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Abstract
We prove that for any n > 2, the abstract commensurator group of the Baumslag –

Solitar group BS(1, n) is isomorphic to the subgroup {
(

1 q
0 p

)
| q ∈ Q, p ∈ Q∗} of

GL2(Q).

1 Introduction

For a group G, we denote by Aut(G) its automorphism group, by Comm(G) its abstract
commensurator group, and by QI(G) its quasi-isometry group; see Definitions 2.1 and 5.1.
For a finitely generated G, there are natural homomorphisms

Aut(G)→ Comm(G)→ QI(G),

which became embeddings if G has the unique root property, i.e. if

∀x, y ∈ G ∀n ∈ N (xn = yn ⇒ x = y);

see Sections 2 and 5.
We are interested in computing of abstract commensurator groups of (solvable) Baum-

slag – Solitar groups. The Baumslag – Solitar groups BS(m,n), 1 6 m 6 n, are given by
the presentation 〈a, b | a−1bma = bn〉. These groups have served as a proving ground for
many new ideas in combinatorial and geometric group theory (see, for instance, [2, 5, 6]).
The only solvable groups in this class are groups BS(1, n); the groups BS(m,n) with
1 < m 6 n contain a free nonabelian group.

The automorphism groups of BS(m,n) were described by Collins in [4]. It follows that
the automorphism groups of BS(1, n) and BS(1, k) with n, k > 1 are isomorphic if and
only if n and k have the same sets of prime divisors.

In [5], Farb and Mosher proved for n > 2 that QI(BS(1, n)) ∼= Bilip(R) × Bilip(Qn),
where Qn is the metric space of n-adic rationals with the usual metric and Bilip(Y )
denotes the group of bilipschitz homeomorphisms of a metric space Y .
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Moreover, they proved that BS(1, n) and BS(1, k) with n, k > 1 are quasi-isometric if and
only if these groups are commensurable, that happens if and only if n and k have common
powers. In [6], Whyte proved that groups BS(m,n) with 1 < m < n are quasi-isometric.

In this paper we compute the abstract commensurator groups of BS(1, n). We prove
that the abstract commensurator groups of all groups BS(1, n), n > 2, are isomorphic.

Main Theorem. For every n > 2, Comm(BS(1, n)) is isomorphic to the subgroup

{
(

1 q
0 p

)
| q ∈ Q, p ∈ Q∗} of GL2(Q).

Note that BS(1, 1) ∼= Z2, and it is well known, that Comm(Zm) ∼= GLm(Q) for m > 1.

2 General facts on commensurators

Definition 2.1 Let G be a group. Consider the set Ω(G) of all isomorphisms between
subgroups of finite index of G. Two such isomorphisms ϕ1 : H1 → H ′1 and ϕ2 : H2 → H ′2
are called equivalent, written ϕ1 ∼ ϕ2, if there exists a subgroup H of finite index in G
such that both ϕ1 and ϕ2 are defined on H and ϕ1|H = ϕ2|H .

For any two isomorphisms α : G1 → G′1 and β : G2 → G′2 in Ω(G), we define their
product αβ : α−1(G′1 ∩ G2) → β(G′1 ∩ G2) in Ω(G). The factor-set Ω(G)/∼ inherits the
multiplication [α][β] = [αβ] and is a group, called the abstract commensurator of G and
denoted Comm(G).

Definition 2.2 A group G has the unique root property if for any x, y ∈ G and any
positive integer n, the equality xn = yn implies x = y.

For closeness, we reproduce here short proofs of the following two lemmas from [1].

Lemma 2.3 Let G be a group with the unique root property. Then Aut(G) naturally
embeds in Comm(G).

Proof. There is a natural homomorphism Aut(G) → Comm(G). Suppose that some
α ∈ Aut(G) lies in its kernel. Then α|H = id for some subgroup H of finite index in G.
If m is this index, then gm! ∈ H for every g ∈ G. Then α(gm!) = gm!. Extracting roots,
we get α(g) = g, that is α = id. 2

Lemma 2.4 Let G be a group with the unique root property. Let ϕ1 : H1 → H ′1 and
ϕ2 : H2 → H ′2 be two isomorphisms between subgroups of finite index in G. Suppose that
[ϕ1] = [ϕ2] in Comm(G). Then ϕ1|H1∩H2 = ϕ2|H1∩H2. 2

Proof. The equality [ϕ1] = [ϕ2] means that there exists a subgroup H of finite index
in G such that both ϕ1 and ϕ2 are defined on H and ϕ1|H = ϕ2|H . Clearly H 6 H1 ∩H2.
Denote m = |(H1 ∩H2) : H|. Let h be an arbitrary element of H1 ∩H2. Then hm! ∈ H
and so ϕ1(h

m!) = ϕ2(h
m!). Since G is a group with the unique root property, we get

ϕ1(h) = ϕ2(h). 2

Lemma 2.5 The group BS(m,n) has the unique root property if and only if (n,m) = 1.
In particular, Aut(BS(m,n)) naturally embeds in Comm(BS(m,n)) if (m,n) = 1.

Proof. The first claim follows by direct calculations in the HNN-extension 〈a, b | a−1bma =
bn〉. Note, that for m = 1 one can check it easier by using matrix calculations in view of
Lemma 4.1. The second claim follows from Lemma 2.3. 2
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3 A structure of finite index subgroups of BS(1, n)

Let BS(1, n) = 〈a, b | a−1ba = bn〉, where n > 2. Denote bj = a−jbaj, j ∈ Z. Then

bnj = bj+1, a−1bja = bj+1, bibj = bjbi (i, j ∈ Z).

Consider the homomorphism
ψ : BS(1, n)→ Z

a 7→ 1
b 7→ 0.

Lemma 3.1 1) We have BS(1, n) = U o V , where U = kerψ = 〈bj | j ∈ Z〉, V = 〈a〉,
and V acts on U by the rule a−1bja = bj+1.

2) The subgroup U has the presentation 〈bj | bnj = bj+1, j ∈ Z〉 and so it can be
identified with Z[ 1

n
].

3) BS(1, n) ∼= Z[ 1
n
]o Z, where Z acts on Z[ 1

n
] by multiplication by n.

Proof. The first claim is obvious, the second follows by applying the Reidemeister –
Schreier method, and the third claim follows from the first two. 2

Lemma 3.2 Every subgroup H of finite index in BS(1, n) can be written as H = 〈aku,w〉
for some k > 0, u,w ∈ U and w 6= 1.

Proof. The subgroup H is finitely generated. Since the image of H under the epimor-
phism ψ : BS(1, n) → Z is generated by some k > 0, we can write H = 〈aku, u1, . . . , us〉
for some u, u1, . . . , us ∈ U = kerψ. Observe that every finitely generated subgroup of
U ∼= Z[ 1

n
] is cyclic. So, H = 〈aku,w〉 for some w ∈ U . Clearly, w 6= 1, otherwise BS(1, n)

were virtually cyclic, that is impossible. 2

Lemma 3.3 Let H = 〈akbrq, bsp〉 with k > 0. Then H = 〈akbrq, bsi 〉 for every i ∈ Z.

Proof. Since (akbrq)
−t · bsp · (akbrq)t = bsp+tk for every integer t, we have

H = 〈akbrq, bsp+tk〉 = 〈akbrq, bsp+(t+1)k〉.

Given i ∈ Z, we choose t such that p+ tk 6 i < p + (t+ 1)k. Then H = 〈akbrq, bsi 〉, since
bi is a power of bp+tk and bp+(t+1)k is a power of bi. 2

Proposition 3.4 Every subgroup H of finite index in BS(1, n) can be written as H =
〈akbl, bm〉 for some integer k, l,m, where k,m > 0 and (m,n) = 1. The index of this
subgroup is km.

Proof. By Lemma 3.2, H = 〈akbrq, bsp〉 for some k, s > 0 and r, q, p ∈ Z. Set m =
s/(n, s). Clearly, (m,n) = 1. We claim that H = 〈akbrq, bmp 〉. Indeed, bsp is a power of bmp .

On the other hand, (akbrq) · (bsp)
nk

(n,s) · (akbrq)−1 = ak · bmnk

p · a−k = bmp .

By Lemma 3.3, H = 〈akbrq, bm〉. We show that H = 〈akbl, bm〉 for some l. If q > 0,
then bq = bn

q
and we can take l = rnq. Let q < 0. Since (m,n) = 1, there exists an
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integer t, such that mt ≡ r mod (n−q). Denote l = (r −mt)/n−q. Then, again with the
help of Lemma 3.3, we have

H = 〈akbrq, bmq 〉 = 〈akbr−mtq , bmq 〉 = 〈akbln−q

q , bmq 〉 = 〈akbl, bm〉.

To prove the last claim, one have to check, that {aibj | 0 6 i < k, 0 6 j < m} is the
set of representatives of the left cosets of H in BS(1, n). We leave this to the reader. 2

Proposition 3.5 Let H = 〈akbl, bm〉 be a subgroup of BS(1, n) with k,m > 0 and
(n,m) = 1. Then H has the presentation 〈x, y |x−1yx = yn

k〉 with generators x = akbl,
y = bm.

Proof. Consider the homomorphism ψ : BS(1, n) → Z introduced above. We have
ψ(x) = k and H ∩ kerψ = 〈x−iyxi | i ∈ Z〉. Thus, we have H = 〈x−iyxi | i ∈ Z〉o 〈x〉.

Using the isomorphism BS(1, n) ∼= Z[ 1
n
] o Z from Lemma 3.1, we can write H ∼=

Z[ m
nk ] o kZ ∼= Z[ 1

nk ] o Z, where Z acts on Z[ 1
nk ] by multiplication by nk. By Claim 3) of

Lemma 3.1 we have H ∼= BS(1, nk). 2

Proposition 3.6 Let H1 = 〈ak1bl1 , bm1〉 and H2 = 〈ak2bl2 , bm2〉 be two subgroups of
BS(1, n) with k1, k2,m1,m2 > 0 and (n,m1) = (n,m2) = 1. Then H1 is isomorphic
to H2 if and only if k1 = k2.

Proof. If k1 = k2, then H1
∼= H2 by Proposition 3.5. This proposition also implies,

that Hi/[Hi, Hi] ∼= Z× Znki−1. So, if k1 6= k2, then H1 � H2. 2

4 The proof of the Main Theorem

Notations. For any ring R let R∗ denote the group of invertible elements of R. For any
subring R of Q let us denote by G(R) the subgroup of GL2(Q), consisting of the matrices

A =

(
1 A12

0 A22

)
with A12 ∈ R and A22 ∈ R∗. Let G1(R) and G2(R) denote the diagonal

and the unipotent subgroups of G(R), i.e.

G1(R) = {A ∈ G(R) |A12 = 0}, G2(R) = {A ∈ G(R) |A22 = 1}.

Clearly, G(R) = G2(R)o G1(R). Note that Z[ 1
n
]∗ = {ni | i ∈ Z}.

Lemma 4.1 The map a 7→ A =

(
1 0
0 n

)
, b 7→ B =

(
1 1
0 1

)
can be extended to an

isomorphism θ : BS(1, n)→ G
(
Z[ 1

n
]
)
.

Proof. The proof is easy; see Exercise 5.5 in Chapter 2 in [3]. 2

We will use the following theorem of D. Collins.

4



Theorem 4.2 ([4, Proposition A]) Let G = 〈a, b | a−1ba = bs〉 where |s| 6= 1. Let

s = δpe11 p
e2
2 . . . p

ef

f ,

where δ = ±1 and p1, p2, . . . , pf are distinct primes. Then Aut(G) has presentation:

〈C,Q1, Q2, . . . , Qf , T |
Q−1
i CQi = Cpi , QiQj = QjQi,

T 2 = 1, TQi = QiT, T
−1CT = C−1〉,

where i, j = 1, 2, . . . , f . In this presentation the automorphisms are defined by

Qi :

{
a 7→ a

b 7→ bpi ,
C :

{
a 7→ ab

b 7→ b,
T :

{
a 7→ a

b 7→ b−1.

Proposition 4.3 Let n > 2 be a natural number. We identify BS(1, n) with G
(
Z[ 1

n
]
)

through the isomorphism described in Lemma 4.1. Let H1, H2 be two isomorphic subgroups
of BS(1, n), both of finite index. Then for every isomorphism ϕ : H1 → H2, there exists
a unique matrix M = M(ϕ) ∈ G(Q) such that M−1xM = ϕ(x) for every x ∈ H1.

Proof. First we prove the existence of M(ϕ). By Propositions 3.4 and 3.6, we can write
H1 = 〈akbl1 , bm1〉 and H2 = 〈akbl2 , bm2〉 for some integer l1, l2, and k,m1,m2 > 0, where
(n,m1) = (n,m2) = 1. By Proposition 3.5, Hj has the presentation 〈xj, yj |x−1

j yjxj = yn
k

j 〉,
where xj = akblj , yj = bmj , j = 1, 2. After identification of elements of BS(1, n) with
matrices, we have

xj =

(
1 lj

0 nk

)
, yj =

(
1 mj

0 1

)
. (1)

Let ϕ0 : H1 → H2 be the isomorphism, such that ϕ0(x1) = x2 and ϕ0(y1) = y2.
Then ϕ = ϕ1ϕ0 for some ϕ1 ∈ Aut(H1). By Theorem 4.2, Aut(H1) is generated by the
automorphisms

αi :

{
x1 7→ x1

y1 7→ ypi
1 ,

β :

{
x1 7→ x1y1

y1 7→ y1,
γ :

{
x1 7→ x1

y1 7→ y−1
1 ,

i = 1, 2, . . . , f , where p1, p2, . . . , pf are all prime numbers dividing n. Thus, it is sufficient
to show the existence of the matrices M(ϕ0), M(β), M(γ), and M(αi), i = 1, 2, . . . , f .

First we prove the existence of M(ϕ0). We shall find M(ϕ0) ∈ G(Q), such that

x1 ·M(ϕ0) = M(ϕ0) · ϕ0(x1),

y1 ·M(ϕ0) = M(ϕ0) · ϕ0(y1).

Using (1), one can compute that

M(ϕ0) =

(
1 l1m2−l2m1

m1(nk−1)

0 m2

m1

)
. (2)
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Similarly, we get

M(αi) =

(
1 l1(pi−1)

nk−1

0 pi

)
, M(β) =

(
1 −m1

nk−1

0 1

)
, M(γ) =

(
1 −2l1

nk−1

0 −1

)
. (3)

The uniqueness of M follows from the triviality of the centralizer of H1 in G(Q); the later
is easy to check. 2

Lemma 4.4 1) Let ϕ : H → H ′ be an isomorphism between subgroups of finite index in
BS(1, n) and let K be a subgroup of finite index in H. Then M(ϕ|K) = M(ϕ).

2) Let ϕ1 : H1 → H ′1 and ϕ2 : H2 → H ′2 be two isomorphisms between subgroups of
finite index in BS(1, n). Suppose that [ϕ1] = [ϕ2] in Comm(BS(1, n)). Then M(ϕ1) =
M(ϕ2).

Proof. 1) For every x ∈ K we haveM(ϕ|K)−1xM(ϕ|K) = ϕ|K(x) = ϕ(x) = M(ϕ)−1xM(ϕ)
and the claim follows from the uniqueness of M .

2) By Lemmas 2.4 and 2.5, we have ϕ1|H1∩H2 = ϕ2|H1∩H2 . Claim 1) implies that
M(ϕ1) = M(ϕ1|H1∩H2) = M(ϕ2|H1∩H2) = M(ϕ2). 2

This enables to define M of the commensurator classes: M([ϕ]) := M(ϕ).

Theorem 4.5 For every natural n > 2, the map Ψ : Comm(BS(1, n)) → G(Q) given by
[ϕ] 7→M([ϕ]) is an isomorphism.

Proof. 1) First we prove that Ψ is a homomorphism. Let ϕ1 : H1 → H2, ϕ2 : H3 → H4

be two isomorphisms between subgroups of finite index in BS(1, n). We shall show that
M([ϕ1])M([ϕ2]) = M([ϕ1ϕ2]). Write ϕ1ϕ2 = στ , where σ is the restriction of ϕ1 to
ϕ−1

1 (H2 ∩H3) and τ is the restriction of ϕ2 to H2 ∩H3:

ϕ−1
1 (H2 ∩H3)

σ−→ (H2 ∩H3)
τ−→ ϕ2(H2 ∩H3).

For x ∈ ϕ−1
1 (H2 ∩H3) we have (ϕ1ϕ2)(x) = τ((σ(x))) = M(τ)−1M(σ)−1xM(σ)M(τ).

Hence, M(ϕ1ϕ2) = M(σ)M(τ) = M(ϕ1)M(ϕ2) and the claim follows.
2) The injectivity of Ψ trivially follows from the definition of M([ϕ]).
3) Now we prove that Ψ is a surjection. By specializing parameters in (2) and (3), we

obtain some matrices in imΨ. Taking l1 = m2 and l2 = m1 in M(ϕ0), we get the matrix

D(m1

m2
) =

(
1 0
0 m1

m2

)
with m1,m2 > 0, (m1, n) = (m2, n) = 1. Taking l1 = 0 in M(αi) and in M(γ), and taking
m1 = 1 in M(β), we get the matrices

D(pi) =

(
1 0
0 pi,

)
, D(−1) =

(
1 0
0 −1

)
, T (k) =

(
1 1

nk−1

0 1

)
, k > 0.

The matrices D(m1

m2
), D(pi) and D(−1) generate the subgroup G1(Q) in the image of Ψ.

So, it is sufficient to show that G2(Q) is contained in imΨ. Since the additive group
of Q is generated by Z[ 1

n
] and all numbers 1

s
with (s, n) = 1, it is sufficient to show that
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the subgroup G2

(
Z[ 1

n
]
)

and the matrices

(
1 1

s

0 1

)
with (s, n)=1 are contained in the image

of Ψ. The first follows from the fact that the group of the commensurator classes of inner
automorphisms of BS(1, n) is mapped, under Ψ, onto G

(
Z[ 1

n
]
)

The second follows from

the formula

(
1 1

s

0 1

)
= (T (φ(s)))t, where φ is the Euler function and t is the natural

number such that nφ(s) − 1 = st. 2

5 Appendix: Commensurators and quasi-isometries

Let X and Y be two metric spaces. A map f : X → Y is called a (coarse) quasi-isometry
between X and Y , if there are some constants K,C,C0 > 0, such that the following holds:

1. K−1dX(x1, x2)− C 6 dY (f(x1), f(x2)) 6 KdX(x1, x2) + C for all x1, x2 ∈ X.
2. The C0-neighborhood of f(X) coincides with Y .

There is always a coarse inverse of f , a quasi-isometry g : Y → X such that f ◦ g and
g ◦ f are a bounded distance from the identity maps in the sup norm; these bounds, and
the quasi-isometry constants for g, depend only on the quasi-isometry constants of f .

Definition 5.1 Let X be a metric space. Two quasi-isometries f and g from X to itself
are considered equivalent if there exists a number M > 0 such that d(f(x), g(x)) 6 M
for all x ∈ X. Let QI(X) be the set of equivalence classes of quasi-isometries from X
to itself. Composition of quasi-isometries gives a well-defined group structure on QI(X).
The group QI(X) is called the quasi-isometry group of X.

Let G be a group with a finite generating set S. For g ∈ G denote by |g| the minimal
k, such that g = s1s2 . . . sk, where s1, s2, . . . , sk ∈ S ∪ S−1. We consider G as a metric
space with the word metric with respect to S: d(x, y) = |x−1y| for x, y ∈ G. For a finitely
generated group G, the group QI(G) is well defined and does not depend on a choice of
a finite generating set S.

It is well known that there is a natural homomorphism Λ : Comm(G)→ QI(G). This
homomorphism is defined by the following rule. Let ϕ : H → H ′ be an isomorphism
between two finite index subgroups of G. We choose a right transversal T for H in G with
1 ∈ T . First we define a map fϕ : G→ G by the rule fϕ(ht) := ϕ(h) for every h ∈ H and
t ∈ T . Clearly, fϕ is a quasi-isometry. Then we set Λ([ϕ]) := [fϕ].

Lemma 5.2 Let G be a finitely generated group with the unique root property. Then
Λ : Comm(G)→ QI(G) is an embedding.

Proof. We will use notation introduced before this lemma. Suppose that [fϕ] = [id|G].
Then there is a constant M > 0, such that d(fϕ(x), x) 6 M for every x ∈ G. Let h ∈ H.
Then for every integer n holds: |h−nϕ(hn)| = d(ϕ(hn), hn) 6 M . Since G is finitely
generated, the M -ball in G centered at 1 is finite. Hence, there exist distinct n,m such
that h−nϕ(hn) = h−mϕ(hm). Then hn−m = (ϕ(h))n−m and so h = ϕ(h) by the unique
root property. Hence [ϕ] = 1 and the injectivity of Λ is proved. 2

Corollary 5.3 The group Comm(BS(m,n)) naturally embeds in QI(BS(m,n)) if (m,n) = 1.
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