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GEOMETRIC FILTRATIONS OF
CLASSICAL LINK CONCORDANCE

JAMES CONANT, ROB SCHNEIDERMAN, AND PETER TEICHNER

Abstract. This paper describes grope and Whitney tower filtra-
tions on the set of concordance classes of classical links in terms
of class and order respectively. Using the tree-valued intersec-
tion theory of Whitney towers, the associated graded quotients are
shown to be finitely generated abelian groups under a (surprisingly)
well-defined connected sum operation.

Twisted Whitney towers are also introduced, along with a cor-
responding quadratic enhancement of the intersection theory for
framed Whitney towers that measures Whitney-disk framing ob-
structions. The obstruction theory in the framed setting is strength-
ened, and the relationships between the twisted and framed filtra-
tions are described in terms of exact sequences which show how
higher-order Sato-Levine and higher-order Arf invariants are ob-
structions to framing a twisted Whitney tower.

The results from this paper combine with those in [8, 9, 10] to
give a classifications of the filtrations; see our survey [7] as well as
the end of the introduction below.

1. Introduction

Several key theorems and conjectures in low-dimensional topology
can be stated in terms of certain 2-complexes known as gropes. These
are geometric embodiments of commutators of group elements, see
e.g. [1, 3, 4, 5, 12, 13, 24, 25]. Gropes are built by gluing together
surfaces along collections of embedded essential circles, and come in
several different types with varying measures of complexity.

The height of a grope corresponds to the derived series and was used
(in the presence of caps) in [12, 13] to formulate the main open problem
for topological 4–manifolds: the 4-dimensional surgery and s-cobordism
theorems for arbitrary fundamental groups are equivalent to a certain
statement about capped gropes of height ≥ 2. In the uncapped setting,
gropes of increasing height were used in [3] to define a new filtration of
the knot concordance group.

Key words and phrases. Whitney towers, gropes, link concordance, trees, higher-
order Arf invariants, higher-order Sato-Levine invariants, twisted Whitney disks.
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2 J. CONANT, R. SCHNEIDERMAN, AND P. TEICHNER

In this paper, we shall study a more basic measure of the complexity,
namely the class of a grope, which corresponds to commutator length
and the lower central series (Figure 1). In the 3-dimensional setting
it was used in [4, 5] to give a geometric interpretation of Vassiliev’s
finite type invariants of knots and (the first nonvanishing term of) the
Kontsevich integral.

Figure 1. A class 4 grope.

In the 4-dimensional setting it is a fundamental open problem to
determine under what conditions the components of a link in the 3–
sphere bound class n gropes disjointly embedded in the 4–ball, and this
paper will describe a program for computing the
Grope concordance filtration (by class)

(G) · · · ⊆ G3 ⊆ G2 ⊆ G1 ⊆ G0 ⊆ L
on the set L = L(m) of framed links in S3 with m components. Here
Gn = Gn(m) is defined to be the set of framed links that bound
class (n+ 1) framed gropes disjointly embedded in B4. The index shift
provides compatibility with other filtrations introduced below and for
the same reason, we define G0 to be the set of evenly framed links.

The intersection of all Gn contains all slice links because a 2-disk is
a grope of arbitrary large class. In fact, this filtration factors through
link concordance which we shall use implicitly at various places.

Recall that the connected sum of links is not a well-defined operation
because of the choices of connecting bands that are involved. As a con-
sequence, there is no direct definition of the associated graded quotients
of the filtration Gn. However, one can define an equivalence relation
on links by using the notion of class n grope concordance between two
links. This is obtained by using framed gropes built on annuli connect-
ing link components in S3 × I. We then define the associated graded
Gn = Gn(m) as the quotient of Gn modulo grope concordance of class
n+ 2. Our first result is the following corollary of Theorem 3 below.

Corollary 1. For all m,n ∈ N, the sets Gn(m) are finitely generated
abelian groups, under a well-defined connected sum #. Moreover, Gn is
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the set of framed links L ∈ Gn modulo the relation that [L1] = [L2] ∈ Gn
if and only if L1#−L2 lies in Gn+1, for some choice of connected sum
#. Here −L is the mirror image of L with reversed framing.

For example, G0(m) ∼= Zk where k = m(m + 1)/2 is the number of
possible linking numbers and framings (on the diagonal) of a link with
m components. This follows from the fact that disjointly embedded
class 2 gropes in B4 are framed surfaces which induce the zero framings
on their boundary and show the vanishing of all linking numbers. We
also note that G1(1) ∼= Z2 is given by the Arf invariant, and that
G2(1) = Gn(1) for all n ≥ 2, by [20].

The proof of Corollary 1 can be most succinctly formulated by defin-
ing a sequence of finitely generated abelian groups Tn = Tn(m) in terms
of certain trees. These groups have previously appeared in the study
of graph cohomology, Feynman diagrams and finite type invariants of
links and 3–manifolds.

Definition 2. In this paper, a tree will always refer to an oriented
unitrivalent tree, where the orientation of a tree is given by cyclic ori-
entations at all trivalent vertices. The order of a tree is the number of
trivalent vertices. Univalent vertices will usually be labeled from the
set {1, 2, 3, . . . ,m} corresponding to the link components, and we con-
sider trees up to isomorphisms preserving these labelings. We define
T = T (m) to be the free abelian group on such trees, modulo the an-
tisymmetry (AS) and Jacobi (IHX) relations shown in Figure 2. Since

IHX:

AS:

Figure 2. Local pictures of the antisymmetry (AS) and
Jacobi (IHX) relations in T . Here all trivalent orienta-
tions are induced from a fixed orientation of the plane,
and univalent vertices possibly extend to subtrees which
are fixed in each equation.

the AS and IHX relations are homogeneous with respect to order, T
inherits a grading T = ⊕nTn, where Tn = Tn(m) is the free abelian
group on order n trees, modulo AS and IHX relations.
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Then a construction known to at least Bing, Cochran [2] and Habiro
[16] leads to our realization map

Rn : Tn → Gn

and Theorem 3 says that this map is well-defined and onto. For exam-
ple, if i 6= j then R0 sends the order zero tree i −−−− j to a disjoint
union of an (m − 2)-component unlink and a Hopf link with compo-
nents numbered i and j, all components being zero-framed. If i = j,
we get an m-component unlink where the ith component has framing
2 and all other components are zero-framed.

In fact, it will turn out that Gn is isomorphic to Tn when n is even
(and to a quotient by certain 2-torsion in the odd case) via a map that
is essentially defined by forgetting the roots of the rooted trees which
correspond to iterated commutators determined by the grope branches.

The graded groups Gn are reminiscent of the groups of knots arising
in the theory of finite type invariants, first discovered by Goussarov
[14], defined as a quotient of the monoid of knots by n-equivalence.
These groups were later constructed more conceptually using claspers
by both Habiro and Goussarov [16, 15]. For the case of string links
with m-strands, in [6] we defined Gn(m) to be the monoid of m-string
links modulo (3-dimensional) grope cobordism of class n + 1, and the
associated graded quotients are finitely generated abelian groups. As
in the current paper, we defined a surjective realization map

Φ: Bgn(m)→ Gn(m)/Gn+1(m)

where Bgn(m) is the group of Feynman diagrams with grope degree n,
and showed that rationally it is an isomorphism. Clearly there is a
surjection ρ : Gn(m)/Gn+1(m) � Gn(m), and indeed our realization
maps Rn are the compositions ρ ◦ Φ, since graphs with loops give rise
to null-concordant links and are therefore in the kernel of ρ ◦ Φ. (See
also Remark 28 below.)

Although we could take the composition ρ ◦ Φ as our definition of
Rn, and prove the required properties by modifying the 3-dimensional
methods developed for knots by the first and third authors in [4, 5],
we take a different approach here which is directly 4-dimensional and
significantly simpler.

1.1. The Whitney tower filtration. We consider a second filtra-
tion on the set of framed links with m components, defined by using
(framed) Whitney towers in place of (framed) gropes. Just like gropes
are iterated surface stages glued to each other in a specified way, a
Whitney tower is constructed by adding layers of immersed framed



GEOMETRIC FILTRATIONS OF CLASSICAL LINK CONCORDANCE 5

Whitney disks that pair up the intersection points of lower stages (Fig-
ure 3 and Section 2).

Whitney towers also come with a measure of complexity, the order,
which determines how often intersection points are paired up. For ex-
ample, an order zero Whitney tower is just a union of framed immersed
disks in B4 bounded by a link in S3 with the induced framing, and an
order 1 Whitney tower would also have all intersections among the im-
mersed disks paired by Whitney disks. We define Wn = Wn(m) to be
the set of links with m components that bound a Whitney tower of
order n in B4. On the set of framed links, we thus get the
Whitney tower filtration (by order)

(W) · · · ⊆W3 ⊆W2 ⊆W1 ⊆W0 ⊆ L = L(m)

Figure 3. Part of a Whitney tower in 4–space (left),
and shown with part of an associated tree (right). Whit-
ney disks pair up transverse intersections of opposite
sign.

As for gropes above, the equivalence relation of Whitney tower con-
cordance of order n + 1 then leads to the ‘associated graded’ Wn =
Wn(m).

Theorem 3. For each m,n, there are surjective realization maps

Rn = Rn(m) : Tn(m)� Wn(m)

and the sets Wn(m) are finitely generated abelian groups under the
well-defined operation of connected sum #. Moreover, Wn is the set of
framed links L ∈Wn modulo the relation that [L1] = [L2] ∈ Wn if and
only if L1# − L2 lies in Wn+1, for some choice of connected sum #.
Here −L is the mirror image of L with reversed framing.

Note that W0 consists of links that are evenly framed because a
component has even framing if and only if it bounds a framed immersed
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disk in B4. It is well known that the signed number of self-intersection
points of such a framed disk equals twice the framing on the boundary.
As a consequence, if a knot bounds the next type of Whitney tower (of
order one) then all the intersections of the first stage (order zero) disk
are paired up by Whitney disks and so the framing is zero. In fact,
W0(1) ∼= 2Z, given by the framing; and W1(1) ∼= Z2, detected by the
Arf invariant.

The resemblance between the two realization maps above is no co-
incidence: It is a result of the second author in [19] that Gn = Wn

and Gn = Wn by completely geometric constructions that lead from
gropes to Whitney towers and back (Figure 4). This means that we

Figure 4. Controlled conversions between order n
Whitney towers and class (n+ 1) gropes are described in
detail in [19].

can continue to study either filtration and in this paper, we decide to
take the Whitney tower point of view. This choice is motivated by
the fact that Whitney towers come with an obstruction theory which
is accompanied by higher-order intersection invariants taking values in
T . As described in Section 2 and hinted at in the right side of Fig-
ure 3, any Whitney tower W of order n has an order n intersection
invariant τn(W) ∈ Tn which is defined by summing the trees pictured
in Figure 3. Order n intersection invariants vanish on Whitney towers
of order n + 1, and the key step in the proof of Theorem 3 (given in
Section 3) is the following “raising the order” result:

Theorem 4 ([6, 19, 23]). A link bounds a Whitney towerW of order n
with τn(W) = 0, if and only if it bounds a Whitney tower of order n+1.

This theorem follows from realizing all relations in Tn geometrically
by controlled maneuvers on Whitney towers. It was a very pleasant sur-
prise that, say, the Jacobi identity (or IHX relation) has an incarnation
as a certain sequence of moves on Whitney disks and their boundary-
arcs in a Whitney tower [6]. It has the following important corollary
whose proof is in Section 3.1.
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Corollary 5. Links L0 and L1 represent the same element of Wn if
and only if there exist order n Whitney towersWi in B4 with ∂Wi = Li
and τn(W0) = τn(W1) ∈ Tn.

Our realization map Rn (and its surjectivity) can then be explained
extremely well by the following commutative diagram:

(Rn) Wn

τn
����

∂
// // Wn

����

Tn
Rn

// // Wn

An element in the set Wn is an order n Whitney towerW in B4 whose
boundary ∂W lies in Wn by definition of our filtration. The map Rn

then arises directly from above the diagram via Corollary 5 and the
surjectivity of the intersection invariant τn. The proof of Theorem 3 will
be completed via a Bing doubling (and internal band sum) construction
applied to the Hopf link, showing that τn is surjective.

As a consequence of Theorem 3 together with results in [8, 9, 10],
it turns out that τ2n(W) only depends on the concordance class of the
link L = ∂W , and not the Whitney tower W it bounds; and that the
intersection invariants τ2n induce inverses to the realization maps R2n.
In particular, we have following classification theorem for even orders:

Theorem 6 ([10]). The maps R2n : W2n � T2n are isomorphisms.

To describe the situation in odd orders, we first introduce the reduced

version T̃2n−1 of T2n−1 by dividing out the framing relations. These
relations are the images of homomorphisms

∆2n−1 : Z2 ⊗ Tn−1 → T2n−1

defined by sending an order n − 1 tree t to the sum of trees gotten
by doubling the subtree adjacent to each univalent vertex of t (see
Figure 18 and the precise definition in Section 5).

Theorem 7. The odd order realization maps R2n−1 vanish on the im-
age of ∆2n−1 and give surjections

R̃2n−1 : T̃2n−1 � W2n−1

Moreover, if a link L bounds a Whitney tower W of order 2n− 1 with
τ2n−1(W) ∈ Im(∆2n−1) then L bounds a Whitney tower of order 2n.

Here the results of [8, 9, 10] also apply to the cases where n is even,

implying that τ̃4k−1(W) ∈ T̃4k−1 only depends on the link L and not the
Whitney tower W , and that τ̃4k−1 induces an inverse to the realization

map R̃4k−1. We get the following classification in these orders:
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Theorem 8 ([10]). R̃4k−1 : W4k−1 � T̃4k−1 are isomorphisms.

The framing relations in odd orders arise from a subtle interplay be-
tween the IHX relations and certain framing obstructions associated to
Whitney disks, as will be described below. As suggested by theorems 7
and 8, we believe that these relations do indeed capture all the rele-

vant geometric aspects regarding the filtration. Setting T̃2n := T2n, we
conjecture:

Conjecture 9. The realization maps give Wn
∼= T̃n for all n.

As discussed below and described in detail in [8, 10], the affirmation
of this conjecture is equivalent to the non-triviality of certain higher-
order Arf invariants which complete the classification of W4k−3.

The big picture is best described by introducing the following gen-
eralization of framed Whitney towers.

1.2. The Twisted Whitney tower filtration. The proof of The-
orem 7 given in Section 5 uses in addition to IHX type maneuvers
another well known geometric move on a Whitney disk, namely the
boundary twist. A framed Whitney disk changes into a twisted Whit-
ney disk by this move, at the cost of creating a new interior intersection
in the Whitney disk (Figure 13).

This motivated us to introduce yet another filtration of the set of
links by looking at those links Wn = Wn(m) with m components that
bound twisted Whitney towers of order n (rather than framed Whitney
towers as in the definition of Wn). These are Whitney towers, except
that certain Whitney disks are allowed to be twisted. We arrive at the
Twisted Whitney tower filtration (by order)

(W ) · · · ⊆W3 ⊆W2 ⊆W1 ⊆W0 = L
We refer to Section 3 for a precise definition, also of the associated
graded Wn = Wn(m); and to Section 2 for details on twisted Whitney
towers, including the associated twisted intersection invariant τn (W) ∈
Tn = Tn (m). The groups T2n−1 are defined as quotients of T2n−1 by
the subgroups generated by trees of the form

i −−< J
J

where J is a subtree of order n − 1. These boundary-twist relations
correspond to the intersections created by performing a boundary-twist
on an order n Whitney disk. The groups T2n include certain “twisted”

-trees representing framing obstructions on order n Whitney disks,
which are not required to be framed in an order 2n twisted Whitney
tower. In [10] we show that T is the universal home for invariant
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symmetric bilinear forms on quasi-Lie algebras, and that T2n is the
universal (symmetric quadratic) refinement of this form in order n.

Here and in the following the symbol represents a twist, and in
particular does not stand for “infinity”.

Theorem 10. For each m,n, there are surjective realization maps

Rn = Rn(m) : Tn (m)� Wn(m)

and the sets Wn(m) are finitely generated abelian groups under the well-
defined connected sum # operation. Moreover, Wn is the set of framed
links L ∈Wn modulo the relation that [L1] = [L2] ∈ Wn if and only if
L1#−L2 lies in Wn+1, for some choice of connected sum #. Here −L
is the mirror image of L with reversed framing.

As before, the key step in proving this result is the following criterion
for raising the order of a twisted Whitney tower:

Theorem 11. A link bounds a twisted Whitney tower W of order n
with τn (W) = 0 if and only if it bounds a twisted Whitney tower of
order n+ 1.

Theorem 11 follows from the more general Theorem 31 in Section 2,
which is proved in Section 4 using “twisted Whitney moves” (Lemma 41)
as well as boundary-twists and a construction for “geometrically can-
celling” twisted Whitney disks.

In the twisted setting we also have classifications of the associated
graded groups of links in three out of four cases:

Theorem 12 ([8, 10]). For n ≡ 0, 1, 3 mod 4, the realization maps
Rn : Tn � Wn are isomorphisms.

In fact, in these orders the Wn are isomorphic to image Dn of the
first nonvanishing order n (length n + 2) Milnor link invariants [8,
10]. Theorem 12 (as well as theorems 6 and 8 above) depends in an
essential way on our resolution [9] of a combinatorial conjecture of
J. Levine involving a map from unrooted trees representing Whitney
tower intersections to rooted trees representing iterated commutators
determined by link longitudes. As described in [8, 9], the kernel of this
map is generated by certain symmetric -trees that are not detected
by Milnor invariants. These trees are related to what we call higher-
order Arf invariants of the twisted filtration in [8], and the conjectured
non-triviality of these invariants is shown in [10] to be equivalent to
the above Conjecture 9 as well as the following:

Conjecture 13. The maps R4k−2 : T4k−2 � W4k−2 are isomorphisms.
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1.3. Framed versus twisted Whitney towers. There is a surpris-
ingly simple relation between twisted and framed Whitney towers of
various orders that’s very well expressed in terms of the following result:

Proposition 14. For any n ∈ N, there is an exact sequence

0 // W2n
// W2n

// W2n−1
// W2n−1

// 0

where all maps are induced by the identity on the set of links.

To see why this is true, observe that it is easier to find a twisted
Whitney tower than a framed one and hence there is a natural inclusion
Wn ⊆Wn between our two filtrations (W) and (W ) on the set of links.
Moreover, by Definition 20 we actually have

W2n−1 = W2n−1

because we found that a twisted Whitney disk of order n is most nat-
urally associated to an order 2n Whitney tower, compare Remark 22.
One then needs to show that indeed W2n ⊆ W2n−1, which is accom-
plished in Lemma 42 of Section 4 using boundary-twists and twisted
Whitney moves. Finally, by the ‘Moreover’ parts of Theorems 3 and
12, we may say that

Wn = Wn/Wn+1 and Wn = Wn/Wn+1

which implies the exact sequence in Proposition 14.
If our above conjectures above hold, then for every n the various

realization maps should lead to the analogous exact sequence for our
groups defined by trees. The following result shows that this is indeed
the case and even gives more information on kernels (respectively cok-
ernels). It is best expressed in terms of the free quasi-Lie algebra on m
generators:

L′ = L′(m) =
⊕
n∈N

L′n

Definition 15 (compare [18]). The abelian group L′n+1 = L′n+1(m)
is generated by order n (trivalent, oriented) rooted trees, each having
a specified univalent vertex, labeled as root, and all other univalent
vertices labelled by elements of {1, . . . ,m}, modulo the AS and IHX
relations of Figure 2.

Here the prefix ‘quasi’ reflects the fact that, although the IHX rela-
tion corresponds to the Jacobi identity via the usual identification of
rooted trees with non-associative brackets, the usual Lie algebra self-
annihilation relation [X,X] = 0 does not hold in L′. It is replaced by
the weaker anti-symmetry (AS) relation [Y,X] = −[X, Y ].
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Theorem 16. For any m,n ∈ N, there are short exact sequences

0 // T2n // T2n // Z2 ⊗ L′n+1
// 0

and

0 // Z2 ⊗ L′n+1
// T̃2n−1

// T2n−1
// 0

This result is proved in [10] using the universality of T2n as the target
of quadratic refinements of the canonical ‘inner product’ pairing

〈 , 〉 : L′n+1 × L′n+1 → T2n
given by gluing the roots of two rooted trees, see Definition 17. We can
connect these short exact sequences to a single exact sequence

0 // T2n // T2n // T̃2n−1
// T2n−1

// 0

just like in Proposition 14. However, Theorem 16 makes the additional
predictions that

Cok(W2n → W2n) ∼= Z2 ⊗ L′n+1
∼= Ker(W2n−1 → W2n−1)

assuming the conjectures in this paper. As a consequence of these
conjectures, we would obtain new concordance invariants with values
in Z2 ⊗ L′n+1 and defined on W2n, as the obstructions for a link to
bound a framed Whitney tower of order 2n. In [10] we shall show that
a quotient of Z2 ⊗ L′n+1, namely Z2 ⊗ Ln+1, is indeed detected by what
we call higher-order Sato-Levine invariants. Here the free quasi-Lie
algebra L′ is replaced by the usual free Lie algebra L satisfying the
Jacobi identity and self-annihilation relations [X,X] = 0.

Levine [17] showed that the squaring map X 7→ [X,X] induces an
isomorphism

Z2 ⊗ Ln+1
2

∼= Ker(Z2 ⊗ L′n+1 � Z2 ⊗ Ln+1)

We thus conjecture that this group is also detected by concordance
invariants which are the above-mentioned higher-order Arf invariants.
These would generalize the usual Arf invariants of the link components,
which (as shown in [8]) is the case n = 1.

It is interesting to note that the case n = 0 leads to the prediction

Cok(W0 → W0 ) ∼= Z2 ⊗ L1
∼= (Z2)

m

This is indeed the group of framed m-component links modulo those
with even framings! In fact, the consistency of this computation was
the motivating factor to consider filtrations of the set of framed links
L, rather than just oriented links.
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As described in [10], the higher-order Sato-Levine invariants turn out
to be determined by the Milnor invariants, providing a new interpre-
tation for these classical invariants as obstructions to “untwisting” a
Whitney tower. On the other hand, the higher-order Arf invariants do
not appear to correspond to any known invariants. They take values
in a (currently unknown) quotient of Z2 ⊗ Ln+1

2
and we show in [10]

that together with the Milnor invariants they give a complete charac-
terization of our three filtrations.

1.4. Summary of all papers in this series. Paper [7] gives an
overview of the results of this paper together with the closely related
papers [8, 9, 10, 11]. The classifications of the geometric filtrations of
link concordance defined in the current paper are achieved in a sequence
of steps:

(i) The current paper extends our previous intersection theory of
Whitney towers [6, 23] to the reduced (and twisted) settings,
and proves that our obstruction theory works: If the order n
intersection invariant of a (twisted) Whitney towerW vanishes

in T̃ (resp. T ) thenW “can be raised” from order n to order
n + 1, without changing the link ∂W . As a consequence, we
obtain the realization epimorphisms:

R̃n : T̃n � Wn and Rn : Tn � Wn

We also introduce the exact sequences which explain the rela-
tionship between framed and twisted Whitney towers, motivat-
ing the definitions of the higher-order Sato-Levine and higher-
order Arf invariants.

(ii) In [8] we first show that the order n Milnor invariants for links
can be thought of as an epimorphism

µn : Wn � Dn := ker([·, ·] : L1 ⊗ Ln+1 → Ln+2)

Note that Dn is a free abelian group whose rank can be com-
puted via the Hall basis algorithm. Secondly, we use the geo-
metric notion of grope duality to show that the composition

ηn : Tn
Rn

� Wn

µn

� Dn

can be described combinatorially in a very simple way: it is
given by summing over all ways of choosing a root on a given
tree. This map ηn is closely related to the procedure for con-
verting a Whitney tower into a grope which gives the isomor-
phism Wn

∼= Gn. The construction of boundary links realizing
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the image of the higher-order Arf invariants leads to new geo-
metric characterizations of links with vanishing Milnor invari-
ants through length 2n.

(iii) In [9] we use combinatorial Morse theory to prove the Levine
Conjecture, that a map η′n (analogous to ηn), which is also
defined by summing over all root choices, gives an isomorphism
Tn ∼= D′n, where D′n is the bracket kernel on the free quasi-Lie
algebra L′ (analogous to Dn). This result has implications in
the study of 3-dimensional homology cylinders, where Levine
originally formulated his conjecture, as well as playing a key
role in providing the algebraic framework for the classifications
of Wn and Wn completed in [10].

(iv) In [10], we assemble the relevant groups into commutative dia-
grams of exact sequences and complete the classifications of the
geometric filtrations of link concordance defined in the current
paper. For instance, our resolution in [9] of the Levine Conjec-
ture is used to show that ηn is an isomorphism for n ≡ 0, 1, 3
mod 4 and that its kernel is Z2 ⊗ Lk for n = 4k − 2. This
leads to the formulations of the higher-order Arf invariants in
both the framed and twisted settings, as well as a demonstra-
tion of their equivalence, and their relation to the higher-order
Sato-Levine invariants. The geometric filtrations are shown
to be classified by the Milnor and higher-order Arf invariants.
This allows us to give complete proofs of Theorems 6, 8 and
12 above. Moreover, we show in what sense the twisted in-
tersection invariant τn is the universal quadratic refinement of
its framed partner τn, and complete the algebraic description
of the relationship between the framed and twisted Whitney
tower filtrations (Theorem 16 above).

(v) Further applications to filtrations of string links and homology
cylinders are described in [11].

We emphasize that although the Milnor and higher-order Arf in-
variants completely classify the groups Wn and Wn , there remains the
question of determining the exact (finite) 2-torsion group which is the
range of the higher-order Arf invariants, as touched on above and elab-
orated on throughout these papers.

Acknowledgments: This paper was partially written while the
first two authors were visiting the third author at the Max-Planck-
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2. Whitney towers

We sketch here the relevant theory of Whitney towers as developed
in [6, 19, 23], giving details for the new notion of twisted Whitney
towers. We work in the smooth oriented category (with orientations
usually suppressed from notation), even though all our results hold in
the locally flat topological category by the basic results on topological
immersions in Freedman–Quinn [12]. In fact, it can be shown that the
filtrations Gn, Wn and Wn are identical in the smooth and locally flat
settings. This is because a topologically flat surface can be promoted
to a smooth surface at the cost of only creating unpaired intersections
of arbitrarily high order (see Remark 35).

2.1. Operations on trees. To describe Whitney towers it is conve-
nient to use the bijective correspondence between formal non-associative
bracketings of elements from the index set {1, 2, 3, . . . ,m} and rooted
trees, trivalent and oriented as in Definition 2, with each univalent
vertex labeled by an element from the index set, except for the root
univalent vertex which is left unlabeled.

Definition 17. Let I and J be two rooted trees.

(i) The rooted product (I, J) is the rooted tree gotten by iden-
tifying the root vertices of I and J to a single vertex v and
sprouting a new rooted edge at v. This operation corresponds
to the formal bracket (Figure 5 upper right). The orientation
of (I, J) is inherited from those of I and J as well as the order
in which they are glued.

(ii) The inner product 〈I, J〉 is the unrooted tree gotten by iden-
tifying the roots of I and J to a single non-vertex point. Note
that 〈I, J〉 inherits an orientation from I and J , and that all
the univalent vertices of 〈I, J〉 are labeled. (Figure 5 lower
right.)

(iii) The order of a tree, rooted or unrooted, is defined to be the
number of trivalent vertices.

The notation of this paper will not distinguish between a bracketing
and its corresponding rooted tree (as opposed to the notation I and
t(I) used in [19, 23]). In [19, 23] the inner product is written as a
dot-product, and the rooted product is denoted by ∗.
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I1

I1

I ( I , J )
I2

( I1 , I2 )
I2

=

J1

J1

J
J2

( J1 , J2 )

J2

=
I1

I , J
I2 J1

J2

Figure 5. The rooted product (I, J) and inner product
〈I, J〉 of I = (I1, I2) and J = (J1, J2). All trivalent
orientations correspond to a clockwise orientation of the
plane.

2.2. Whitney disks and higher-order intersections. A collection
A1, . . . , Am # (M,∂M) of connected surfaces in a 4–manifold M is
a Whitney tower of order zero if the Ai are properly immersed in the
sense that the boundary is embedded in ∂M and the interior is gener-
ically immersed in M r ∂M . If ∂Ai ↪→ ∂M comes equipped with a
nonvanishing normal vector field, then we require it to extend to a
nonvanishing normal vector field on Ai. And if ∂Ai is equipped with
an orientation, then we require that this orientation is induced by an
orientation of Ai.

A framing of ∂Ai (respectively Ai) is by definition a trivialization of
the normal bundle of the immersion. If M is oriented, this is equiva-
lent to an orientation and a nonvanishing normal vector field on ∂Ai
(respectively Ai).

To each order zero surface Ai is associated the order zero rooted
tree consisting of an edge with one vertex labeled by i, and to each
transverse intersection p ∈ Ai ∩ Aj is associated the order zero tree
tp := 〈i, j〉 consisting of an edge with vertices labelled by i and j. Note
that for singleton brackets (rooted edges) we drop the bracket from
notation, writing i for (i).

The order 1 rooted Y-tree (i, j), with a single trivalent vertex and two
univalent labels i and j, is associated to any Whitney disk W(i,j) pairing
intersections between Ai and Aj. This rooted tree can be thought of
as an embedded subset of M , with its trivalent vertex and rooted edge
sitting in W(i,j), and its two other edges descending into Ai and Aj as
sheet-changing paths. (The cyclic orientation at the trivalent vertex of
the bracket (i, j) corresponds to an orientation of W(i,j) via a convention
described below in 2.5.)

Recursively, the rooted tree (I, J) is associated to any Whitney disk
W(I,J) pairing intersections between WI and WJ (see left-hand side of
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Figure 6); with the understanding that if, say, I is just a singleton i,
then WI denotes the order zero surface Ai. Note that a W(I,J) can be
created by a finger move pushing WJ through WI .

To any transverse intersection p ∈ W(I,J) ∩WK between W(I,J) and
any WK is associated the un-rooted tree tp := 〈(I, J), K〉 (see right-
hand side of Figure 6).

K p
( I , J )W

W

W
I

J

W

W

W
I

J

Figure 6. On the left, (part of) the rooted tree (I, J)
associated to a Whitney disk W(I,J). On the right, (part
of) the unrooted tree tp = 〈(I, J), K〉 associated to an
intersection p ∈ W(I,J) ∩WK . Note that p corresponds
to where the roots of (I, J) and K are identified to a
(non-vertex) point in 〈(I, J), K〉.

Definition 18. The order of a Whitney disk WI is defined to be the
order of the rooted tree I, and the order of a transverse intersection p
is defined to be the order of the tree tp.

Definition 19. A collectionW of properly immersed surfaces together
with higher-order Whitney disks is an order n Whitney tower if W
contains no unpaired intersections of order less than n.

The Whitney disks in W must have disjointly embedded bound-
aries, be generically immersed in the interior and must be framed (as
discussed next).

2.3. Twisted Whitney disks. The normal disk-bundle of a Whitney
disk W in M is isomorphic to D2 × D2, and comes equipped with a
canonical nowhere-vanishing Whitney section over the boundary given
by pushing ∂W tangentially along one sheet and normally along the
other (see Figure 7 and e.g. [12]). Pulling back the orientation of M
with the requirement that the normal disks have +1 intersection with
W means the Whitney section determines a well-defined (independent
of the orientation of W ) relative Euler number ω(W ) ∈ Z which rep-
resents the obstruction to extending the Whitney section across W .
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Following traditional terminology, when ω(W ) vanishes W is said to
be framed. (Since D2×D2 has a unique trivialization up to homotopy,
this terminology is only mildly abusive.) In general when ω(W ) = k,
we say that W is k-twisted, or just twisted if the value of ω(W ) is not
specified. So a 0-twisted Whitney disks is a framed Whitney disk.

I

I

J

J

W

Figure 7. The Whitney section over the boundary of
a framed Whitney disk is indicated by the dotted loop
shown on the left for a clean Whitney disk W in a 3-
dimensional slice of 4-space. On the right is shown an
embedding into 3–space of the normal disk-bundle over
∂W , indicating how the Whitney section determines a
well-defined nowhere vanishing section which lies in the
I-sheet and avoids the J-sheet.

2.4. Twisted Whitney towers. In the definition of an order n Whit-
ney tower given just above (following [6, 19, 20, 23]) all Whitney disks
are required to be framed. It turns out that the natural generalization
to twisted Whitney towers involves allowing twisted Whitney disks only
in at least “half the order” as follows:

Definition 20. A twisted Whitney tower of order 0 is a collection of
properly immersed surfaces in a 4–manifold (without regard to any
framing on the boundary).

For n > 0, a twisted Whitney tower of order (2n−1) is just a (framed)
Whitney tower of order (2n− 1) as in Definition 19 above.

For n > 0, a twisted Whitney tower of order 2n is a Whitney tower
having all intersections of order less than 2n paired by Whitney disks,
with all Whitney disks of order less than n required to be framed, but
Whitney disks of order at least n allowed to be twisted.

Remark 21. Note that, for any n, an order n (framed) Whitney tower
is also an order n twisted Whitney tower. We may sometimes refer to
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a Whitney tower as a framed Whitney tower to emphasize the dis-
tinction, and will always use the adjective “twisted” in the setting of
Definition 20.

Remark 22. The convention of allowing only order ≥ n twisted Whit-
ney disks in order 2n twisted Whitney towers is explained both alge-
braically and geometrically in [8]. In any event, an order 2n twisted
Whitney tower can always be modified so that all its Whitney disks of
order > n are framed, so the twisted Whitney disks of order equal to
n are the important ones.

2.5. Whitney tower orientations. Orientations on order zero sur-
faces in a Whitney tower W are fixed, and required to induce the ori-
entations on their boundaries. After choosing and fixing orientations
on all the Whitney disks in W , the associated trees are embedded in
W so that the vertex orientations are induced from the Whitney disk
orientations, with the descending edges of each trivalent vertex enclos-
ing the negative intersection point of the corresponding Whitney disk,
as in Figure 6. (In fact, if a tree t has more than one trivalent vertex
which corresponds to the same Whitney disk, then t will only be im-
mersed inW , but this immersion can be taken to be a local embedding
around each trivalent vertex of t as in Figure 6.)

This “negative corner” convention, which differs from the positive
corner convention in [6, 23], will turn out to be compatible with com-
mutator conventions for use in [8].

With these conventions, different choices of orientations on Whitney
disks inW correspond to anti-symmetry relations (as explained in [23]).

2.6. Intersection invariants for Whitney towers. We recall from
Definition 2 that the abelian group Tn is the free abelian group on
labeled order n trees, modulo the AS and IHX relations, see Figure 2).
The obstruction theory of [23] in the current simply connected setting
works as follows.

Definition 23. The order n intersection invariant τn(W) of an order
n Whitney tower W is defined to be

τn(W) :=
∑

εp · tp ∈ Tn
where the sum is over all order n intersections p, with εp = ±1 the
usual sign of a transverse intersection point.

As stated in Theorem 4 in the introduction, if L bounds W ⊂ B4

with τn(W) = 0 ∈ Tn, then L bounds a Whitney tower of order n+ 1.
This is a special case of the simply connected version of the more gen-
eral Theorem 2 of [23]. We will use the following version of Theorem 2
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of [23] where the order zero surfaces are either properly immersed disks
in B4 or properly immersed annuli in S3 × I:

Theorem 24 ([23]). If a collection A of properly immersed surfaces in
a simply connected 4–manifold supports an order n Whitney tower W
with τn(W) = 0 ∈ Tn, then A is homotopic (rel ∂) to A′ which supports
an order n+ 1 Whitney tower.

2.7. Intersection invariants for twisted Whitney towers. The
intersection invariants for Whitney towers are extended to twisted
Whitney towers as follows:

Definition 25. The abelian group T2n−1 is the quotient of T2n−1 by
the boundary-twist relations :

〈(i, J), J〉 = i −−< J
J = 0

Here J ranges over all order n − 1 rooted trees. (This is the same

as taking the quotient of T̃2n−1 = T2n−1/ Im(∆2n−1) by boundary-twist
relations since Im(∆2n−1) is contained in the span of boundary-twist
relations – see Section 5).

The boundary-twist relations correspond geometrically to the fact
that performing a boundary twist (Figure 13) on an order n Whitney
diskW(i,J) creates an order 2n−1 intersection point p ∈ W(i,J)∩WJ with
associated tree tp = 〈(i, J), J〉 (which is 2-torsion by the AS relations)
and changes ω(W(i,J))) by ±1. Since order n twisted Whitney disks
are allowed in an order 2n Whitney tower such trees do not represent
obstructions to the existence of the next order twisted tower.

For any rooted tree J we define the corresponding -tree, denoted
by J , by labeling the root univalent vertex with the symbol “ ”:

J := −−J

Definition 26. The abelian group T2n is the free abelian group on
order 2n trees and order n -trees, modulo the following relations:

(i) AS and IHX relations on order 2n trees (Figure 2)
(ii) symmetry relations: (−J) = J
(iii) twisted IHX relations: I = H +X − 〈H,X〉
(iv) interior twist relations: 2 · J = 〈J, J〉

Here the AS and IHX relations are as usual, but they only apply to
non- trees. The symmetry relation corresponds to the fact that the
relative Euler number ω(W ) is independent of the orientation of the
Whitney disk W . The twisted IHX relation corresponds to the effect of
performing a Whitney move in the presence of a twisted Whitney disk,
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as described below in Lemma 41. The interior-twist relation corre-
sponds to the fact that creating a ±1 self-intersection in a WJ changes
the twisting by ∓2 (Figure 14).

Remark 27. The symmetry, twisted IHX, and interior twist relations
in T2n have a surprisingly natural algebraic interpretation that we ex-
plain in [10]. The idea is to extend the map J 7→ J to a symmetric
quadratic refinement q of the bilinear form 〈·, ·〉 on the free quasi-Lie
algebra of rooted trees (the intersection form on Whitney disks) by
defining q(J) = J and extending to linear combinations by the for-
mula

q(J +K) := J +K + 〈J,K〉

Expanding q(I −H +X) = 0 leads to the 6-term IHX relation

I +H +X = 〈I,H〉 − 〈I,X〉+ 〈H,X〉

which is equivalent to the twisted IHX relation in the presence of the
interior-twist relations. Those in turn follow by setting K := −J from
the symmetry relation.

Remark 28. We discovered in [6] that the (framed) IHX relation can
be realized in three dimensions as well as four, and it is interesting
to note that many of the relations that we obtain for twisted Whit-
ney towers in four dimensions can also be realized by rooted clasper
surgeries (grope cobordisms) in three dimensions. Here the twisted
Whitney disk corresponds to a ±1 framed leaf of a clasper. For ex-
ample the relation I = H + X − 〈H,X〉 has the following clasper
explanation. I represents a clasper with one isolated twisted leaf. By
the topological IHX relation, one can replace I by two claspers of the
form H and (−X) = X embedded in a regular neighborhood of the
original clasper with leaves parallel to the leaves of the original. The
twisted leaves are now linked together, so applying Habiro’s zip con-
struction (which complicates the picture considerably) one gets three
tree claspers, of the form H , X and 〈H,−X〉 respectively.

Similarly, the relation 2 · J = 〈J, J〉 has an interpretation where
one takes a clasper which represents J and splits off a geometrically
cancelling parallel copy, representing the tree J . Again, because the
twisted leaves link, we also get the term 〈J,−J〉.

These observations will be enlarged upon in [11] to analyze filtrations
on homology cylinders.
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Recall from Definition 20 (and Remark 22) that twisted Whitney
disks only occur in even order twisted Whitney towers, and only those
of half-order are relevant to the obstruction theory.

Definition 29. The order n intersection intersection invariant τn (W)
of an order n twisted Whitney tower W is defined to be

τn (W) :=
∑

εp · tp +
∑

ω(WJ) · J ∈ Tn
where the first sum is over all order n intersections p and the second
sum is over all order n/2 Whitney disks WJ with twisting ω(WJ) ∈ Z.
By splitting the twisted Whitney disks, as explained in subsection 2.9
below, we may actually assume that all non-zero ω(WJ) ∈ {±1}, just
like the signs εp.

Remark 30. We briefly comment on the order 0 case, which is some-
what special but still consistent with the positive order cases. The
group T0 is generated by the order zero trees i −−− j and −−− j,
and only the last family of relations 〈j, j〉 = j −−− j = 2 · −−− j
from Definition 26 are relevant. Interpreting the above definition of
τ0 (A) for an order 0 twisted Whitney tower A (a collection of properly
immersed surfaces), the transverse intersections between components
Ai and Aj give the signed trees ε · i −−− j in the first sum, and each
coefficient ω(Aj) of −−− j is taken to be the relative Euler number
of the normal bundle of Aj with respect to the given framing of ∂Aj
(which in a twisted Whitney tower is not necessarily zero).

As in the framed case, the vanishing of τn is sufficient for the ex-
istence of a twisted Whitney tower of order (n + 1), and the proof of
Theorem 12 in Section 4 will be based on the following analogue of the
framed order-raising Theorem 24 to the twisted setting:

Theorem 31. If a collection A of properly immersed surfaces in a
simply connected 4–manifold supports an order n twisted Whitney tower
W with τn (W) = 0 ∈ Tn , then A is homotopic (rel ∂) to A′ which
supports an order n+ 1 twisted Whitney tower.

The proof of Theorem 31 is given in Section 4 below.
Proofs of the “order-raising” Theorems 31 and 24 (and its strength-

ening Theorem 44 below) depend on realizing the relations in the target
groups by controlled manipulations of Whitney towers. The next two
subsections introduce combinatorial notions useful for describing the
algebraic effect of such geometric constructions. For the rest of this
section we assume our Whitney towers are of positive order for conve-
nience of notation.



22 J. CONANT, R. SCHNEIDERMAN, AND P. TEICHNER

2.8. Intersection forests. Recall that the trees associated to inter-
sections and Whitney disks in a Whitney tower can be considered as
subsets of the Whitney tower, with vertex orientations induced by the
Whitney tower orientation, as in Figure 6.

Definition 32. The intersection forest t(W) of a framed Whitney
towerW is the disjoint union of signed trees associated to all unpaired
intersections p in W :

t(W) = qp εp · tp
with εp the sign of the intersection point p. For W of order n, we
can think of the signed order n trees in t(W) as an “abelian word”
in the generators ±tp which represents τn(W) ∈ Tn. More precisely,
t(W) is an element of the free abelian monoid, with unit ∅, generated
by (isomorphism classes of) signed trees, trivalent, labeled and vertex-
oriented as usual. We emphasize that there are no cancellations or
other relations here.

Remark 33. In the older papers [6, 19, 23] we referred to t(W) as
the “geometric intersection tree” (and to the group element τn(W) as
the order n intersection “tree”, rather than “invariant”), but the term
“forest” better describes the disjoint union of (signed) trees t(W).

Similarly to the framed case, the intersection forest t(W) of a twisted
Whitney tower W is the disjoint union of signed trees associated to all
unpaired intersections p inW and integer-coefficient -trees associated
to all non-trivially twisted Whitney disks WJ in W :

t(W) = qp εp · tp +qJ ω(WJ) · J
with ω(WJ) ∈ Z the twisting of WJ . Again, there are no cancellations
or relations (and the informal “+” sign in the expression is purely
cosmetic).

We will see in the next subsection that all the trees can be made
to be disjoint in W , with all non-zero ω(WJ) = ±1, so that t(W) is
also a topological disjoint union which corresponds to an element in
the free abelian monoid generated by (isomorphism classes of) signed
trees, and signed -trees.

2.9. Splitting twisted Whitney towers. A framed Whitney tower
is split if the set of singularities in the interior of any Whitney disk con-
sists of either a single point, or a single boundary arc of a Whitney disk,
or is empty. This can always be arranged, as observed in Lemma 13
of [23] (Lemma 3.5 of [19]), by performing finger moves along Whitney
disks guided by arcs connecting the Whitney disk boundary arcs. Im-
plicit in this construction is that the finger moves preserve the Whitney
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+1 -1

Figure 8. A neighborhood of a twisted finger move
which splits a Whitney disk into two Whitney disks. The
vertical black arcs are slices of the Whitney disks, and
the grey arcs are slices of extensions of the Whitney sec-
tion.

disk framings (by not twisting relative to the Whitney disk that is be-
ing split – see Figure 8). A Whitney disk W is clean if the interior of
W is embedded and disjoint from the rest of the Whitney tower. In the
setting of twisted Whitney towers, it will simplify the combinatorics to
use “twisted” finger moves to similarly split-off twisted Whitney disks
into ±1-twisted clean Whitney disks.

We call a twisted Whitney tower split if all of its non-trivially twisted
Whitney disks are clean and have twisting ±1, and all of its framed
Whitney disks are split in the usual sense (as for framed Whitney
towers).

Lemma 34. If A supports an order n twisted Whitney tower W, then
A is homotopic (rel ∂) to A′ which supports a split order n twisted
Whitney tower W ′, such that:

(i) The disjoint union of non- trees qp εp · tp ⊂ t(W) is isomor-
phic to the disjoint union of non- trees qp′ εp′ · tp′ ⊂ t(W ′).

(ii) Each ω(WJ) · J in t(W) gives rise to the disjoint union of
exactly |ω(WJ)|-many ±1 · J in W ′, where the sign ± corre-
sponds to the sign of ω(WJ).

Proof. Illustrated in Figure 8 is a local picture of a twisted finger move,
which splits one Whitney disk into two, while also changing twistings.
If the original Whitney disk in Figure 8 was framed, then the two
new Whitney disks will have twistings +1 and −1, respectively. In
general, if the arc guiding the finger move splits the twisting of the
original Whitney disk into ω1 and ω2 zeros of the extended Whitney
section, then the two new Whitney disks will have twistings ω1 + 1 and
ω2 − 1, respectively. Thus, by repeatedly splitting off framed corners
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into ±1-twisted Whitney disks, any ω-twisted Whitney disk (ω ∈ Z)
can be split into |ω|-many +1-twisted or −1-twisted clean Whitney
disks, together with split framed Whitney disks containing any interior
intersections in the original twisted Whitney disk. Combining this with
the untwisted splitting of the framed Whitney disks as in Lemma 13
of [23] gives the result. �

2.9.1. Algebraic versus geometric cancellation. Note that t(W) is a
combinatorial object which can be considered geometrically as a subset
of W (and in the split case, even as an embedded subset by Lemma 34
above). If WI and WJ intersect transversely in a pair of points p and p′,
then tp and tp′ are isomorphic (as labeled, oriented trees). If p and p′

have opposite signs, and if the ambient 4–manifold is simply connected,
then there exists a Whitney disk W(I,J) pairing p and p′, and we say
that { p , p′ } is a geometrically canceling pair. In this setting we also
refer to { εp · tp , εp′ · tp′ } as a geometrically canceling pair of signed
trees (regarding them as subsets of W associated to the geometrically
canceling pair of points).

On the other hand, given transverse intersections p and p′ inW with
tp = tp′ (as labeled oriented trees) and εp = −εp′ , we say that { p , p′ }
is an algebraically canceling pair of intersections, and similarly call
{ εp·tp , εp′ ·tp′ } an algebraically canceling pair of signed trees. Changing
the orientations at a pair of trivalent vertices in any tree tp does not
change its value in T by the AS relations, and (as discussed in 3.4 of
[23]) such orientation changes can be realized by changing orientations
of Whitney disks inW together with our orientation conventions (2.5).

Any geometrically canceling pair is also an algebraically canceling
pair, but the converse is clearly not true as an algebraically canceling
pair can have corresponding trivalent vertices lying in different Whit-
ney disks. A process for converting algebraically canceling pairs into
geometrically canceling pairs by manipulations of the Whitney tower
is described in 4.5 and 4.8 of [23].

Similarly, if a pair of twisted Whitney disks WJ1 and WJ2 have iso-
morphic (unoriented) trees J1 and J2 with opposite twistings ω(WJ1) =
−ω(WJ2), then the Whitney disks form an algebraically canceling pair
(as do the corresponding signed -trees). Note that the orientations
of the -trees are not relevant here by the independence of ω(W ) from
the orientation of W and the symmetry relations in T . A geomet-
ric construction for eliminating algebraically canceling pairs of twisted
Whitney disks from a twisted Whitney tower will be described in Sec-
tion 4.
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Remark 35. We sketch here a brief explanation of why the smooth
and locally flat filtrations are equal. A locally flat surface can be made
smooth by a small perturbation, which after introducing cusps as nec-
essary can be assumed to be a regular (locally flat) homotopy. By
a general position argument, this regular homotopy can be assumed
to be a finite number of finger moves, which are guided by arcs and
lead to canceling self-intersection pairs which admit small disjointly
embedded Whitney disks (which are ‘inverses’ to the finger moves).
These Whitney disks are only locally flat, but can be perturbed to be
smooth, again only at the cost of creating paired self-intersections, and
iteration of this process leads to an arbitrarily high-order smooth sub-
Whitney tower pairing all intersections created by the original surface
perturbation.

3. Proofs of Theorem 3 and Theorem 12

This section contains clarifications and proofs of Theorems 3 and 12
from the introduction which state the existence of surjections Rn : Tn →
Wn and Rn : Tn → Wn for all n, in particular exhibiting the sets Wn

and Wn as finitely generated abelian groups under connected sum.
All proofs in this section apply in the reduced setting as well, and the

constructions described here also define the surjections R̃n : T̃n → Wn

described in the introduction.
Recall from the introduction that the set of m-component framed

links in S3 which bound order n Whitney towers in B4 is denoted
Wn; and the quotient of Wn by the equivalence relation of order n+ 1
Whitney tower concordance is denoted by Wn. The set of m-component
framed links in S3 which bound order n twisted Whitney towers in B4

is denoted Wn ; and the quotient of Wn by the equivalence relation of
order n+1 twisted Whitney tower concordance is denoted by Wn . Here
an orientation is fixed once and for all on S3; and a framed link has
oriented components, each equipped with a nowhere-vanishing normal
section.

Note that throughout this paper the statement that a “link bounds a
(twisted) Whitney towerW in B4” implies that the order zero surfaces
in W are disks. For 1 ≤ n, all links in Wn are zero-framed since all
order zero self-intersections come in canceling pairs (paired by Whitney
disks).

Throughout this section the twisted setting mirrors the framed set-
ting, with discussions and arguments given simultaneously.
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3.1. Whitney tower concordance. Links L0 and L1 in S3 are Whit-
ney tower concordant of order n if their components cobound a col-
lection A of immersed annuli in S3 × I, with L0 ⊂ S3 × {0} and
L1 ⊂ S3 × {1}, such that A supports an order n Whitney tower. If A
supports a twisted order n Whitney tower then L0 and L1 are said to
be twisted Whitney tower concordant of order n.

Here the components of A are required to preserve the indexing of
the link components, with the orientation of A inducing the orientation
of L0 and the opposite orientation of L1. Note that in the cases n ≥ 1
all self-intersections of the components of A are paired by Whitney
disks, so the induced framings on L0 and L1 (as links in S3) are equal.
In particular, an order n ≥ 1 Whitney tower concordance preserves the
zero-framing on links.

We first need to show our essential criterion, Corollary 5, for links
to represent equal elements in the associated graded Wn: Links L0 and
L1 represent the same element of Wn if and only if there exist order n
Whitney towers Wi in B4 with ∂Wi = Li and τn(W0) = τn(W1) ∈ Tn.

Proof of Corollary 5. If L0 and L1 are equal in Wn then they cobound
A supporting an order n + 1 Whitney tower V in S3 × I, and any
order n Whitney tower W1 in B4 bounded by L1 can be extended by
V to form an order n Whitney tower W0 in B4 bounded by L0, with
τn(W0) = τn(W1) ∈ Tn since τn(V) vanishes.

Conversely, suppose that L0 and L1 bound order n Whitney tow-
ers W0 and W1 in 4–balls B4

0 and B4
1 , with τn(W0) = τn(W1). Then

constructing S3 × I as the connected sum B4
0#B4

1 (along balls in the
complements of W0 and W1), and tubing together the corresponding
order zero disks of W0 and W1, and taking the union of the Whitney
disks in W0 and W1, yields a collection A of properly immersed annuli
connecting L0 and L1 and supporting an order n Whitney tower V .
Since the orientation of the ambient 4–manifold has been reversed for
one of the original Whitney towers, say W1, which results in a global
sign change for τn(W1), it follows that V has vanishing order n inter-
section invariant:

τn(V) = τn(W0)− τn(W1) = τn(W0)− τn(W0) = 0 ∈ Tn
So by Theorem 24, A is homotopic (rel ∂) to A′ supporting an order
n+ 1 Whitney tower, and hence L0 and L1 are equal in Wn. �

Remark 36. The same lemma (and proof) holds in the twisted case
(with Theorem 31 playing the role of Theorem 24). For this lemma,
we’ll spell out the statement carefully but in several instances below
we will just state that the twisted case is analogous: Links L0 and
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L1 represent the same element of Wn if and only if there exist order
n twisted Whitney towers W0 and W1 in B4 bounded by L0 and L1

respectively such that τn (W0) = τn (W1) ∈ Tn .

Remark 37. Remark 36 similarly applies to the reduced setting by

Theorem 44 below, although we will omit further reference to T̃ in this
section.

3.2. Band sums of links. The band sum L#βL
′ ⊂ S3 of oriented

m-component links L and L′ along bands β is defined as follows: Form
S3 as the connected sum of 3–spheres containing L and L′ along balls
in the link complements. Let β be a collection of disjointly embedded
oriented bands joining like-indexed link components such that the band
orientations are compatible with the link orientations. Take the usual
connected sum of each pair of components along the corresponding
band. Although it is well-known that the concordance class of L#βL

′

depends in general on β, it turns out that the image of L#βL
′ in Wn

(or in Wn) does not depend on β:

Lemma 38. For links L and L′ representing elements of Wn, any
band sum L#βL

′ represents an element of Wn which only depends on
the equivalence classes of L and L′ in Wn. The same statement holds
in Wn .

Proof. We shall only give the proof in the framed case, the twisted case
is analogous. If L0 and L1 represent the same element of Wn, and if L′0
and L′1 represent the same element of Wn, then by Corollary 5 above,
for i = 0, 1, there are order n Whitney towers Wi and W ′i bounding
Li and L′i such that τn(W0) = τn(W1) and τn(W ′0) = τn(W ′1). By

Lemma 39 just below, Li#βi
L′i bounds W#

i for i = 0, 1, with

τn(W#
0 ) = τn(W0) + τn(W ′0) = τn(W1) + τn(W ′1) = τn(W#

1 )

so again by Corollary 5, L0#β0L
′
0 is order n + 1 Whitney tower con-

cordant to L1#β1L
′
1, hence L0#β0L

′
0 and L1#β1L

′
1 represent the same

element of Wn. �

Lemma 39. If L and L′ bound order n (twisted) Whitney towers W
andW ′ in B4, then for any β there exists an order n (twisted) Whitney
tower W# ⊂ B4 bounded by L#βL

′, such that t(W#) = t(W)q t(W ′),
where t(V) denotes the intersection forest of a Whitney tower V as
above in subsection 2.8.

Proof. Let B and B′ be the 3–balls in the link complements used to
form the S3 containing L#βL

′. Then gluing together the two 4–balls
containing W and W ′ along B and B′ forms B4 containing L#βL

′ in
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p
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Figure 9. Pushing into B4 from left to right: A Hopf
link in S3 = ∂B4 bounds embedded disks D1 ∪D2 ⊂ B4

which intersect in a point p, with tp = 〈1, 2〉.

its boundary. Take W# to be the boundary band sum of W and W ′
along the order zero disks guided by the bands β, with the interiors
of the bands perturbed slightly into the interior of B4. It is clear that
t(W#) is just the disjoint union t(W)qt(W ′) since no new singularities
have been created. �

3.3. The realization maps. The realization maps Rn are defined as
follows: Given any group element g ∈ Tn, by Lemma 40 just below
there exists an m-component link L ⊂ S3 bounding an order n Whitney
towerW ⊂ B4 such that τn(W) = g ∈ Tn. Define Rn(g) to be the class
determined by L in Wn. This is well-defined (does not depend on the
choice of such L) by Corollary 5. The twisted realization map Rn is
defined the same way using twisted Whitney towers.

Lemma 40. For any disjoint union qp εp · tp + qJ ω(WJ) · J there
exists an m-component link L bounding a twisted Whitney tower W
with intersection forest t(W) = qp εp · tp + qJ ω(WJ) · J . If the
disjoint union contains no -trees then all Whitney disks in W are
framed.

Note that if in the disjoint union all non- trees are order at least n
and all -trees are order at least n/2 then W will have order n.

Proof. It suffices to consider the cases where the disjoint union consists
of just a single (signed) tree or -tree since by Lemma 39 any sum of
such trees can then be realized by band sums of links.

Realizing order zero trees and -trees. A 0-framed Hopf link
bounds an order zero Whitney tower W = D1 ∪ D2 ⊂ B4, where the
two embedded disks D1 and D2 have a single interior intersection point
p with tp = 〈1, 2〉 = 1−−− 2 (see Figure 9). Assuming appropriate fixed
orientations of B4 and S3, the sign εp associated to p is the usual sign
of the Hopf link. So taking a 0-framed (m− 2)-component trivial link
together with a Hopf link (as the ith and jth components) gives an
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i

j

1

i1
i2

i2
W( ),

p

Figure 10. Pushing into B4 from left to right: The
disks Di2 and Dj extend to the right-most picture where
they are completed by capping off the unlink. The disk
Di1 only extends to the middle picture where the inter-
sections between Di1 and Di2 are paired by the Whit-
ney disk W(i1,i2), that has a single interior intersection
p ∈ W(i1,i2) ∩Dj with tp = 〈(i1, i2), j〉.

m-component link L bounding W with t(W) = εp · 〈i, j〉 = εp · i −− j,
for any εp = ±1, and i 6= j.

To realize the tree ± i −−− i, we can use the unlink with framings
0, except that the component labeled by the index i has framing ±2.
Similarly, if the component has framing ±1 then the resulting tree is
± −−− i.

Realizing order 1 trees. Consider now a link L whose ith and jth
components form a Hopf link Li ∪ Lj bounding disks Di ∪ Dj ⊂ B4

with transverse intersection p = Di∩Dj. Assume that Di∪Dj extends
to an order zero Whitney towerW bounded by L with t(W) = εp · tp =
εp · 〈i, j〉.

Replacing Li by an untwisted Bing-double Li1 ∪Li2 results in a new
sublink of Borromean rings Li1 ∪Li2 ∪Lj bounding disks Di1 ∪Di2 ∪Dj

as indicated in Figure 10, with Di1 and Di2 intersecting in a canceling
pair of intersections paired by an order 1 Whitney disk W(i1,i2), which
can be formed from Di with a small collar removed, so that W(i1,i2) has
a single intersection with Dj corresponding to the original p = Di∩Dj.
(One can think of Di1 and Di2 as being formed by the trace of the
obvious pulling-apart homotopy that shrinks Li1 and Li2 down in a
tubular neighborhood of Li, with the canceling pair of intersections
between Di1 and Di2 being created as the clasps are pulled apart.)

The effect of this Bing-doubling operation on the intersection forest
is that the original order zero tp = 〈i, j〉 has given rise to the order 1
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j

i

Dj

Di

W(i,j)

Figure 11. Pushing into B4 from left to right: An i-
and j-labeled n-twisted Bing-double (case n = 2) of the
unknot in S3 = ∂B4 bounds disks Di and Dj whose
intersections are paired by a Whitney disk W(i,j). Dj

extends to the right-hand picture but Di only extends
to the middle picture, where the boundary of W(i,j) is
indicated by the dark arcs. The rest of W(i,j) extends
into the right-hand picture where disjointly embedded
disks bounded by the unlink complete both W(i,j) and
Dj. The interior of W(i,j) is embedded and disjoint from
both Di and Dj. Figure 12 shows that W(i,j) is twisted,
with ω(W(i,j)) = n.

tree 〈(i1, i2), j〉. Switching the orientation on one of the new compo-
nents changes the sign of p, as can be checked using our orientation
conventions. By relabeling and/or banding together components of
this new link any labels on this order 1 tree can be realized. Since the
doubling was untwisted, W(i1,i2) is framed (see Figures 11 and 12), so
the Whitney tower bounded by the new link is order 1.

Realizing order n trees. Since any order n tree can be gotten
from some order n− 1 tree by attaching two new edges to a univalent
vertex as in the previous paragraph, it follows inductively that any
order n tree is the intersection forest of a Whitney tower bounded by
some link. (First create a distinctly-labeled tree of the desired ‘shape’
by doubling, then correct the labels by interior band-summing.)

Realizing -trees of order 1. As illustrated (for the case n = 2)
in Figures 11 and 12, the n-twisted Bing-double of the unknot (with
components labeled i and j) bounds an order 2 twisted Whitney tower
W with t(W) = n · (i, j) = n · −−< i

j. Banding together the two
components would yield a knot realizing (i, i) .

Realizing -trees of order n. By applying iterated untwisted
Bing-doubling operations to the i- and j-labeled components of the or-
der 1 case, one can construct for any rooted tree (I, J) a link bounding a
twisted Whitney towerW with t(W) = n·(I, J) . For instance, if in the
construction of Figure 11 the j-labeled link component is replaced by
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Dj
Dj

Di

W(i,j)

Figure 12. The Whitney section over ∂W(i,j) (from Fig-
ure 11) is indicated by the dashed arcs on the left. The
twisting ω(W(i,j)) = n (the obstruction to extending the
Whitney section across the Whitney disk) corresponds
to the n-twisting of the Bing-doubling operation.

an untwisted Bing-double, then the disk Dj in that construction would
be replaced by a (framed) Whitney disk W(j1,j2), and the n-twisted
W(i,j) would be replaced by an n-twisted W(i,(j1,j2)). (As for non- trees
above, first create a distinctly-labeled tree of the desired ‘shape’ by
doubling, then correct the labels by interior band-summing.) �

3.4. Proofs of Theorem 3 and Theorem 12. Recall the content of
Theorem 3: The realization maps Rn : Tn → Wn are epimorphisms,
with the group operation on Wn given by band sum #. Moreover, Wn is
the set of framed links L ∈Wn modulo the relation that [L1] = [L2] ∈
Wn if and only if L1#− L2 lies in Wn+1, for some choice of connected
sum #, where −L is the mirror image of L with reversed framing. The
content of Theorem 12 in the twisted setting is analogous.

From Lemma 38 the band sum of links gives well-defined operations
in Wn and Wn which are clearly associative and commutative, with the
m-component unlink representing an identity element. The realization
maps are homomorphisms by Lemma 39 and surjectivity is proven as
follows: Given any link L ∈ Wn, choose a Whitney tower W of order
n with boundary L and compute τ := τn(W). Then take L′ := Rn(τ),
a link that’s obviously in the image of Rn and for which we know a
Whitney tower W ′ with boundary L′ and τ(W ′) = τ . By Corollary 5
it follows that L and L′ represent the same element in Wn.

Considering the second “Moreover...” statements of Theorem 3 and
Theorem 12, first assume that L0 and L1 represent the same element
of Wn (resp. Wn). Then by Corollary 5, there exist order n (twisted)
Whitney towers W0 and W1 in B4 bounded by L0 and L1 respectively
such that τn(W0) = τn(W1) ∈ Tn (resp. τn (W0) = τn (W1) ∈ Tn ).
We want to show that L0# − L1 bounds an order n + 1 (twisted)
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Whitney tower, which will follow from Lemma 39 and the “order-
raising” Theorem 24 (respectively Theorem 31) if −L1 bounds an or-
der n (twisted) Whitney tower W1 such that τn(W1) = −τn(W1) ∈ Tn
(resp. τn (W1) = −τn (W1) ∈ Tn ). If r denotes the reflection on S3

which sends L1 to −L1, then the product r × id of r with the iden-
tity is an involution on S3 × I, and the image r × id(W1) of W1 is
such a W1. To see this, observe that r × id switches the signs of all
transverse intersection points, and is an isomorphism on the oriented
trees in W1; and hence switches the signs of all Whitney disk framing
obstructions (which can be computed as intersection numbers between
Whitney disks and their push-offs) – note that r × id is only being
applied to W1, while S3 × I is fixed.

For the other direction of the “Moreover...” statements, assume that
L0#−L1 ⊂ S3 bounds an order n+1 (twisted) Whitney towerW ⊂ B4.
By the definition of connected sum, S3 decomposes as the union of two
disjoint 3–balls B0 and B1 containing L0 and −L1, joined together by
the S2× I through which passes the bands guiding the connected sum.
Taking another 4–ball with the same decomposition of its boundary
3–sphere, and gluing the 4–balls together by identifying the boundary
2–spheres of the 3–balls, and identifying the S2 × I subsets by the
identity map, forms S3×I containing an order n+1 (twisted) Whitney
concordance between L0 and −L1 which consists of W together with
the parts of the connected-sum bands that are contained in S2 × I.

4. Proof of Theorem 31 and the twisted IHX lemma

This section contains a proof of the “twisted order-raising” Theo-
rem 31 of Section 2, which was used (along with Corollary 5) in Sec-
tion 3 to prove Theorem 12 of the introduction. A key step in the
proof involves a geometric realization of the twisted IHX relation as
described in Lemma 41 below.

At the end of the section, the proof of Proposition 14 is completed
by Lemma 42 in 4.3 which shows how any order 2n twisted Whitney
tower can be converted into an order 2n− 1 framed Whitney tower.

4.1. Proof of Theorem 31. Recall the statement of Theorem 31: If
a collection A of properly immersed surfaces in a simply connected 4–
manifold bounds an order n twisted Whitney tower W with τn (W) =
0 ∈ Tn , then A is homotopic (rel ∂) to A′ supporting an order n + 1
twisted Whitney tower.

Before giving the proof of Theorem 31 we summarize how the meth-
ods of [6, 19, 23] (as described in Section 4 of [23]) apply in the framed
setting to prove the analogous Theorem 24 of Section 2: The first part
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of the proof changes the intersection forest t(W) so that all trees occur
in algebraically canceling pairs of isomorphic (labeled, oriented) trees
with opposite signs by using the 4–dimensional IHX construction of [6]
to realize IHX relators, and by adjusting Whitney disk orientations as
necessary to realize AS relations. The second part of the proof uses the
Whitney move IHX construction of [19] to “simplify” the shape of the
algebraically canceling pairs of trees. Then the third part of the proof
uses controlled homotopies to exchange the simple algebraic canceling
pairs for geometrically canceling intersection points which are paired
by a new layer of Whitney disks as described in 4.5 of [23]. (See 2.9.1
above for a discussion of algebraic versus geometric cancellation.)

Extending these methods to the present twisted setting will require
two variations: realizing the new relators in Tn , and achieving an anal-
ogous geometric cancellation for twisted Whitney disks corresponding
to algebraically canceling pairs of -trees. We will concentrate on these
new variations, referring the reader to [6, 19, 23] for the other parts
just mentioned.

Recall from subsection 2.8 above that the intersection forest t(W) of
an order n twisted Whitney towerW is a disjoint union of signed trees
which represents τn (W) ∈ Tn and sits as a subset of W . Throughout
this section we will notate elements of t(W) as formal sums, represent-
ing disjoint union by juxtaposition.

By Lemma 34 it may be assumed that W is split at each stage of
the following construction. In spite of modifications, W will not be
renamed during the proof.

The odd order case: Given W of order 2n − 1 with τ2n−1(W) =
0 ∈ T2n−1, it will suffice to modify W – while only creating unpaired
intersections of order at least 2n and twisted Whitney disks of order at
least n – so that all order 2n − 1 trees in t(W) come in algebraically
canceling pairs of trees (since by [23] the corresponding algebraically
canceling pairs of order 2n − 1 intersection points can be exchanged
for geometrically canceling intersections which are paired by Whitney
disks, as mentioned just above).

Since τ2n−1(W) = 0 ∈ T2n−1, the intersection forest t(W) is in the
span of IHX and boundary-twist relators, after choosing Whitney disk
orientations to realize AS relations as necessary. By locally creating
intersection trees of the form +I−H+X using the 4-dimensional geo-
metric IHX theorem of [6] (and by choosing Whitney disk orientations
to realize AS relations as needed), W can be modified so that all order
2n−1 trees in t(W) either come in algebraically canceling pairs, or are
boundary-relator trees of the form ±〈(i, J), J〉.
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Figure 13. Boundary-twisting a Whitney disk W
changes ω(W ) by ±1 and creates an intersection point
with one of the sheets paired by W . The horizontal arcs
trace out part of the sheet, the dark non-horizontal arcs
trace out the newly twisted part of a collar of W , and
the grey arcs indicate part of the Whitney section over
W . The bottom-most intersection in the middle picture
corresponds to the ±1-twisting created by the move.

For each tree of the form tp = ±〈(i, J), J〉 we can create an alge-
braically canceling tp′ = ∓〈(i, J), J〉 at the cost of only creating order n

-trees as follows. First use Lemma 14 of [23] (Lemma 3.6 of [19]) to
move the unpaired intersection point p so that p ∈ W(i,J) ∩WJ . Now,
by boundary-twisting W(i,J) into its supporting Whitney disk W ′

J (Fig-
ure 13), an algebraically canceling intersection p′ ∈ W(i,J) ∩ W ′

J can
be created at the cost of changing the twisting ω(W(i,J)) by ±1. Since
〈(i, J), J〉 has an order 2 symmetry, the canceling sign can always be
realized by a Whitney disk orientation choice. This algebraic cancel-
lation of tp has been achieved at the cost of only adding to t(W) the
order n -tree (i, J) corresponding to the ±1-twisted order n Whitney
disk W(i,J).

Having arranged that all the order 2n − 1 trees in t(W) occur in
algebraically canceling pairs, applying the tree-simplification and geo-
metric cancellation described in [23] to all these algebraically canceling
pairs yields an order 2n twisted Whitney tower W ′.

The even order case: For W of order 2n with τ2n(W) = 0 ∈ T2n,
we arrange for t(W) to consist of only algebraically canceling pairs of
generators by realizing all relators in T2n, then construct an order 2n+1
twisted Whitney tower by introducing a new method for geometrically
cancelling the pairs of twisted Whitney disks (while the algebraically
canceling pairs of non- trees lead to geometrically canceling intersec-
tions as before):

The IHX relators and AS relations for non- trees can be realized
as usual. (We will assume that n > 0; the order 0 case can be easily
checked via Remark 30.)
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Note that any signed tree ε · J ∈ t(W) does not depend on the
orientation of the tree J because changing the orientation on the cor-
responding twisted Whitney disk WJ does not change ω(WJ).

For any rooted tree J the relator 〈J, J〉− 2 ·J corresponding to the
interior-twist relation can be realized as follows. Use finger moves to
create a clean framed Whitney disk WJ . Performing a positive interior
twist on WJ as in Figure 14 creates a self-intersection p ∈ WJ ∩WJ

with tp = 〈J, J〉 and changes the twisting ω(WJ) of WJ to −2. The
negative of the relator is similarly constructed starting with a negative
twist.

+1

-1

-1

Figure 14. A +1 interior twist on a Whitney disk
changes the twisting by −2, as is seen in the pair of
−1 intersections between the black vertical slice of the
Whitney disk and the grey slice of a Whitney-parallel
copy. Note that the pair of (positive) black-grey inter-
sections near the +1 intersection is just an artifact of the
immersion of the normal bundle into 4–space and does
not contribute to the relative Euler number.

The relator −I +H +X − 〈H,X〉 corresponding to the twisted
IHX relation is realized as follows. For any rooted tree I, create a
clean framed Whitney disk WI by finger moves. Then split this framed
Whitney disk using the twisted finger move of Lemma 34 into two
clean twisted Whitney disks with twistings +1 and −1, and associated
signed -trees +I and −I , respectively. The next step is to perform
a +1-twisted version (described in Lemma 41 below) of the “Whitney
move IHX” construction of Lemma 7.2 in [19], which will replace the
+1-twisted Whitney disk by two +1-twisted Whitney disks having -
trees +H and +X , and containing a single negative intersection
point with tree −〈H,X〉, where H and X differ locally from I as in
the usual IHX relation. Thus, any Whitney tower can be modified to
create exactly the relator −I + H + X − 〈H,X〉, for any rooted
tree I. The negative of the relator can be similarly realized by using
Lemma 41 applied to the −1-twisted I-shaped Whitney disk.

So since τ2n(W) vanishes, it may be arranged, by realizing relators as
above, that all the trees in t(W) occur in algebraically canceling pairs.
Now, by repeated applications of Lemma 41 below, the algebraically
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canceling pairs of clean ±1-twisted Whitney disks can be exchanged
for (many) algebraically canceling pairs of clean ±1-twisted Whitney
disks, all of whose trees are simple (right- or left-normed), with the

-label at one end of the tree (Figure 15) – this also creates more
algebraically canceling pairs of non- trees (the “error term” trees in
Lemma 41).

As in the odd case, all algebraically canceling pairs of intersections
with non- trees can be exchanged for geometrically canceling pairs
by [23]. To finish building the desired order 2n + 1 twisted Whitney
tower, we will describe how to eliminate the remaining algebraically
canceling pairs of clean twisted order n Whitney disks (all having sim-
ple trees) using a construction that bands together Whitney disks and
is additive on twistings. This construction is an iterated elaboration of
a construction originally from Chapter 10.8 of [12] (which was used to
show that that τ1⊗Z2 did not depend on choices of pairing intersections
by Whitney disks).

i

j1 j2 j3 jn

Figure 15. The simple twisted tree J∞n .

Consider an algebraically canceling pair of clean ±1-twisted Whit-
ney disks WJn and W ′

Jn
, whose simple -trees +Jn and −Jn are as in

Figure 15, using the notation Jn = (· · · ((i, j1), j2), · · · , jn). Each triva-
lent vertex corresponds to a Whitney disk, and we will work from left
to right, starting with the order one Whitney disks W(i,j1) and W ′

(i,j1),
banding together Whitney disks of the same order from the two trees,
while only creating new unpaired intersections of order greater than 2n.
At the last step, WJn and W ′

Jn
will be banded together into a single

framed clean Whitney disk, providing the desired geometric cancella-
tion. (The reason for working with simple trees is that the construction
for achieving geometric cancellation requires connected surfaces for cer-
tain steps. For instance, the following construction only gets started
because the left most trivalent vertices of an algebraically canceling pair
of simple trees correspond to Whitney disks which pair the connected
order zero surfaces Di and Dj1 .)

To start the construction consider the Whitney disks W(i,j1) and
W ′

(i,j1), pairing intersections between the order zero immersed disks Di
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and Dj1 . Let V be another Whitney disk for a canceling pair consisting
of one point from each of the points paired by W(i,j1) and W ′

(i,j1). Fig-

ure 16 illustrates how a parallel copy V ′ of V can be banded together
with W(i,j1) and W ′

(i,j1) to form a Whitney disk W ′′
(i,j1) for the remain-

ing canceling pair. The twisting of W ′′
(i,j1) is the sum of the twistings

on W(i,j1), W
′
(i,j1), and V ; so W ′′

(i,j1) is framed if V is framed, since

both W(i,j1) and W ′
(i,j1) are framed for n > 1 (and in the n = 1 case

W(i,j1) = WJn and W ′
(i,j1) = W ′

Jn
contribute canceling ±1 twistings).

If V is both framed and clean, then the result of replacing W(i,j1) and
W ′

(i,j1) by V and W ′′
(i,j1) preserves the order of W and creates no new

intersections.
So if n = 1, then WJn and W ′

Jn
have been geometrically canceled,

meaning that their corresponding -trees have been eliminated from
t(W) without creating any new unpaired order 2n intersections or new
twisted order n Whitney disks.

W(i,j )

Di

Dj

 1

 1

W(i, j ) 1

V

Figure 16. The Whitney disks W(i,j1), W
′
(i,j1), and V ′

are banded together to form the Whitney disk W ′′
(i,j1)

pairing the outermost pair of intersections between Di

and Dj1 . In the cases n > 1, the interior of W ′′
(i,j1) con-

tains two pairs of canceling intersections with Dj2 (which
are not shown), and supports the sub-towers consisting
of the rest of the higher-order Whitney disks (that were
supported by W(i,j1) and W ′

(i,j1)) corresponding to the
trivalent vertices in both trees ±J∞n .

The next step shows how V can be arranged to be framed and clean,
at the cost of only creating intersections of order greater than 2n: Any
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twisting ω(V ) can be killed by boundary twisting V into Dj1 . Then,
using the construction shown in Figure 17, any interior intersection be-
tween V and any K-sheet (e.g. an intersection with Dj1 from boundary-
twisting) can be pushed down into Di and paired by a thin Whitney
disk W(K,i), which in turn has intersections with the Dj1-sheet that can
be paired by a Whitney disk WK1 := W((K,i),j1) made from a Whitney-
parallel copy of W(i,j1). Now, parallel copies of the Whitney disks from
the sub-tower supported by W(i,j1) can be used to build a sub-tower
on WK1 : Using the notation Kr+1 = (Kr, i), for r = 1, 2, 3, . . . n, the
Whitney disk WKr+1 is built from a Whitney-parallel copy of WJr , and
pairs intersections between WKr and jr. Note that the order of each
WKr is at least r. The top order WKn+1 inherits the ±1-twisting from
WJn , and has a single interior intersection with tree 〈Kn+1, Jn〉 which
is of order at least 2n+ 1.

For multiple intersections between V and various K-sheets this part
of the construction can be carried out simultaneously using nested par-
allel copies of the thin Whitney disk in Figure 17 and more Whitney-
parallel copies of the sub-towers described in the previous paragraph.

The result of the construction so far is that the left-most trivalent
vertices of the trees +Jn and −Jn now correspond to the same order
1 Whitney disk W ′′

J1
= W ′′

(i,j1), at the cost of having created (after

splitting-off) a clean twisted Whitney disk of order at least n+ 1, and
an unpaired intersection of order at least 2n + 1. In particular, this
completes the proof for the case n = 1.

W

Di

D
K

j

 1

 1

W(K,i )

((K, i ) , j  )

V

Figure 17

For the cases n > 1, observe that since W ′′
J1

is connected, this con-
struction can be repeated, with W ′′

J1
playing the role of Di, and Dj2
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playing the role of Dj1 , to get a single order 2 Whitney disk W ′′
J2

which
corresponds to the second trivalent vertices from the left in both trees
+Jn and −Jn . By iterating the construction, eventually we band to-
gether WJn and W ′

Jn
into a single framed clean Whitney disk at the

last step, having created only clean twisted Whitney disks of order at
least n+ 1, and unpaired intersections of order at least 2n+ 1.

4.2. The twisted IHX lemma. The proof of Theorem 31 is com-
pleted by the following lemma which describes a twisted geometric
IHX relation based on the framed version in Lemma 7.2 of [19].

Lemma 41. Any split twisted Whitney tower W containing a clean
+1-twisted Whitney disk with signed -tree +I can be modified (in a
neighborhood of the Whitney disks and local order zero sheets corre-
sponding to I ) to a twisted Whitney tower W ′ such that t(W ′) differs
from t(W) exactly by replacing +I with the signed trees +H , +X ,
and −〈H,X〉, where +I −H +X is a Jacobi relator.

Similarly, a clean −1-twisted Whitney disk with -tree −I in t(W)
can be replaced by −H , −X , and +〈H,X〉 in t(W ′).

Proof. Before describing how to adapt the construction and notation of
[19] to give a detailed proof of Lemma 41, we explain why the framed
relation +I = +H − X leads to the twisted relation +I = +H +
X −〈H,X〉. In the framed case, a Whitney disk with tree I is replaced
by Whitney disks with trees H and X, such that the new Whitney
disks are parallel copies of the original using the Whitney framing, and
inherit the framing of the original. In order to preserve the trivalent
vertex orientations of the trees, the orientation of the H-Whitney disk
is the same as the original I-Whitney disk, and the orientation of the X-
Whitney disk is the opposite of the I-Whitney disk. Now, if the original
I-Whitney disk was +1-twisted, then both the H- and X-Whitney disks
will inherit this same +1-twisting, because the twisting – which is a self-
intersection number – is independent of the Whitney disk orientation.
The H- and X-Whitney disks will also intersect in a single point with
sign −1, since they inherited opposite orientations from the I-Whitney
disk. Thus, (after splitting) a twisted Whitney tower can be modified so
that a +I is replaced by exactly +H +X −〈H,X〉 in the intersection
forest. Similarly, a −I can be replaced exactly by −H −X +〈H,X〉.

The framed IHX Whitney-move construction is described in detail
in [19] (over four pages, including six figures). We describe here how
to adapt that construction to the present twisted case, including the
relevant modification of notation. Orientation details are not given in
[19], but all that needs to be checked is that the X-Whitney disk inherits
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the opposite orientation as the H-Whitney disk (given that the tree
orientations are preserved, and using our negative-corner orientation
convention in 2.5 above). In Lemma 7.2 of [19], the “split sub-tower
Wp” refers to the Whitney disks and order zero sheets containing the
tree tp of an unpaired intersection p in a split Whitney tower W . In
the current setting, a clean +1-twisted Whitney disk W plays the role
of p, and the construction will modify W in a neighborhood of the
Whitney disks and order zero sheets containing the -tree associated
to W . In the notation of Figure 18 of [19], the sub-tree of the I-tree
denoted by L contains p, so to interpret the entire construction in our
case only requires the understanding that this sub-tree contains the

-label sitting in W . (Note that in Figure 18 of [19] the labels I, J , K
and L denote sub-trees, and in particular the I-labeled sub-tree should
not be confused with the “I-tree” in the IHX relation.)

In the case where the L-labeled sub-tree is order zero, then L is just
the -label, and the upper trivalent vertex of the I-tree in Figure 18 of
[19] corresponds to the clean +1-twisted W , with -tree ((I, J), K) .
Then the construction, which starts by performing a Whitney move on
the framed Whitney disk W(I,J) corresponding to the lower trivalent
vertex of the I-tree, yields the +1-twisted H- and X-Whitney disks as
discussed in the first paragraph of this proof, with -trees (I, (J,K))
and (J, (I,K)) , and non- tree 〈(I, (J,K)), (J, (I,K))〉 correspond-
ing to the resulting unpaired intersection (created by taking Whitney-
parallel copies of the twisted W to form the H- and X-Whitney disks).

In the case where the L-labeled sub-tree is order 1 or greater, then
the upper trivalent vertex of the I-tree in Figure 18 of [19] corresponds
to a framed Whitney disk, and Whitney-parallel copies of this framed
Whitney disk and the other Whitney disks corresponding to the L-
labeled sub-tree are also used to construct the sub-towers containing
the +1-twisted Whitney disks with H and X -trees (which will again
will lead to a single unpaired intersection as before). �

4.3. Twisted even and framed odd order Whitney towers. To
complete the proof of Proposition 14 in the introduction, the following
lemma implies that W2n ⊂W2n−1:

Lemma 42. If a collection A of properly immersed surfaces in a sim-
ply connected 4–manifold supports an order 2n twisted Whitney tower,
then A is homotopic (rel ∂) to A′ which supports an order 2n−1 framed
Whitney tower.

Proof. LetW be any order 2n twisted Whitney towerW supported by
A. If W contains no order n non-trivially twisted Whitney disks, then
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W is an order 2n framed Whitney tower, hence also is an order 2n− 1
framed Whitney tower. IfW does contain order n non-trivially twisted
Whitney disks, they can be eliminated at the cost of only creating
intersections of order at least 2n− 1 as follows:

Consider an order n twisted Whitney disk WJ ⊂ W with twisting
ω(WJ) = k ∈ Z. If WJ pairs intersections between an order zero
surface Ai and an order n − 1 Whitney disk WI then J = (i, I), and
by performing |k| boundary-twists of WJ into WI , WJ can be made to
be framed at the cost of only creating |k| order 2n − 1 intersections,
whose corresponding trees are of the form 〈 (i, I), I 〉.

If WJ pairs intersections between two Whitney disks, then by apply-
ing the twisted geometric IHX move of Lemma 41 as necessary, WJ can
be replaced by a union of order n twisted Whitney disks each having
a boundary arc on an order zero surface as in the previous case, at the
cost of only creating unpaired intersections of order 2n, each of which
is an error term in Lemma 41. �

5. Proof of Theorem 7

This section defines the doubling map ∆2n−1 : Z2 ⊗ Tn−1 → T2n−1

which determines the framing relations described in the introduction,
and strengthens the obstruction theory for framed Whitney towers de-
scribed in [23] by showing that the vanishing of τ2n−1(W) in the reduced

group T̃2n−1 := T2n−1/ Im(∆2n−1) is sufficient for the promotion of W
to a Whitney tower of order 2n. This means that Tn can be replaced

everywhere by T̃n (with T̃2n := T2n) throughout Section 3, and in par-
ticular proves Theorem 7 of the introduction.

Definition 43. The doubling map ∆2n−1 : Z2⊗Tn−1 → T2n−1 is defined
for generators t ∈ Tn−1 by

∆(t) :=
∑
v∈t

〈i(v), (Tv(t), Tv(t))〉

where Tv(t) denotes the rooted tree gotten by replacing v with a root,
and the sum is over all univalent vertices of t, with i(v) the original
label of the univalent vertex v.

That ∆2n−1 is well-defined as a homomorphism on Tn−1 is clear since
AS and IHX relations go to doubled relations. The image of ∆2n−1 is
2-torsion by AS relations and hence it factors through Z2 ⊗ Tn−1. See
Figure 18 for explicit illustrations of ∆1 and ∆3.

The following theorem strengthens Theorem 24 in Section 2.
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Figure 18. The map ∆2n−1 : Z2⊗Tn−1 → T2n−1 in the
cases n = 1 and n = 2.

Theorem 44. If a collection A of properly immersed surfaces in a
simply connected 4–manifold supports a framed Whitney tower W of
order (2n − 1) with τ2n−1(W) ∈ Im(∆2n−1), then A is homotopic (rel
∂) to A′ which supports a framed Whitney tower of order 2n.

Proof. As discussed above in the beginning of Section 4 before the
proof of Theorem 31, to prove Theorem 44 it will suffice to show that
the intersection forest t(W) can be changed by trees representing any
element in Im(∆2n−1) < T2n−1 at the cost of only introducing trees of
order greater than or equal to 2n, so that the order 2n − 1 trees in
t(W) all occur in algebraically canceling pairs. Note that Im(∆2n−1)
is 2-torsion by the AS relations, so orientations and signs are not an
issue here. As in Section 4, elements of t(W) will be denoted by formal
sums, and W will not be renamed as modifications are made.

The case n = 1: Given any order zero tree 〈i, j〉, create a clean
framed Whitney disk W(i,j) by performing a finger move between the
order zero surfaces Ai and Aj. Then use a twisted finger move (Fig-
ure 8) to split W(i,j) into two twisted Whitney disks with associated
trees (i, j) − (i, j) . Now boundary-twist each Whitney disk into a
different sheet to recover the framing and add

〈i, (i, j)〉+ 〈j, (i, j)〉 = ∆1(〈i, j〉)
to t(W). Alternatively, after creating the framed W(i,j), perform an
interior twist on W(i,j) to get ω(W(i,j)) = ±2, then kill ω(W(i,j)) by two
boundary-twists, one into each sheet, again adding 〈i, (i, j)〉+ 〈j, (i, j)〉
to t(W). Note that Im ∆1 in T1 corresponds to the order 1 FR framing
relation of [21, 22].
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Figure 19. Multiple ∞-roots attached to a tree repre-
sent sums (disjoint unions) of trees. On the left: the two
trees that result from twist-splitting a clean W(i,(I1,I2))

in the case 〈i, (I1, I2)〉 = 〈i, ((j, k), (a, (b, c)))〉. Each ar-
row indicates an application of a twisted IHX Whitney
move, which pushes ∞-roots towards the univalent ver-
tices. The right-most sum of trees becomes the image
of 〈i, (I1, I2)〉 under ∆ after applying boundary-twists to
the associated twisted Whitney disks.

The cases n > 1: For any order n−1 tree 〈i, (I1, I2)〉, create a clean
W(i,(I1,I2)) by finger moves. (Here we are taking any order n − 1 tree,
choosing an i-labeled univalent vertex, and writing it as the inner prod-
uct of the order zero rooted tree i and the remaining order n− 1 tree.)
Then split W(i,(I1,I2)) using a twisted finger move to get two twisted
Whitney disks each having associated -tree (i, (I1, I2)) . Leave one of
these twisted Whitney disks alone, and to the other apply the twisted
geometric IHX Whitney-move (Lemma 41 of Section 4) to replace
(i, (I1, I2)) by (I1, (I2, i)) + (I2, (i, I1)) − 〈(I1, (I2, i)), (I2, (i, I1))〉 in
t(W). Note that the tree 〈(I1, (I2, i)), (I2, (i, I1))〉 is order 2n. If I1
and I2 are not both order zero then continue to apply the twisted geo-
metric IHX Whitney-move (pushing the -labeled vertices away from
the -labeled vertex that is adjacent to the original i-labeled vertex)
until the resulting union of trees has all -labeled vertices adjacent to a
univalent vertex (all twisted Whitney disks have a boundary arc on an
order zero surface) – see Figure 19 for an example. Then, boundary-
twisting each twisted Whitney disk into the order zero surface recovers
the framing on each Whitney disk and the resulting change in t(W) is
a sum of trees as in the right hand side of the equation in Definition 43
representing the image of 〈i, (I1, I2)〉 under ∆2n−1, together with trees
of order at least 2n. �
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