang
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1

Basic Facts

In this chapter, we compile some basic facts about hypergroups. Most of the
results were proven earlier for schemes; cf. [9].

The letter S will always stand for a hypergroup.

1.1 First observations

All results of this section will be used throughout these notes, often without
further mentioning.

Lemma 1.1.1 Let s be an element in S. Then the following hold.
(i) For each neutral element e of S, we have e € s*s.
(ii) We have s** = s.

(iii) For each neutral element e of S, we have es = {s}.

Proof. (i) Let e be a neutral element of S. Then, by H2, s € se. Thus, by H3,
e € s*s.

(ii) From (i) we know that e € s*s. Thus, by H3, s € s**e. On the other hand,
by H2, s**e = {s**}. Thus, s € {s**}, and that means that s** = s.

(iii) Let r be an element in es. Then, by H3, e € rs*. A second application of
H3 yields s* € r*e. On the other hand, by H2, r*e = {r*}. Thus, s* € {r*},
and that means that r* = s*. Thus, by (ii), r = r** = s™* = s. O

Lemma 1.1.2 The hypergroup S possesses exactly one neutral element.

Proof. Let ¢ and d be neutral elements of S. Then, by Lemma 1.1.1(iii),
{c} = ed = {d}. Tt follows that ¢ = d. O

Until further notice the uniquely determined neutral element of S will be
denoted by e.
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Lemma 1.1.3 We have e* = e.

Proof. From H2 we know that e € ee. Thus, by H3, e € e*e. On the other
hand, by H2, e*e = {e*}. Thus, e € {e*}, and that means e* = e. O

Lemma 1.1.4 Let p and q be elements in S. Then the following hold.
(i) We have e € pq if and only if p = q*.
(ii) Let r be and element in S satisfying v € pq. Then r* € ¢*p*.

(ili) Let o and r be elements of S, and assume that op N qr is not empty.
Then o*q N pr* is not empty.

Proof. (i) Assume that e € pq. Then, by H3, p € eq*. On the other hand, by
Lemma 1.1.1(iii), eq* = {¢*}. Thus, p € {¢*}, and that means that p = ¢*.
Conversely, assume that p = ¢*. Then, by Lemma 1.1.1(i), e € ¢*¢ = pq.

(ii) Applying H3 three times we obtain from r € pq first p € r¢*, then ¢* € r*p,
and, finally, * € ¢*p*.

(iii) Let s be an element in op N ¢gr. From s € op we obtain o € sp*; cf. H3.
Thus, as s € gqr, o € grp*. Thus, rp* possesses an element ¢ such that o € gt;
cf. H1. From o € gt we obtain t € ¢*o; cf. H3. It follows that ¢ € rp* N ¢*o.
Thus, by (ii) (together with Lemma 1.1.1(ii)), t* € o*q N pr*. O

Lemma 1.1.5 For any three nonempty subsets P, Q, and R of S, the fol-
lowing hold.
(i) Assume that P C @, Then PR C QR and RP C RQ.

(ii) We have P(QR) = (PQ)R.

Proof. (i) This follows immediately from the definition of the complex product.

(ii) Let s be an element in P(QR). Then, by definition, there exist elements
pin P and t in QR such that s € pt. Since t € QR, there exist elements ¢ in
Q@ and r in R such that ¢ € gr. It follows that s € p(¢r). Thus, by definition,
s € (pg)r € (PQ)R.

Since s was chosen arbitrarily in P(QR), we have shown that P(QR) C
(PQ)R. That (PQ)R C P(QR) is shown similarly. O

Lemma 1.1.5(ii) says that the set of all nonempty subsets of S is a monoid

with respect to complex multiplication and with neutral element {e}. This
fact will be crucial in Chapter 6 where we shall deal with buildings.

1.2 Closed subsets

For each subset R of S, we set
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R*:={se S| s €R}

A nonempty subset R of S is called closed if R*R C R.

From H2 (together with Lemma 1.1.3) we obtain that {e} is closed. Note also
that S is closed and that intersections of closed subsets are closed.

Lemma 1.2.1 Let T be a closed subset of S. Then the following hold.
(i) We haveeeT.
(i) We have T* =T.
(ili) We have TT =T.
PROOF. (i) Since T is assumed to be a closed subset of S, T is not empty.

Let ¢t be an element in T. Then, by definition, t*t C T*T C T. On the other
hand, by Lemma 1.1.1(i), e € ¢t*t. Thus, e € T

(ii) From (i) we know that e € T. Thus, by H2,
T =T*eCT*T CT.
It follows that T* C T, and from this we obtain T** C T™. Now recall from

Lemma 1.1.1(ii) that T** = T'. Therefore, T* = T.

(iii) From (i) we know that e € T. Thus, T = Te C TT. From (ii) we obtain
TT =TT CT. Thus, TT =T. (]

Lemma 1.2.2 Let T and U be closed subsets of S. Then {T'sU | s € S} is a
partition of S.

PrOOF. Let p and ¢ be elements in S such that p € TqU. From p € TqU
we obtain TpU C T'qU; cf. Lemma 1.2.1(iii). Thus, it suffices to show that
q € TpU.

Since p € TqU, there exist elements ¢t in 7" and w in U such that p € tqu.
From p € tqu we obtain an element 7 in qu such that p € tr.

From r € qu we obtain r* € u*¢*; cf. Lemma 1.1.4(ii). From p € ¢r we obtain
t € pr*; cf. H3. Thus, ¢t € pu*q*, and from this, we obtain similarly ¢* € up*t.
Thus, by Lemma 1.1.4(ii),

q € t'pu” C TpUj;
cf. Lemma 1.2.1(ii). O
For each nonempty subset R of S, we set

S/R:={sR|se€ S}

The following lemma gives a sufficient and necessary condition for a subset of
S to be closed.
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Lemma 1.2.3 Let R be a subset of S with e € R. Then R is closed if and
only if S/R is a partition of S.

PRrROOF. If R is closed, S/R is a partition by Lemma 1.2.2. (Set T' = {e} and
U = R in that lemma.)

Conversely, assume that S/R is a partition of S, and let r be an element in R.
Then, by Lemma 1.1.1(i), e € r*r C r*R. On the other hand, we are assuming
that e € R. Thus, as S/R is assumed to be a partition of S, r*R = R. Thus,
as 7 has been chosen arbitrarily in R, we have shown that R is closed. (Il

Lemma 1.2.4 Let T and U be closed subsets of S. Then TU is closed if and
only if TU = UT.

PROOF. Assume first that TU is closed. Then, by Lemma 1.2.1(ii), (TU)* =
TU. Since T and U are assumed to be closed, we also have T* = T and
U* =U. Thus, by Lemma 1.1.4(ii),

TU = (TU)* = U*T* = UT.

Conversely, assume that TU = UT. Then, referring once more to Lemma
1.1.4(ii),

(TU*TU =U*T*TU CU*TU =U*UT CUT =TU.
Therefore, TU is closed. i

Lemma 1.2.5 Let T and U be closed subsets of S. Then we have TNU = {e}
if and only if, for each element s in TU, there exist uniquely determined
elements t in T and u in U such that s € tu.

PRrROOF. Assume first that TNU = {e}, and let s be an element in TU. Then,
by definition, there exist elements ¢ in 7" and w in U such that s € tu.

Let t’ be an element in T and «' an element in U such that s € t'u’. We have
to show that ¢ =t and v/ = wu.

Since s € tu Nt'u/, t*t' N uu™ is not empty; cf. Lemma 1.1.4(iii). Since T
is assumed to be closed, t*t’ C T. Similarly, as U is assumed to be closed,
uu™ C U. It follows that

t“t' Nuu™ CTNU = {e}.

Therefore, e € t*t' and e € wu'*. Thus, by Lemma 1.1.4(i), ¢ =t and v’ = u.
Conversely, let s be an element in TN U. Then s € TU and, by Lemma
1.1.1(iii), es = {s} = se. Thus,as e € TNU, s =e. O

The following lemma is a very specific case of a general observation due to
Richard Dedekind; cf. [2; Theorem VIII].
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Lemma 1.2.6 Let P and @ be nonempty subsets of S, and let T be a closed
subset of S. Then we have the following.

(i) fPCT, TNPQ=PTNQ).
i) fQCT, TnPQ=(TNP)Q.

PROOF. (i) We first show that 7N PQ C P(T' N Q). Let ¢ be an element in
TN PQ. From t € PQ we obtain elements p in P and ¢ in @ with ¢ € pq.
Thus, by H3, p € t¢* and then ¢* € t*p. Now recall that T is assumed to be
closed. Thus, ast € Tand p e P C T, t*p C T. It follows that ¢* € T, and
then ¢ € T. Thus, as t € pg, t € P(T N Q).

Conversely, as T is assumed to be closed, P C T yields P(T N Q) C T; cf.
Lemma 1.2.1(iii). Thus, as P(TNQ) C PQ, P(TNQ) C TN PQ.

(ii) Setting P = Q* and @ = P* in (i) we obtain T N Q*P* = Q*(T N P*).
Thus, the claim follows from Lemma 1.1.4(ii). O

Corollary 1.2.7 Let P and @ be nonempty subsets of S, let T be a closed
subset of S, and assume that PT and QT are closed. Then

(PNQT)(QN PT) = PQNQT N PT.

PROOF. Since T is assumed to be closed, we have e € T’; cf. Lemma 1.2.1(i).
Thus, P C PT. Thus, as PT is assumed to be closed, Lemma 1.2.6(i) yields

PTN(PNQERT)Q = (PNQT)(PTNQ).
From e € T we also obtain @ C QT. Thus, as QT is assumed to be closed,
Lemma 1.2.6(ii) yields
QT NPQY=(QTNP)Q.

The desired equation follows easily from the last two equations. O

Corollary 1.2.8 Let P and @ be nonempty subsets of S, let T be a closed
subset of S, and assume that Q C T. Then we have the following.

() ITCQPQ, QTNP)Q=T.
(i) I[fPUQ=PQNQP, (TNP)UQ=(TNP)QNQ(TN P).

PROOF. (i) Since we are assuming that @ C T, we obtain from Lemma 1.2.6
that

QTN P)Q = (TNQP)Q =T NQPQ.
Thus, if T C QPQ, Q(T'N P)Q =T.
(ii) We are assuming that Q@ C T. Thus, (TN P)UQ =T N (PUQ). On the
other hand, we know from Lemma 1.2.6 that
PQNTNQP=(TNP)QNQ(TNP).
Thus, if PUQ = PQNQP, (TNP)UQ = (T NP)QNQ(T N P). O
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1.3 Normalizer, strong normalizer, and centralizer
Let P and @ be subsets of S, and assume that @ is not empty. We set

Np(Q)={p€ P|Qp < pQ}
and call this set the normalizer of @ in P.

Lemma 1.3.1 Let T be a closed subset of S. Then the following hold.
(i) We have e € Ng(T).
(ii) We have TNg(T) C Ng(T).
(iii) Let s be an element in Ng(T) with s* € Ng(T'). Then T's = sT.

PROOF. (i) This follows immediately from the definition of Ng(T).

(ii) Let s be an element in T Ng(T). Then there exists an element r in Ng(T)
such that s € Tr. Thus, by Lemma 1.2.2, Tr = T's.

Since r € Ng(T'), Tr C vT. Thus, as s € Tr, s € rT. Thus, by Lemma 1.2.3,
rT = sT. From Tr = Ts and Tr C rT we now obtain T's C sT. Thus, by
definition, s € Ng(T).

(ili) We are assuming that s* € Ng(T'). Thus, by definition, T's* C s*T. Thus,
by Lemma 1.1.4(ii), sT' C T's. Since s has been chosen from Ng(T'), we have
Ts C sT, too. O

In general, Ng(T') is not closed if T is a closed subset of S.

Lemma 1.3.2 Let T and U be closed subsets of S. Then the following hold.
(i) Assume that T C Ng(U). Then TU is closed.

(ii) Assume that T C Ng(U). Then TU C Ng(U).

(iii) We have Ng(T) N Ng(U) C Ns(TU).
)

(iv) We have Np(U) C Np(T'NU).

PROOF. (i) Considering Lemma 1.2.4 this is a consequence of Lemma 1.3.1(iii).

(ii) From (i) we know that TU is closed. Thus, by Lemma 1.2.4, TU = UT.
From Lemma 1.3.1(ii) we obtain UT C UNg(U) C Ng(U). Thus, TU C
Ng(U).

(iii) For each element s in Ng(T') N Ng(U), we have

TUs CTsU C sTU.

Thus, s € Ng(TU).

(iv) Let t be an element in Np(U). Then, by definition, Ut C tU. Thus, by
Lemma 1.2.6(i),
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(TNURCTNUtCTNtU =t(TNU).
Thus, by definition, t € Np(T N U). O

Let P and @ be subsets of S, and assume @ to be not empty. We set
Kp(Q)={peP|p'QpCQ}

and call this set the strong normalizer of @ in P.

For each nonempty subset R of S, we obviously have e € Kg(R). From Lemma
1.2.1(iii) we also obtain that T'C Kg(T) for each closed subset T of S.

Lemma 1.3.3 For each nonempty subset R of S, we have Kg(R) C Ng(R).

PROOF. Let s be an element in Kg(R). Then, by definition, s* Rs C R. Thus,
as e € ss*, Rs C ss*Rs C sR. It follows that Rs C sR, and that means that
s € Ns(R). O

Lemma 1.3.4 Let T and U be closed subsets of S. Then the following hold.
(i) We have Kg(T)NKs(U) C Ksg(T'NU).
(ii) Assume that T C Ng(U). Then Ksg(T) N Ng(U) C Kg(TU).
(ili) Assume that T CU. Then Ks(T)N Ng(U) C Kg(U).

PROOF. (i) Let s be an element in Kg(T) N Kg(U). Then
s*(TNU)s Cs*TsNs*Us CTNU.

Thus, s € Kg(T'NU).
(ii) Let s be an element in Kg(T) N Ng(U). Then

s*TUs C s*T'sU C TU.

Thus, s € Kg(TU).

(iii) From Lemma 1.3.1(i), (ii) we obtain U C Ng(U). Thus, the claim follows
from (ii). O

Let T and U be closed subsets of S, and assume that 7" C U. The closed
subset T is said to be a normal closed subset of U if U C Ng(T'). In this case,
we say that T is normal in U. The closed subset T is said to be a strongly
normal closed subset of U if U C Kg(T). In this case, the set T is called
strongly normal in U.

Lemma 1.3.3 implies that, if a closed subset T' of S is strongly normal in a
closed subset U of S, then T is normal in U.

Lemma 1.3.5 Let T and U be closed subsets of S, and assume that T
s strongly normal in U. Let V be a closed subset of S, and assume that
U C Ng(V). Then TV is strongly normal in UV,
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PRrOOF. We are assuming that U C Ng(V'). Thus, by Lemma 1.3.2(i), UV is
closed. Similarly, we obtain from 7' C U C Ng(V') that TV is closed.

In order to show that TV is strongly normal in UV, we pick an element s in
UV. We shall see that s*TVs CTV.

Since s € UV, there exist elements v in U and v in V such that s € uv. From
u € Uand U C Ng(V) we obtain u € Ng(V'), and that means Vu C uV. From
u € U and U C Kg(T) we obtain u € Kg(T), and that means v*Tu C T.
Thus,

s*TVs Cov*u"TVuv Co*u*TuVv Co*TVe CTV.

(Recall that, by Lemma 1.1.4(ii), s* € v*u*. Note also that v € TV.) O

Lemma 1.3.6 Let R be a nonempty subset of S, and let p and q be elements
in Kg(R). Then pqg C Kg(R).

PROOF. Let s be an element in pg. Then,
s*Rs C ¢*p*Rpq C ¢"Rq C R.
Thus, s € Kg(R). O

From Lemma 1.1.1(1) we know that e € s*s for each element s in S. An
element s in S is called thin if s*s = {e}.

For each subset R of S, we define Oy(R) to be the set of all thin elements in
R. The set Oy(R) is called the thin radical of R.

Lemma 1.3.7 The following statements hold.
(i) We have Oy(S) = Kg({e}).
(ii) For any two elements p and q in Oy(S), we have pg C Oy(S).

PROOF. (i) Let s be an element in S. Then s € Oy(S) if and only if s*s = {e}
if and only if s € Kg({e}).

(ii) From (i) we know that Oy(S) = Kg({e}). Thus, our claim is a consequence
of Lemma 1.3.6. ]

Lemma 1.3.8 Let s be an element in S and t be an element in Oy(S). Then
|st| = 1.

Proof. Let r be an element in st. Then, by H3, s € rt*. Thus,
st Crt*t =re={r}.
(Recall that ¢ is assumed to be thin.) O

Let R be a subset of S, and let s be an element in S. We set
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Cr(s):={re€e R | sr=rs}

and call this set the centralizer of s in R.

Let P and @ be subsets of S, and assume that @ is not empty. We define
Cp(Q) to be the intersection of the sets Cp(q) with ¢ € Q. The set Cp(Q) is
called the centralizer of () in P.

Note that we have Cp(Q) C Np(Q) for any two nonempty subsets P and Q
of S.

Lemma 1.3.9 Let T and U be closed subsets of S, and assume that T C
Ns(U), U C Ng(T), and TNU ={e}. Then T C Cg(U).

PROOF. Let t be an element in 7', let © be an element in U, and let s be an
element in tu. Since the hypotheses of the lemma are symmetric in 7" and U,
we shall be done if we succeed in showing that s € wut.

From s € tu (together with the hypothesis that U C Ng(T')) we obtain s € uT.
Thus, T possesses an element p such that s € up.

From s € up (together with the hypothesis that T C Ng(U)) we obtain
s € pU. Thus, U possesses an element ¢ such that s € pg. Thus, as s € tu,
Lemma 1.2.5 yields t = p. Thus, as s € up, s € ut. U

1.4 Hypergroups of order 6

It is the purpose of this section to show by an example how similar hypergroup
theory can be to group theory; cf. Corollary 1.4.6. The letter T" will stand for
a closed subset of S.

Lemma 1.4.1 Let p be an element in S with pT' C Tp, and let q be an
element in T'p such that ¢*T = qT. Then q € pT.

Proof. From ¢ € Tp we obtain ¢* € p*T; cf. Lemma 1.1.4(ii) and Lemma
1.2.1(ii). Thus, by Lemma 1.2.3, p* € ¢*T. Thus, as ¢*T = ¢T, q € Tp, and
pT' C Tp,

pteql CTpT =Tp="Tq.

It follows that p € ¢*T = ¢T, so that q € pT. O

Recall that Ng(T) is defined to be the set of all elements s in S such that
Ts C sT.

Lemma 1.4.2 Let s be an element in S such that sT = {s} and s*T = {s*}.
Then s € Ng(T).
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Proof. From our hypothesis s*T = {s*} we obtain T's = {s}; cf. Lemma
1.1.4(ii). On the other hand, we are assuming that sT = {s}. Thus, T's = sT,
and that implies that s € Ng(T). O

Lemma 1.4.3 Let s be an element in S such that (sT)* € S/T. Then
ENS Ns(T)

Proof. We are assuming that (sT)* € S/T. Thus, as s* € (sT)*, (sT)* = s*T;
cf. Lemma 1.2.3. Thus, by Lemma 1.1.4(ii), T's = sT. O

Recall that the closed subset T is called normal in S if Ng(T) = S. The
following two results give sufficient conditions for 7" to be normal in S.

An element s in S is called symmetric if s* = s.

Lemma 1.4.4 Assume that |S\T| = |S/T| and that S\ T possesses exactly
[S\T|—2 symmetric elements. Then T is normal in S.

Proof. We are assuming that |S\ T| = |S/T|. Thus, S/T \ {T'} possesses
exactly one element of cardinality 2, all other elements of S/T\ {T'} consist of
a single element. Let p and g be the two elements in the uniquely determined
element of S/T \ {T'} of cardinality 2.

If {p,q}* = {p, q}, we are done by Lemma 1.4.3. Thus, we shall be done if we
succeed in showing that {p, ¢}* # {p, ¢} leads to a contradiction.

If {p,q}* # {p,q}, we must have p* ¢ {p,q} or ¢* ¢ {p, q}. Without loss of
generality, we assume that p* ¢ {p, q}.

Since {p, ¢} is the only element in S/T'\ {T'} that has more than one element,
p* & {p,q} forces p*T = {p*}. Thus, p*T C Tp*.

We are assuming that S\ T has exactly |S\ T| — 2 symmetric elements. Thus,
as p* # p # ¢, we must have ¢* = ¢. Thus, ¢*T = ¢T and, since q € pT,
q € Tp*; cf. Lemma 1.1.4(ii).

From p*T C Tp*, q € Tp*, and ¢*T = ¢TI we obtain g € p*T; cf. Lemma
1.4.1. Thus, as p*T = {p*}, ¢ = p*, contradiction. O

Theorem 1.4.5 Assume that |S\T| < 3. Then T is normal in S.

Proof. If |S/T| = 1, T = S, and we are done. If |[S/T| = 2, we have T's =
S\ T = sT for each element s in S\ 7. Thus, T is normal also in this case.

Assume that 3 < |S/T|. Then as |S/T| < |[S\T|]+ 1 < 4, we must have
|S/T|=|S\T|=3or|S/T| =|S\T|+ 1. In the former case, we are done by
Lemma 1.4.3 and by Lemma 1.4.4. In the latter case, we are done by Lemma
1.4.2. O

Corollary 1.4.6 Assume that |S| = 6 and that T is not normal in S. Then
IT| = 2.
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Proof. This follows immediately from Theorem 1.4.5. t

1.5 Conjugates of closed subsets

Let R be a nonempty subset of S, and let s be an element of S. We define

R°:={re S| srC Rs}.
Note that sR* C Rs.

Lemma 1.5.1 Let s be an element in S, and let R be a nonempty subset of
S. Then the following hold.

(i) We have R* C s*Rs.
(i) Ifee R, e€ R".

(iii) Let P and Q be nonempty subsets of S such that PQ C R. Then we
have P*Q° C R®.

PROOF. (i) From e € s*s and sR®* C Rs we obtain
R® C s*sR° C s*Rs.

(ii) Assume that e € R. Then, by Lemma 1.1.1(iii), se = {s} = es C Rs. It
follows that e € R*.

(iii) Let 7 be an element in P*Q*. Then there exist elements ¢ in P* and v in
@° such that r € tu. Since t € P?, st C Ps. Since u € Q°, su C @s. Thus, as
we are assuming that PQ C R,

sr C stu C Psu C PQs C Rs,
so that sr C Rs. Thus, by definition, r € R?. O

Lemma 1.5.2 Let p and q be elements in S, and let R be a subset of S such
thate € R, RR C R, and Rp = Rq. Then RP = R1.

PRrROOF. Let s be an element in RP. Then, by definition, ps C Rp.
From e € R we obtain ¢ € Rq. Thus, as Rp = Rq, q € Rp. It follows that
qs C Rps.

From ¢s C Rps and ps C Rp we obtain ¢s C RRp. Thus, as we are assuming
RR C R, we obtain ¢gs C Rp. Since we are assuming that Rp = Rgq, this
implies gs C Rq. Thus, s € R1.

So far, we have seen that RP C R?. The proof for R? C RP is similar. O

Lemma 1.5.3 Let s be an element in S, and let T be a closed subset of S.
Then s* € Ng(T) if and only if T C T*.
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PROOF. By definition, we have s* € Ng(T) if and only if Ts* C s*T. Accord-
ing to Lemma 1.1.4(ii), T's* C s*T is equivalent to sT C T's, and this means
that T C T'%. O

Lemma 1.5.4 Let s be an element in S, and let T be a closed subset of S
such that ss* CT. Then the following hold.

(i) We have T® = s*T's.
(ii) The set s*T's is closed.
(ili) We have Kg(s*Ts) = s*Kg(T)s.
PROOF. (i) From Lemma 1.5.1(i) we know that T° C s*T's. Conversely, as-
suming ss* C T we also have ss*T's C T's, so that, by definition, s*T's C T.

(ii) Assuming ss* C T we have
(s"Ts)*s*Ts = s*Tss"Ts = s*T's;

cf. Lemma 1.1.4(ii) and Lemma 1.2.1(iii). Thus, s*T's is closed.

(iii) Let ¢ be an element in s*Kg(T)s. Then Kg(T) possesses an element p
such that ¢ € s*ps. Thus, as ss* C T is assumed, we obtain from p € Kg(T')
that

q*s*Tsq C s*p*ss*Tss*ps C s*p*Tps C s*T's.

It follows that ¢ € Kgs(s*T's).
Since ¢ has been chosen arbitrarily in s*Kg(T")s, we, thus, have shown that

s*Kg(T)s C Kg(s*T's).

Let ¢ be an element in Kg(s*T's). Then, as ss* C T is assumed,
sq*s*Tsqs™ C ss*T'ss* =T.

Thus proves that sqs* C Kg(T), whence q € s*sqs*s C s*Kg(T)s.

Since ¢ has been chosen arbitrarily in Kg(s*T's), we, thus, have shown that
Kg(s*T's) C s*"Kg(T)s.
This finishes the proof. (I

Lemma 1.5.5 Let T and V be closed subsets of S, and set U := Ky (T).
Assume that T CV and that U is closed. Then we have the following.

(i) Let p and q be elements in V such that Up = Uq. Then pp* C T if
and only if q¢* CT.

(ii) The number of sets s*T's with s € V and ss* C T is equal to the
number of sets Us with s € V and ss* CT.
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PROOF. (i) Since we are assuming that Up = Uyg, there exists an element u in
U such that p € ug. Thus, ¢ € u*p. Thus, assuming that pp* C T, we obtain

qq¢" Cu'pp'u CuTu CT.

Similarly, one obtains pp* C T from qq* C T.

(ii) Let p and ¢ be elements in V, and assume first that p*Tp C ¢*Tq and
qq* C T. Then, qp*Tpq* C qq*Tqq* C T. It follows that p¢* C U. Thus,
p € Uq. Thus, by Lemma 1.2.2, Up = Ug.
Assume now that Up = Ugq. Then U possesses an element u such that p € ug.
It follows that

p'Tp S q"u"Tug € ¢"Tq.

Similarly, one shows that ¢*T'q C p*1'p, so that p*Tp = ¢*Tq. (I

Lemma 1.5.6 Let T and U be closed subsets of S such that TNU = {e}.
Let t be an element in T, and let u be an element in U. Then the following
hold.

(i) Assume that |tu| = 1. Then |u*tuNT| < 1.
(i) IfU C Ns(T), 1< |u*tunT].

PROOF. (i) Let p and ¢ be elements in u*tuNT. We have to show that p = q.

We are assuming that tu contains exactly one element. Let us call this element
s. From p € u*tu and tu = {s} we obtain p € u*s. Thus, s € up. Similarly, we
obtain s € ugq, so that s € up Nug.

Since s € up Nug, u*u N pg* is not empty; cf. Lemma 1.1.4(iii). Thus, as
wuNpg* CTNU = {e}, u*unpg* = {e}. It follows that e € pg*, so that,
according to Lemma 1.1.4(i), p = q.

(ii) Let s be an element in tu, and assume that U C Ng(T'). Then s € uT.
Thus, T possesses an element r such that s € ur. It follows that r € u*s C
w*tu. Thus,asr €T, r e u*tunT. (]

Lemma 1.5.7 Let p and q be elements in S such that |pq| = 1, and let T be
a closed subset of S such that q € p*T'p. Then q € TP.

PROOF. We are assuming that g € p*T'p. Thus, p*T possesses an element r
such that ¢ € rp. It follows that p € r*q C Tpg; cf. Lemma 1.1.4(ii). Thus,
p € T'pq. Now recall that we are assuming that |pg| = 1. Thus, pg C T'p. Thus,
by definition, g € TP. (]

Corollary 1.5.8 Let s be an element in S, and let T and U be closed subsets
of S. Assume that, for each element u in s*TsNU, |su|=1. Then T*NU =
s*T'sNU.
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PROOF. We are assuming |su| = 1 for each element v in s*T's N U. Thus,
by Lemma 1.5.7, s*T'sNU C T%, so that the desired equation follows from
Lemma 1.5.1(i). O

Corollary 1.5.9 Let s be an element in S, and assume that |sr| =1 for each
element r in s*s. Then the following hold.

(i) We have {e}* = s*s.

(ii) The set s*s is closed.

PROOF. (i) Apply Corollary 1.5.8 to {e} and S in place of T' and U.

(ii) From (i) we obtain ss*s = {s}. Thus, s*ss*s = s*s, and that means that
5*s is closed. O

Let s be an element in S. For each subset R of S, we define Dg(s) to be the
set of all elements r in R such that r*r C s*s.

Lemma 1.5.10 Let s be an element in S, and assume that |sr| =1 for each
element r in s*s. Let T be a closed subset of S with T C Dg(s*). Assume that
T C T and that |st| = 1 for each element t in T. Then T C Kg(s*s).

PROOF. Let t be an element in T. We have to show that t € Kg(s*s).

Since t € T, |st| = 1. On the other hand, we are assuming that 7' C T*. Thus,
ast €T, teT? and that means that st C T's.

Since |st| = 1 and st C T's, there exists an element r in 7' such that st C rs.
From st C rs we obtain
t*s*st C s*r*rs.
From r € T and T' C Dg(s*) we obtain r € Dg(s*). Thus, r*r C ss*. From
Corollary 1.5.9(ii) we also know that s*s is closed. Thus,
t*s*st C s*r*rs C s*ss*s C s™s.

This means that ¢t € Kg(s*s). O

1.6 Generating sets

Throughout this section, the letter R stands for a subset of S.

We define (R) to be the intersection of the closed subsets of S which contain
R as a subset.

Note that (R) is closed. The set (R) is said to be generated by R. It is also
called the span of R.

If R possesses an element r with R = {r}, we shall write (r) instead of (R).
Similarly, we write (p,q) instead of (R) if p and ¢ are elements in R with

R={p,q}.
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For the remainder of this section, we assume R to be not empty.

We set R := {e} and define inductively R" := R"'R for each positive
integer n.

Lemma 1.6.1 The set (R) is equal to the union of the sets (R* U R)™ with
n a nonnegative integer.

PROOF. Set P := R* U R and define @) to be the union of the sets P™ with n
a nonnegative integer. We have to show that (R) = Q.

Since P* = P, (P™)* = P" for each nonnegative integer n; cf. Lemma 1.1.4(ii).
Thus, for any two nonnegative integers [ and m,

(Pl)*Pm _ Plpm — Pl+m C Q
It follows that @ is closed. Thus, as R C @, (R) C Q.

Conversely, for each non-negative integer n, we have
P" C (P)" C (P) = (R).
Therefore, Q C (R). O

From Lemma 1.6.1 we obtain that, for each element s in (R), there exists a
nonnegative integer n such that s € (R* U R)™. The smallest of these integers
is called the R-length of s or simply the length of s and will be denoted by
KR(S)

Since the subset R is fixed within this section, we shall write £ instead of £z
for the remainder of this section.

Lemma 1.6.2 Let s be an element in (R) \ {e}. Then there exist elements q
in (R) and r in R* U R such that s € gr and £(s) = £(q) + 1.

PROOF. We set n := £(s). Then, by definition, s € (R* U R)™. On the other
hand, we are assuming that s # e. Therefore, 1 < n. From s € (R* U R)™ and
1 < n we obtain elements ¢ in (R* U R)"~! and r in R* U R such that s € gr.

From ¢ € (R* U R)"~! we obtain £(q) < n — 1. From n = £(s) and s € gr we
obtain n < £(q) + 1. O

Lemma 1.6.3 Let p, q, and r be elements in (R) satisfying r € pq and
L(r) =L(p)+L(q). Let t and u be elements in (R) satisfying q € tu and {(q) =
L(t)+L(u). Then, pt possesses an element s such that r € su, £(s) = £(p)+L(t),
and £(r) = £(s) + £(u).

PROOF. Since r € pg and ¢ € tu, r € ptu. Thus, pt possesses an element s
such that r € su.

Since s € pt, £(s) < £(p) + £(t). Since r € su, £(r) < £(s) + ¢(u). Thus, as we
are assuming that £(r) = £(p) + £(q) and that £(q) = £(t) + ¢(u), we conclude
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that
0(r) < L(s) + L(u) < L(p) + £(t) + £(u) = £(r).

It follows that £(s) = £(p) + £(t) and £(r) = £(s) + £(u). O

Lemma 1.6.4 Let s be an element in S, and assume that R* = R. Then the
following hold.

(i) Assume that Rs C s(R). Then s € Ng((R)).
(ii) We have (R®) C (R)*®.

PROOF. (i) Define @ to be the set of all elements ¢ in (R) with ¢s € s(R). By
way of contradiction, we assume that ) is not empty. We fix an element ¢ in
@ such that ¢(q) is as small as possible.

Since s € s(R), q # e. Thus, by Lemma 1.6.2, there exist elements p in (R)
and 7 in R such that ¢ € pr and £(q) = ¢(p) + 1. Since ¢(p) =4(q) — 1, p ¢ Q.
Thus, as p € (R), ps C s(R). Thus, as rs C s(R) (by hypothesis),

qs C prs C ps(R) C s(R),

contradiction.

(ii) Define @ to be the set of all elements ¢ in (R®) with sq¢ Z (R)s. By way of
contradiction, we assume that @) is not empty. We fix an element ¢ in @ such
that £(g) is as small as possible.

Since s € (R)s, ¢ # e. Thus, by Lemma 1.6.2, there exist elements p in (R®)
and r in R® such that ¢ € pr and ¢(q) = ¢(p) + 1. Since ¢(p) = 4(q) —1,p ¢ Q.
Thus, as p € (R®), sp C (R)s.

On the other hand, as r € R®, sr C Rs. Thus,
sq C spr C (R)sr C (R)Rs = (R)s,
contradiction. (I

Lemma 1.6.5 Let s be an element in S, and assume that s*Rs C (R). Then
s € Kg((R)).

PROOF. Define @ to be the set of all elements ¢ in (R) with s*¢s € (R). By
way of contradiction, we assume that ) is not empty. We fix an element ¢ in
@ such that ¢(q) is as small as possible.

We are assuming that s*Rs C (R). Thus,
s*s C s*Rss*R*s C (R).

This shows that e ¢ Q. Thus, as ¢ € @, ¢ # e. Thus, by Lemma 1.6.2, there
exist elements p in (R) and r in R* U R such that ¢ € pr and £(q) = £(p) + 1.
Since ¢(p) = ¢(q) — 1, p ¢ Q. Thus, as p € (R), s*ps C (R).
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We are assuming that s*Rs C (R). Thus, as (R) is closed, s*R*s = (s*Rs)* C
(R); cf. Lemma 1.1.4(ii). Thus, no matter whether € R or r € R*, we have
s*rs C (R).

From s*ps C (R) and s*rs C (R) we now obtain

s*qs C s*prs C s*pss*rs C (R),
contradiction. (]
Subsets of S are called thin if all of their elements are thin.

Lemma 1.6.6 The following hold.
(i) The set R* UR is thin if and only (R) is thin.
(ii) If R* =R, (Oy(R)) € O ((R)).

PROOF. (i) Since R* UR C (R), R* U R is thin if (R) is thin.

Assume now that R* U R is thin and that (R) is not thin. Assuming (R)
not to be thin we find an element s in (R) such that s is not thin. Among
the non-thin elements of (R) we fix s in such a way that ¢(s) is as small as
possible.

Since s is not thin, s # e. Thus, by Lemma 1.6.2, there exist elements ¢ in (R)
and 7 in R* U R such that s € gr and ((s) = ¢(q) + 1. Since £(q) = ¢(s) — 1,
the minimal choice of s forces ¢ to be thin. Since r € R* U R and R* U R is
assumed to be thin, r is thin. Thus, as s € ¢gr, Lemma 1.3.7(ii) forces s to be
thin, contradiction.

(ii) Set @ := Oy(R). Then Q C Oy((R)). Thus, for each non-negative integer
n, Q" C Oy((R)); cf. Lemma 1.3.7(ii). It follows that (Q) C Oy((R)); cf.
Lemma 1.6.1. g

1.7 The thin residue

In this section, the letter T' stands for a closed subset of S.

We define O”(T) to be the intersection of all strongly normal closed subsets
of T and call it the thin residue of T'.

Note that OY(T) is closed.

Theorem 1.7.1 The following statements hold.
(i) The set OY(T) is strongly normal in T.
(i) Let R denote the union of the sets t*t witht € T. Then O?(T) = (R).
(iii) For each closed subset U of S with T C U, we have O”(T) C O?(U).

PROOF. (i) This follows from Lemma 1.3.4(i).



18 1 Basic Facts

(ii) Let p and ¢ be elements in T'. We first prove ¢*p*pg C (R).
Let t be an element in pg. Then p € tg*, whence

t*pq C t"tq"q C RR C (R).

Since ¢ has been chosen arbitrarily in pg, this yields ¢*p*pq C (R).

Since p and ¢ have been chosen arbitrarily in T, we have shown t*Rt C (R)
for each element ¢ in 7. Thus, by Lemma 1.6.5, (R) is strongly normal in 7.
Thus, by definition, OY(T) C (R).

In order to show that (R) C OY(T) it suffices to show that R C OY(T'). (This
is because OV(T) is closed.)

Let ¢ be an element in 7. Then, as e € OY(T), t*t C t*OY(T)t. On the
other hand, we know from (i) that O?(T) is strongly normal in 7', so that
t*O%(T)t € OY(T). Thus, t*t C OY(T). Since t has been chosen arbitrarily in
T, we have shown that R C OY(T).

(iii) This is an immediate consequence of (ii). O

Lemma 1.7.2 Let U be a closed subset of S such that T C Ng(U). Then we
have O°(T)U = OY(TU)U.

PROOF. From Theorem 1.7.1(iii) we know that OY(T) C OY(TU), and from
this we obtain OY(T)U C OY(TU)U.

By Theorem 1.7.1(i), OY(T) is strongly normal in 7. Moreover, we are as-
suming that 7' C Ng(U). Thus, by Lemma 1.3.5, OY(T)U is strongly normal
in TU. Thus, by definition of OY(TU), OY(TU) C O%(T)U. Thus, as U is
closed, OY(TU)U C OY(T)U. O

Lemma 1.7.3 Let U be a closed subset of S. Assume that TU is closed
and that O°(U) C T. Then OY(TU) is the intersection of all strongly normal
closed subsets of T which contain O (U).

PROOF. Define V to be the set of all strongly normal closed subsets of T" which
contain OY(U) and W to be the intersection of all elements of V. We have to
show that O?(TU) = W.

We first show that OY(TU) C W. In order to do so we pick an element s in
TU and an element V in V. Since TU is assumed to be closed, TU = UT} cf.
Lemma 1.2.4. Thus, as s € TU, s € UT'. Thus, there exist elements ¢ in T" and
u in U such that s € ut. Since u € U, u*u C OY(U); cf. Theorem 1.7.1(ii).
Since V € V, t*Vt C V and O?(U) C V. Thus,

s*s C t*u*ut C t*OY(U)t C V.

Now, as s has been chosen arbitrarily in TU, we conclude that O%(TU) C V;
cf. Theorem 1.7.1(ii). But also V has been chosen arbitrarily in V. Therefore,
we have shown that OY(TU) C W.
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Let us now prove that, conversely, W C OY(TU).

From OY(TU) € W and W C T we obtain OY(TU) C T. In particular,
OY(TU) is strongly normal in 7. On the other hand, we know from Theorem
1.7.1(iii) that O?(U) € OY(TU). Thus, O?(TU) € V, so that, by definition,
W C O(TU). O

Recall that subsets of S are called thin if all of their elements are thin.

Corollary 1.7.4 Let U be a thin closed subset of S, and assume that TU is
closed. Then we have O?(T) = O?(TU).

PROOF. Since U is assumed to be thin, O?(U) = {e}; cf. Lemma 1.7.1(ii).
Thus, the claim follows from Lemma 1.7.3. ([

We set (O”)%(T) := T. For each positive integer n, we inductively define

(0")™(T) = 0°((0")"~(T)).

Note that (O?)"(T) is closed for each non-negative integer n. Note also that,
for each positive integer n, (O?)*(T) is a strongly normal closed subset of

(Oﬁ)n—l (T) )
Here is a generalization of Theorem 1.7.1(iii).

Lemma 1.7.5 Let n be a non-negative integer, and let U be a closed subset
of S such that T C U. Then (O”)(T) C (O?)*(U).

PROOF. Our lemma is certainly true if n = 0. By induction, we may assume
that (O”)"~}(T") C (O”)"~Y(U). Then, by Theorem 1.7.1(iii),

(O°)M(T) = 0°((0°)"1(T)) € O°((0")"~H(V)) = (0")*(V),
and that proves the lemma. (I
The second part of the following lemma generalizes Lemma 1.7.2.

Lemma 1.7.6 Let n be a non-negative integer, and let U be a closed subset
of S such that T C Ng(U). Then the following hold.

(i)  We have (O°)*(TU)U C Ns(U).
(i)  We have (O")(T)U = (O (TU)U.
(iii) IfO°(TU)U =TU, (OY"(TU)U =TU.
PROOF. (i) We are 