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TOPOLOGY OF SEPTICS WITH THE SET OF

SINGULARITIES B4,4 ⊕ 2A3 ⊕ 5A1 AND π1-EQUIVALENT

WEAK ZARISKI PAIRS

PI. CASSOU-NOGUÈS, C. EYRAL AND M. OKA

Abstract. We study the topology of the moduli space of septics
with the set of singularities B4,4 ⊕ 2A3 ⊕ 5A1. In particular, we
construct a new π1-equivalent weak Zariski pair.

1. Introduction

The (topological) fundamental group π1(V \H) of a complex quasi-
projective variety V \ H plays an important role in the study of the
(finite) algebraic coverings of V that are ramified along H . For exam-
ple, when V is non-singular and irreducible, a general version of the
Riemann existence theorem shows that the subgroups of π1(V \H) with
a finite index correspond to connected coverings (cf. [12, 15, 4] and ref-
erences therein). In the case where V is the complex projective space
Pn and H a hypersurface in it, the calculation of π1(P

n \H) reduces to
the calculation of the fundamental group of the complement of a plane
curve. Indeed, by the Zariski hyperplane section theorem [16] (see also
Hamm–Lê [7] and Chéniot [3]), we can see easily that π1(P

n \ H) is
isomorphic to the fundamental group π1(P

2 \C), where P2 is a generic
2-dimensional projective subspace in P

n and C the plane curve given
by C = H ∩P2. This shows how important the knowledge of the group
π1(P

2\C) is. Note that when this group is abelian we completely know
its structure. Indeed, in this case, the Hurewicz theorem shows that
π1(P

2 \ C) is isomorphic to first integral homology group H1(P
2 \ C).

Now, by Lefschetz duality, it is not difficult to see that H1(P
2 \ C) is

isomorphic to the product Zr−1 × (Z/d0Z), where r is the number of
irreducible components of C and d0 = gcd (d1, . . . , dr). (Here, di is the
degree of the i-th irreducible component, 1 ≤ i ≤ r.) See Serre [12].

The Zariski–van Kampen theorem [15, 8] (see also Chéniot [3]) gives
a presentation by generators and relations of π1(P

2 \ C).1 The gen-
erators are loops in a generic line around its intersection points with
the curve. The relations are obtained by considering a generic pencil
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1A generalization of this theorem to (possibly singular) quasi-projective varieties

is given in [5].
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containing this line: each loop must be identified with its transforms
by monodromy around the singular lines of the pencil. In practice, the
monodromy relations are not so easy to calculate, especially when the
curve and the singular lines of the pencil are not defined over the real
numbers (i.e., by complex-valued polynomials with real coefficients).
In this case, we try to deform the curve within the corresponding equi-
singular moduli space onto one which is defined by a polynomial having
only real coefficients, and at the same time we strive to choose a pencil
with as many real singular lines as possible. However this is not always
possible. For example, if the coefficients of the polynomial are uniquely
determined up to the standard action of PGL(3,C), then in general it
is not possible to deform the initial curve onto one defined over R. On
the other hand, when we have a certain freedom in the choice of the
coefficients, the possibility to find a curve topologically equivalent to
the initial one (and more suitable for the calculation of the fundamental
group) increases substantially. Notice that, in general, different choices
of coefficients lead to curves with different embedded topologies. This
is usually, but not always, the case when the equisingular moduli space
is not path-connected. When the moduli space is path-connected, any
choice of coefficients leads to topologically equivalent curves.

The question of distinguishing the path-connected components of
a moduli space is therefore essential, although it is usually extremely
difficult. It has been studied extensively over the last decade, especially
through the works on weak Zariski pairs. We recall that a weak Zariski
pair is a pair of curves (C,C ′) such that C and C ′ have the same degree,
the same set of singularities but not the same embedded topology (i.e.,
the pairs (P2, C) and (P2, C ′) are not homeomorphic). A moduli space
possessing such a pair is not path-connected. (Note that the converse
is not true.) In general, to show that C and C ′ form a weak Zariski
pair, one tries to show that the Alexander polynomials of C and C ′ are
different. But it may happen that these polynomials are the same while
the topologies of the pairs (P2, C) and (P2, C ′) are different (so-called
Alexander-equivalent weak Zariski pairs). In this case, we look at the
fundamental groups π1(P

2\C) and π1(P2\C ′) which are much stronger
invariants. If these groups are also isomorphic and the topologies of
(P2, C) and (P2, C ′) are still different, then one says that (C,C ′) is a
π1-equivalent weak Zariski pair. The first example of such a pair was
given in [6]. It involves reducible curves of degree 6 with the set of
singularities D10 ⊕A5 ⊕A4.

There is an abundant literature dealing with the topology of curves
of degree 6. (For curves of degree less than or equal to 5, almost ev-
erything is known, in particular there is no weak Zariski pairs in these
degrees.) In this paper, we investigate a special class of curves of degree
7, namely those with the set of singularities B4,4⊕2A3⊕5A1. The eq-
uisingular moduli space of septics associated with this configuration of
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singularities has interesting features. Certainly, the most striking one
is that it contains a π1-equivalent weak Zariski pair. In fact, we shall
see that this moduli space has at least three path-connected compo-
nents: one corresponding to irreducible curves and two associated with
reducible curves of the form C = C3∪C4, where C3 is an irreducible cu-
bic and C4 an irreducible quartic. In each case the fundamental group
is abelian but the (embedded) topology differs from one component to
another.

Throughout we work over the complex number field C.

2. Statements of the results

In the projective space of septics (i.e., curves of degree 7), we consider
the equisingular stratum S consisting of the curves with the set of
singularities B4,4 ⊕ 2A3 ⊕ 5A1. There is a right action of PGL(3,C)
on S given by

PGL(3,C)× S → S

(ψ,C) 7→ C · ψ,
where C ·ψ is the curve given by F ◦ψ(X, Y, Z) = 0 with F a defining
polynomial for C. (Here, X , Y and Z are homogeneous coordinates
on P2.) The quotient space

M := S
/

PGL(3,C)

is called the moduli space of septics with the set of singularities B4,4 ⊕
2A3⊕5A1. This space is not path-connected. In fact, the configuration
B4,4⊕2A3⊕5A1 is realizable by both irreducible and reducible septics.
A standard way to construct two such curves is described below using
the approaches introduced in [1, 2, 10, 11].

Let us denote by x = X/Z and y = Y/Z the affine coordinates on
the chart P2 \ {Z = 0}. We consider the family of polynomials

pb(t) := t4(t− 1)2(t− b), b ∈ C \ {0, 1},
and we look at the join type projective curves Ca,a′,b,b′ defined by the
affine equations

a pb(x)− a′ pb′(y) = 0,

where a, a′ 6= 0. Generically, the polynomials pb(t) have three distinct
critical values corresponding to the following four values of t:

0, 1,
5

14
+

3

7
b± 1

14

√
25− 52 b+ 36 b2

(t = 0, 1 gives the critical value 0). The corresponding (generic) curves
Ca,a′,b,b′ are irreducible with four singularities: a singularity of type B4,4

(normal form x4 − y4) at (0, 0), two singularities of type A3 (normal
form x2 − y4) at (1, 0) and (0, 1) respectively, and a singularity of type
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A1 (normal form x2 − y2) at (1, 1). As these singular points are con-
tained in the intersection of lines:

x4(x− 1)2(x− b) = y4(y − 1)2(y − b) = 0,

it follows from [11, Theorem (1.3) and Example (6.3)] that, generically,

π1(P
2 \ Ca,a′,b,b′) ≈ Z/7Z.

Let us now consider ‘degenerations’ of these curves. First, by [13],
we know that there exist two real numbers b1 > 1 and b2 < 0 such that
pb1(t) and pb2(t) are polynomials of Chebycheff type. (We say that a
polynomial is of Chebycheff type if it has exactly two critical values.)
Actually, one can take the two real roots

b1 =
3 + 2

√
21

9
and b2 =

3− 2
√
21

9
of the polynomial

27b2 − 18b− 25 = 0.

Next, we choose real numbers a1 and a2 so that the critical values of
a1 pb1(t) and a2 pb2(t) are the same. Explicitly, we take

ak =
250047

400000
− 38257191

800000
bk, k = 1, 2.

The corresponding (degenerate) curve Ca1,a2,b1,b2 obtains four extra sin-
gularities of type A1 located at (a+, b+), (a+, b−), (a−, b+) and (a−, b−),
where

a± =
1

2
+

2

21

√
21± 1

42

√

441− 56
√
21,

b± =
1

2
− 2

21

√
21± 1

42

√

441 + 56
√
21.

It turns out that Ca1,a2,b1,b2 is also irreducible. (This technique is similar
to that of [10] where Chebycheff polynomials are used for the construc-
tion of nodal curves.)

Actually, we find another degeneration Ca3,a4,b3,b4 which is not over
R. It is given by the two complex roots

b3 =
−1 + i

√
7

4
and b4 =

−1− i
√
7

4
of the polynomial

2b2 + b+ 1 = 0,

and by the complex numbers

ak =
10633

256
+

4459

128
bk, k = 3, 4.

Here too, the degenerate curve Ca3,a4,b3,b4 obtains four extra singulari-
ties of type A1 at (c+, d+), (c+, d−), (c−, d+) and (c−, d−), where

c± =
1

4
+

3

28
i
√
7± 1

28

√

98− 70 i
√
7,
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d± =
1

4
− 3

28
i
√
7± 1

28

√

98 + 70 i
√
7.

However, in this case, the curve splits into an irreducible cubic and an
irreducible quartic. The cubic has a singularity of type A1 at (0, 0),
while the quartic has two singularities of this type: one at (0, 0) and
one at (1, 1). They intersect at (0, 0) with intersection multiplicity 4,
they are tangent at (1, 0) and (0, 1), and they meet transversally at
(c+, d+), (c+, d−), (c−, d+) and (c−, d−).

Hereafter, for simplicity, we shall note

f(x, y) := a1 pb1(x)− a2 pb2(y),

g(x, y) := a3 pb3(x)− a4 pb4(y),

and we shall write C(f) and C(g) instead of Ca1,a2,b1,b2 and Ca3,a4,b3,b4

respectively. Explicitly,

f(x, y) =

(

−12252303

800000
− 4250799

400000

√
21

)

x4 (x− 1)2
(

x− 1

3
− 2

9

√
21

)

−
(

−12252303

800000
+

4250799

400000

√
21

)

y4 (y − 1)2
(

y − 1

3
+

2

9

√
21

)

,

g(x, y) =

(

16807

512
+ i

4459

512

√
7

)

x4 (x− 1)2
(

x+
1

4
− i

1

4

√
7

)

−
(

16807

512
− i

4459

512

√
7

)

y4 (y − 1)2
(

y +
1

4
+ i

1

4

√
7

)

.

Note that g(x, y) = − 343

262144
(49 + 13 i

√
7) g3(x, y) g4(x, y), where

g3(x, y) = −16 x3 + 16 x2 − 20 yx2 + 4 i x2
√
7y + 20 yx− 20 y2x−

4 i x
√
7y + 4 i x

√
7y2 − 9 y3 + 9 y2 − 5 i

√
7y2 + 5 i

√
7y3,

g4(x, y) = 32 x4 − 31 y4 − 8 x2 + 13 y2 + 18 y3 − 24 x3 − 4 y2x2+

44 yx2 − 40 yx3 − 4 yx+ 44 y3x− 40 y2x+ 8 i x3
√
7y−

12 i x
√
7y + 7 i

√
7y2 + 8 i x

√
7y2 − 8 i x3

√
7 + 8 i x2

√
7+

4 i x2
√
7y − 10 i

√
7y3 − 12 i x2

√
7y2 + 4 i x

√
7y3 + 3 i y4

√
7.

We sum up this study in the following theorem.

Theorem 2.1. The curves C(f) and C(g) are both septics with the set
of singularities B4,4 ⊕ 2A3 ⊕ 5A1; C(f) is irreducible while C(g) is a
union of an irreducible cubic and an irreducible quartic. In particular,
the topologies of the pairs (P2, C(f)) and (P2, C(g)) are different, so
that (C(f), C(g)) is a weak Zariski pair and the moduli space M is not
path-connected.

Concerning the fundamental group, we will show the next result.

Theorem 2.2. The groups π1(P
2\C(f)) and π1(P2\C(g)) are abelian,

isomorphic to Z/7Z and Z respectively.
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Remark 2.3. Note that as soon as we know that the group π1(P
2\C(f))

is abelian, we know that π1(P
2\C(g)) is not isomorphic to it. Hereafter,

we will construct another component of the moduli space M and show
that for any curve C(l) in it the fundamental group π1(P

2 \ C(l)) is
isomorphic to π1(P

2 \ C(g)).
Theorem 2.2 can be proved easily for the group π1(P

2 \ C(f)) using
the Zariski–van Kampen theorem (cf. section 3.1). On the other hand,
as the polynomial g has non-real coefficients, it is extremely difficult to
calculate the group π1(P

2 \ C(g)) directly from the theorem of Zariski
and van Kampen. In such a situation, as we explained it in the in-
troduction, we try to deform the curve C(g) (within its equisingular
stratum) onto one which is defined over R. It turns out that in our case
this is possible and there are even several ways to do it. For example,
we shall see in section 5 that C(g) can be deformed onto the curve
C(h) defined by the equation

h(x, y) := h3(x, y) · h4(x, y) = 0,(2.1)

where

h3(x, y) = y3 + y2(x− 1) + y(x2 − x)− x3 + x2,

h4(x, y) = y4 + y3(x− 3) + y2(x2 − 2 x+ 2)+

y (−2 x3 + x2 + x) + x4 − x2.

More precisely, we shall prove the following result.

Theorem 2.4. Let N be the moduli subspace of M consisting of the
reducible septics C obtained as union of an irreducible cubic C3 and an
irreducible quartic C4 satisfying the following conditions:

(1) C3 has a singularity of type A1 (say, at a point P1);
(2) C4 has two singularities of type A1: one at P1 and one at an-

other point P2;
(3) C3 and C4 intersect at P1 with intersection multiplicity 4, they

are tangent at two other points (say, P3 and P4), and they inter-
sect transversally at four other points (say, P5, P6, P7 and P8);

where Pi 6= Pj for i 6= j.
The moduli subspace N so-defined is path-connected and it contains

the curves C(g) and C(h).

Theorem 2.4 implies that C(g) and C(h) have the same embed-
ded topology. Indeed, it is well known that the topological type of
a pair (P2, C) remains constant when C moves inside a path-connected
component. (This follows easily from the Lê–Ramanujam theorem [9]
modulo a partition of unity argument.) In particular, C(g) and C(h)
have the same fundamental group2, and we will see in section 3.2 that

2By the fundamental group of a curve we always mean the fundamental group
of the complement of the curve.
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π1(P
2 \C(h)) can be calculated easily from the theorem of Zariski and

van Kampen.
The curve C(l) defined by the equation

l(x, y) := l3(x, y) · l4(x, y) = 0,(2.2)

where

l3(x, y) = −2 y3 + y2 + y (x+ 1)− 2 x3 + x2 + x,

l4(x, y) = −y4 + y3(x+ 1)− 1

3
y2x+ y

(

−1

3
x3 + x2

)

− x4 + x3,

is also a reducible septic (union of an irreducible cubic C3 and an
irreducible quartic C4) with the set of singularities B4,4 ⊕ 2A3 ⊕ 5A1.
The singularity of type B4,4 is located at (0, 0), the A3-singularities at
(0, 1) and (1, 0), and the singularities of type A1 at five other points.
In this case, however, C4 has only one singularity of type B3,3 (normal
form x3 − y3) located at (0, 0), while C3 is smooth. These two curves
intersect at (0, 0) with intersection multiplicity 3, they are tangent at
(0, 1) and (1, 0), and they meet transversally at five other points.

In section 4, we shall prove the following theorem.

Theorem 2.5. The curves C(h) and C(l) are not homeomorphic, while
the fundamental groups π1(P

2\C(h)) and π1(P2\C(l)) are isomorphic.
In particular, (C(h), C(l)) is a π1-equivalent weak Zariski pair.

Note that Theorems 2.1, 2.4 and 2.5 imply the next result.

Corollary 2.6. The curves C(f), C(h) and C(l) form a weak Zariski
triple. In particular, the moduli space M has at least three path-
connected components (two of them corresponding to reducible curves
of the form C = C3 ∪ C4, where C3 is an irreducible cubic and C4 an
irreducible quartic).

We recall that a weak Zariski k-ple is a k-ple (C1, . . . , Ck) of curves
with the same degree, the same set of singularities but such that for any
1 ≤ i < j ≤ k the pairs of spaces (P2, Ci) and (P2, Cj) are not homeo-
morphic. (Note that C1, . . . , Ck may have different component type.)

3. Proof of Theorem 2.2

3.1. The fundamental group π1(P
2 \ C(f)). The real plane section

of C(f), namely {(x, y) ∈ R2 ; f(x, y) = 0}, is shown in Figure 1. As
we explained it in the introduction, it suffices to show that π1(P

2\C(f))
is abelian. To do that, we apply the Zariski–van Kampen theorem with
the pencil given by the horizontal lines Lη : y = η, η ∈ C. We take the
point (1 : 0 : 0) as base point for the fundamental group. This point is
nothing but the axis of the pencil, which is also the point at infinity of
the lines Lη. Notice that it does not belong to the curve. This pencil
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has 8 singular lines Lη1 , . . . , Lη8 with respect to C(f). They correspond
to the roots

η1 ≈ −0.6850, η2 = b− ≈ −0.5653
η3 ≈ −0.0225− i 0.4199, η4 = η̄3 ≈ −0.0225 + i 0.4199,
η5 ≈ 0, η6 = b+ ≈ 0.6924, η7 = 1, η8 ≈ 1.1058

of the discriminant of f as a polynomial in x. The lines Lη2 , Lη5 , Lη6

and Lη7 pass through a singular point of C(f), while Lη1 , Lη3 , Lη4 and
Lη8 are tangent to the curve. Note that, at P = (0, η1), Lη1 is tangent
to C(f) with intersection multiplicity 4, and therefore, by the implicit
function theorem, the germ (C(f), P ) is given by

(3.1) y − η1 = a4 x
4 + higher terms,

where a4 6= 0. Similarly, at the point Q = (1, η1), Lη1 is tangent to
C(f) with intersection multiplicity 2, and the germ (C(f), Q) is given
by

(3.2) y − η1 = a2 (x− 1)2 + higher terms,

where a2 6= 0. We consider the generic line Lη1+ε and we choose genera-
tors ξ1, . . . , ξ7 of the fundamental group π1(Lη1+ε\C(f)) as indicated in
Figure 2, where ε > 0 is small enough. The position of the generators
is easily determined using equations (3.1) and (3.2). They are lassos
oriented counter-clockwise around the intersection points of Lη1+ε with
C(f). (In the figures, a lasso is represented by a path ending with a
bullet.) Note that

(3.3) ξ7 · . . . · ξ1 = e,

where e is the unit element (vanishing relation at infinity).

Figure 1. Real plane section of C(f)

The Zariski–van Kampen theorem says that

π1(P
2 \ C(f)) ≃ π1(Lη1+ε \ C(f))

/

M(f),



Topology of septics with the set of singularities B4,4 ⊕ 2A3 ⊕ 5A1 9

where M(f) is the normal subgroup of π1(Lη1+ε \ C(f)) generated by
the monodromy relations associated with the singular lines of the pen-
cil. To find these relations we fix a ‘standard’ system of generators
σ1, . . . , σ8 for the fundamental group π1(C \ {η1, . . . , η8}) with base
point η1+ ε. Here, each σj is a lasso oriented counter-clockwise around
ηj with base point η1 + ε. For j 6= 3, 4, the tail of σj is a union of real
segments and half-circles around the exceptional parameters ηl (l 6= j)
located in the real axis between the base point η1 + ε and ηj . Its head
is the circle Sε(ηj) with centre ηj and radius ε. (For j = 1, the tail of
σ1 is reduced to the single point η1+ε, so σ1 coincide with Sε(η1).) The
lasso σ3 corresponding to the non-real root η3 is given by ζθζ−1, where
θ is the loop obtained by moving y once on the circle Sε(η3) starting at
ℜ(η3)+ i (ℑ(η3)+ε), while ζ is the path obtained when y moves on the
real axis from η1 + ε to η2 − ε, makes a half-turn on the circle Sε(η2)
from η2− ε to η2 + ε, then moves on the real axis from η2+ ε to ℜ(η3),
and finally moves in a straight line from ℜ(η3) to ℜ(η3)+ i (ℑ(η3)+ ε).
(Here, ℜ(η3) and ℑ(η3) denote the real and imaginary parts of η3.) The
lasso σ4 is defined similarly from a loop θ′ and a path ζ ′ meeting at
ℜ(η4) + i (ℑ(η4) − ε). The monodromy relations around the singular
line Lηj are obtained by moving the generic fibre F ≃ Lη1+ε \ C(f)
isotopically above σj and by identifying each ξk with its image by the
terminal homeomorphism of this isotopy.

Figure 2. Generators at y = η1 + ε

By (3.1) and (3.2), when y runs once counter-clockwise on the circle
Sε(η1) starting at η1 + ε, the four generators ξ4, ξ5, ξ6 and ξ7 make a
(1/4)-turn counter-clockwise around 0, while the generators ξ2 and ξ3
make a half-turn counter-clockwise around 1 (cf. Figure 2). (In the fig-
ures we do not respect the numerical scale, we even zoom on the ‘mon-
odromy’ parts represented here by dotted circles.) The monodromy
relations around the singular line Lη1 are then given by

ξ4 = ξ5,(3.4)
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ξ5 = ξ6,(3.5)

ξ6 = ξ7(3.6)

(contribution of the singular point P ), and

ξ2 = ξ3(3.7)

(contribution of the singular point Q).
In Figure 3, we show how the ξk’s are deformed when y moves on

the real axis from η1+ ε to η2−ε. At (a±, b−) = (a±, η2), the curve has
a singularity of type A1 and the Newton principal part has the form

α± (y − η2)
2 + α′

±
(x− a±)

2

where α±, α
′

±
6= 0. The monodromy relations at y = η2 are then given

by

ξ4ξ2 = ξ2ξ4 (contribution of (a−, b−)),(3.8)

ξ2ξ1 = ξ1ξ2 (contribution of (a+, b−)).(3.9)

Figure 3. Generators at y = η2 − ε

The relations obtained above are enough to conclude. (We do not
need to look at the monodromy relations around the singular lines
Lη3 , . . . , Lη8 .) Indeed, by (3.3)–(3.7), we have

ξ1 = (ξ44ξ
2

2)
−1.

Therefore the fundamental group π1(P
2 \ C(f)) is generated by only

two elements, ξ2 and ξ4, and (3.8) says that these elements commute.

3.2. The fundamental group π1(P
2 \ C(g)). As we explained it in

section 2 (see the comment following Theorem 2.4), it suffices to prove
that π1(P

2 \C(h)) is abelian, where C(h) is the curve defined in (2.1).
We recall that C(h) is reducible, union of an irreducible cubic C3 and
an irreducible quartic C4 defined by h3 = 0 and h4 = 0 respectively.
Like C(g), the curve C(h) has a singularity of type B4,4 at (0, 0), two
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singularities of type A3 at (0, 1) and (1, 0), and five singularities of type
A1 at (1, 1) and four other points. We show its real plane section in
Figure 4. (The gray color corresponds to the curve C3 and the black
one to the curve C4.) Note that since the Newton principal part of h at
(1, 1), given by (x− 1)2 + (y − 1)2, has no real factorization, the point
(1, 1) appears as an isolated point in {(x, y) ∈ R2 ; h(x, y) = 0}.

Figure 4. Real plane section of C(h)

To find π1(P
2 \C(h)) we use again the pencil given by the horizontal

lines Lη : y = η, η ∈ C. Note that its axis does not belong to the curve.
This pencil has 8 real singular lines Lη1 , . . . , Lη8 with respect to C(h),
where

η1 ≈ −0.5552, η2 ≈ −0.4524,
η3 ≈ −0.3163, η4 = 0, η5 ≈ 0.2864,
η6 ≈ 0.4328, η7 = 1, η8 ≈ 2.0478.

(There are also non-real singular lines but we will not need them.) The
lines Lη4 and Lη7 pass through a singular point of C(h). All the other
real singular lines are tangent to the curve. We consider the generic
line Lη4−ε and we choose generators ξ1, . . . , ξ7 of π1(Lη4−ε \C(h)) as in
Figure 5, where ε > 0 is small enough. (The gray color corresponds to
generators around the intersection points of Lη4−ε with the curve C3

and the black one to generators around the intersection points of Lη4−ε

with C4.) To find the exact position of the roots of h(x, η4 − ε), note
that at (0, 0) the curve C(h) has four branches (two corresponding to
C3 and two for C4) given by

C3(0, 0)
− : x = (1/2)(1−

√
5) y + higher terms,(3.10)

C3(0, 0)
+ : x = (1/2)(1 +

√
5) y + higher terms,(3.11)

C4(0, 0)
− : x = −y + higher terms,(3.12)

C4(0, 0)
+ : x = 2y + higher terms,(3.13)
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while at (1, 0) it has two branches (one for C3 and one for C4) given by

C3(1, 0) : x = 1 + y3 + higher terms,(3.14)

C4(1, 0) : x = 1− (1/2) y2 + higher terms.(3.15)

The Zariski–van Kampen theorem says that

π1(P
2 \ C(h)) ≃ π1(Lη4−ε \ C(h))

/

M(h),

whereM(h) is the normal subgroup of π1(Lη4−ε\C(h)) generated by the
monodromy relations associated with the singular lines of the pencil.

Figure 5. Generators at y = η4 − ε

Figure 6. Generators at y = η2 + ε

The monodromy relations around the singular lines Lη3 , Lη2 and Lη1

are multiplicity-2 tangent relations given by

ξ7 = ξ6,(3.16)

ξ3 = ξ2,(3.17)

ξ4 = ξ2ξ1ξ
−1

2 ,(3.18)
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respectively. The relation (3.16) is clear from Figures 4 and 5. As for
(3.17) and (3.18), use Figures 6 and 7 respectively. Note that, with
these relations, the vanishing relation at infinity is written as

ξ6ξ6ξ5ξ2ξ1ξ2ξ1 = e,(3.19)

where e is the unit element.
To read the monodromy relations around Lη4 (contribution of (1, 0)),

we use the equations (3.14) and (3.15). We find

ξ2 = (ξ2ξ1)
2 · ξ2 · (ξ2ξ1)−2,

that is,

ξ1ξ2ξ1ξ2 = ξ2ξ1ξ2ξ1.

Figure 7. Generators at y = η1 + ε

Figure 8. Generators at y = η4 + ε

The monodromy relations around Lη4 (contribution of (0, 0)) can be
found by using the equations (3.10)–(3.13). They are given by

ξi = ω · ξi · ω−1 (3 ≤ i ≤ 6)(3.20)
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where ω := ξ6ξ5ξ4ξ3. Now, by (3.17) and (3.18), we have ω = ξ6ξ5ξ2ξ1
and the relations (3.20) turn into

ξi = ω · ξi · ω−1 (i = 2, 5, 6),(3.21)

ξ2ξ1ξ
−1
2 = ω · ξ2ξ1ξ−1

2 · ω−1.(3.22)

To determine the monodromy relations around Lη5 , we need to get
to know how the generators are deformed when y makes a half-turn
counter-clockwise on the circle Sε(η4) from η4 − ε to η4 + ε, and then
moves on the real axis from η4 + ε to η5 − ε. This is shown in Figures
8 and 9 respectively. Then, clearly, the monodromy relation at y = η5
(multiplicity-2 tangent relation) is given by

ξ6 = ξ2.(3.23)

Figure 9. Generators at y = η5 − ε

The relations given above are enough to conclude. Indeed, by (3.23),
the relation (3.19) can be written under the form

ξ5 = (ξ2ξ1ξ2ξ1ξ2ξ2)
−1,(3.24)

or equivalently,

ξ6ξ5ξ2ξ1 = (ξ2ξ1ξ2)
−1.

Combined with (3.21) when i = 2, we get

ξ1ξ2 = ξ2ξ1.(3.25)

It follows from (3.16)–(3.18), (3.23) and (3.24) that the fundamental
group π1(P

2 \ C(h)) is generated by only two elements, ξ1 and ξ2, and
the relation (3.25) says that these two elements commute.
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4. Proof of Theorem 2.5

4.1. The topologies of C(h) and C(l). Here we show that the curves
C(h) and C(l) are not homeomorphic. By the genus formula, the curves
h3 = 0 and l4 = 0 have genus 0, while h4 = 0 and l3 = 0 have genus
1. Therefore h3 = 0 is homeomorphic to the sphere S2 with two points
identified, l4 = 0 is homeomorphic to S2 with three points identified,
l3 = 0 is homeomorphic to the torus T := S1 × S1, and h4 = 0 is
homeomorphic to T with two pairs of points identified. The sets of
regular points of C(h) and C(l) are homeomorphic to

(S2 \ {8 points}) ⊔ (T \ {10 points})
and (T \ {8 points}) ⊔ (S2 \ {10 points})

respectively. Clearly, the component S2 \ {8 points} is not homeomor-
phic neither to T\{8 points} nor to S2 \{10 points}, so C(h) and C(l)
are not homeomorphic.

Figure 10. Real plane section of C(l)

4.2. The fundamental group π1(P
2 \C(l)). We show the real plane

section of C(l) in Figure 10. (The gray color corresponds to the curve
C3 := {l3 = 0}, the black one to the curve C4 := {l4 = 0}.) We are
going to show that π1(P

2 \ C(l)) is isomorphic to Z. Here, we use the
pencil given by the vertical lines Lη : x = η, η ∈ C. Note that its axis
(0 : 1 : 0) does not belong to the curve. We take this point as base
point for the fundamental group. This pencil has 11 real singular lines
Lη1 , . . . , Lη11 with respect to C(l), where

η1 ≈ −0.5475, η2 ≈ −0.5262, η3 ≈ −0.4918,
η4 ≈ −0.2344, η5 = 0, η6 ≈ 0.1910, η7 = 0.7900, η8 = 1,

η9 ≈ 1.2116, η10 ≈ 1.3090, η11 ≈ 2.0201.

(We will not use the non-real lines.) The lines Lη3 , Lη4 , Lη5 , Lη8 and
Lη9 pass through one or two singular points of C(l), while Lη1 , Lη2 , Lη6 ,
Lη7 , Lη10 and Lη11 are tangent to the curve. We consider the generic



16 Pi. Cassou-Noguès, C. Eyral and M. Oka

line Lη2+ε and we choose generators ξ1, . . . , ξ7 of π1(Lη2+ε \ C(l)) as in
Figure 11, where ε > 0 is small enough. (The gray color corresponds
to generators around the intersection points of Lη2+ε with the curve C3

while the black one corresponds to generators around the intersection
points of Lη2+ε with C4.) By the Zariski–van Kampen theorem,

π1(P
2 \ C(l)) ≃ π1(Lη2+ε \ C(l))

/

M(l),

whereM(l) is the normal subgroup of π1(Lη2+ε\C(l)) generated by the
monodromy relations associated with the singular lines of the pencil.

Figure 11. Generators at x = η2 + ε

Figure 12. Generators at x = η1 + ε

The monodromy relations around Lη2 and Lη1 are multiplicity-2 tan-
gent relations given by

ξ5 = ξ4 and ξ3 = ξ2(4.1)

respectively. (At x = η1 + ε, the generators are as in Figure 12.)
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At x = η3−ε the ξk’s are deformed as in Figure 13, while at x = η4−ε
they are as in Figure 14. The monodromy relations around Lη3 and
Lη4 are node relations given by

ξ1ξ2 = ξ2ξ1 and ξ4ξ2 = ξ2ξ4(4.2)

respectively.
Notice that the vanishing relation at infinity shows that

ξ7 = (ξ6ξ
2
4ξ

2
2ξ1)

−1.(4.3)

Figure 13. Generators at x = η3 − ε

Figure 14. Generators at x = η4 − ε

At (0, 0) the curve C(l) has four branches (one corresponding to C3,
and three from C4):

C3(0, 0) : y = −x+ higher terms,

Creal

4 (0, 0) : y ≈ −0.6252 x+ higher terms,

C±i
4 (0, 0) : y ≈ (0.4793± i 1.1703) x+ higher terms,
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while at (0, 1) it has two branches (one for C3, one for C4):

C3(0, 1) : y = 1 +
2

3
x− 5

27
x2 + higher terms,

C4(0, 1) : y = 1 +
2

3
x+

11

9
x2 + higher terms.

It follows that, at x = η5 − ε, the ξk’s are as in Figure 15, where

µ := (ξ6ξ4ξ2ξ2ξ1ξ6ξ4ξ
−1

6 )−1,

and the monodromy relations around Lη5 (contribution of the singular
point (0, 0)) are given by

ξj = ω · ξj · ω−1 for j = 2, 4, 6,(4.4)

where ω := µ · ξ6ξ2ξ4, that is, ω = (ξ2ξ1ξ6ξ4ξ
−1

6 )−1 by (4.2). (Notice
that, as ξ1ξ2 = ξ2ξ1, the contribution of the singular point (0, 1) does
not give any information.)

Figure 15. Generators at x = η5 − ε

Figure 16. Generators at x = η6 − ε
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At x = η6 − ε, the ξk’s are deformed as in Figure 16, and the mon-
odromy relation around Lη6 is a multiplicity-2 tangent relation:

ξ6ξ4 = ξ4ξ6.(4.5)

It follows that

ω = (ξ2ξ1ξ4)
−1,

and therefore the relations (4.4) can be written as

ξ1ξ2 = ξ2ξ1 (j = 2),(4.6)

ξ1ξ4 = ξ4ξ1 (j = 4),(4.7)

ξ2ξ1ξ6 = ξ6ξ2ξ1 (j = 6).(4.8)

Figure 17. Generators at x = η7 − ε

Figure 18. Generators at x = η8 − ε

At x = η7 − ε (respectively x = η8 − ε and x = η9 − ε), the ξk’s
are deformed as in Figure 17 (respectively Figures 18 and 19), and
the monodromy relations around Lη7 , Lη8 and Lη9 do not give any
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new information. (To find the exact position of the generators at x =
η8 − ε, one may notice that at (1, 0) the curve has two branches: one
corresponding to C3 given by

y =
3

2
(x− 1) +

5

8
(x− 1)2 + higher terms,

and one corresponding to C4 given by

y =
3

2
(x− 1) +

27

8
(x− 1)2 + higher terms.

To find the generators in Figure 19, use the relations (4.6)–(4.8).)

Figure 19. Generators at x = η9 − ε

Figure 20. Generators at x = η10 − ε

Finally, at x = η10 − ε, the ξk’s are as in Figure 20, and the mon-
odromy relation around Lη10 is a multiplicity-2 tangent relation given
by

ξ4 = ξ1.(4.9)
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It follows from this relation and (4.5) that

ξ6ξ1 = ξ1ξ6.(4.10)

Combined with (4.8), this relation shows that

ξ6ξ2 = ξ2ξ6.(4.11)

Altogether, we have proved that the fundamental group π1(P
2\C(l))

is generated by four elements, ξ1, ξ2, ξ4 and ξ6, and (4.2), (4.5) (4.7),
(4.10) and (4.11) say that these elements commute.

5. Proof of Theorem 2.4

By [14, Chapter 2, Lemma 2I], it suffices to prove that N is a Zariski-
open subset in a linear space. Let N ′ be the moduli space of reducible
septics of the form C = C3 ∪ C4, where C3 and C4 are irreducible
curves of degree 3 and 4, respectively, satisfying the conditions (1),
(2) and (3) of the theorem. (Note that N is a Zariski-open subset in
N ′.) By the action of PGL(3,C), we can assume that P1 = (0, 0),
P3 = (0, 1) and P4 = (1, 0). We can also assume that P2 = (t, t)
with t 6= 0. Indeed, if the points P1, . . . , P4 are generic (i.e., no three
of them are collinear), then we can take any t 6= 0, 1

2
. (Given two

sets {A1, . . . , A4} and {A′

1, . . . , A
′

4} consisting of four generic points
in P2, there always exists ψ ∈ PGL(3,C) such that ψ(Ai) = A′

i for
1 ≤ i ≤ 4.) If P1, . . . , P4 are not generic, then, by Bezout’s theorem,
P1, P3, P4 (respectively, P1, P2, P3 and P1, P2, P4) cannot be collinear.
Thus the only possibility is that P2, P3, P4 are collinear, and in this
case we take t = 1

2
.

Let N ′

4 be the moduli space of quartics with a singularity of type A1

at P1 and at P2, and passing through P3 and P4.

Claim 5.1. N ′

4 is a Zariski-open subset in C7.

Proof. Let C4 be a curve in N ′

4 , and q4 a defining polynomial for it:

q4(x, y) = b04 y
4 + (b13 x+ b03) y

3 +
(

b22 x
2 + b12 x+ b02

)

y2+
(

b31 x
3 + b21 x

2 + b11 x+ b01
)

y + b40 x
4 + b30 x

3+

b20 x
2 + b10 x+ b00.

The bi’s must satisfy the following 8 linear equations:

• b00 = b01 = b10 = 0

(because P1 is a singular point),

• b04 = −b02 − b03, b40 = −b20 − b30

(because the curve passes through P3 and P4),

• b31 = (b03 t
2 − b21 t + b02 t

2 − b13 t
2 − b03 t− b30 t− b11 + b30 t

2+

b20 t
2 − b02 − b20 − b22 t

2 − b12 t)/ t
2,

b12 = (−2 b03 t− b22 t
2 − b30 t

2 − b02 + b30 t + b20 + 3 b02 t
2−
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b20 t
2 − 2 b13 t

2 + 3 b03 t
2)/ t,

b22 = (3 b02 t
2 − b20 t

2 + 3 b03 t
2 − b03 t+ 3 b20 + b21 t− 2 b13 t

2+

2 b11 + b02 − b30 t
2 + 2 b30 t)/ t

2

(because P4 is a singular point).

The polynomial q4 has then 7 free coefficients:

b02, b03, b11, b13, b20, b21, b30.

To get a singularity of type A1 at Pi (i = 1, 2), we need to remove
the algebraic subsets in C7 defined by Hess (q4, Pi) = 0, so the moduli
space N ′

4 is a Zariski-open subset in C7. �

Consider the projection π : N ′ → N ′

4 defined by π(C3 ∪ C4) = C4.
For any fixed C4 in N ′

4 , the fibre π−1(C4) is isomorphic to the moduli
space N ′

3 of cubics with a singularity of type A1 at P1, and tangent to
C4 at P3 and P4.

Claim 5.2. N ′

3 is a Zariski-open subset in C3.

Proof. Let C3 be a curve in N ′

3 , and q3 a defining polynomial for it:

q3(x, y) = a03 y
3 + (a12 x+ a02) y

2 +
(

a21 x
2 + a11 x+ a01

)

y+

a30 x
3 + a20 x

2 + a10 x+ a00.

The ai’s must satisfy the following 5 linear equations:

• a00 = a01 = a10 = 0

(because P1 is a singular point),

• a03 = −a02, a30 = −a20
(because the curve passes through P3 and P4).

Moreover, as C3 and C4 are tangent at P3 and P4, the ai’s should also
satisfy the following two equations:

∂q4
∂x

(Pi)
∂q3
∂y

(Pi)−
∂q4
∂y

(Pi)
∂q3
∂x

(Pi) = 0 (i = 3, 4)

that is,

−a12 t (b03 + 2 b02) = −a02 b13 t + 2 a02 b20 + a02b30 t+ a02 b03 t+

2 a02 b02 + 2 a02 b11 + a02 b21 t− a02 b11 t+ t b03 a11 + 2 t b02 a11

and

−a21 t2(b30 + 2 b20) = 2 a20 b20 + t2b30 a11 − a20 b11 t
2 + 2 t2b20 a11+

2 a20 b30 t+ 2 a20 b03 t
2 − a20 b13 t

2 + a20 b21 t− a20 b03 t−
2 a20 b20 t

2 + a20 b11 − 2 a20 b30 t
2 + 2 a20 b02 t

2 − a20 b21 t
2.

Note that these equations are linear in the ai’s. The polynomial q3 has
then 3 free coefficients:

a02, a11, a20.
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To get a singularity of type A1 at P1, we must remove the algebraic
subset in C3 defined by Hess (q3, P1) = 0, so N ′

3 is a Zariski-open subset
in C3. �

It follows from Claims 5.1 and 5.2 that the moduli space N ′ is a
Zariski-open subset in C10. Now, the resultant of q3 and q4 as polyno-
mials in y has the form

x6 (x− 1)2R(x),

where R is a degree-4 polynomial. This shows that, generically, q3 · q4
has also four singularities of type A1 at four other points P5, P6, P7

and P8. In other words, N is also a Zariski-open subset in C10.

Remark 5.3. The curve C(h) introduced in (2.2) corresponds to t = 1
and the following choice of coefficients:

a02 = −1, a11 = −1, a20 = 1, b02 = 2, b03 = −3,

b11 = 1, b13 = 1, b20 = −1, b21 = 1, b30 = 0.
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groupe fondamental du complémentaire d’une courbe projective plane, Compo-
sitio Math. 27 (1973) 141–158.
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7. H. Hamm and Lê D. T., Un théorème de Zariski du type de Lefschetz, Ann.
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