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ON KV, AT AND COMPATIBILITY BETWEEN CUP PRODUCTS

C. A. ROSSI

Abstract. For a finite-dimensional Lie algebra g over a field K of characteristic 0 which contains C, we deduce from
the compatibility between cup products [8, Section 8] and the vanishing of the weights associated to wheel graphs with
spokes pointing inwards [9] an alternative way of re-writing the Kontsevich ⋆-product on S(g) using the Alekseev–
Torossian flat connection [3]. Further, we prove that a similar way of re-writing the Kontsevich ⋆ on S(g) can be
deduced directly from the Kashiwara–Vergne conjecture.

1. Introduction

For a general finite-dimensional Lie algebra g over a field K of characteristic 0 which contains C, we consider the
symmetric algebra S(g).

Deformation quantization à la Kontsevich [8] permits to endow S(g) with an associative, non-commutative product⋆: the universal property of the Universal Enveloping Algebra (shortly, from now on, UEA) U(g) and a degree
argument imply that there is an isomorphism of associative algebras I from (S(g),⋆) to (U(g), ⋅). In fact, the algebra
isomorphism I has been characterized explicitly in [4,5,11] as the composition of the Poincaré–Birkhoff–Witt (shortly,
from now on, PBW) isomorphism (of vector spaces) with an invertible differential operator with constant coefficients

and of infinite order associated to the well-known Duflo element
√
j(●) in the completed symmetric algebra Ŝ(g∗).

In this short note, we try and answer a question asked to us by M. Vergne about a possible way of re-writing the
product ⋆ on S(g) in terms of the Lie series F , G appearing in the Kashiwara–Vergne (shortly, from now on, KV)
conjecture [6]. More precisely, M. Vergne kindly shared with us the thought that such a result should follow from
the KV conjecture and asked if it were also possible to prove a similar claim starting from the famous compatibility
between cup products for Kontsevich’s formality quasi-isomorphism [8, Section 8]. We prove both claims in a
constructive way (see later on Formulæ (5), (9) and (14)).

In Section 2, we quickly review the main notation and conventions.
In Subsection 3.1, we recall the main features of Kontsevich’s deformation quantization, in particular, the graphical

language and the construction of the product ⋆, which will be central in the forthcoming computations.
In Subsection 3.2, we re-prove in a slightly different way the famous result about compatibility between cup

products in 0-th degree for the tangent cohomology in the Lie algebra case: this permits to simplify considerably
computations and to prove Formulæ (5) and (9), by recalling certain results in [4, 9].

In Subsection 3.3, we compute symbols of all (bi)differential operators in the aforementioned formulæ and find, as
one could expect, the Alekseev–Torossian (shortly, from now on, AT) connection [3, 10], which had been central in
the proof of the KV conjecture presented in [1].

Remark 1.1. In our humble opinion, the results of Subsections 3.2 and 3.3 were already somehow present in the
work [10] of C. Torossian: we just present them here in a slightly different fashion, pointing out more explicitly their
relationship with compatibility between cup products.

Finally, in Subsection 3.4, we consider the (combinatorial) KV conjecture and from it we deduce Formula (14),
which also yields compatibility between cup products in 0-th cohomology.

Acknowledgments. We thank M. Vergne for having shared some interesting by-products on deformation quanti-
zation and the KV conjecture and for useful conversations, J. Löffler for many useful discussions, and both of them
for having carefully read a first draft of the present note.

2. Notation and conventions

We consider a field K of characteristic 0 which contains C.
We denote by g a finite-dimensional Lie algebra over K of dimension d; by {xi} we denote a K-basis of g. To g

we associate the linear variety X = g∗ over K: the basis {xi} defines a set of global coordinates over X , and the
canonical Kirillov–Kostant Poisson bivector field π on X can be written as π = fk

ijxk∂i∂j , where we have omitted

wedge product for the sake of simplicity, and fk
ij denote the structure constants of g w.r.t. the basis {xi}.
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3. Compatibility between cup products and the AT connection

In the present section, we consider a slightly different approach to the compatibility between cup products from [8,
Subsection 8.2] on the 0-th cohomology. We then specialize to the case of the Poisson variety (X,π), where X = g∗

for g as in Section 2.

3.1. Explicit formulæ for Kontsevich’s star product. Let first X = Kd and let {xi} a system of global coordi-
nates on X , for K as above.

For a pair (n,m) of non-negative integers, by Gn,m we denote the set of admissible graphs of type (n,m): an
element Γ of Gn,m is a directed graph with n, resp. m, vertices of the first, resp. second type, such that i) there is
no directed edge departing from any vertex of the second type and ii) Γ admits whether multiple edges nor short
loops (i.e. given two distinct vertices vi, i = 1,2, of Γ there is at most one directed edge from v1 to v2 and there is
no directed edge, whose endpoint coincides with the initial point). By E(Γ) we denote the set of edges of Γ in Gn,m.

We denote by C+n,m the configuration space of n points in the complex upper half-plane H
+ and m ordered points

on the real axis R modulo the componentwise action of rescalings and real translations: provided 2n +m − 2 ≥ 0,
C+n,m is a smooth, oriented manifold of dimension 2n +m − 2. We denote by C+n,m a suitable compactification à

la Fulton–MacPherson introduced in [8, Section 5]: C+n,m is a compact, oriented, smooth manifold with corners of
dimension 2n +m − 2. We will be interested mostly in its boundary strata of codimension 1.

We denote by ω the closed, real-valued 1-form

ω(z1, z2) = 1

2π
darg( z1 − z2

z1 − z2 ) , (z1, z2) ∈ (H+ ⊔R)2, z1 ≠ z2,

where arg(●) denotes the [0,2π)-valued argument function on C∖ {0} such that arg(i) = π/2. The main feature of ω
is that it extends to a smooth, closed 1-form on C+2,0, such that i) when the two arguments approach to each other

in H
+, ω equals the normalized volume form dϕ on S1 and ii) when the first argument approaches R, ω vanishes.

We introduce Tpoly(X) = A[θ1, . . . , θd], A = C∞(X), where {θi} denotes a set of graded variables of degree 1,
which commute with A and anticommute with each other (one may think of θi as ∂i with a shifted degree). We
further consider the well-defined linear endomorphism τ of Tpoly(X)⊗2 of degree −1 defined via

τ = ∂θi ⊗ ∂xi
,

where of course summation over repeated indices is understood. We set ωτ = ω ⊗ τ .
To Γ in Gn,m such that ∣E(Γ)∣ = 2n +m − 2, γi, i = 1, . . . , n, elements of Tpoly(X) and aj, j = 1, . . . ,m, elements of

A, we associate a map via

(1)

(UΓ(γ1, . . . , γn)) (a1⊗⋯⊗am) = µm+n (∫
C+n,m

ωτ,Γ (γ1 ⊗⋯⊗ γn ⊗ a1 ⊗⋯⊗ am)) , ωτ,Γ = ∏
e∈E(Γ)

ωτ,e, ωτ,e = π
∗
e (ω)⊗τe,

τe being the graded endomorphism of Tpoly(X)⊗(m+n) which acts as τ on the two factors of Tpoly(X) corresponding
to the initial and final point of the edge e, and µm+n denotes the multiplication map from Tpoly(X)m+n to Tpoly(X),
followed by the natural projection from Tpoly(X) onto A by setting θi = 0, i = 1, . . . , d. We may re-write (1) by
splitting the form-part and the polydifferential operator part as

(UΓ(γ1, . . . , γn)) (a1 ⊗⋯⊗ am) =̟Γ(BΓ(γ1, . . . , γn))(a1, . . . , am), ̟Γ = ∫
C+n,m

ωΓ.

In [8, Theorem 6.4], the following theorem has been proved.

Theorem 3.1. For a Poisson bivector field π on X, and a formal parameter h̵, the formula

(2) f1 ⋆h̵ f2 = ∑
n≥0

h̵n

n!
∑

Γ∈Gn,2

(UΓ(π, . . . , π´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n

))(f1, f2), fi ∈ A, i = 1,2,

defines a Kh̵ = K[[h̵]]-linear, associative product on Ah̵ = A[[h̵]].
3.2. The 1-form governing the compatibility between cup products. We now consider g as in Section 2, to
which we associate the Poisson variety (X = g∗, π). Observe that the commutative algebra K[X] of regular functions
on X identifies with A = S(g).

Since π is linear, Formula (2) restricts to Ah̵ and moreover the h̵-dependence is polynomial: we may thus safely
set h̵ = 1 and consider the associative algebra (A,⋆).

For a non-negative integer n, let us consider the projection πn,2 from C+n+2,0 onto C+2,0 which forgets all points
in H

+ except the last two: it extends smoothly to a projection from C+n+2,0 onto C+2,0, which we denote by the same
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symbol. It is clear that πn,2 defines a fibration onto C+2,0, whose typical fiber is a smooth, oriented manifold with
corners of dimension 2n.

To Γ in Gn+2,0 such that ∣E(Γ)∣ = 2n, we associate a smooth 0-form on C+2,0 with values in the bidifferential
operators on A defined as

(3) T π
Γ (f1, f2) = µn+2(πn,2,∗(ωτ,Γ(π ⊗⋯⊗ π´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

⊗ f1 ⊗ f2))) = ̟̂Γ(BΓ(π, . . . , π´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n

))(f1, f2), ̟̂Γ = πn,2,∗(ωΓ),
where πn,2,∗ denotes the integration along the fiber of the operator-valued form ωτ,Γ w.r.t. the projection πn,2 and
where we have borrowed previous notation.

Remark 3.2. Observe that (3) is well-defined, as ω extends to C+2,0. If Γ contains an edge connecting the last two
vertices, (3) vanishes by dimensional reasons. Further, no arrow may depart from any of the last two vertices, and
exactly two arrows depart from any vertex different from the last two: thus, we may identify graphs Γ in Gn+2,0 as
in (3) with graphs in Gn,2 as in (2).

We finally set

(4) T π(f1, f2) = ∑
n≥0

1

n!
∑

Γ∈Gn+2,0
∣E(Γ)∣=2n

T π
Γ (f1, f2), fi ∈ A, i = 1,2.

Formula (4) yields a well-defined smooth function on C+2,0 with values in the bidifferential operators on A.

Theorem 3.3. There exist smooth 1-forms Ωπ
i , i = 1,2, with values in g ⊗ Ŝ(g)⊗2, such that the following identity

holds true:

(5) d(T π(f1, f2)) = T π(Ωπ
1([π, f1], f2)) + T π(Ωπ

2 (f1, [π, f2])), fi ∈ A, i = 1,2.

Proof. First of all, for Γ in Gn+2,0 such that ∣E(Γ)∣ = 2n, n ≥ 1, let us compute

d(T π
Γ (f1, f2)) = d ̟̂Γ(BΓ(π, . . . , π´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

))(f1, f2) = π∂
n,2,∗(ωΓ)(BΓ(π, . . . , π´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n

))(f1, f2),
where the second equality follows by means of the generalized Stokes Theorem for integration along the fiber, and
π∂
n,2,∗ denotes integration along the boundary of the compactification of the typical fiber of the projection πn,2.
The boundary strata of codimension 1 of the compactification of the typical fiber of πn,2 can be deduced from the

boundary strata of codimension 1 of C+n+2,0:
i) there is a subset A of [n] = {1, . . . , n}, 1 ≤ ∣A∣ ≤ n which contains either n+ 1 or n + 2, such that points in H

+

labeled by A collapse either to the n + 1-st or n + 2-nd point in H
+;

ii) there is a subset A of [n], 2 ≤ ∣A∣ ≤ n, n+ 1, n+ 2 ∉ A, such that points in H
+ labeled by A collapse to a single

point in H
+, distinct from the last two points;

iii) there is a subset A of [n], which either contains both n + 1, n + 2 or contains neither of them, such that the
points in H

+ labeled by A approach R.

For Γ as above, we denote by ΓA, resp. Γ
A, the subgraph of Γ, whose edges have both endpoints labeled by A,

resp. the quotient graph obtained by collapsing to a single vertex the subgraph ΓA of Γ.
The boundary strata of type iii) yield trivial contributions. Namely, let us consider first a subset A such that

n + 1, n + 2 ∉ A: Fubini’s Theorem implies that

π
∂,A
n,2,∗(ωΓ)∝ ∫

C+
A,0

ωΓA
,

and the aforementioned properties of ω imply that the form degree of ωΓA
equals 2∣A∣, while the dimension of C+A,0

equals 2∣A∣−2. If A contains both n+1, n+2, we may repeat the previous arguments verbatim by replacing A by Ac.
Let us consider a general boundary stratum of type ii): Fubini’s Theorem and the properties of ω imply

π
∂,A
n,2,∗(ωΓ) ∝ ∫

CA
ωΓA

,

where CA is the compactified configuration space of ∣A∣ points in C modulo rescalings and complex translations; by
abuse of notations, we have denoted by ωΓA

a product of 1-forms darg(zi − zj), i, j in A, on CA. If ∣A∣ ≥ 3, the above
integral on the right-hand side vanishes by [8, Lemma 6.6]. Thus, it remains to consider the case ∣A∣ = 2. If no edge
connects the two vertices labeled by A, there is nothing to integrate over C2 = S1, while, if there is a cycle between
the two vertices, ωΓA

is the square of a 1-form, hence both contributions vanish. We thus assume that there is a
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single edge connecting the two vertices labeled by A, in which case Fubini’s Theorem together with the properties of
ω when its arguments collapse in H

+ yields

π
∂,A
n,2,∗(ωΓ) = πn−1,2,∗(ωτ,ΓA).

The quotient graph ΓA belongs to Gn+1,0 and no edge departs from n+ 1, n+ 2, all other vertices are bivalent except
one, which is trivalent (here, the valence of a vertex is the number of outgoing edges from the said vertex).

Finally, let us consider a boundary stratum of type i), labeled by a subset n+1 ∈ A, n+2 ∉ A. Assume first ∣A∣ ≥ 2:
then, in a way similar to the analysis of a boundary stratum of type ii), we find

π
∂,A
n,2,∗(ωΓ)∝ ∫

CA⊔{n+1}
ωΓA
= 0

by [8, Lemma 6.6], as ∣A∣ ≥ 2. It remains to consider the case ∣A∣ = 1. As before, we may safely assume that ΓA

consists of a single edge connecting with endpoint n+1 and, provided n ≥ 1, initial point different from n+2, in which
case we find

π
∂,A
n,2,∗(ωΓ) = πn−1,2,∗(ωΓA).

Due modifications of the previous arguments yield a similar formula in the situation n+1 ∉ A, n+2 ∈ A. The quotient
graph ΓA, if n+ 1 is in A, belongs to Gn+1,0, exactly one edge departs from n+ 1, no edge departs from n+ 2, and all
other vertices are bivalent; when n + 2 belongs to A, ΓA is described in a similar way by replacing n + 1 by n + 2.

The previous computations yield
(6)

d(T π(f1, f2)) = ∑
n≥1

1

n!
∑

Γ∈Gn+2,0
∣E(Γ)∣=2n

∑
A⊆[n], ∣A∣=2

n+1∈A, n+2∉A

̟̂ΓA(BΓ(π, . . . , π´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n

))(f1, f2) + ∑
n≥1

1

n!
∑

Γ∈Gn+2,0
∣E(Γ)∣=2n

∑
A⊆[n], ∣A∣=2

n+1∉A, n+2∈A

̟̂ΓA(BΓ(π, . . . , π´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n

))(f1, f2)+
+ ∑

n≥1

1

n!
∑

Γ∈Gn+2,0
∣E(Γ)∣=2n

∑
A⊆[n], ∣A∣=2
n+1,n+2∉A

̟̂ΓA(BΓ(π, . . . , π´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n

))(f1, f2) =
= ∑

n≥0

1

n!
∑

Γ∈Gn+2,0
∣E(Γ)∣=2n+1

̟̂Γ(BΓ(π, . . . , π´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n

))([π, f1], f2) + ∑
n≥0

1

n!
∑

Γ∈Gn+2,0
∣E(Γ)∣=2n+1

̟̂Γ(BΓ(π, . . . , π´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n

))(f1, [π, f2])+
+ ∑

n≥0

1

n!
∑

Γ∈Gn+2,0
∣E(Γ)∣=2n+1

̟̂Γ(BΓ([π,π], π, . . . , π´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
n−1

))(f1, f2),
recalling the explicit shape of the quotient subgraph ΓA in the three previous cases and using Leibniz rule to re-write
the sums over A in the bidifferential operators; [π,π] denotes the trivector field on x, whose components are given
by the sum over the cyclic permutations of {j, k, l} in πij∂iπkl. We recall the previous discussion about the shape
of the quotient graph ΓA in order to understand the shape of the admissible graphs in the interior sums in all three
terms in the last expression of (6). In particular, ̟̂γ in the last expression in (6) is the integral along the fiber of
πn,2 of a form of degree 2n + 1: such an integral exists, because ω extends to +2,0, and ̟γ yields a smooth 1-form on
c+2,0.

Observe now that the third term in the final expression of (6) vanishes because of the Jacobi identity, hence only
the first and second term matter in our discussion. The linearity of π on X = g∗ permits to re-write both 1-forms in
a more elegant way.

If we consider a general graph Γ in Gn+2,0 as in the first term on the right-hand side of (6), any bivalent vertex
different from n + 1, n + 2 may be the endpoint of at most one arrow. Thus, by slightly adapting [4, Subsections
3.1.2-3.1.4], Γ factorizes uniquely into the union of its simple components 1: the main novelty is that in the present
situation, there are three types of simple components, namely

i) rooted, bivalent trees with 2 leaves,
ii) wheel-like graphs with 2 leaves, whose legs may be attached to rooted, bivalent trees,
iii) rooted, bivalent trees with 2 leaves and an edge connecting either one of the two leaves to the root.

Pictorially, we have

1An element Γ of Gn,2 is simple, if the graph obtained from Γ by removing all arrows connecting to the vertices of the second type

is connected. In the present situation, we may regard Γ in Gn+2,0 as an element of Gn,2 by interpreting the last two vertices of the first

type as vertices of the second type.
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type i) type ii) type iii)

Figure 1 - Simple graphs of type i), ii) and iii)
By definition, Γ has exactly one simple component of type iii).

Let us consider a simple graph ↱Γ, resp. Γ↰, of type iii) with exactly one edge connecting n+ 1, resp. n+ 2, to the
root: then, borrowing previous notation, we may define

Ωπ
1,↱Γ
(f1 ⊗ ξ, f2) =̟↱Γ ((ξ ⊗ 1⊗ 1) ○ (µn ⊗ 1⊗ 1) ○ τΓ) (π ⊗⋯⊗ π´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

⊗ f1 ⊗ f2),(7)

Ωπ
2,Γ↰
(f1, f2 ⊗ ξ) =̟Γ↰ ((ξ ⊗ 1⊗ 1) ○ (µn ⊗ 1⊗ 1) ○ τΓ) (π ⊗⋯⊗ π´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

⊗ f1 ⊗ f2),(8)

where fi in A, i = 1,2, ξ in g∗, and Γ is the rooted, bivalent tree obtained from ↱Γ or Γ↰ by removing the edge from
n + 1 or n + 2 to the root.

As already observed, ̟
↱Γ and ̟Γ↰ are well-defined, smooth 1-forms on C+2,0. Further, since Γ is a rooted, bivalent

tree, (µn⊗1⊗1)○ τΓ is a linear map from A⊗2 to g⊗A⊗2: hence, contraction of g with g∗ yields an endomorphism of
A⊗2 consisting of differential operators with constant coefficients. Summing up over all simple graphs of type iii) (7)
and (8) we obtain well-defined, smooth 1-forms Ωπ

i , i = 1,2, on C+2,0 with values in g ⊗ Ŝ(g∗)⊗2, where we identify

Ŝ(g∗) with the algebra of differential operators on A with constant coefficients.
On the other hand, the sum over all simple graphs of type i) and ii) yield the bidifferential operator Tπ(●, ●)

by the arguments of [4, Subsubsections 3.1.2-3.1.4]. (We will come back to the simple graphs of type i) and ii) in
Subsection 3.4 about the KV conjecture, where their relevance will be clearer.)

Therefore, Fubini’s Theorem and the decomposition of admissible graphs into simple components of type i), ii)
and iii) yield (5). �

The 0-form T π and the 1-forms Ωπ
i , i = 1,2, are smooth on C+2,0 and extend to the class L1 when restricted on

piecewise differentiable curves on C+2,0.
Now, let us evaluate T π(f1, f2) at a point in the boundary stratum C2 = S1 of C+2,0, corresponding to the situation,

where the two distinct points in H
+ collapse together along a prescribed direction: the skew-symmetry of π eliminates

all contributions coming from simple graphs of type i) and of type ii), where at least one rooted, bivalent tree
is attached to a wheel-like graph. The only possibly non-trivial contributions come from wheel-like graphs with
the spokes pointing inwards (the two leaves have collapsed to a single point in H

+, which we may fix to i): the
corresponding integral weights vanish by the famous result of [9]. The only non-trivial contribution comes from the
unique graph in G2,0 with no edges.

Let us evaluate T π(f1, f2) at the boundary stratum C+0,2 = {0,1} of codimension 2 of C+2,0, which corresponds to
the approach of the two distinct points in H

+ to 0 and 1 on R: resorting to local coordinates on C+2,0 near the said
boundary stratum and recalling the projection πn,2, the corresponding integral weights factorize as

̟̂Γ =̟Γ1
̟Γ2

̟Γ3
,

where Γ1 is in Gn1,2, Γ2, Γ3 are in Gn2,0 and Gn3,0. Dimensional reasons and the linearity of π force Γ2 and Γ3 to be
wheel-like graphs with spokes points inwards, thus again in virtue of [9], the corresponding weights are non-trivial
only if n2 = n3 = 0.

If we consider a piecewise differentiable curve γ on C+2,0 connecting the said point in C2 = S1 with C+0,2 = {0,1} and
whose interior is in C+2,0, we may integrate (5) along γ: the previous arguments yield

(9) f1 ⋆ f2 − f1f2 = ∫
γ
(T π(Ωπ

1 ([π, f1], f2)) + T π(Ωπ
2 (f1, [π, f2]))) ,

which is precisely a special case of the famous compatibility between cup products [8, Theorem 8.2].

3.3. Relationship with the AT connection. By their very construction, T π and Ωπ
i , i = 1,2, extend to the

completed symmetric algebra Â = Ŝ(g) = K[[x1, . . . , xd]]. For yi, i = 1,2, in g, we consider eyi in Â: eyi may be also

regarded as a smooth function on X via eyi(ξ) = e⟨ξ,yi⟩, ξ in X , and ⟨●, ●⟩ denotes the canonical duality pairing
between g∗ and g.



6 C. A. ROSSI

First of all, borrowing previous notation, let us compute the symbol of Ωπ
i , i = 1,2, i.e.

Ωπ
1 (ey1 ⊗ ξ, ey2), Ωπ

1 (ey1 , ey2 ⊗ ξ), ξ ∈ g∗.

Recalling Formulæ (7), (8), a direct computation yields

Ωπ
1 (ey1 ⊗ ξ, ey2) = ⟨ξ,ω1(y1, y2)⟩ey1 ⊗ ey2 , Ωπ

2 (ey1 ⊗ ξ, ey2) = ⟨ξ,ω2(y1, y2)⟩ey1 ⊗ ey2 ,

where ωi denotes here the AT connection [3, 10]. In fact, ωi(y1, y2), i = 1,2, denotes a 1-form on C+2,0 with values in
the formal Lie series w.r.t. yi in g. In a more precise way, the AT connection ωi, i = 1,2, is a connection 1-form on
C+2,0 with values in the Lie algebra tder2 of tangential derivations of the degree completion of the free Lie algebra lie2

with two generators 2.
Following the same patterns, it is not difficult to prove by direct computations the following identities:

Ωπ
1 ([π, ey1], ey2) = ([y1, ω1(y1, y2)]ey1)⊗ ey2 + trg(ad(y1)∂y1

ω1(y1, y2)) ey1 ⊗ ey2 ,

Ωπ
2 ([π, ey1], ey2) = ey1 ⊗ ([y2, ω2(y1, y2)]ey2) + trg(ad(y2)∂y2

ω2(y1, y2)) ey1 ⊗ ey2 ,

where trg(●) denotes the trace of endomorphisms of g, ad(●) denotes the adjoint representation of g and ∂y1
ω1(y1, y2)

denotes the endomorphism of g defined via

(∂y1
ω1(y1, y2)) (x) = d

dt
ω1(y1 + tx, y2)∣

t=0
, x ∈ g.

It is possible to re-write (9) in the following form:

ey1 ⋆ ey2 − ey1ey2 = ∫
γ
(T π(⟨[y1, ω1(y1, y2)], ∂y1

⟩(ey1), ey2
) + T π(ey1 , ⟨[y1, ω1(y1, y2)], ∂y1

⟩(ey2
)))+

+ (trg(ad(y1)∂y1
ω1(y1, y2)) + trg(ad(y2)∂y2

ω1(y1, y2)))∫
γ
T π(ey1, ey2) =

= ∫
γ
(⟨[y1, ω1(y1, y2)], ∂y1

⟩ + ⟨[y2, ω2(y1, y2)], ∂y1
⟩ + div(ω(y1, y2)))DT(y1, y2)eZT (y1,y2),

where ⟨[y1, ω1(y1, y2)], ∂y1
⟩(ey1) denotes the tangent vector [y1, ω1(y1, y2)] of the adjoint type acting on ey1 , and

similarly for ⟨[y1, ω1(y1, y2)], ∂y1
⟩(ey2

), and, following notation from [3],

div(ω(y1, y2)) = trg(ad(y1)∂y1
ω1(y1, y2)) + trg(ad(y2)∂y2

ω1(y1, y2)) .
Finally, by DT(●, ●) and ZT(●, ●) we denote the functions over C+2,0, providing deformations of the Duflo density
function D(●, ●) and the Baker–Campbell–Hausdorff (shortly, BCH) formula Z(●, ●) respectively, introduced in [10].
We will discuss the Duflo density function in the next Subsection, as well as its relationship with the product ⋆.
3.4. Relationship with the KV conjecture. The AT connection had been introduced in [10] in a (successful,
albeit not complete until the appearance of the paper [1]; see also [2] for an alternative approach which does not use
deformation quantization techniques) attempt to solve the combinatorial KV conjecture [6].

Given g as in Section 2, the KV conjecture states the existence of two Lie series F , G, which are convergent in a
neighborhood U of (0,0) in g × g, which satisfy the two identities

y1 + y2 − log(ey2ey1) = (1 − e−ad(y1))F (y1, y2) + (ead(y2) − 1)G(y1, y2),(10)

trg(ad(y1)∂y1
F (y1, y2)) + trg(ad(y2)∂y2

G(y1, y2)) = 1

2
trg( ad(y1)

ead(y1) − 1 +
ad(y2)

ead(y2) − 1 −
ad(Z(y1, y2))
ead(Z(y1,y2)) − 1 − 1) ,(11)

for (y1, y2) in U , such that the BCH Lie series Z(y1, y2) = log(ey1ey2) converges.
We now recall e.g. from [5, 11] the following general formula relating the product ⋆ with the product in the UEA

U(g) of g as in Section 2:

(12) I(f1 ⋆ f2) = I(f1) ⋅ I(f2), fi ∈ A, i = 1,2,

where ⋅ denotes the product in U(g), and I is the isomorphism (of vector spaces) from A to U(g) given by post-
composing the PBW isomorphism from A to U(g) with the automorphism of A given by the differential operator
with constant coefficients and infinite order associated to the Duflo function

√
j(x) =

¿ÁÁÀdetg(1 − e−ad(x)
ad(x) ), x ∈ g.

(In fact, j(●) defines an invertible element of Ŝ(g∗).)
2A derivation of lie2 is uniquely defined on the generators y1, y2: thus, a derivation u of lie2 is called tangential, if it obeys u(yi) =

[yi, ui], for ui in lie2, i = 1,2.
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As a corollary of (12), we have the identity

(13) ey1 ⋆ ey2 =D(y1, y2)eZ(y1,y2), D(y1, y2) =
√
j(y1)√j(y2)√
j(Z(y1, y2)) , yi ∈ g, i = 1,2.

We observe that (13) has been proved by different methods in [7] and [4, Subsubsections 3.1.2-3.1.4].

Remark 3.4. More precisely, in [7], it had been proved that the simple graphs of type i) contribute to the BCH Lie
series Z(●, ●), while in [4], recalling also [9], it had been proved that the simple graphs of type ii) contribute to the
density function D(●, ●).

Let us replace in (13) π by tπ, for t in the unit interval: we write ⋆t for the corresponding product, and a direct
computation yields

ey1 ⋆t ey2 =D(ty1, ty2)eZt(y1,y2), Zt(y1, y2) = Z(ty1, ty2)
t

.

It follows directly from (2) that ey1 ⋆1 ey2 = ey1 ⋆ ey2 and ey1 ⋆0 ey2 = ey1ey2 , yi in g.
Let us compute the derivative w.r.t. t of both sides of (13): in particular, we are interested into the derivative of

the right-hand side.
Identity (10) implies that (see e.g. [6, Lemma 3.2])

d

dt
Zt(y1, y2) = (⟨[y1, Ft(y1, y2)], ∂y1

⟩ + ⟨[y2,Gt(y1, y2)], ∂y2
⟩)Zt(y1, y2),

where Ft(y1, y2) = F (ty1, ty2)/t and similarly for Gt(y1, y2).
On the other hand, combining [6, Lemma 3.2] with [6, Lemma 3.3] and observing that

√
j(●) is g-invariant, we

get

d

dt
D(ty1, ty2) = 1

2t
trg( ad(ty1)

ead(ty1) − 1 +
ad(ty2)

ead(ty2) − 1 −
ad(tZt(y1, y2))
ead(tZt(y1,y2)) − 1 − 1)D(ty1, ty2)+

+ (⟨[y1, Ft(y1, y2)], ∂y1
⟩ + ⟨[y2,Gt(y1, y2)], ∂y2

⟩)D(ty1, ty2) =
= trg(ad(y1)∂y1

Ft(y1, y2)) + trg(ad(y2)∂y2
Gt(y1, y2))D(ty1, ty2)+

+ (⟨[y1, Ft(y1, y2)], ∂y1
⟩ + ⟨[y2,Gt(y1, y2)], ∂y2

⟩)D(ty1, ty2),
where the second equality is a consequence of (11).

Combining both previous results, we get

d

dt
(ey1 ⋆t ey2) = trg(ad(y1)∂y1

Ft(y1, y2)) + trg(ad(y2)∂y2
Gt(y1, y2))D(ty1, ty2)(ey1 ⋆t ey2)+

+ (⟨[y1, Ft(y1, y2)], ∂y1
⟩ + ⟨[y2,Gt(y1, y2)], ∂y2

⟩) (ey1 ⋆t ey2) =
= (⟨[y1, Ft(y1, y2)], ∂y1

⟩ + trg(ad(y1)∂y1
Ft(y1, y2))) (ey1) ⋆t ey2+

+ ey1 ⋆t (⟨[y2,Gt(y1, y2)], ∂y1
⟩ + trg(ad(y1)∂y1

Gt(y1, y2))) (ey2).
Recalling the computations at the beginning of Subsection 3.3, it is not difficult to verify that to the Lie series Ft,
Gt, one may associate two smooth 1-forms ΩKV

i , i = 1,2, on the unit interval with values in g⊗ Ŝ(g∗), such that the
following identities hold true:

ΩKV
1 ([π, ey1], ey2) = ([y1, Ft(y1, y2)dt]ey1)⊗ ey2 + trg(ad(y1)∂y1

(Ft(y1, y2)dt)) ey1 ⊗ ey2 ,

ΩKV
2 ([π, ey1], ey2) = ey1 ⊗ ([y2,Gt(y1, y2)dt]ey2) + trg(ad(y2)∂y2

(Gt(y1, y2)dt)) ey1 ⊗ ey2 ,

whence, denoting by Tt(●, ●) the t-dependent bidifferential operator of infinite order Tt(f1, f2) = f1 ⋆t f2, fi in A, we
find the homotopy formula

(14) f1 ⋆ f2 − f1f2 = ∫ 1

0
(Tt(ΩKV

1 ([π, f1], f2)) + Tt(ΩKV
2 (f2, [π, f1]))) ,

which is similar in its structure to the homotopy formula (9) obtained by deforming the product ⋆ on C+2,0.
We finally observe that both (9) and (14) imply that

f1 ⋆ f2 = f1f2, fi ∈ S(g)g, i = 1,2.
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